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A unified framework is presented for examining the performance of linear mode filtering algorithms.
Two common mode filters, samples of the mode shapes and the pseudo-inverse of the mode shapes,
are presented in this framework as a tradeoff between sensitivity to other modes and sensitivity to
white noise. The maximuma posteriorimode filter is presented as an alternative which gracefully
transitions between these extremes, and attains the minimum mean squared error when the modes
to be estimated are well modeled as samples of a Gaussian random process. Numerical simulations
in both shallow and deep water environments confirm the analytically derived properties of these
mode filters. ©1998 Acoustical Society of America.@S0001-4966~98!01204-1#
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INTRODUCTION

The acoustic pressure field in many underwater envir
ments is well described by a superposition of normal mod
Many oceanographic problems, including the character
tion of the acoustic propagation through an ocean volu
and internal wave tomography, rely on estimates of the n
mal modes propagating at a given location. In order to ob
these estimates, the pressure field must be sampled us
hydrophone array. These pressure samples are then inv
to estimate the constituent modes of this field at the ar
Ideally, this mode estimate should be robust to the prese
of environmental or sensor noise. Several different te
niques have been proposed for solving this estimation p
lem, often referred to in the ocean acoustics literature
mode filtering. This paper presents a unified framework
examining the subclass of mode filtering problems in wh
the mode estimates are linear functions of the observed p
sure samples from a vertical hydrophone array at a sin
time. The results presented here are easily extended to
ations with multiple observations of the same pressure fi
over time.

The first mode filtering algorithm published in the liter
ture was the sampled mode shape mode filter.1,2 The sampled
mode shape filter is the optimal linear mode filter for t
detection and estimation of any single mode in spatia
white noise.3 However, this filter generally provides poo
rejection of interference from the other propagating mod
The pseudo-inverse mode filter4 rejects interference from
other modes but at a cost of increased sensitivity to w

a!Formerly at Research Lab of Electronics, MIT, and Dept. of Appli
Ocean Physics and Engineering, Woods Hole Oceanographic Institut
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noise. When the mode coefficients are considered to be c
plex Gaussian random variables~CGRV’s!5–8 neither of
these filters attains the bound on the minimum mean squ
error ~MMSE! given by the Fisher Information Matrix
~FIM!. If an adequate statistical model exists for the obs
vation noise then this error bound is attained by the ma
mum a posteriori ~MAP! mode filter. This paper develop
the MAP filter and demonstrates that this mode filter tran
tions gracefully between the extremes defined by
sampled mode shape and pseudo-inverse mode filters. In
dition, we observe that the MAP mode filter provides a th
oretical justification for the empirically motivated mode filte
proposed by Yang,9 which drops small eigenvalues from th
computation of the inverse.

The deterministic model for mode coefficients is a co
mon and familiar framework for acoustic propagation.10–13

Recent work has investigated the role of stochastic mod
for characterizing acoustic propagation, allowing the app
cation of new classes of signal processing algorithms to
tection and estimation problems for ocean acoustic par
eters. Specifically, the complex Gaussian distribution is u
to model uncertainty in the absolute phase of the signal
to a variety of causes, including source–receiver ran
uncertainty.14,15 This distribution has also been shown to
the asymptotic limit of the received field for long-rang
propagation through random media under spec
conditions.16,17 It is beyond the scope of the present paper
discuss the validity of the deterministic and stochastic pro
gation models. Rather, we address the implications of e
model for a specific estimation problem: the linear estim
of the complex mode coefficients observed at a vertical l
array at a single time..
18134)/1813/12/$10.00 © 1998 Acoustical Society of America
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The remaining subsections of the Introduction revi
the normal mode equations, common models for noise in
underwater acoustic environment, and the singular value
composition, an orthogonal matrix factorization useful
characterizing the behavior of mode filters. Section I d
scribes previously proposed mode filters and develops
MAP mode filter. Section II presents simulations compar
the MAP mode filter to other mode filters in a shallow wa
environment, while Sec. III presents similar results for
deep water sound speed profile. Finally, Sec. IV draws c
clusions about the appropriateness of different mode fil
based on the simulation results.

A. Normal mode equations

The normal modes of a single-frequency~CW! acoustic
pressure field are the solutions to the homogeneous H
holtz equation, which in a region of constant density is

¹2p~r !1k2~r !p~r !50,

where k(r ) is the local acoustic wave number. The loc
wave number is defined to bev/c(r ), the ratio of the angular
acoustic frequency to the sound speed. If the solution is
sumed to be separable in range and depth and cylindric
symmetric, the resulting vertical~depth! eigenfunction equa-
tion is

d2

dz2 Cm~z!1kzm
2 ~z!Cm~z!50. ~1!

The solutions of this equation which satisfy the auxilia
conditions are the normal modes.11,13 In Eq. ~1!, kzm(z)
5Ak2(z)2krm

2 is the vertical wave number of themth mode
andkrm

2 is the separation constant for that mode. The squ
root of the separation constant,krm , is the horizontal wave
number of the mode. By convention, the modes are norm
ized such that* uCm(z)u2r21(z)dz51, which simplifies to
* uCm(z)u2 dz5r0 for our constant density assumption. In
realistic scenario, where the environment is range vary
the solution to the wave equation is not separable in gene
However, we continue to use the normal modesC(r ,z)
computed usingk(r ,z) as a basis for the field at ranger .

The pressure field can be written as a weighted supe
sition of these local normal modes

p~r ,z!5(
m

dm~r !Cm~z;r !,

where thedm(r ) are the mode coefficients at ranger . We
parametrizeC(z;r ) in this fashion becausek and C vary
more rapidly in depth than range for most ocean envir
ments. Only a finite set of modes in any environment ha
predominantly real horizontal wave numberskrm . TheseM
modes are known as the propagating or trapped modes
the channel. In the far field of the acoustic source, the mo
propagate in range as exp(ikrmr)/Akrmr ,12,13,18therefore any
mode with a significant imaginary part tokrm decays quickly
with range, and is known as an evanescent mode. Evane
modes are usually not excited in the far field, unless ra
inhomogeneities couple energy from the trapped modes
the evanescent ones.
1814 J. Acoust. Soc. Am., Vol. 103, No. 4, April 1998
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The spatial samples of the pressure field observed
vertical array ofN hydrophones can be written as

F p~z1!

]

p~zN!
G5F C1~z1! ¯ CM~z1!

] � ]

C1~zN! ¯ CM~zN!
G F d1

]

dM

G1F n~z1!

]

n~zN!
G ,

or in vector notation

p5Cd1n, ~2!

wheren is the vector of observation noise at the hydropho
locations, andz1 ,...,zN are the depths of the hydrophone
The goal of mode filtering is to estimate the mode coe
cients (d̂) from the observed pressure samples~p! as accu-
rately as possible in the presence of the noise~n!.

B. Observation noise

The noisen in the observed pressurep can be due to
several causes: two common sources are instrumenta
noise and sea-surface noise. In estimating the mode co
cientsd from the observed pressuresp, the noise is generally
considered to be a CGRV with zero mean and spatial co
rianceKnn. The structure ofKnn depends on the geometry o
the array, the ocean conditions during the observations,
the source of the noise. Two common models forKnn are the
spatially white ~SW! noise model and the Kuperman
Ingenito ~KI ! surface noise model.19 The SW noise mode
assumes that the noise at each hydrophone is equal in p
and uncorrelated with the noise at all the other hydrophon
so Knn5sn

2I . This model is most appropriate under hig
signal-to-noise ratio conditions when the noise that is pres
consists predominantly of instrumentation noise.

The KI noise model proposes that the noise generated
the sea surface couples into each mode independently
varying power such that

Knn5CF s
d̃1

2
0 ¯ 0

0 s
d̃2

2
� ]

] � � 0

0 ¯ 0 s
d̃M

2

GCH5CK d̃ d̃CH, ~3!

where s
d̃1

2
,...,s

d̃M

2
are functions of the mode profiles an

surface noise processes. The elements of the vectord̃ are the
mode coefficients of the noise process at the array.

In some scenarios, both surface generated and ins
mentation noise contribute significantly ton, and the covari-
ance matrixKnn contains components of both forms.

C. Singular value decomposition

The singular value decomposition~SVD! is an orthogo-
nal matrix factorization that is helpful in evaluating and u
derstanding the performance of mode filters. For anN3M
matrix A, the SVD factors the matrix such that

A5UASAVA
H,

where UA and VA are N3N and M3M unitary matrices,
respectively.20 The matrixSA is a nearly diagonal real ma
1814Buck et al.: Unified framework for mode filtering
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problems,SA has the form

SA5F sA1 0 ¯ 0

0 � � ]

] � � 0

0 ¯ 0 sAM

0

G , ~4!

wheresA1>sA2>¯>sAM>0 are called the singular val
ues ofA.

I. MODE FILTERS

This section reviews several common mode filters a
analyzes their performance. For each filter we first evalu
its performance in terms of its bias and covariance when
mode coefficientsd are considered to be deterministic b
unknown quantities. The performance is also evaluated
terms of the mean squared error~MSE! when the mode co-
efficients are considered to be CGRV’s. In each case,
performance is compared against the bound derived from
FIM. Following this discussion of the common mode filte
we then derive the MAP mode filter. As noted in the pre
ous section, we restrict our attention to linear mode filter

The complex Gaussian random process plays an im
tant role in the study of linear estimators of random variab
because the optimal estimator for a complex Gaussian p
ability distribution is the optimal linear estimator for a
probability distributions with the equivalent first and seco
moments.3 Thus the performance bound derived for the co
plex Gaussian case is the bound for all linear estimate
any probability distribution with the same mean and cova
ance.

For linear mode filters, the estimated mode coeffici
vector d̂ can be written as

d̂5Hp5HCd1Hn,

where the matrixH represents the linear mode filter. Th
performance of the mode filter depends on the choice of
linear function represented byH. The estimator errore is
d̂2d5(HC2I )d1Hn. Whend is considered to be a non
random unknown parameter, the biasB(d) of the estimator
is the expected value of the error,E$e%5(HC2I )d. The
covariance ofd̂, Kd̂d̂5E$d̂d̂H%2E$d̂%E$d̂%H is

K d̃d̃5HK nnH
H, ~5!

where Knn is the spatial covariance of the noise vector
discussed in the Introduction and the covariance of the e
mator errorKee5Kd̂d̂. Thus the covariance of the mode c
efficient estimate vector depends entirely on the noise p
cess covarianceKnn and the mode filterH.

The FIM3 provides a method of computing the bound
the covariance of the error that can be achieved by an u
ased estimator of a nonrandom parameter. The FIM is
fined to be

JD52E$“d@“d ln pPuD~pud!#H%,
1815 J. Acoust. Soc. Am., Vol. 103, No. 4, April 1998
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where¹d is the gradient operator with respect to the mo
coefficientsd, and pPuD(pud) is the conditional probability
density function21 of the observed pressurep given the mode
coefficientsd. The variance of any estimate errorei , sei

2 , is

bounded from below by the corresponding diagonal elem
of JD

21, i.e., sei

2 >@JD
21# i i . This error covariance bound i

known as the Cramer–Rao lower bound~CRLB!. An effi-
cient estimator is one whose variance attains the CRLB.
cause the estimate covariance equals the error covaria
this CRLB also applies tos

d̂i

2
, sos

d̂i

2
>@JD

21# i i . For the data

model given in Eq.~2!,

JD5CHKnn
21C.

For the SW noise model, this yieldsJD
215sn

2(CHC)21 as
the bound on the error covariance. GeneralizingKnn

21 to the
pseudo-inverse20 for the KI noise model gives a bound of

JD
215K d̃d̃, ~6!

whereK d̃d̃ is defined as in Eq.~3!.
Whend is a random parameter with zero mean and

varianceKdd, the covariance of the error vector is

Kee5HCKddC
HHH1Kdd2HCKdd2KddC

HHH

1HK nnH
H. ~7!

The definition of the bias can be extended to the case whed
is a random variable by letting the bias be the conditio
expectation of the error, i.e.,B(d)5E$eud%5(HC2I )d.
The covarianceKeecan then be interpreted as the sum of tw
components. The first component,Ed$B(d)B(d)H% is inde-
pendent of the noise power, but depends entirely onH, C,
andKdd. The notationEd$•% indicates taking the expectatio
of the argument only with respect to the subscripted varia
The second component ofHK nnH

H is due to the observation
noise and equal to the estimator covariance in Eq.~5! whend
is an unknown deterministic quantity. By extension, we c
an estimator of a random variabled unbiased whenB(d)
50 for all d. One pleasing feature of this definition of bias
that if an estimatorH is unbiased for deterministicd, it is
also unbiased for randomd, and vice versa. Moreover, ifH
is an unbiased estimator,Kee is equal for both scenarios, a
confirmed by comparing Eqs.~5! and ~7!.

The FIM can also be extended to incorporate thea priori
information available in the probability density functio
~PDF! of d for the scenario whend is a random variable.
This information is

JP52E$“d@“d ln pD~d!#H%,

wherepD(d) is the PDF of the mode coefficients. Assumin
that pD(d) is a CGRV, the resulting bound on the error c
variance is

JT
215@JD1JP#215@CHKnn

21C1Kdd
21#21,

where the total informationJT is the sum of the information
in the dataJD and the prior informationJP . Note that one
consequence of this definition is thatJT

21<JD
21 in the posi-

tive definite sense, i.e.,xHJT
21x<xHJD

21x for all x. Thus an
1815Buck et al.: Unified framework for mode filtering
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unbiased estimator of deterministicd which is efficient, i.e.,
Kee5JD

21, will generally not attain the MMSE bound fo
estimators of a randomd unlessJT

215JD
21. Since the CRLB

guarantees that no unbiased estimator of a deterministic
known d can haveKee,JD

21, and Kee is the same for an
unbiased estimator regardless of whetherd is random or de-
terministic, this implies that the estimator attaining t
MMSE for a randomd cannot be unbiased unlessJT

21

5JD
21.
It is instructive to examineJT

21 for the case when the
mode coefficients are uncorrelated, as will be assumed in
subsequent simulations. IfKdd5sd

2I , the bound on the erro
covariance for the SW noise model is

JT
215@sn

22CHC1sd
22I #21

5sd
2I2sd

2CH@sn
2I1sd

2CCH#21Csd
2,

where the second step follows from the matrix invers
lemma. This expression can be put into the following for

JT
215V3

sd
22

~sd
2!2

sd
21S sn

2

sC1
2 D 0 ¯ 0

0 � � ]

] � � 0

0 ¯ 0
sd

22
~sd

2!2

sd
21S sn

2

sCM
2 D 4 VH,

~8!

wheresC i is the i th singular value ofC as defined in Eq.
~4!. For the KI noise model,

JT
215@Kdd

211K
d̃d̃
21

#21

53
sd

22
~sd

2!2

sd
21s

d̃1

2 0 ¯ 0

0 � � ]

] � � 0

0 ¯ 0 sd
22

~sd
2!2

sd
21s

d̃M

2
4 , ~9!

is the bound on the error covariance. These bounds for
useful basis for comparison of the different mode filte
Moreover, the similar structure of Eqs.~8! and ~9! provides
insight into the nature of the CRLB for mode filtering. Bo
noise models have diagonal matrices with terms of the fo
sd

22(sd
2)2/(sd

21a2). This is the classic form of the varianc
reduction for a linear estimate of a random variable w
variancesd

2 in uncorrelated noise with variancea2. The vari-
ance of the estimate is thea priori variance of the variable
minus the information gained by the observation. The s
tially white case@Eq. ~8!# includes the unitary matricesV
andVH to transform the estimates from the basis where
estimates are uncorrelated to the physical basis of the ac
tic modes. These matrices are not necessary for the KI n
1816 J. Acoust. Soc. Am., Vol. 103, No. 4, April 1998
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model, since the noise is uncorrelated in the basis for
acoustic mode by definition in this model.

The uncorrelated mode coefficient model is not p
posed as a realistic model of ocean propagation: For m
ocean environments the mode coefficients will be correla
However, any covariance matrixKdd may be diagonalized
by an appropriate similarity transform.20 Thus there is al-
ways some basis isomorphic with the acoustic modes
which the estimation problem is uncorrelated. Consequen
there always exists some basis in which the structure of
mode estimators matches those given above, modulo an
ditional unitary matrix implementing the diagonalizing sim
larity transform. Thus the intuition gained by studying th
case above when the standard acoustic modes are unc
lated transfers easily to scenarios with more realistic cov
ance matrices.

One issue examined for all the linear mode filters in t
paper is their performance under conditions of poor spa
sampling. We distinguish between two types of poor sa
pling. In the first, undersampling, the number of hydr
phonesN is fewer than the number of modes to be estima
M . In this scenario, Eq.~2! is an underdetermined leas
squares problem, and thus lacks a unique solution. While
possible to find the minimum norm solution to this equatio
there is no reason to believe that the modes propagating
the set giving the minimum norm ford. For this reason, it is
crucial to insure that the number of hydrophones in the ar
exceeds the number of modes that can reasonably be
pected to be observed at the array for the frequency of pro
gation.

The second kind of poor sampling occurs when the nu
ber of hydrophones exceeds the number of propaga
modes, but the locations of the hydrophones are such
they poorly sample the mode shapes. We refer to this s
nario as poorly conditioned sampling. In poorly condition
sampling, some of the singular values ofC grow disparately
small compared tosC1 , resulting in a large condition num
ber sC1 /sCM for the matrixC.20 Poorly conditioned sam-
pling has varying consequences for different mode filters
we show in the following sections.

A. Sampled mode shapes mode filter

One common choice forH in mode propagation experi
ments isCH, the sampled mode shape~SMS! filter. The
motivation for this choice is that the mode functions a
orthogonal when considered as continuous functions
depth. The SMS filter may also be interpreted as a spati
matched filter. As such, it is optimal for detecting a sing
mode in spatially white noise.3 However, spatially sampling
the modes with the hydrophones does not in general pres
the orthogonality, i.e.,CHCÞI . This lack of orthogonality
appears as contamination or cross-talk when estimating
eral modes simultaneously. Assuming the mode coeffic
vectord is a nonrandom, unknown quantity to be estimat
in the presence of random noisen, we can characterize th
performance of the estimatorH5CH in terms of its bias and
covariance.3 The bias of the SMS filter is B(d)
5(HC2I )d, so the lack of orthogonality ofC can intro-
duce a significant bias into the mode estimate. For the S
1816Buck et al.: Unified framework for mode filtering
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filter, the rows ofH should be normalized such that the d
agonal of (HC2I ) is zero, and the remaining bias is due
cross-talk between the modes and not normalization.
correct normalization isH5BCH, where B is the M3M
diagonal matrix diag(iCmi22), andCm is themth column of
C, i.e., themth mode shape sampled at the hydrophone
cations.

Theoretically, as more hydrophones are added to sam
the water column more finely in depth, the sampled mo
matrix C becomes arbitrarily close to orthogonal, making t
effect of the bias negligible. This is unrealistic in practice,
there are shallow water scenarios where the ocean bo
contains significant energy. It is impractical to deploy a v
tical array of hydrophones spanning the entire sedim
layer. Thus even in the limiting case of a continuous array
hydrophones spanning the water column, a bias may
exist due to the unsampled pressure field in the bottom22

Many experiments including Ferris,1 and Clay and Huang23

used the SMS filter, assuming the samples of the orthog
mode functions are themselves orthogonal without exam
ing the potential bias. However, Tindleet al.24 and Gazanhes
and Garnier25 both used the pseudo-inverse mode filter a
examined the cross-talk introduced by sampling to ve
that the bias was negligible for the purposes of their exp
ments.

When the array geometry results in poorly condition
sampling, the bias can grow so large as to make it imposs
to obtain reliable estimates ofd. Rewriting the biasB(d)
with the SVD forC yields

B~d!5VCS F sC1
2 0

�

0 sCM
2

G2I D VC
H d. ~10!

The presence of the identity matrix in this equation indica
that decreasing any of thesCms below one increases the bia
of the estimator. In the extreme when one of the singu
values is zero, the component of the bias in that direct
equals the projection of the mode coefficient vector in t
direction.

The covariance of the SMS filter can be found for bo
the SW and KI noise models. For the SW case,

K d̂d̂5sn
2CHC5sn

2 (
m51

M

sCm
2 vCmvCm

H , ~11!

where the vectorsvCm are the columns ofVC . The KI noise
model gives

K d̂d̂5CHCK d̃d̃CHC

5S (
m51

M

sCm
2 vCmvCm

H D F s
d̃1

2
0 ¯ 0

0 s
d̃2

2
� ]

] � � 0

0 ¯ 0 s
d̃M

2

G
3S (

m51

M

sCm
2 vCmvCm

H D . ~12!
1817 J. Acoust. Soc. Am., Vol. 103, No. 4, April 1998
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For both noise models, it can be seen that while decrea
sCM may initially decrease the covariance slightly, on
sCM is insignificant compared to the other singular values
C, further decreases insCM do not changeKd̂d̂ significantly.
This is true to a lesser extent for other singular values,
we focus onsCM , which is the smallest singular value b
definition from Eq.~4!. This limit on the deterioration of the
performance of the SMS filter is intuitively sensible becau
the norms of the rows ofH5CH are limited by the maxi-
mum amplitudes of the modesCm(z) no matter how poorly
conditioned the sampling is. Consequently, the error cov
ance in Eq.~5! is limited in its growth. As the sampling
grows even more poorly conditioned, the covariance reac
its upper limit, and the estimated̂ is mainly corrupted by the
bias shown in Eq.~10!. For both noise models, if the sam
pling is such that the covariance is still a significant fact
the covariance will increase as the noise powers~eithersn

2 or
sdi

2 ! increase. This is in contrast to the bias which is ind

pendent of the noise power.
At the other extreme, consider the scenario wh

N→` for an array spanning the entire water column. In th
highly oversampled case, all the singular valuessCm ap-
proach 1, so

(
m51

M

sCm
2 vCmvCm

H →VCVC
H 5I

and Eqs. ~11! and ~12! simplify to K d̂d̂5sn
2I and

K d̂d̂5K d̃ d̃ , respectively. The bias also becomes negligib
with only a small contribution remaining due to the u
sampled energy in the bottom sediments. Thus when the
ray oversamples the mode shapes, usingH5CH can give
mode estimates with only a small bias and a covariance
flecting the underlying noise process of the observations

The covariance for the SMS filter does not equal t
CRLB for either noise model. For someC it is possible that
the filter will have lower variances on some mode coe
cients. The bound given by the FIM applies only to unbias
estimators, and the SMS filter is not unbiased except in
limit when CHC→I . In this limit, the SMS filter achieves
the bound for both noise models.

When d is considered to be a random vector, the er
covariance for the SMS filter is

Kee5CHCKddC
HC1Kdd2CHCKdd2KddC

HC

1CHKnnC.

This does not attain the MMSE bound. It is a straightforwa
extension of proofs given in Ref. 3 to show that a necess
and sufficient condition forKee5JT

21 is thate can be written
in the form

e5A@“d ln pP,D~p,d!#, ~13!

wherepP,D(p,d) is the joint PDF of the mode coefficientsd
and observed pressurep, andA is a constant matrix indepen
dent of p or d. From Eq.~2!, it can be shown that for the
CGRV case

“d ln pP,D~p,d!5CHKnn
21n2Kdd

21d.
1817Buck et al.: Unified framework for mode filtering
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The errore for the SMS filter cannot be put in the form o
Eq. ~13! in general, and thus the SMS does not achieve
bound on the error covariance or MSE.

B. Pseudo-inverse mode filter

The pseudo-inverse~PI! mode filter results from choos
ing d̂ to minimize the squared error betweenCd̂ and p.
Intuitively, the PI filter can be thought of as removing a
cross-talk between mode estimates, but at a cost of hig
sensitivity to noise. Tindleet al.4 appears to be the first ref
erence in the ocean acoustics literature to formulate the m
estimation problem in this least squares sense. The resu
mode filter H5(CHC)21CH, denotedC†, is called the
pseudo-inverse or Penrose–Moore inverse ofC.20,26 This
name results from the factC†C5I . If the mode coefficient
vectord is considered to be a nonrandom but unknown v
tor, the PI mode filter is unbiased for both the SW and
noise models.

The covariance of the estimated mode coefficient vec
depends on the noise model. For the SW noise model,
~5! yields

K d̃d̃5sn
2VCSC

† ~SC
† !HVC

H

5sn
2 (

m51

M

sCm
22 vCmvCm

H . ~14!

If the array gives poorly conditioned sampling of the mo
shapes, some of the singular values approach zero and
sequently the correspondingsCm

22 terms in Eq.~14! dominate
the sum, giving a very large covariance. Alternatively, if t
array grossly oversamples the channel, the singular va
approach one, andKd̂d̂ approachessn

2I . For the SW Gauss
ian noise case, the PI mode filter can be shown to be
maximum-likelihood~ML ! estimator, as well as efficient.

If the KI noise model is substituted into Eq.~5!, the
estimator covariance is

Kd̂d̂5C†CK d̃d̃CHC†H5K d̃d̃, ~15!

which is intuitively sensible, asK d̃d̃ is the covariance of the
noise process as it is coupled into the channel by the mo
Theoretically, this covariance is unchanged by reduction
the array aperture. Practically, the mode filterC† is usually
based on an estimate ofC computed by numerical integra
tion of an observed or estimated sound speed profile. As
array aperture decreases and the singular values of the trC
grow smaller, the PI filter may become very sensitive
errors between theC obtained by numerical integration an
the actualC of the ocean channel. These errors can introd
a bias and increase the covariance aboveK d̃d̃.

The PI filter is also the ML estimator for the Kuperman
Ingenito noise model. This conclusion is not surprising sin
the definition of the noise model assumesn is in the range of
C. The existence of the ML estimate depends on
Kuperman–Ingenito model perfectly describing the no
process, since ifn contains any component in the orthogon
complement to the range ofC, the conditional probability
density pPuD(pud)50 for any d, and the ML estimate is
meaningless since no set of mode coefficientsd could have
1818 J. Acoust. Soc. Am., Vol. 103, No. 4, April 1998
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produced the observed signal. Equation~6! demonstrated
that the CRLB for the KI noise model is Eq.~15!. The PI
mode filter attains this bound on the variance, and is an
ficient estimator for the KI noise model. Ifd is considered to
be a random parameter, the error covariance bound is
duced and the unbiased PI filter no longer achieves
bound, as noted earlier. This can be confirmed by observ
that the error signale5C†n does not have the form require
by Eq.~13!. Thus the error covariances of the PI mode filt
sn

2(CHC)21 for SW noise andK d̃d̃ for the KI noise model,
do not meet the bound specified byJT

21. In fact, the error
variance for the PI filter is independent of the actual mo
energy propagating. This confirms the earlier statement
the PI mode filter removes all mode cross-talk, so all rema
ing error is due to noise.

C. Diagonal weighting

The diagonally weighted~DW! mode filter attempts to
compensate for situations when the array yields poorly c
ditioned sampling of the modes. As noted above, such s
pling causes one or more of the singular values ofC to be
very small. As a result of this samplingCHC is singular or
nearly singular, and the computation of the inverse of t
matrix becomes numerically sensitive. One method of co
pensating for this sensitivity is to modify the error functio
being minimized to include a term proportional to the ma
nitude squared of the estimated mode coefficient vec
d̂.27,28 The quantity to be minimized is then

e5ip2Cd̂i21bi d̂i2,

whereb is a scale factor indicative of the relative importan
of the two terms in the error expression. The estimator m
mizing this quantity is

d̂DW5~CHC1bI !21CHp.

This expression is very similar to the PI filter, except for
small diagonal matrixbI which has been added toCHC
before inversion to alleviate conditioning problems. ThebI
term is often referred to as the white noise sensitivity ter
The addition of this term places a lower bound ofb on the
singular values of (CHC1bI ). For the SW noise model
this limits the covariance of the estimator shown in Eq.~14!,
since nosCm

22 for the diagonally weighted inverse can exce
b22. For this reason, this approach is often referred to
diagonal loading or weighting. While this estimator does n
possess many of the nice theoretical properties of
pseudo-inverse mode filter, it is computationally more sta
for poorly conditioned sampling. As discussed for the und
termined mode filtering problem, there are many propaga
environments where there is no reason that the propaga
modes should minimizeidi2. Consequently, when choosin
b for diagonal weighting, there is a compromise betwe
minimizing the filter’s numerical sensitivity and overemph
sizing the somewhat artificial criterion of minimizingidi2.

D. Maximum a posteriori mode filters

The immediate motivation for the MAP mode filter
the fact that none of the mode filters examined so far
1818Buck et al.: Unified framework for mode filtering
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efficient for the scenario whend is considered to be a ran
dom variable. The MAP mode filter choosesd̂MAP to maxi-
mize the probability of the conditional probability densi
function for d conditioned on the observed pressurep, i.e.,
pDuP(dup). When bothd andn are CGRV’s, the MAP filter
is equivalent to the MMSE filter.3

For the case when the mode coefficients are well m
eled by a CGRV with zero mean and covarianceKdd and the
noise is also well modeled by a zero-mean CGRV with
varianceKnn and uncorrelated withd, the MAP mode filter
can be solved in closed form. Specifically,

d̂MAP5KxxC
HKnn

21p, ~16!

where

Kxx
215Kdd

211CHKnn
21C.

The error signale can be shown to beKxx(C
HKnn

21n
2Kdd

21d), which satisfies Eq.~13!. Consequently, the MAP
filter achieves the bound on the error covariance whend is a
random parameter satisfying the assumptions stated abo

Some insight into the performance of this mode fil
may be gained by considering the somewhat unrealistic c
when the modes are independent and identically distribu
i.e., Kdd5sd

2I , and the noise is spatially white withKnn
5sn

2I . Assuming there are more hydrophones than mo
(N.M ), Eq. ~16! reduces to

d̂MAP5VC3
sd

2sC1

sd
2sC1

2 1sn
2 0 ¯ 0

0
sd

2sC2

sd
2sC2

2 1sn
2 � ]

] � � 0

0 ¯ 0
sd

2sCM

sd
2sCM

2 1sn
2

U04 UC
H p,

~17!

wheresC i is the i th singular value ofC as defined in Eq.
~4!. Equation~17! has an appealing interpretation as a ge
eralization of the discrete spatial Wiener filter~DSWF!.5

Multiplying p by UC
H rotates the problem into the coordina

frame where the spatial components are uncorrelated. E
component is then weighted by the Wiener gain for the ra
of the mode power to the noise power for that compon
sCm

2 sd
2/(sCm

2 sd
21sn

2). These estimates of the componen
are then multiplied by the inverse singular valuessCm

21 be-
fore being transformed from the uncorrelated basis i
mode coefficients byVC . For the case when all the singula
values are 1,VC5I andUC is the appropriate set of sample
of complex exponentials, Eq.~17! reduces exactly to the
DSWF.

The mode filter proposed by Yang9 can be interpreted a
an asymptotic result of Eq.~17!. For practical reasons, Yan
proposed setting very small eigenvalues ofCHC to zero
before inverting this matrix in the process of computing t
PI mode filter. Yang’s motivation for this modification wa
rougha priori knowledge of the mode coefficients expect
and considerations of numerical stability. Consider Eq.~17!
when the array gives a poorly conditioned sampling of
channel. Some of thesC i grow small compared tosd and
1819 J. Acoust. Soc. Am., Vol. 103, No. 4, April 1998
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sn , causing some of the diagonal terms to go to zero. In
limit, this results in the same mode filter proposed by Ya
Based on this argument, the MAP mode filter provides
theoretical justification for Yang’sad hocmode filter as the
asymptotic case of a poorly sampled MAP mode filter.

It is also instructive to consider the MAP mode filter fo
the case whenKdd5diag(sd1

2 ,...,sdM

2 ) andKnn is given by the

KI noise model and these Gaussian random processes
considered to be independent. Under these conditions,
MAP mode filter becomes

d̂MAP5@Kdd
211K

d̃d̃
21

#21K
d̃d̃
21

C†p

53
sd1

2

sd1

2 1s
d̃1

2 0 ¯ 0

0
sd2

2

sd2

2 1s
d̃2

2 � ]

] � � 0

0 ¯ 0
sdM

2

sdM

2 1s
d̃M

2

4 C†p.

~18!

Intuitively, this is sensible because the pressure compon
due to both the noise process and the modes fall enti
within the range ofC if the KI noise model and mode propa
gation model are accurate. If this is the case,p contains no
projection in the orthogonal complement ofC and thus no
information is lost by transforming the pressure vectorp
back into mode coordinates byC†p. Seen another way,C†

is the spatial Karhunen–Loeve transform, since it deco
lates the observed modes and noise processes so that the
spatially white, i.e., the covariance ofC†p is diagonal. Un-
like the SW noise model, the physical basis of interest~mode
space! coincides with the mathematical basis in which t
underlying processes are uncorrelated. Once the problem
been whitened this way, the standard Wiener gains show
Eq. ~18! yield the MMSE estimate ofd. Given that the
Gaussian density is symmetric about a maximum at its me
the MMSE solution is equivalent to the MAP solution.3

Under many conditions, the MAP mode filter matches
exceeds the performance of either the SMS or PI mode
ters. As discussed in the previous sections, the varianc
the SMS filter is relatively insensitive to decreases insCM as
the sampling becomes poorly conditioned. Contrastingly,
PI filter’s covariance increases rapidly as the singular val
approach zero. Consequently, the PI mode filter gener
performs better when the array samples the mode sh
adequately, but as the array aperture decreases and the
pling becomes poorly conditioned, the PI filter’s perfo
mance deteriorates such that the sampled mode shape fil
preferable. One desirable feature of the MAP mode filte
that it performs like the PI mode filter when the sampling
well conditioned, like the SMS mode filter when the sam
pling is poorly conditioned, and in between these regimes
MAP mode filter transitions smoothly with a performan
exceeding that of either mode filter.
1819Buck et al.: Unified framework for mode filtering
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II. SHALLOW WATER SIMULATIONS

This section presents the results of simulations us
both the KI and SW noise models in a typical shallow-wa
~34-m depth! environment measured on the North Contine
tal Shelf of North America around 41 °N 71 °W. All of th
simulations use 200 Hz as the propagation frequency.
this frequency and water depth, the channel supports
trapped modes. Figure 1 shows the observed downwa
refracting sound-speed profile, along with the nine trapp
modes. The simulations use a series of vertical receiv
arrays whose apertures vary between spanning the full d
~34 m! and the bottom half of the water column (z
517– 34 m), and all of which have 19 hydrophones. Ea
mode filtering algorithm is evaluated at three different no
levels for both noise models. The noise levels of 0, 20, a
40 dB SNR refer to the ratio of the power in the propagat
modes to the power in the noise at the hydrophones for
full aperture array, i.e.,

SNR510 log10S E$iCdi2%

E$ini2% D .

By decreasing the aperture, we are able to examine the
formance of the algorithms as the mode filtering probl
transitions from well conditioned@cond(C)51.04 for the
fully spanning array# to poorly conditioned@cond(C)5105

for the half spanning array#.
For each noise level and aperture, 500 trials were

using independent choices for the mode coefficients
noise. In each trial, the mode coefficient vectord was chosen
as a CGRV with zero mean and covarianceKdd5I , while
the noise vectorn was also modeled as a CGRV with stat
tics appropriate to the noise model under evaluation. T
observed pressure fieldp was determined fromd andn using
Eq. ~2!, and then used as the input to the mode filter
algorithms. The total squared errori d̂2di2 was computed
for each mode filter at each trial, and then averaged ove
trials to obtain the mean total squared error~MTSE! for each
mode filter. Note that forM59, choosingd̂50 regardless of
p results in a MTSE510 log10 959.5 dB. This gives a rough
bound on the worse case performance. Thus any estim

FIG. 1. Shallow-water sound-speed profile and propagating modes at
Hz.
1820 J. Acoust. Soc. Am., Vol. 103, No. 4, April 1998
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with MTSE greater than 9.5 dB exhibits worse performan
than thea priori mean estimatord̂50.

Figure 2 plots the performance of the algorithms for t
SW noise model. In Fig. 2, each of the subplots compares
MTSE as a function of array span for each mode filteri
algorithm at different noise levels. As predicted in Sec. I, t
PI mode filter ~solid line! does well for well conditioned
sampling~full span!, but the error increases dramatically
aperture shrinks and the condition number rises. As deri
in Eq. ~14!, changing the noise level (sn

2) does not change
the shape of the curve, but only its offset. Even at 40-
SNR, the PI filter performs worse than choosingd̂50 ~‘‘ 1’’
signs at 9.5 dB! before the aperture has decreased to 65%
the water column. The SMS filter exhibits reasonably go
performance for the 20- and 40-dB SNR cases when
array spans the full water column. However, the performa
of this algorithm deteriorates more quickly than the PI as
aperture is reduced. The bias introduced in the estimate
to cross-talk among the modes initially grows more quick
than the MTSE of the noise boosted by the PI filter. As t
aperture continues to decrease, the PI mode filter eventu
overtakes the SMS filter. At small apertures, the MTSE
the SMS filter is dominated by the bias of the estimator, E
~10!, since decreasingsn

2 by 20 dB does not improve the
performance commensurately. Equation~10! also predicts
the relative insensitivity of the MTSE of the SMS filter t
decreases insCM after an initial deterioration. This effect i
visible in the abrupt initial increase in the MTSE as the n
malize aperture decreases to about 0.9, due to the decrea

00

FIG. 2. Comparison of the performance of common mode filtering al
rithms in spatially white noise at three different SNRs. The algorithms co
pared are the pseudo-inverse~solid!, sampled mode shape~dash-dot!,
diagonal-weighting~3 ’s!, MAP ~dashed!, and mismatched MAP~circles!.
The crosses~‘1’ ! mark the rough bound on worst case performan
(10 log10 959.5 HF) that results from ignoring the observed data.
1820Buck et al.: Unified framework for mode filtering
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sCM . The MTSE curve grows much more slowly as t
aperture decreases further, indicating that the further
crease of additional singular values does not cause the
formance to deteriorate as quickly as the initial decrease
sCM .

At modest ~20-dB! SNR, the DW ~3’s! and MAP
~dashed line! mode filter follow the PI filter at full aperture
and transition gracefully to behavior similar to, but still be
ter than, the sampled mode shape filter as the conditionin
the sampling becomes poor. For the simulations shown h
b was chosen so that the condition number ofCHC1bI
never exceeded 200. The advantage of the MAP mode fi
over the DW becomes clearer at low and high SNR. For
former, the DW transitions from the PI to the variance of t
mode process at 9.5 dB, while the MAP stays a few
better than this worse case. Admittedly, this slightly bet
than worse case performance is not in itself impressive
0-dB SNR, but the MAP filter does appear to match or e
ceed the best performance of the other filters for each a
ture and SNR. The high SNR experiments also reveal
the DW filter does not match the PI or MAP filters at fu
aperture. As the aperture decreases, the MAP algorithm
not track the PI filter, but smoothly transitions to perfo
mance better than either the DW or SMS filters. Thus
modest SNRs, there may be little difference between
MAP and DW filters, but the MAP filter is clearly superior a
either extreme of high or low SNR.

A common criticism of MAP algorithms is that the
assume prior knowledge of the statistics of the unknown p

FIG. 3. Comparison of the performance of common mode filtering al
rithms for the Kuperman–Ingenito noise model at three different SNRs.
algorithms compared are the pseudo-inverse~solid!, sampled mode shap
~dash-dot!, diagonal-weighting~3’s! MAP ~dashed!, and mismatched MAP
~circles!. The crosses~‘1’ ! mark the rough bound on worst case perfo
mance (10 log10 959.5 dB) that results from ignoring the observed data
1821 J. Acoust. Soc. Am., Vol. 103, No. 4, April 1998
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cess to be estimated, in this caseKdd. This assumption is no
always realistic, as the knowledge of the covariance ma
may not be available. As part of these simulations, the s
sitivity of the MAP filter to mismatch was evaluated. Sp
cifically, the performance of the algorithm was evaluated
Kdd51.2I , a 20% mismatch in the variance of the proce
The results of the simulations using this erroneous value
Kdd are shown as circles on top of the dashed line for
MAP filter in Fig. 2. Even at 0-dB SNR, when the mismatc
is most significant sincesn

2 is largest, the difference is al
most imperceptible, a fraction of a dB. At higher SNR, the
is no practical difference in the performance of the filters
all. Thus for this application it appears even rough estima
of the power in the process to be estimated are sufficien
allow the MAP filter to outperform the others.

The second set of simulations, whose results are
picted in Fig. 3, compare the mode filters in the same sh
low water environment except the KI noise model is us
instead of the SW noise model. Again, the noise level
determined by the ratio of the power in the mode field to
power in the noise field observed by the hydrophones for
fully spanning array. The filters are represented by the sa
line types as in Fig. 2: PI~solid!, SMS~dash-dot!, DW ~3’s!,
MAP ~dashed!, mismatched MAP~circles!. As expected
from Eqs.~10! and~12!, the performance of the SMS filter i
consistent with the SW noise scenario. Once again we se
initial increase of MTSE as the aperture decreases follow
by a leveling of this curve at still smaller apertures. As o
served for the SW noise case, this performance is due to
initial decrease insCM , and then domination by the bia
term at smaller apertures.

The performances of the MAP and PI filters are clos
linked in the KI noise model simulations. As shown in E
~18!, the PI filter can be interpreted as the whitening prep
cessor for the MAP filter. Consequently, the differences
tween the solid and dashed lines in Fig. 3 are due to
Wiener gains@sdi

2 /(sdi
2 1s

d̃ i

2
)# in Eq. ~18!. As the SNR in-

creases,s
d̃ i

2
decreases and the Wiener gain matrix a

proaches unity. The performance of these two algorith

-
e

FIG. 4. Deep water sound-speed profile, first 25 propagating modes a
Hz, and the axis-fixed array apertures. The sound speed is a canonical M
profile with an axis depth and speed of 923 m and 1483.5 m/s, respecti
Note that the plot shows only the upper 3000 m of the 5426-m deep w
guide.
1821Buck et al.: Unified framework for mode filtering
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become almost identical as the SNR increases. This is
flected in the solid and dashed lines being plotted on top
each other for the 20- and 40-dB SNR cases in Fig. 3.
mismatched MAP filter again tracks the true MAP filter ve
closely, indicating that even rough estimates ofKdd suffice
to give good performance with the KI noise model.

The DW filter displays a similar transition between t
PI filter at small condition numbers to the SMS filter at lar
condition numbers. As a result, the DW filter’s performan
is far worse than the MAP at higher SNRs for the sma
aperture arrays.

III. DEEP WATER SIMULATIONS

This section presents the results of simulations using
SW noise model in a typical deep water environment m
eled by a canonical Munk sound speed profile.29 The channel
is 5426-m deep with a minimum sound speed of 1483.5
at 923 m. Figure 4 shows the sound-speed profile and
first 25 modes at a propagation frequency of 75 Hz which
used for all of the examples in this section. We consider o
the SW noise model since the KI model is not applicable
deep ocean environments. The simulations use a serie
40-element vertical receiving arrays of varying apertures
the shallow-water case, full aperture is defined to be the
tire water column, however this is an impractical definiti
in deep water scenarios. Instead, we define the span o
full aperture array to be between the upper and lower turn

FIG. 5. Comparison of the performance of common mode filtering al
rithms in spatially white noise at three different SNRs for a deep wa
environment, using an axis-fixed array. The algorithms compared are
pseudo-inverse~solid!, sampled mode shape~dash-dot!, diagonal-weighting
~3’s!, MAP ~dashed!, and mismatched MAP~circles!. The crosses~‘‘ 1’’ !
mark the rough bound on worst case performance (10 log10 25514 dB) that
results from ignoring the observed data.
1822 J. Acoust. Soc. Am., Vol. 103, No. 4, April 1998
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points of the highest mode we wish to estimate. In order
obtain a well-conditioned problem for the full aperture 4
element array, we must limit ourselves to estimating only
first 25 modes of the waveguide. For the purposes of th
simulations, we assume that modes higher than 25 are
present in the received field. The definitions of SNR a
MTSE are identical to those in the previous section.

The first set of deep water simulations uses a serie
receiving arrays whose aperture varies from full to half sp
between the upper and lower turning points of mode 25.
the aperture shrinks, the sensor locations are chosen so
the number of hydrophones above and below the so
channel axis remains constant: 12 above and 28 below.
ure 4 shows the spans of these axis-fixed arrays. As the
erture decreases, the conditioning of the estimation prob
worsens@cond(C)51 for the full span and cond(C)58
3104 for the half-span#. The specifications of the deep wat
simulations are identical to the shallow water case: 500
dependent trials using complex Gaussian data and noise
cesses were run for each aperture at three different n
levels ~0 dB, 20 dB, and 40 dB!. Figure 5 shows the MTSE
results for the axis-fixed arrays. Note that forM525, the
bound on worst case performance is 10 log10 25514 dB and
is marked with crosses~‘1’ ! in the plots. As the plots indi-
cate, the estimators exhibit the same type of behavior a
the shallow-water SW example. The PI mode filter perfor
well for the full aperture, but degrades rapidly as the apert
shrinks. By contrast, the SMS filter does not deteriorate
verely as the conditioning worsens, but it suffers from b
errors due to lack of orthogonality in the sampled mo
shapes at small apertures. The MAP filter provides a grac
transition between the SMS and PI filters as aperture
creases. In fact the simulations show that its performa
matches or exceeds that of the other estimators for the a
tures and noise levels examined. For the deep water sim
tions theb parameter for the DW filter was chosen so th
the condition number ofC was limited to 200 in the wors
case~half-aperture array!. As shown in the plots, this choic
of b works well in the 20-dB SNR case~MAP and DW
results are almost identical!, but does not fare as well for th
extreme low or high SNR cases. In a similar manner to

-
r

he

FIG. 6. Top-fixed array apertures. The deep water sound-speed profile
the first 25 modes at 75 Hz are shown for reference.
1822Buck et al.: Unified framework for mode filtering
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shallow-water simulations, the robustness of the MAP e
mator was tested by evaluating the errors assuming a
mismatch in the data process variance. For the exam
considered here, the mismatched MAP results agree clo
with the true MAP results.

The second set of simulations for the deep water en
ronment also uses 40-element vertical arrays, but the se
locations are set so that the shallowest element is alway
the upper turning point of mode 25. These top-fixed ar
spans are shown in Fig. 6. For this series of apertures,
condition number ofC varies from 1 ~full aperture! to
23105 ~half aperture!. Figure 7 shows the MTSE results fo
this case. The curves show the expected behavior, but
clear that the conditioning deteriorates much more rapidly
the aperture shrinks for the top-fixed arrays than for the a
fixed arrays. These results indicate that the position in
water column, relative to the sound channel axis, is an
portant consideration in the design of arrays for deep w
environments.

IV. CONCLUSIONS

This paper presents and compares several common
ear mode filtering algorithms, and derives the MAP mo
filter. The MAP filter is shown to be a generalization of th
mode filter proposed by Yang, where the latter filter is t
asymptotic bound of the MAP filter in spatially white nois
and poorly conditioned sampling.

FIG. 7. Comparison of the performance of common mode filtering al
rithms in spatially white noise at three different SNRs for a deep wa
environment using a top-fixed array. The algorithms compared are
pseudo-inverse~solid!, sampled mode shape~dash-dot!, diagonal-weighting
~3’s!, MAP ~dashed!, and mismatched MAP~circles!. The crosses~‘‘ 1’’ !
mark the rough bound on worst case performance (10 log10 25514 dB) that
results from ignoring the observed data.
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The performances of the mode filters are compared
typical shallow and deep water environments. For the sh
low water simulations, the SMS filter suffers from the bi
introduced by the lack of orthogonality inC. The PI mode
filter performs very well when the array samples the chan
well, but it deteriorates rapidly as the array aperture
creases and the sampling becomes poorly conditioned
many situations an aperture spanning less than roughly 7
of the water column could render the PI filter useless. T
DW filter is a modification of the PI filter which limits this
deterioration. The simulations also demonstrate that
MAP filter generally matches or exceeds the performance
the other filters under a wide range of noise levels and a
tures. When the PI filter is well-suited to the current con
tions, the MAP filter converges asymptotically to this sol
tion. When the SMS filter is more appropriate, the MA
converges to a form similar to but slightly better than t
SMS filter. The shallow-water simulations also demonstr
that the MAP filter is relatively insensitive to mismatch u
der a variety of SNRs and apertures, making it preferable
the DW filter for mode filtering in many shallow-water ex
periments. The set of deep water simulations confirms
shallow-water results, thereby indicating that the unifi
framework developed in this paper is applicable to a vari
of ocean environments. In addition, the comparison of
axis-fixed and top-fixed arrays highlights the importance
the absolute positioning of the array within the water colum
for deep water experiments.
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