M2.7

Transform Image Coding with a New Family of Models

Gregory W. Wornell and David H. Staelin

Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

A set of adaptive transform image coding schemes is developed
based on a family of composite block source models for imagery.
‘An iterative Maximum Likelihood (ML) algorithm is developed
for;resdlving model parameters from training set data. Both
unconstrained (adaptive transform, adaptive quantization) and

“constrained (fixed transform, adaptive quantization) coders are
obtained from the image model parameters. The resulting coders
give excellent performance in coding test imagery at a variety
of bit rates, and they consistently outperform the well-known
Chen and Smith adaptive transform coders. For example, a 2 dB

- improvement over the Chen and Smith scheme is obtained with
& constrained coder with 128 classes operating at 0.5 bits/pixel.
Computational limitations inhibit the design of unconstrained
coders with fnore than approximately 15 classes.

" Introduction

This work, concerns the design of transform-based image coding
systems suitable for use with monochrome still-frame digital im-
ages partitioned into N x N-pixel, square blocks.
In classical non-adaptive transform coding systems (see Fig. 1),
. image blocks are passed through an orthogonal transformation,
afterwhich the resulting transform coefficients are separately quan-
tized. Frequently, one is interested in optimizing the system pa-
rameters based on some training set data. In this case, system
parameter design begins with a particular source model. Tra-
ditionally (and often implicitly), image blocks are modeled as
originating from a jointly-Gaussian block source characterized by
block mean m and covariance A. In this case, Maximum Likeli-
hood estimates of the appropriate source parameters m and A are
_obtained from a suitable training set of image blocks via the usual
_ ensemble averaging. Having fully specified the source, the appro-
priate coder parameters (i.e., the transformation and quantizer
bank) for coding with minimum mean square error distortion at
a prescribed average bit-rate are well-known. These parameters
correspond: to- the Karhunen-Logve transform, log-variance bit
_assignment, -and Max’s quantizer level placement (see, e.g., 4,
Chapter 12}). -
: The goal of ‘this recent research [6] was to develop a corre-
sponding strategy for the design of adaptive transform image cod-
ing systems. The particular adaptive transform coder structure
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Figure 1: Classical Non-Adaptive Transform Coding.
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Figure 2: Adaptive Transform Coding.

of interest (see Fig. 2)is the switched-subcoder type, wherein a
set of ¢ subcoders (i.¢., transform/quantizer-bank pairs) is made
available for coding individual image blocks, and a suitable rule—
the subcoder-select rule—is used to select an appropriate sub-
coder from the set for each block to be coded. Such a coder is
termed a c-class coder. )

In the subsequent discussion; it will prove convenient to adopt
the following notation: let Nz-dimensiona] vectors represent N X
N-pixel image blocks (say, by a raster scan ordering of the pixels
in a block). Then each block x.= (z1,23,...,%N2) corresponds

to a point in blockspace RNZ.\

The Model

As in the non-adaptive case; some model is required for the block
process. In this case, the Composite Block Source Model (see
Fig. 3) provides a rather general framework for such coding.
This model consists of: :

e a set of ¢ distinct. Gaussian subsources si, sz, ..., 8. each
producing independent, identically-distributed image blocks
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Figure 3: The Composite Block Source Model.

plx) = Y- plxls)P(s)

p(x|si) ~ N(m;, A;)

according to jointly Gaussian pdfs p(x|s;) characterized by
block mean m; and covariance A;; and

e a memoryless, probabilistic switching mechanism charac-
terized by P(s1), P(s2), ..., P(sc), the probabilities govern-
ing which subsource produces each particular block in an
image.

In terms of our Euclidean blockspace RN2, the model repre-
sents the decomposition of an arbitrary block pdf into a weighted
superposition of N%-dimensional jointly Gaussian pdfs. Physi-
cally, the subsources may be interpreted as a set of ¢ “texture
generators” for the imagery.

Parameter Resolution

In order to choose appropriate values for the coder parameters,
the corresponding model parameters must be known. Suitable
values for these parameters can be obtained via Maximum Like-
lihood parameter estimation techniques. Specifically, let

X = (x1,%X2,...,%Xn) (1)

be a training set of n image blocks, and let B be a many-dimensional
vector of the model parameters. Then the model parameter es-
timates are those for which the likelihood function

H Zp(xk|s, P(s:) (2)

k=1i=1

A
=p(X|B) = H p(xk|B) =
1s maximized subject to three obvious sets of constraints:
c
Z P(s‘l) =1, (3)
i=1

P(s;)>0,1=1,2,...,¢, (4)
A;>0,1=1,2,...,c (5)

From this formulation, a set of implicit equations for the pa-
rameters can be derived in estimator-update form [6]. The es-

timator equations are (in terms of the intermediate quantities

P(s;’xk,é)):

—
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These equations are intuitively satisfying as they correspond

to weighted sample means and sample covariances. The weights

P(si|xx, B) correspond to the probability that training set block

X was generated by subsource s;. Moreover, these equations

define a steepest ascent iterative algorithm for the parameter
estimation [2,3].

Empirically satisfying initial estimates for the algorithm are
obtained using an ac-energy based partitioning of the training
set based on the work of Chen and Smith [1]. Essentially, the
ac-energy of each training set block (i.e., the average squared
deviation from the block average) is used to partition the train-
ing set into ¢ equally populated classes. Over each class, block
means and covariances are estimated to provide subsource pa-
rameter initial estimates. Evidently, the switching probabilities
are initially identical.

Coder Design

The corresponding adaptive transform coder for this model as-
signs one subcoder to each Gaussian subsource. Since subsource
parameter estimates (xh,, L) are available, the appropriate trans-
form for each subcoder—the Karhunen-Loéve transform—is ob-
tained via the usual diagonalization of A Itis important to re-
mark that, by construction, the subcoders operate “efficiently,”

e., they code Gaussian sources, so that the transform coeffi-
cients undergoing scalar quantization are rendered statistically
independent by the chosen transforms.

The resulting sets of independent Gaussian transform coeffi-
cients are to be quantized so as to achieve minimum mean square
error coding distortion subject to a constraint on the allowable
average bit rate. Let the variance of the jth transform coeffi-
cient from subcoder 7 be ¢7x , and let R;; be the number of bits
assigned to code this coefficxent. Then the average mean square
error quantization distortion D is given by

c 1 NZ
D:ZP(S,‘)W Zﬂf‘_j, (10)
i=1 i=1

where the quantizer error variance aZ

(4]

is given approximately by
03;,- ~ ef2 Mgk (11)

(with €® a constant appropriate to the minimum mean square
error quantization of Gaussian random variables). The average
bit rate constraint may be expressed as:

Zps, szR‘, < (12)

In this case, minimum distortion is achieved when the R;; are of
the form



(13)

with & some constant chosen to attain the desired average bit
rate R. Hence, a log-variance bit assignment rule like that used
“in non-adaptive transform coding applies. Iterative schemes (see,
e.g., [4]) exist for obtaining non-negative, integer-valued R;; obey-
ing this rule.
Given the R;;, the appropriate Gaussian pdf-optimized mini-
mum mean square error distortion quantizers are designed as per
Max [5].
The subcoder-select is designed to distribute incoming blocks
among the ¢ subcoders in such a way that each subcoder codes
+data obeying the block pdf for which it was designed. To accom-
‘plish this, pseudorandom assignment is employed. In particular,
" for each image block x to be coded, a weighted pseudorandom
" selection'among the ¢ subcoders is made according to the weights

1
Ry =t Jlogyd,

P(s1]x, B), P(sy]x, B), ..., P(sc|x, B).

These weights correspond to the estimates of the probabilities
“that X came from each of s;,s3,...,5.. In terms of distribut-
ing blocks among the subcoders appropriately, this procedure is
as good as knowing the exact subsource from which each block
originates.

A Fast Coder

Frequently, one is interested in working with a restricted class of
adaptive transform coders, perhaps due to computational com-
plexity constraints. For example, it is reasonable to want to
replace all the subcoder transforms with a single Discrete Cosine
Transform (DCT). The DCT has the computational advantage
of having both a separable form and a fast algorithm, yet at
the same time it possesses good.decorrelation properties when
used with image data. In general, the approach taken to design-
ing constrained coders of this type is to appropriately constrain
the underlying model so that the resulting coder has the de-
sired properties: For the present example, this is accomplished
rather simply. What is required is that the training set blocks be
pre-transformed by the DCT, and that the ML estimator-update
“equations be applied to the transformed training set data with
* diagonal covariance matrices. The resulting model leads imme-
diately to a coder with DCT transforms for all subcoders. In
addition to generating a computationally faster coder, the corre-
sponding ML design procedure is much accelerated, too, due to
- the constrained covariance structures involved.

Experilhents

The experimental test data consisted of the monochrome, 8-
bit,/pixel, 512x480-pixel image LENA (see Fig. 4), partitioned
into 8 x8-pixel blocks.

The coding experiments involve comparisons among the fol-
lowing three types of coders:

"The ML Coders The coders designed from the ML parameters
of the unconstrained model.

The FML Coders The fast coders designed from the ML pa-
rameters of the covariance-constrained model.

- The C&S Coders The adaptive transform coders developed
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Figure 4: The 8-bit/pixel 512x 480-pixel test image LENA.

by Chen and Smith [1].

In the first set of experiments, the three coders are each
trained with LENA, then used to code LENA at 0.5 bits/pixel.
The number of classes for each coder (i.e., the order of the coder) -
is varied from one to 128. In all cases, the ML algorithms were
observed to converge satisfactorily within 10 iterations. Fig. 5
shows the SNR performance of the resulting coding systems.
The following obsérvations can be made:

o The C&S coder performance “saturates” at approximately
16 classes, while FML . coder performance saturates at-ap-
proximately 100 classes. The FML coder gives consistently
better performance, and the asymptotic gain over the C&S
coder is approximately-2.dB.

The ML coder gives consistently better performance than
the FML coder over the range of ¢ for which comparisons
may be made.  Computational limitations prevent comple-
tion of the ML coder performance curve, so the ultimate .
performance potential of the ML coder remains unresolved.

In the second set of experiments, the three coders are trained
with LENA, then used to code LENA with 8 classes. The coders
are operated at average bit rates varying between 0.25 and 1.0
bits/pixel. The results, shown,'in Fig. 6, show strongly increasing
performarnce with bit rate for all coders. Moreover, the ‘perfor- -
mance margins of the ML over the FML coder, and the FML
over the C&S coder also widen.

Finally, Fig. 7. shows the test picture LENA coded at 0.5
bits/pixel with the C&S. (with 15 classes) and FML coders (with
128 classes). The scaled absolute coding errors are also displayed.
Clearly, the FML coder offers a substantial improvement over the
C&S coder both in terms of subjective performance and in terms
of SNR. e
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Figure 5: Coder performance in coding LENA at 0.5 bits/pixel
as a function of the number of classes.
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Figure 6: 8-class coder performance in coding LENA as a func-
tion of bit rate.
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