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A unified framework is presented for examining the performance of linear mode filtering algorithms.
Two common mode filters, samples of the mode shapes and the pseudo-inverse of the mode shapes,
are presented in this framework as a tradeoff between sensitivity to other modes and sensitivity to
white noise. The maximura posteriorimode filter is presented as an alternative which gracefully
transitions between these extremes, and attains the minimum mean squared error when the modes
to be estimated are well modeled as samples of a Gaussian random process. Numerical simulations
in both shallow and deep water environments confirm the analytically derived properties of these
mode filters. ©1998 Acoustical Society of Amerid&0001-496808)01204-]

PACS numbers: 43.30.Bp, 43.30.Pc, 43.30.D|.B]

INTRODUCTION noise. When the mode coefficients are considered to be com-
plex Gaussian random variabld€GRV’s)®>® neither of

The acoustic pressure field in many underwater environy, ose fiters attains the bound on the minimum mean square
ments is well described by a superposition of normal modeserror (MMSE) given by the Fisher Information Matrix

Many oceanographic problems, including the charactenza(FlM)_ If an adequate statistical model exists for the obser-

tion of the acoustic propagation through an ocean VOIum(\e/ation noise then this error bound is attained by the maxi-

and internal wave tomograth’ rely on .estlmates of the norum a posteriori (MAP) mode filter. This paper develops
mal modes propagating at a given location. In order to obtain . . . .

. ; . the MAP filter and demonstrates that this mode filter transi-
these estimates, the pressure field must be sampled usin

a i
hydrophone array. These pressure samples are then inver%é%ns gracefully between the ex.tremes defmgd by the
ampled mode shape and pseudo-inverse mode filters. In ad-

to estimate the constituent modes of this field at the array'S

Ideally, this mode estimate should be robust to the presen tlo.n, we O,b,SEer that the MA,P, mode fllt_er provides a the-
of environmental or sensor noise. Several different teChg)retlcaljustlflcatlon for the empirically motivated mode filter

nigues have been proposed for solving this estimation probt_)roposed by Yangwhich drops small eigenvalues from the

lem, often referred to in the ocean acoustics literature aSOMPutation of the inverse. o _
mode filtering. This paper presents a unified framework for ~ 1he deterministic model for mode coefficients is a com-
examining the subclass of mode filtering problems in whichmon and familiar framework for acoustic propagatfdn:
the mode estimates are linear functions of the observed pre&ecent work has investigated the role of stochastic models
sure samples from a vertical hydrophone array at a singléor characterizing acoustic propagation, allowing the appli-
time. The results presented here are easily extended to sitgation of new classes of signal processing algorithms to de-
ations with multiple observations of the same pressure fieldection and estimation problems for ocean acoustic param-
over time. eters. Specifically, the complex Gaussian distribution is used
The first mode filtering algorithm published in the litera- to model uncertainty in the absolute phase of the signal due
ture was the sampled mode shape mode filféfhe sampled to a variety of causes, including source—receiver range
mode shape filter is the optimal linear mode filter for theuncertainty***® This distribution has also been shown to be
detection and estimation of any single mode in spatiallythe asymptotic limit of the received field for long-range
white noise®> However, this filter generally provides poor propagation through random media under specific
rejection of interference from the other propagating modesconditions'®’It is beyond the scope of the present paper to
The pseudo-inverse mode filterejects interference from discuss the validity of the deterministic and stochastic propa-
other modes but at a cost of increased sensitivity to whitgyation models. Rather, we address the implications of each
model for a specific estimation problem: the linear estimate
Formerly at Research Lab of Electronics, MIT, and Dept. of Applied Of the complex mode coefficients observed at a vertical line
Ocean Physics and Engineering, Woods Hole Oceanographic Institution.array at a single time.
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The remaining subsections of the Introduction review  The spatial samples of the pressure field observed at a
the normal mode equations, common models for noise in theertical array ofN hydrophones can be written as
underwater acoustic environment, and the singular value de- Ui(z) - Wy(zy)
composition, an orthogonal matrix factorization useful in| P(Z1) na micn) |1 dy n(zy)
characterizing the behavior of mode filters. Section | de : = : : e
scribes previously proposed mode filters and develops thep(zy) Vi(zy) - Wy(zy) dy n(zy)
MAP mode filter. Section Il presents simulations comparing
the MAP mode filter to other mode filters in a shallow water
environment, while Sec. Ill presents similar results for a  p=¥d+n, 2

deep water sound speed profile. Finally, Sec. IV draws con- . . :
) . , . wheren is the vector of observation noise at the hydrophone
clusions about the appropriateness of different mode filter .
. : ocations, andzq,...,zy are the depths of the hydrophones.
based on the simulation results.

The goal of mode filtering is to estimate the mode coeffi-
cients @) from the observed pressure samplps as accu-
A. Normal mode equations rately as possible in the presence of the ndrse

or in vector notation

The nqrmal modes of a.smgle—frequer(@W) acoustic B. Observation noise
pressure field are the solutions to the homogeneous Helm-
holtz equation, which in a region of constant density is The noisen in the observed pressuge can be due to

V2p(r)+K2(r)p(r) =0 seyeral causes: two common sources are instrumentatiqn

' noise and sea-surface noise. In estimating the mode coeffi-
where k(r) is the local acoustic wave number. The local cientsd from the observed pressurgsthe noise is generally
wave number is defined to ke/'c(r), the ratio of the angular considered to be a CGRV with zero mean and spatial cova-
acoustic frequency to the sound speed. If the solution is asianceK,,,. The structure oK, depends on the geometry of
sumed to be separable in range and depth and cylindricallthe array, the ocean conditions during the observations, and
symmetric, the resulting verticatlepth eigenfunction equa- the source of the noise. Two common modelsKgy, are the

tion is spatially white (SW) noise model and the Kuperman—
42 Ingenito (KI) surface noise modéf. The SW noise model
2 \pm(z)+k§m(z)\pm(z)=o_ (1) assumes that the noise at each hydrophone is equal in power

and uncorrelated with the noise at all the other hydrophones,
The solutions of this equation which satisfy the auxiliary so Knnzoﬁl. This model is most appropriate under high
conditions are the normal mod¥&s™® In Eq. (1), k,(z)  Signal-to-noise ratio conditions when the noise that is present
= k?(z) — K2, is the vertical wave number of thath mode ~ consists predominantly of instrumentation noise.
andk?, is the separation constant for that mode. The square  The Kl noise model proposes that the noise generated by
root of the separation constaii,,, is the horizontal wave the sea surface couples into each mode independently with
number of the mode. By convention, the modes are normalarying power such that

ized such thatf|¥ ,(2)|2p~}(2)dz=1, which simplifies to - 2 -
I|¥ (2)|? dz= p, for our constant density assumption. In a 7%, 0 0
realistic scenario, where the environment is range varying, 0 o2
the solution to the wave equation is not separable in general. g —y dz VH=wK37PH (3
However, we continue to use the normal modggr,z) : 0
computed using(r,z) as a basis for the field at range 2
The pressure field can be written as a weighted superpo- | o - 0 o4 i

sition of these local normal modes

2 2 . .
where oy ,...,0; are functions of the mode profiles and
1 M

p(r,z)=2>, dn(N) W (1), surface noise processes. The elements of the vecioe the
m mode coefficients of the noise process at the array.
In some scenarios, both surface generated and instru-
mentation noise contribute significantly no and the covari-
ance matrixkK ,, contains components of both forms.

where thed,(r) are the mode coefficients at range We
parametrize¥ (z;r) in this fashion becausk and ¥ vary
more rapidly in depth than range for most ocean environ
ments. Only a finite set of modes in any environment have N

predominantly real horizontal wave numbdts,. TheseM C. Singular value decomposition

modes are known as the propagating or trapped modes for The singular value decompositiggVD) is an orthogo-
the channel. In the far field of the acoustic source, the modesal matrix factorization that is helpful in evaluating and un-
propagate in range as exdggr)/Vk,nr, >3 8therefore any  derstanding the performance of mode filters. ForNaxM
mode with a significant imaginary part kp,, decays quickly matrix A, the SVD factors the matrix such that

with range, and is known as an evanescent mode. Evanescent A=U,S V,H

modes are usually not excited in the far field, unless range ASATA
inhomogeneities couple energy from the trapped modes intavhere Uy, andV, are NXN and M XM unitary matrices,
the evanescent ones. respectively’’ The matrix3 5 is a nearly diagonal real ma-
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trix. WhenN>M, as will generally be true in mode filtering whereVy is the gradient operator with respect to the mode
problems.3 5 has the form coefficientsd, and pp|D(p|d) is the conditional probability
density functiof! of the observed pressupegiven the mode

i o --- 017 e ) ; .
IA1 . coefficientsd. The variance of any estimate ermr, oéi, is
9 bounded from below by the corresponding diagonal element
s=| 7o 0| @ of o, i.e, 02=[Jp'];. This error covariance bound is
0 -+ 0 oam known as the Cramer—Rao lower bou(@RLB). An effi-
cient estimator is one whose variance attains the CRLB. Be-
L 0 J cause the estimate covariance equals the error covariance,
i i 2 2 —17.
whereop1=0p="=0,y=0 are called the singular val- this CRLB also applies to V! So"diz[‘]D Jii - For the data
ues ofA. model given in Eq(2),
Jp=""K 1.
I. MODE FILTERS For the SW noise model, this yields,'=o2(¥H¥) ! as

éhe bound on the error covariance. Generalizitig' to the

This section reviews several common mode filters an . . )
gseudo-lnvers?@ for the Kl noise model gives a bound of

analyzes their performance. For each filter we first evaluat

its performance in terms of its bias and covariance when the  j-1=K3, (6)

mode coefficientdd are considered to be deterministic but

unknown quantities. The performance is also evaluated ivhereKgj is defined as in Eq(3).

terms of the mean squared er(dMSE) when the mode co- Whend is a random parameter with zero mean and co-

efficients are considered to be CGRV’s. In each case, th¥arianceKyqy, the covariance of the error vector is
erformance is compared against the bound derived from the

EIM. Following this giscussi%n of the common mode filters, Kee= HWKggW "H"+ K gg— HW K gg = K g ¥ "H"

we then derive the MAP mode filter. As noted in the previ- +HK ,H". (7)

ous section, we restrict our attention to linear mode filters.

The Comp|ex Gaussian random process p|ays an |mpo|:[he definition of the bias can be extended to the case when
tant role in the study of linear estimators of random variableds & random variable by letting the bias be the conditional
because the optimal estimator for a complex Gaussian protgxpectation of the error, i.eB(d)=E{eld}=(HV—I)d.
ability distribution is the optimal linear estimator for all The covarianc&.can then be interpreted as the sum of two
probability distributions with the equivalent first and secondcomponents. The first componeiity{B(d)B(d)"} is inde-
moments’ Thus the performance bound derived for the com-pendent of the noise power, but depends entirelyHony,
plex Gaussian case is the bound for all linear estimates c¥ndKyq. The notatiorE{ -} indicates taking the expectation
any probability distribution with the same mean and covari-Of the argument only with respect to the subscripted variable.

ance. The second component biK ,,H" is due to the observation
For linear mode filters, the estimated mode coefficienfoise and equal to the estimator covariance in(Bgwhend

vectord can be written as is an unknown deterministic quantity. By extension, we call
- an estimator of a random variabte unbiased wherB(d)
d=Hp=HW¥d+Hn, =0 for alld. One pleasing feature of this definition of bias is

where the matrixH represents the linear mode filter. The that if an estimatoH is unbiased for deterministid, it is
performance of the mode filter depends on the choice of th@!so unbiased for randomh and vice versa. Moreover, H
linear function represented kiyl. The estimator erroe is IS an unbiased estimatdK.. is equal for both scenarios, as
d—d=(HW¥—1)d+Hn. Whend is considered to be a non- confirmed by comparing Eq¢5) and (7). o
random unknown parameter, the bagd) of the estimator The FIM can also be extended to incorporateatpiori

is the expected value of the errdg{el=(H¥ —I1)d. The information available in the probability density function
covariance ofd Kaa:E{aaH}_E{a}E{a}H is (PDPF of d for the scenario whenl is a random variable.

This information is
KaEZHKnnHHv (5)

— H

whereK,,, is the spatial covariance of the noise vector as Jp=~E{VdValn po(d)]7),
discussed in the Introduction and the covariance of the estiwherepp(d) is the PDF of the mode coefficients. Assuming
mator errorK .= Kgg. Thus the covariance of the mode co- that pp(d) is a CGRV, the resulting bound on the error co-
efficient estimate vector depends entirely on the noise provariance is
cess covariancK ., and the mode filteH. 1 1 WL -1 T

The FIM® provides a method of computing the bound on I =[Jo+Jp] "=[¥ K7W +Kgq] 7,
the covariance of the error that can be achieved by an unb{/'vhere the total informatiod+ is the sum of the information
ased estimator of a nonrandom parameter. The FIM is de|h the dataJy and the prior informatiolp. Note that one

fined to be consequence of this definition is thaf'<Jg* in the posi-
Jo=—E{V{ V4 In ppp(pld)]"}, tive definite sense, i.ex"J; 'x=<x"J;*x for all x. Thus an
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unbiased estimator of deterministicwhich is efficient, i.e., model, since the noise is uncorrelated in the basis for the
Kee=Jp®, will generally not attain the MMSE bound for acoustic mode by definition in this model.
estimators of a random unlessJ; *=J5?. Since the CRLB The uncorrelated mode coefficient model is not pro-
guarantees that no unbiased estimator of a deterministic uposed as a realistic model of ocean propagation: For many
known d can haveKee<J51, and K¢ is the same for an ocean environments the mode coefficients will be correlated.
unbiased estimator regardless of whettiés random or de- However, any covariance matrixyqy may be diagonalized
terministic, this implies that the estimator attaining theby an appropriate similarity transforfi. Thus there is al-
MMSE for a randomd cannot be unbiased unles§®  ways some basis isomorphic with the acoustic modes in
=J51. which the estimation problem is uncorrelated. Consequently,
It is instructive to examinely* for the case when the there always exists some basis in which the structure of the
mode coefficients are uncorrelated, as will be assumed in th@ode estimators matches those given above, modulo an ad-
subsequent simulations. K4y=o3l, the bound on the error ditional unitary matrix implementing the diagonalizing simi-
covariance for the SW noise model is larity transform. Thus the intuition gained by studying the
case above when the standard acoustic modes are uncorre-
lated transfers easily to scenarios with more realistic covari-
= 02— UM 02 + 2P UH] W g2, ance mat.rices. _ _ _ o
One issue examined for all the linear mode filters in this
where the second step follows from the matrix inversionpaper is their performance under conditions of poor spatial
lemma. This expression can be put into the following form:sampling. We distinguish between two types of poor sam-
pling. In the first, undersampling, the number of hydro-

N e A o

[ 2 (03)? ] phonesN is fewer than the number of modes to be estimated
7d 5 onz o .- 0 M. In this scenario, Eq(2) is an underdetermined least
oqt 031,1) squares problem, and thus lacks a unique solution. While it is
0 : possible to find the minimum norm solution to this equation,
Jrt=v : L (') VH, there is no reason to believe that the modes propagating are
: : : the set giving the minimum norm fat. For this reason, it is
2 (05)? crucial to insure that the number of hydrophones in the array
0 .. o 7d ) o2 exceeds the number of modes that can reasonably be ex-
o4t ggl,M) pected to be observed at the array for the frequency of propa-
) } gation.
®) The second kind of poor sampling occurs when the num-
where oy, is theith singular value of¥’ as defined in Eq. ber of hydrophones exceeds the number of propagating
(4). For the KI noise model, modes, but the locations of the hydrophones are such that
- - . they poorly sample the mode shapes. We refer to this sce-
Irt=[Kgd +KZt nario as poorly conditioned sampling. In poorly conditioned
- - sampling, some of the singular valuesbfgrow disparately
o2 (og) o ... 0 small compared t@ry 4, resulting in a large condition num-
d (,54_0% ber oy /oy for the matrix¥.2° Poorly conditioned sam-
! ) pling has varying consequences for different mode filters, as
0 : © we show in the following sections.
: 0 ’ A. Sampled mode shapes mode filter
0 i 0 o2 (‘75)2 One common choice faHd in mode propagation experi-
¢ et o'% ments is¥H, the sampled mode shag&M9) filter. The
- Md motivation for this choice is that the mode functions are

is the bound on the error covariance. These bounds form arthogonal when considered as continuous functions of
useful basis for comparison of the different mode filters.depth. The SMS filter may also be interpreted as a spatially
Moreover, the similar structure of Eg&) and(9) provides matched filter. As such, it is optimal for detecting a single
insight into the nature of the CRLB for mode filtering. Both mode in spatially white noiseHowever, spatially sampling
noise models have diagonal matrices with terms of the fornthe modes with the hydrophones does not in general preserve
oi— (%)% (o5+a?). This is the classic form of the variance the orthogonality, i.e.¥"W#1. This lack of orthogonality
reduction for a linear estimate of a random variable withappears as contamination or cross-talk when estimating sev-
varianceaﬁ in uncorrelated noise with varianeg. The vari-  eral modes simultaneously. Assuming the mode coefficient
ance of the estimate is the priori variance of the variable vectord is a nonrandom, unknown quantity to be estimated
minus the information gained by the observation. The spain the presence of random noise we can characterize the
tially white case[Eq. (8)] includes the unitary matriceg performance of the estimatet="¥" in terms of its bias and
and V" to transform the estimates from the basis where theovariancé. The bias of the SMS filter isB(d)
estimates are uncorrelated to the physical basis of the acous<(H¥ —1)d, so the lack of orthogonality o can intro-

tic modes. These matrices are not necessary for the Kl noisuce a significant bias into the mode estimate. For the SMS
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filter, the rows ofH should be normalized such that the di- For both noise models, it can be seen that while decreasing
agonal of HW¥ —1) is zero, and the remaining bias is due to o) may initially decrease the covariance slightly, once
cross-talk between the modes and not normalization. The ), is insignificant compared to the other singular values of
correct normalization iHH=B¥", whereB is the M xM W, further decreases imy), do not chang& jj significantly.
diagonal matrix diad@ "2, and¥, is themth column of  This is true to a lesser extent for other singular values, but
P, i.e., themth mode shape sampled at the hydrophone lowe focus onoyy,, Which is the smallest singular value by
cations. definition from Eq.(4). This limit on the deterioration of the
Theoretically, as more hydrophones are added to sampleerformance of the SMS filter is intuitively sensible because
the water column more finely in depth, the sampled modeshe norms of the rows off=¥" are limited by the maxi-
matrix ¥ becomes arbitrarily close to orthogonal, making themum amplitudes of the modeék, (z) no matter how poorly
effect of the bias negligible. This is unrealistic in practice, asconditioned the sampling is. Consequently, the error covari-
there are shallow water scenarios where the ocean bottoance in Eq.(5) is limited in its growth. As the sampling
contains significant energy. It is impractical to deploy a ver-grows even more poorly conditioned, the covariance reaches
tical array of hydrophones spanning the entire sedimenits upper limit, and the estimatkis mainly corrupted by the
layer. Thus even in the limiting case of a continuous array obias shown in Eq(10). For both noise models, if the sam-
hydrophones spanning the water column, a bias may stilbling is such that the covariance is still a significant factor,
exist due to the unsampled pressure field in the boffom. the covariance will increase as the noise povVeh:heraﬁ or
Many experiments including Ferrlsand Clay and Huarfy o3 ) increase. This is in contrast to the bias which is inde-
used the SMS filter, assuming the samples of the orthogon@e'ndent of the noise power.
mode functions are themselves orthogonal without examin- At the other extreme, consider the scenario where
ing the potential bias. However, Tindi al** and Gazanhes N for an array spanning the entire water column. In this

and Garnie%s both used the pseUdO'inVerse mode filter anq‘]|gh|y oversamp|ed case, all the Singu|ar Va|uﬂ§m ap-
examined the cross-talk introduced by sampling to verifyproach 1, so

that the bias was negligible for the purposes of their experi-
ments. ) H H

When the array geometry results in poorly conditioned 2: TymVemVym— Ve Vy =1
sampling, the bias can grow so large as to make it impossible
to obtain reliable estimates af. Rewriting the biasB(d) and Egs. (11) and (12) simplify to Kg=o?l and
with the SVD for¥ yields Kaa=Kgg. respectively. The bias also becomes negligible,
with only a small contribution remaining due to the un-
sampled energy in the bottom sediments. Thus when the ar-
B(d)=Vy —1 Vfl‘,d. (10 ray oversamples the mode shapes, uding¥" can give
mode estimates with only a small bias and a covariance re-
flecting the underlying noise process of the observations.
The presence of the identity matrix in this equation indicates  The covariance for the SMS filter does not equal the
that decreasing any of they s below one increases the bias CRLB for either noise model. For somi it is possible that
of the estimator. In the extreme when one of the singulathe filter will have lower variances on some mode coeffi-
values is zero, the component of the bias in that directiortients. The bound given by the FIM applies only to unbiased
equals the projection of the mode coefficient vector in thatestimators, and the SMS filter is not unbiased except in the

0'31,1 0

2
0 Oym

direction. limit when wHW 1. In this limit, the SMS filter achieves
The covariance of the SMS filter can be found for boththe bound for both noise models.
the SW and Kl noise models. For the SW case, Whend is considered to be a random vector, the error
M covariance for the SMS filter is
an 2\ pHApp — 2 2 H
Kig=on¥" =07 2, ofmVunVim, (11 K= WHUK g0 M0 + K gg— U HE K gg— K g0
where the vectorsy,, are the columns ofy, . The Kl noise +WHK WP
model gives . : . .
This does not attain the MMSE bound. It is a straightforward
Kig=VYHUKggvHe extension of proofs given in Ref. 3 to show that a necessary
o ) and sufficient condition foK .= J; * is thate can be written
o o --- 0 in the form
R | B e=A[V, In peo(p.d)], (13)
= E TymVemVim . . .. . .
m=1 0 wherepp p(p,d) is the joint PDF of the mode coefficients
2 and observed pressupeandA is a constant matrix indepen-
L 0 0 oy J dent ofp or d. From Eq.(2), it can be shown that for the
M CGRYV case
2 H
| & "“’mv“’mv“’m)' (12 VI ppo(p,d) = WHK In—Kd'd.
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The errore for the SMS filter cannot be put in the form of produced the observed signal. Equati@) demonstrated
Eqg. (13) in general, and thus the SMS does not achieve thé¢hat the CRLB for the Kl noise model is E¢L5). The PI
bound on the error covariance or MSE. mode filter attains this bound on the variance, and is an ef-

ficient estimator for the Kl noise model. dfis considered to

be a random parameter, the error covariance bound is re-
B. Pseudo-inverse mode filter duced and the unbiased PI filter no longer achieves the
bound, as noted earlier. This can be confirmed by observing
that the error signa="¥'n does not have the form required
Intuitively, the P! filter can be thought of as removing all by Eqg.(13). Thus the error covariances of the Pl mode filter,

cross-talk between mode estimates, but at a cost of highé’ﬁ(\PHq’) " for SW noise ant;K_aa foE}he KI noise model,
sensitivity to noise. Tindlet al* appears to be the first ref- 0 _not meet the bom_md tSp_eCIerd By~ In fact, the error
erence in the ocean acoustics literature to formulate the mod&''ance for the _PI f||ter_ IS mdc_ependent of Fhe actual modal
estimation problem in this least squares sense. The resultil‘Fﬂqergy propagatmg. This confirms the earlier statement that
mode filter H= (")~ 1WH denoted¥’, is called the the PI mo_de filter removes all mode cross-talk, so all remain-
pseudo-inverse or Penrose—Moore inversedof®?® This NG €IMOris due to noise.

name results from the fack "W =1. If the mode coefficient

vectord is considered to be a nonrandom but unknown vecC. Diagonal weighting

noise models. . o compensate for situations when the array yields poorly con-
The covariance of the estimated mode coefficient vectogitioned sampling of the modes. As noted above, such sam-
depends on the noise model. For the SW noise model, Egyjing causes one or more of the singular valueskofo be
(5) yields very small. As a result of this sampling" ¥ is singular or
Kgg=o2Vy3S LRV nearly singular, and the computation of the inverse of this
matrix becomes numerically sensitive. One method of com-
) s H pensating for this sensitivity is to modify the error function
:Unrr12=l TymVemVym- 14 being minimized to include a term proportional to the mag-
. N . nitude squared of the estimated mode coefficient vector
If the array gives poorly conditioned sampling of the modeq 2728 The quantity to be minimized is then
shapes, some of the singular values approach zero and con- ~o ~o
sequently the corresponding, 2, terms in Eq(14) dominate e=|p—wd|*+8ld|*,
the sum, giving a very large covariance. Alternatively, if theheregis a scale factor indicative of the relative importance

array grossly oversamples the channel, the singular values the two terms in the error expression. The estimator mini-
approach one, andj; approachesr2l. For the SW Gauss- mizing this quantity is

ian noise case, the Pl mode filter can be shown to be the .

The pseudo-invers&Pl) mode filter results from choos-
ing d to minimize the squared error betwedrd and p.

M

maximum-likelihood(ML) estimator, as well as efficient. dpw= (¥ + 1)~ twHp.
If the KI noise model is substituted into E€S), the  This expression is very similar to the Pl filter, except for a
estimator covariance Is small diagonal matrix3l which has been added "W
K=Y UKeHeH=K53, (15)  before inversion to alleviate conditioning problems. Tle

o . , ) term is often referred to as the white noise sensitivity term.
which is intuitively sensible, aKgg is the covariance of the T addition of this term places a lower bound@bn the
noise process as it is coupled into the channel by the mOde§inguIar values of ¥HW + Bl). For the SW noise model
Theoretically, this covaria_mce is unchange_d by_ reductions ifis jimits the covariance of the estimator shown in Ef),
the array aperture. Practically, the mode filtef is usually  gjce noo-, 2, for the diagonally weighted inverse can exceed
based on an estimate 8f computed by numerical integra- 5-2 o this reason, this approach is often referred to as

tion of an observed or estimated sound speed profile. As thgiagonal j0ading or weighting. While this estimator does not
array aperture decreases and the singular values of th%iftruepossess many of the nice theoretical properties of the

grow smaller, the Pl filter may become very sensitive t0pgedo-inverse mode filter, it is computationally more stable
errors between th# obtained by numerical integration and ¢, poorly conditioned sampling. As discussed for the unde-

the.actuahl' 'of the ocean channel. These errors can introducgrmined mode filtering problem, there are many propagation

a bias and increase the covariance abiyg: environments where there is no reason that the propagating
The Pl filter is also the ML estimator for the Kuperman— . 4es should minimizd|2. Consequently, when choosing

Ingenito noise model. This conclusion is not surprising sinceB for diagonal weighting, there is a compromise between

the definition of the noise model assunmess in the range of inimizing the filter's numerical sensitivity and overempha-

W. The existence of the ML estimate depends on theing the somewhat artificial criterion of minimizifigi|2.
Kuperman-Ingenito model perfectly describing the noise

process, since ifi contains any component in the orthogonal
complement to the range oF, the conditional probability
density pp‘D(p|d):O for any d, and the ML estimate is The immediate motivation for the MAP mode filter is
meaningless since no set of mode coefficiehtould have the fact that none of the mode filters examined so far are

D. Maximum a posteriori mode filters
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efficient for the scenario whed is considered to be a ran- o, causing some of the diagonal terms to go to zero. In the

dom variable. The MAP mode filter choosggap to maxi-  limit, this results in the same mode filter proposed by Yang.

mize the probability of the conditional probability density Based on this argument, the MAP mode filter provides a

function for d conditioned on the observed presspre.e.,  theoretical justification for Yang'ad hocmode filter as the

IOD|p(d|P)- When bothd andn are CGRV's, the MAP filter asymptotic case of a poorly sampled MAP mode filter.

is equivalent to the MMSE filtet. It is also instructive to consider the MAP mode filter for
For the case when the mode coefficients are well modthe case WheKdd=diag(cr§l,...,aﬁM) andK,, is given by the

eled by a CGRV with zero mean and covariakcg and the K| noise model and these Gaussian random processes are

noise is also well modeled by a zero-mean CGRV with coconsidered to be independent. Under these conditions, the

varianceK,,, and uncorrelated witkl, the MAP mode filter MAP mode filter becomes

can be solved in closed form. Specifically, . B . .

dwap=[Kad + K551 K55 ¥'p

duap=K ¥ K 'p, (16)
where ‘751
“1_ e —1, pHpr -1 2 4 52 0 0
K =Kgg T VK 0. Td, 70,
The error signale can be shown to beKXX(\IfHK;nln 052
—K4i'd), which satisfies Eq(13). Consequently, the MAP 0 — =2 : :
filter achieves the bound on the error covariance wihéna = 74, T 74, vp.
random parameter satisfying the assumptions stated above. : 0
Some insight into the performance of this mode filter 9
may be gained by considering the somewhat unrealistic case Tdy
when the modes are independent and identically distributed, 0 0 o2 +o2
. ) . . . . . dy d
i.e., Kgg=ogl, and the noise is spatially white with,, - M (19)
=oﬁ|. Assuming there are more hydrophones than modes
(N>M), Eq.(16) reduces to Intuitively, this is sensible because the pressure components
, ) due to both the noise process and the modes fall entirely
Z‘Tg‘““ . 0 0 within the range of¥ if the KI noise model and mode propa-
T4yt on gation model are accurate. If this is the cgsesontains no
0 TaT2 . . projection in the orthogonal complement ¥f and thus no
Ayap= Ve oioton ’ 0 |ullp, information is lost by transforming the pressure veqgor
: : 0 back into mode coordinates by 'p. Seen another wayy
prr— is the spatial Karhunen—Loeve transform, since it decorre-
0 P lates the observed modes and noise processes so that they are

spatially white, i.e., the covariance & 'p is diagonal. Un-

(17) like the SW noise model, the physical basis of intefeside
where o, is theith singular value of¥ as defined in Eq. space coincides with the mathematical basis in which the
(4). Equation(17) has an appealing interpretation as a gen-underlying processes are uncorrelated. Once the problem has
eralization of the discrete spatial Wiener filteDSWP).° been whitened this way, the standard Wiener gains shown in
Multiplying p by UY rotates the problem into the coordinate Eq. (18) yield the MMSE estimate ofl. Given that the
frame where the spatial components are uncorrelated. Eacbaussian density is symmetric about a maximum at its mean,
component is then weighted by the Wiener gain for the ratiche MMSE solution is equivalent to the MAP solutidn.
of the mode power to the noise power for that component  Under many conditions, the MAP mode filter matches or
o403 (0%,,05+ 02). These estimates of the componentsexceeds the performance of either the SMS or PI mode fil-
are then multiplied by the inverse singular vaILna‘grln be- ters. As discussed in the previous sections, the variance of
fore being transformed from the uncorrelated basis intahe SMS filter is relatively insensitive to decreases-i, as
mode coefficients by, . For the case when all the singular the sampling becomes poorly conditioned. Contrastingly, the
values are 1V =1 andUy is the appropriate set of samples Pl filter's covariance increases rapidly as the singular values
of complex exponentials, Eq17) reduces exactly to the approach zero. Consequently, the Pl mode filter generally
DSWF. performs better when the array samples the mode shapes

The mode filter proposed by Yahgan be interpreted as adequately, but as the array aperture decreases and the sam-
an asymptotic result of Eq17). For practical reasons, Yang pling becomes poorly conditioned, the PI filter's perfor-
proposed setting very small eigenvalues'bf'¥ to zero  mance deteriorates such that the sampled mode shape filter is
before inverting this matrix in the process of computing thepreferable. One desirable feature of the MAP mode filter is
PI mode filter. Yang’s motivation for this modification was that it performs like the Pl mode filter when the sampling is
rougha priori knowledge of the mode coefficients expectedwell conditioned, like the SMS mode filter when the sam-
and considerations of numerical stability. Consider &) pling is poorly conditioned, and in between these regimes the
when the array gives a poorly conditioned sampling of theMAP mode filter transitions smoothly with a performance
channel. Some of they; grow small compared tey and  exceeding that of either mode filter.
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II. SHALLOW WATER SIMULATIONS

Total Mode Error (dB)

This section presents the results of simulations using
both the KI and SW noise models in a typical shallow-water
(34-m depth environment measured on the North Continen- o o o

.65 017 5 0.‘75 0?8 0.‘85 0:9 0:95
tal Shelf of North America around 41 °N 71 °W. All of the Sean (Nomalized Chammel Depth)
simulations use 200 Hz as the propagation frequency' FOIEIG. 2. Comparison of the performance of common mode filtering algo-

this frequency anq water depth, the channel supports NiNgnms in spatially white noise at three different SNRs. The algorithms com-
trapped modes. Figure 1 shows the observed downwardlyared are the pseudo-invergeolid), sampled mode shap&ash-do,

refracting sound-speed profile, along with the nine trappediagonal-weighting’x's), MAP (dasheg, and mismatched MARcircles.

modes. The simulations use a series of vertical receivin
arrays whose apertures vary between spanning the full dep

(34 m and the bottom half of the water columre ( with MTSE greater than 9.5 dB exhibits worse performance
=17-34 m), and all of which have 19 hydrophones. Eacqhan thea priori mean estimatod=0

mode filtering algorithm is evaluated at three different noise Figure 2 plots the performance of the algorithms for the

levels for both noise modgls. The noise I?VEIS of 0, 20, ?n%W noise model. In Fig. 2, each of the subplots compares the
40 dB SNR refer to the ratio of the power in the propagatlngMTSE as a function of array span for each mode filtering

modes to the power in the noise at the hydrophones for thg\lgorithm at different noise levels. As predicted in Sec. |, the
full aperture array, i.e.,

PI mode filter (solid line) does well for well conditioned
E{|¥d|?} sampling(full span, but the error increases dramatically as
W) aperture shrinks and the condition number rises. As derived
in Eq. (14), changing the noise Ievebﬁ) does not change
By decreasing the aperture, we are able to examine the pethe shape of the curve, but only its offset. Even at 40-dB
formance of the algorithms as the mode filtering problemsNR, the PI filter performs worse than choosawgo (7
transitions from well conditionedcond(¥)=1.04 for the  sjgns at 9.5 dBbefore the aperture has decreased to 65% of
fully spanning arrayto poorly conditionedcond(®)=10>  the water column. The SMS filter exhibits reasonably good
for the half spanning arrdy performance for the 20- and 40-dB SNR cases when the
For each noise level and aperture, 500 trials were ruyrray spans the full water column. However, the performance
using independent choices for the mode coefficients angs this algorithm deteriorates more quickly than the Pl as the
noise. In each trial, the mode coefficient vealovas chosen  aperture is reduced. The bias introduced in the estimate due
as a CGRV with zero mean and covariari¢gy=1, while o cross-talk among the modes initially grows more quickly
the noise vecton was also modeled as a CGRV with statis- than the MTSE of the noise boosted by the Pl filter. As the
tics appropriate to the noise model under evaluation. Theperture continues to decrease, the Pl mode filter eventually
observed pressure fieflwas determined frord andn using  overtakes the SMS filter. At small apertures, the MTSE for
Eq. (2), and then used as the input to the mode filteringthe SMS filter is dominated by the bias of the estimator, Eq.
algorithms. The total squared errjpd—d||*> was computed (10), since decreasing? by 20 dB does not improve the
for each mode filter at each trial, and then averaged over apjerformance commensurately. Equatitt0) also predicts
trials to obtain the mean total squared erfdTSE) for each  the relative insensitivity of the MTSE of the SMS filter to
mode filter. Note that foM =9, choosingd= 0 regardless of decreases iry), after an initial deterioration. This effect is
p results in a MTSE 10 log,; 9=9.5 dB. This gives a rough visible in the abrupt initial increase in the MTSE as the nor-
bound on the worse case performance. Thus any estimatanalize aperture decreases to about 0.9, due to the decrease in

he crosses(‘+’') mark the rough bound on worst case performance
ﬁo logp 9= 9.5 HF) that results from ignoring the observed data.

SNR=10 Ioglo(
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z . cess to be estimated, in this caég. This assumption is not

©-200 T T e <1 . . . .

" Xy always realistic, as the knowledge of the covariance matrix
T T T may not be available. As part of these simulations, the sen-

Span (Normalzed Ghannel Depth) sitivity of the MAP filter to mismatch was evaluated. Spe-

FIG. 3. Comparison of the performance of common mode filtering aIgo-CIflca”y’ the performance of the algorithm was evaluated for

rithms for the Kuperman—Ingenito noise model at three different SNRs. Thd<da= 1.2, a 20% mismat_Ch in th_e var_iance of the process.
algorithms compared are the pseudo-invefsmlid), sampled mode shape The results of the simulations using this erroneous value for

(d_aslh‘dol ﬁiagona"w?igyh“”‘lXk's)hMAP (dﬁihed Snd mismatched 'V'AfP Kgq are shown as circles on top of the dashed line for the
(circles. The Crofse$ ) mark the rough bound on worst case perfor- pap fijter in Fig. 2. Even at 0-dB SNR, when the mismatch
mance (10 log, 9=9.5 dB) that results from ignoring the observed data. o , 2 . ] .

is most significant sincer;, is largest, the difference is al-

most imperceptible, a fraction of a dB. At higher SNR, there
oyym - The MTSE curve grows much more slowly as the. . ; : )
L is no practical difference in the performance of the filters at

aperture decreases further, indicating that the further de- . T .
e : all. Thus for this application it appears even rough estimates

crease of additional singular values does not cause the per;

formance to deteriorate as quickly as the initial decrease o?f the power in the process to be estimated are sufficient to
q y allow the MAP filter to outperform the others.

The second set of simulations, whose results are de-

(dashed ling mode filter follow the PI filter at full aperture picted in Fig. 3 compare the mode fllter§ in the same shal
" L . low water environment except the Kl noise model is used

and transition gracefully to behavior similar to, but still bet- . . : ) .
instead of the SW noise model. Again, the noise level is

:Eret;]:rr:{ tl?: Ssg:gl;de;nog:rSgiffhgt;rrﬁjéziﬁsgﬂgazlﬂggetermined by the ratio of the power in the mode field to the
ping Poor. power in the noise field observed by the hydrophones for the

B was chosen so that the condition numberlof ¥ + i .. fully spanning array. The filters are represented by the same
never exceeded 200. The advantage of the MAP mode fllteir

over the DW becomes clearer at low and high SNR. For thc?{/rl]i;y Fzsz;seg Fr;ggiér?{aibho;g),I\?,QAPS(c(:?r?:IS:s;dO,x/-\sD\:avx(pZ;)e' d
former, the DW transitions from the PI to the variance of thefrom Eqs.(10) and(12), the performance of'the SMS filter is
mode process at 9.5 dB, while the MAP _stay_s a few dBconsistent with the SW noise scenario. Once again we see an
better than this worse case. AQmﬂted!y, .th's s_llghtly b.etteripitial increase of MTSE as the aperture decreases followed
ghzg stilr;e ;lisagi;fgr}ﬁpeﬁe dfegogplsegfig Immarizzisf)l:/z:by a leveling of this curve at still smaller apertures. As ob-

’ ) served for the SW noise case, this performance is due to an
ceed the best performance of the other filters for each apel- i | decrease ins and then domination by the bias
ture and SNR. The high SNR experiments also reveal that{;rm at smaller ape\?t’\LAJr'es
the DW filter does not match the Pl or MAP filters at full The performances of .the MAP and P! filters are closely
aperture. As the aperture decreases, the MAP algorithm do%ﬁked in the KI noise model simulations. As shown in Eq
not track the PI filter, but smoothly transitions to perfor- j :

mance better than either the DW or SMS filters. Thus at(18)’ the Pl filter can be interpreted as the whitening prepro-

modest SNRs, there may be little difference between th cessor for the MAP filter. Consequently, the differences be-

MAP and DW filters, but the MAP filter is clearly superior at wgen the,SO“dz and2 das?ed .Imes In Fig. 3 are due'to the
either extreme of high or low SNR. Wiener gaind o5/ (ogi+o,)] in Eqg. (18). As the SNR in-

2 : . .
A common criticism of MAP algorithms is that they creases,oy, decreases and the Wiener gain matrix ap-
assume prior knowledge of the statistics of the unknown proproaches unity. The performance of these two algorithms

OyMm -
At modest (20-dB) SNR, the DW (X’s) and MAP
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points of the highest mode we wish to estimate. In order to
obtain a well-conditioned problem for the full aperture 40-
element array, we must limit ourselves to estimating only the
first 25 modes of the waveguide. For the purposes of these
simulations, we assume that modes higher than 25 are not
present in the received field. The definitions of SNR and
FIG. 5. Comparison of the performance of common mode filtering algo-\pTSE are identical to those in the previous section.

rithms in spatially white noise at three different SNRs for a deep water . . . .
environment, using an axis-fixed array. The algorithms compared are the The first set of deep water simulations uses a series of

pseudo-inversésolid), sampled mode shagdash-dox, diagonal-weighting ~ r€ceiving arrays whose aperture varies from full to half span
(X's), MAP (dashegl and mismatched MARircles. The crosses” +") between the upper and lower turning points of mode 25. As
mark the rough bound on worst case performance (1 Bfg=14 dB) that  the gperture shrinks, the sensor locations are chosen so that
results from ignoring the observed data.
the number of hydrophones above and below the sound
channel axis remains constant: 12 above and 28 below. Fig-

become almost identical as the SNR increases. This is rere 4 shows the spans of these axis-fixed arrays. As the ap-
flected in the solid and dashed lines being plotted on top ofrture decreases, the conditioning of the estimation problem
each other for the 20- and 40-dB SNR cases in Flg 3. ThWOrsens[Cond(\If):]_ for the full span and COﬂd()ZB
mismatched MAP filter again tracks the true MAP filter very x 10 for the ha|f-spaih The specifications of the deep water
closely, indicating that even rough estimateskof; suffice  simulations are identical to the shallow water case: 500 in-
to give good performance with the KI noise model. dependent trials using complex Gaussian data and noise pro-

The DW filter displays a similar transition between the cesses were run for each aperture at three different noise
Pl filter at small condition numbers to the SMS filter at Iarge|eve|s(o dB, 20 dB, and 40 dB Figure 5 shows the MTSE
condition numbers. As a result, the DW filter's performanceresults for the axis-fixed arrays. Note that figr= 25, the
is far worse than the MAP at hlgher SNRs for the Sma"erbound on worst case performance is ]_Olmz 14 dB and
aperture arrays. is marked with crosse§+') in the plots. As the plots indi-
cate, the estimators exhibit the same type of behavior as in
the shallow-water SW example. The Pl mode filter performs
well for the full aperture, but degrades rapidly as the aperture

This section presents the results of simulations using thehrinks. By contrast, the SMS filter does not deteriorate se-
SW noise model in a typical deep water environment modverely as the conditioning worsens, but it suffers from bias
eled by a canonical Munk sound speed prdfil@he channel errors due to lack of orthogonality in the sampled mode
is 5426-m deep with a minimum sound speed of 1483.5 m/shapes at small apertures. The MAP filter provides a graceful
at 923 m. Figure 4 shows the sound-speed profile and thiansition between the SMS and PI filters as aperture in-
first 25 modes at a propagation frequency of 75 Hz which icreases. In fact the simulations show that its performance
used for all of the examples in this section. We consider onlynatches or exceeds that of the other estimators for the aper-
the SW noise model since the KI model is not applicable taures and noise levels examined. For the deep water simula-
deep ocean environments. The simulations use a series tbns the 8 parameter for the DW filter was chosen so that
40-element vertical receiving arrays of varying apertures. Irthe condition number o was limited to 200 in the worst
the shallow-water case, full aperture is defined to be the ercase(half-aperture arrgy As shown in the plots, this choice
tire water column, however this is an impractical definitionof 8 works well in the 20-dB SNR caséMAP and DW
in deep water scenarios. Instead, we define the span of thesults are almost identigabut does not fare as well for the
full aperture array to be between the upper and lower turningxtreme low or high SNR cases. In a similar manner to the
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The performances of the mode filters are compared in
_ SNR:odB R typical shallow and deep water environments. For the shal-
low water simulations, the SMS filter suffers from the bias
2°5_.._.;&N_,:A_,&_;__‘_4,____,__&:%_;__‘,&___,_%:__ SO introduced by the lack of orthogonality M. The Pl mode
ol | filter performs very well when the array samples the channel
well, but it deteriorates rapidly as the array aperture de-
creases and the sampling becomes poorly conditioned. In
e e many situations an aperture spanning Iess_than roughly 75%
SPa"(N;rhrln:i::inemre) of the_ Waj[er colun_m cquld render th_e Pl f||t§r u_sel_ess. _The
. DW filter is a modification of the PI filter which limits this
deterioration. The simulations also demonstrate that the
MAP filter generally matches or exceeds the performance of
the other filters under a wide range of noise levels and aper-
tures. When the Pl filter is well-suited to the current condi-
tions, the MAP filter converges asymptotically to this solu-

Total Mode Error (dB)

Total Mode Error (dB)
o

M5 om0 oes . of7N o5 o8 o8 o8  0s 1 tion. When the SMS filter is more appropriate, the MAP
i converges to a form similar to but slightly better than the

SMS filter. The shallow-water simulations also demonstrate
] that the MAP filter is relatively insensitive to mismatch un-

b TR T der a variety of SNRs and apertures, making it preferable to
I : ] the DW filter for mode filtering in many shallow-water ex-

periments. The set of deep water simulations confirms the

e shallow-water results, thereby indicating that the unified

R AL L L I framework developed in this paper is applicable to a variety

of ocean environments. In addition, the comparison of the

FIG. 7. Comparison of the performance of common mode filtering algo-axis-fixed and top-fixed arrays highlights the importance of

rithms in spatially white noise at three different SNRs for a deep waterthe absolute positioning of the array within the water column
environment using a top-fixed array. The algorithms compared are th .

pseudo-inversésolid), sampled mode shagdash-doy, diagonal-weighting for deep water experiments.
(X’s), MAP (dashegl and mismatched MARcircles. The crosses$”‘ +")
mark the rough bound on worst case performance (1Q B&=14 dB) that ~ACKNOWLEDGMENTS
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