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Abstract

Conservation principles have played a key role in the development and analysis of
many existing engineering systems and algorithms. In electrical network theory for
example, many of the useful theorems regarding the stability, robustness, and vari-
ational properties of circuits can be derived in terms of Tellegen’s theorem, which
states that a wide range of quantities, including power, are conserved. Conservation
principles also lay the groundwork for a number of results related to control theory,
algorithms for optimization, and efficient filter implementations, suggesting poten-
tial opportunity in developing a cohesive signal processing framework within which
to view these principles. This thesis makes progress toward that goal, providing a
unified treatment of a class of conservation principles that occur in signal processing
systems. The main contributions in the thesis can be broadly categorized as pertain-
ing to a mathematical formulation of a class of conservation principles, the synthesis
and identification of these principles in signal processing systems, a variational inter-
pretation of these principles, and the use of these principles in designing and gaining
insight into various algorithms. In illustrating the use of the framework, examples
related to linear and nonlinear signal-flow graph analysis, robust filter architectures,
and algorithms for distributed control are provided.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Engineering

3



4



Acknowledgments

There are many that have shaped the path that this thesis took during my time at

MIT, sometimes in very significant ways, and I would like to recognize a small subset

of these people here.

I would first like to thank my thesis supervisor Al Oppenheim, who provided

significant intellectual and moral support throughout the process of researching and

writing this document. Al has the remarkable ability to simultaneously act as a men-

tor, a critic, an advocate, a copy editor, a colleague, and a friend, and I know of few

other people who can, with a single well-chosen comment, identify an elusive weakness

in an argument in a way that ultimately leads to the argument being significantly

strengthened. Al, thank you for teaching me how to do research, how to teach, and

how to complete this thesis. It has been a joy working with you, and I look forward

to many more years of collaboration and friendship.

It has also been wonderful to have had a thesis committee with expertise so well-

matched to the thesis. To Paul Penfield: thank you in particular for numerous

discussions where your insight into electrical network theory provided me with a

complementary and ultimately very useful perspective into my research. To John

Wyatt: thank you for taking the time to dig into the details of various arguments,

and in particular for introducing me to the vector subspace view of Tellegen’s theorem.

There are many ways that you have both significantly impacted the development of

this thesis.

There were many faculty and researchers at MIT and elsewhere with whom I had

helpful conversations that influenced the writing, and I would like to especially thank

(in alphabetical order): Ron Crochiere, Jack Dennis, Berthold Horn, Sanjoy Mitter,

Pablo Parrilo, Tom Quatieri, Ron Schafer, George Verghese, David Vogan, and Jan

Willems in this regard. In particular, the conversations with Berthold Horn led to a

fitting example for applying some of the principles in this thesis, and conversations

with Sanjoy Mitter seemed always to uncover useful references.

A big thank you to the members of the Digital Signal Processing Group (DSPG)

5



during my time here: Ballard Blair, Ross Bland, Petros Boufounos, Sefa Demirtas,

Sourav Dey, Dan Dudgeon, Xue Feng, Kathryn Fischer, Zahi Karam, Al Kharbouch,

Jon Paul Kitchens, Tarek Lahlou, Joonsung Lee, Jeremy Leow, Shay Maymon, Martin

McCormick, Joe McMichael, Milutin Pajovic, Charlie Rohrs, Melanie Rudoy, Maya

Said, Joe Sikora, Eric Strattman, Guolong Su, Archana Venkatraman, Laura von

Bosau, and Matt Willsey. Thank you for making this a wonderful place in which

to live and do research. In particular to Eric, Kathryn and Laura: thank you for

your support of the DSPG in keeping it running smoothly and for being significant

cultural contributors to the group. With specific regard to this thesis, I would like

to thank the following members (in no particular order): To Ballard and Jon Paul:

for a number of enthusiastic discussions during the formative stages of the thesis that

helped it to take shape. To Dennis and Shay: for the many whiteboard sessions

that played a key role in developing critical mathematical details in this thesis. And

also to Dennis: for encouraging me to listen on John Wyatt’s class about functional

analysis and signal processing, which ultimately impacted the direction of the thesis.

To Sefa and Guolong: for helpful conversations about equivalent conditions for strong

conservation. To Zahi: for being an exemplary office mate and providing much-needed

distractions. To Charlie: for discussions about life, the thesis, and related concepts in

control theory. To Martin: for providing feedback about the variational principles in

the thesis through discussions that were very helpful and interesting, so much so that

I had to avoid our office during the intense stages of thesis writing. To Melanie: for

being a great office mate for many years, and for establishing a precedent of wonderful

food at the DSPG brainstorming sessions, a practice that continues to this day. To

Petros, Dan, Xue, Tarek, Joe McMichael, and Milutin: for enthusiastic comments

during the DSPG brainstorming sessions that were often instrumental in shaping the

thesis. Also to the other members of the sixth floor, and in particular to John Sun

and Daniel Weller: thank you for helpful discussions and for contributing significantly

to the congenial atmosphere on the floor.

Part of what has made the process of writing possible is having a great group of

friends, and I would like to recognize in particular Matt Hirsch and Louise Flannery

6



for being terrific roommates, especially so during the intense writing stages. Also to

Matt: thank you for the many technical discussions around the kitchen table and

elsewhere that were instrumental in shaping the thesis. I would also like to recognize

Ryan Magee for providing an environment at Atwood’s Tavern that was welcoming

of my experimentation with sound and signal processing, and also that served as a

great weekend distraction.

To my family: Mary, Mom and Dad, thank you for being a supportive part of my

life. And especially to my parents: it is impossible to list all of the ways that you

have been an impact. Mom, thank you for inspiring me to be creative through all of

the creative things that you have done, and for instilling in me a healthy degree of

perfectionism that I believe has served me well while writing this thesis. Dad, thank

you for always being eager to answer my unending questions about life, the universe

and Ohm’s law during long family road trips, for having a contagious enthusiasm

for technical things that influenced me at a very young age, and for nurturing that

enthusiasm by working with me on many electronics projects. I feel very fortunate to

have parents that have been so supportive of my interests, and you have both shaped

this thesis in a big way. One of the things that has become customary in the DSPG is

to include six words that summarize the process of writing the thesis, and often whose

full meaning is known only to a handful of people. My six words are: “Half-gallon of

milk, home in refrigerator.”

7



8



Contents

1 Introduction 13

2 System representations and manipulations 17

2.1 Behavioral representations . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Input-output representations . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Linear and nonlinear signal-flow graphs . . . . . . . . . . . . . 19

2.2.2 Interconnective systems . . . . . . . . . . . . . . . . . . . . . 21

2.3 Image representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Manipulations between representations . . . . . . . . . . . . . . . . . 26

2.4.1 Behaviorally-equivalent, multiple-input, multiple-output systems 26

2.4.2 Behaviorally-equivalent interconnections of functions . . . . . 33

2.5 Partial taxonomy of 2-input, 2-output linear systems . . . . . . . . . 35

3 Conservation framework 37

3.1 Organized variable spaces . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 The correspondence map . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Partition decompositions . . . . . . . . . . . . . . . . . . . . . 42

3.1.3 Conjugate decompositions . . . . . . . . . . . . . . . . . . . . 43

3.1.4 OVS definition . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Examples of organized variable spaces . . . . . . . . . . . . . . . . . . 46

3.2.1 Electrical networks . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Feedback systems . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Wave-digital interconnections . . . . . . . . . . . . . . . . . . 54

9



3.2.4 Lattice filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Transformations on Q(x) and conservative sets . . . . . . . . . . . . . 60

3.3.1 Relationships between transformations of OVS elements . . . 61

3.3.2 Canonical conjugate bases . . . . . . . . . . . . . . . . . . . . 63

3.3.3 Dp-invariant transformations . . . . . . . . . . . . . . . . . . . 66

3.3.4 Q(x)-invariant transformations . . . . . . . . . . . . . . . . . 69

3.4 Conservation over vector spaces . . . . . . . . . . . . . . . . . . . . . 75

3.4.1 Strong conservation . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.2 The manifold of conservative vector spaces . . . . . . . . . . . 82

4 Conservative interconnecting systems 85

4.1 Image representations of conservative interconnections . . . . . . . . . 86

4.2 Comments on the structure of GQ . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Isomorphisms with O(L, L), SO(L, L) and SO+(L, L) . . . . . 93

4.2.2 The families T
[q;t)
1 , T

[q,r;t)
2 and T

[q]
5 generate all strongly-conservative

vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.3 The families T
[q;t)
1 , T

[q,r;t)
2 , T

[q]
5 , and T

[q]
6 generate all conservative

vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Generating matched conservative interconnecting systems . . . . . . . 99

4.3.1 A condition for conservation . . . . . . . . . . . . . . . . . . . 103

4.3.2 A condition for strong conservation . . . . . . . . . . . . . . . 106

4.4 Identifying maximal-Dp conservation in matched interconnecting systems111

4.4.1 Partition transformations for identifying and strengthening con-

servation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.2 A strategy for identifying transformations . . . . . . . . . . . 117

4.4.3 A strategy for strengthening weak conservation . . . . . . . . 122

4.4.4 Identifying conservation in a bilateral vehicle speed control system124

4.4.5 Obtaining all conservation laws for a conservative behavior . . 129

5 Variational principles of strongly-conservative spaces 133

5.1 OVS content and co-content . . . . . . . . . . . . . . . . . . . . . . . 135

10



5.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.1.2 Relationship to integral definitions . . . . . . . . . . . . . . . 143

5.1.3 Composing f(y) and g(y) as functions on subvectors . . . . . 147

5.1.4 Re-parameterizing f(y)-g(y), f(y)-Q(y) and g(y)-R(y) contours149

5.1.5 Some example contours . . . . . . . . . . . . . . . . . . . . . . 151

5.1.6 Functionally-related f(y)-Q(y) and g(y)-R(y) contours . . . . 155

5.2 Connections with optimization theory . . . . . . . . . . . . . . . . . . 162

5.3 Dynamics of OVS content and co-content . . . . . . . . . . . . . . . . 163

6 Examples and conclusions 173

6.1 Inversion of feedback-based compensation systems . . . . . . . . . . . 173

6.2 A generalized Tellegen’s theorem for signal-flow graphs . . . . . . . . 176

6.3 The set of lossless wave-digital building blocks . . . . . . . . . . . . . 181

6.4 Linearly-constrained p-norm minimization . . . . . . . . . . . . . . . 184

6.5 A distributed system for vehicle density control . . . . . . . . . . . . 187

A Proof of Thm. 3.1 195

B Glossary of terms 201

11



12



Chapter 1

Introduction

Conjugate effort and flow variables are deeply connected to our understanding of

physical systems. Also referred to as “effort” and “flow” variables or “across” and

“through” variables, conjugate variables represent physical quantities that when mul-

tiplied together indicate the amount of power consumed or generated by a given

system. In physical systems that are assembled as a lossless interconnection of physi-

cal subsystems, the total power consumed or produced by the interconnection is zero,

i.e. power is conserved. A lossless physical interconnection of K subsystems, each

with conjugate effort and flow variables denoted ek and fk respectively, therefore has

a conservation law that may be written as

e1f1 + · · · + eKfK = 0. (1.1)

In such physical systems, Eq. 1.1 holds independent of whether the interconnected

subsystems are linear or nonlinear, time-invariant or time-varying, or deterministic

or stochastic. As such, the use of Eq. 1.1 in the derivation of useful mathematical

theorems about physical systems often implies not only that the theorems apply

very broadly, but also that the application of linear or nonlinear transformations

may be used as a tool in the corresponding derivations. And furthermore, such

transformations may be used to modify existing theorems in arriving at additional

related results.
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One may look to electrical networks to find a very broad class of such theorems

originating from equations of the form of Eq. 1.1. In this class of physical systems,

Eq. 1.1 is embodied by Tellegen’s Theorem, [34] and a comprehensive summary of

many of the accompanying theorems, which address among other things stability, sen-

sitivity, and variational principles in electrical networks, is found in [31]. Eq. 1.1 also

forms a cornerstone of the bond graph methodology, applied widely in the analysis,

design and control of mechanical, thermal, hydraulic, electrical, and other physical

systems. [30, 35] The bond graph framework has also been applied in the analysis of

social and economic systems as well. [6]

In contrast to physical systems, many current signal processing architectures,

including general-purpose computers and digital signal processors, implement algo-

rithms in a way that is often far-removed from the physics underlying their imple-

mentation. One advantage to this is that a wide range of signal processing algorithms

can be realized that might otherwise be difficult or impossible to implement directly

in discrete physical devices, including for example transform-based coding, cepstral

processing, and adaptive filtering. However, the high degree of generality facilitated

by these types of architectures comes with the expense of losing some of the powerful

analytic tools traditionally applied in the design and analysis of the restricted set of

systems that is allowed physically, and derivations of many of these tools stem from

equations of the form of Eq. 1.1.

A common strategy to overcome this essentially involves designing signal process-

ing algorithms that mimic the equations or sets of equations describing a specific

physical system or class of physical systems. Any signal processing algorithm that

can be put in the form of the equations is then regarded as being of a special class, to

which a wide range of theorems often apply. For example, the class of signal process-

ing systems consisting of two subsystems interconnected to form a feedback loop is a

canonical representation into which it is often desirable to place control systems, and

about which many useful results are known. And in the early work by Zames [43,44]

describing open-loop conditions for closed-loop stability in this class of systems, the

equivalent electrical network is often referenced.

14



Another class of signal processing algorithms developed in this spirit is the wave-

digital class of structures, which are based on the equations describing physical mi-

crowave filters, and which have exceptional stability and robustness properties, even in

the presence of parameter perturbations. [18] These properties were originally proven

by drawing analogies to reference physical microwave systems, which are known to

have similar characteristics. [17] The stability properties of other signal processing

structures, such as lattice filters, have likewise been determined by manipulating

them to fit the form of the equations describing wave-digital filters.

This strategy has also been used in the field of optimization. The network-based

optimization algorithm developed by Dennis to solve the multi-commodity network

flow problem was derived by designing a reference electrical network, with the network

“content” being equivalent to the cost function in the original optimization. [14, 15]

Chua also discussed the use of nonreciprocal elements such as operational amplifiers

in realizing the idealized components in Dennis’ formulation, in addition to those

required in a broader range of nonlinear problems. [8,9] In Dennis’ work, the question

of finding an optimal set of primal and dual decision variables, shown by Dennis to

be equivalent to voltages and currents in the network, also involved ensuring that

the network would indeed reach steady state, i.e. it involved ensuring stability of the

network. Theorems regarding the stationarity of network content and the stability of

electrical networks can be derived by starting with Tellegen’s Theorem, which as was

previously mentioned takes the form of Eq. 1.1.

Indeed conservation principles are at work in a wide class of useful systems and

algorithms, and this suggests potential opportunity in developing a cohesive signal

processing framework within which to view them. This thesis makes progress toward

that goal, providing a unified treatment of a class of conservation principles related to

signal processing algorithms, and enriching and providing new connections between

these principles and key fields of application. The main contributions in the thesis

can be broadly categorized as pertaining to:

• the mathematical formulation of a class of conservation principles,
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• the synthesis and identification of these principles in signal processing systems,

• a variational interpretation of these principles, and

• the use of these principles in designing and gaining insight into specific algo-

rithms.

Specifically, in Chapter 2 we review various forms of system representation that

will be useful in discussing conservation, and we present a theorem pertinent to trans-

lating between them. There are a variety of conservation principles in the literature

that, in an appropriate basis, are reminiscent of Eq. 1.1, and we establish a framework

in Chapter 3 for placing these on equal footing. Also in Chapter 3 we use the theory of

Lie groups to address the question of what vector spaces constraining the variables in

the left-hand side of Eq. 1.1 result in the right-hand side of Eq. 1.1 evaluating to zero.

Chapter 4 further interprets this result within the context of signal-flow graphs and

electrical network theory, providing graph-based techniques for synthesizing conser-

vative interconnections and identifying conservation in pre-specified interconnections.

As is the case with electrical networks, a conservative interconnection can in many

cases be viewed as operating at a stationary point of a functional, and in Chapter 5

we present a multidimensional stationarity principle that generalizes the variational

principles previously established in electrical network theory to a broader class of

systems commonly encountered in signal processing algorithms. Also in Chapter 5

we use the tools of optimization theory and convex analysis to gain further insight

into the meaning of these principles, and we discuss their time dynamics, pertinent to

algorithms where time is a meaningful quantity. Chapter 6 illustrates with examples

the application of the principles established in Chapters 2 through 5.
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Chapter 2

System representations and

manipulations

In physical systems, conservation pertains to constraints in a system, rather than

which system variables, if any, are considered inputs or outputs. However, many

signal processing systems are specified using an input-output representation. In this

chapter we discuss the relationship between these and other system representations

that will be used in the remainder of the thesis. The chapter begins by reviewing the

behavioral representation of Willems [39], input-output representations including lin-

ear and nonlinear signal-flow graphs, and the related topic of image representations.

A theorem related to performing manipulations between these representations is pre-

sented, and in the process we present a theorem for system inversion that generalizes

the flow graph reversal theorems of Mason and Kung [24, 25] to linear and nonlinear

systems represented as a general interconnection of maps.

2.1 Behavioral representations

The basic idea underlying the behavioral representation, a complete treatment of

which can be found in [39], is that of viewing systems not as maps from sets of input

variables to output variables, but rather as constraints between variables, some of

which may be system inputs; others, system outputs; and still others for which the

17



designation of input or output might be ambiguous. The convention is that “the

behavior” of a system refers to the entire collection of sets of system variables that

are consistent with the constraints imposed by the system.

Given a system R that represents constraints between a total of K variables

x1, . . . , xK , its behavior may be written formally as the set S of those length-K

vectors of system variables that are permitted by the constraints imposed by R. The

variables xk may in general be arbitrary mathematical objects, and in this thesis we

will mainly be concerned with variables that represent some type of signal or scalar

quantities.

An interconnection of systems is addressed in a straightforward way from the be-

havioral viewpoint. In particular, the behavior resulting from an interconnection of

any two systems, interconnected via variable sharing, is the intersection of the behav-

iors of the uncoupled systems. For example, given two systems R and R′ each having

a total of K variables x1, . . . , xK and x′
1, . . . , x

′
K and having respective behaviors S

and S ′, the interconnected system obtained by sharing variables as

x1 = x′
1

... (2.1)

xK = x′
K

has the behavior Si specified by

Si = S ∩ S ′. (2.2)

2.2 Input-output representations

The basic idea in input-output representations is to specify the components of a

system using functional relationships, i.e. using a function or functions of the form

M : C → D that map every element of an input set C to a unique element of the

output set D. Given an input element c ∈ C, the corresponding output element d ∈ D

18



is related to c as

d = M(c). (2.3)

The convention in this thesis will be that whenever the term “function” is used, it

will refer to a relationship where each element in an input set is mapped to a unique

output element. From a behavioral viewpoint, the function in Eq. 2.3 has a behavior

S that may be written as

S =







 c

M(c)


 : c ∈ C




 , (2.4)

i.e. its behavior is the set of pairs of variables c and d that are consistent with Eq. 2.3.

2.2.1 Linear and nonlinear signal-flow graphs

There are several common forms of system representation within the more general

class of input-output representations, and a particularly pervasive subclass is that of

linear and nonlinear signal-flow graphs. In this form of representation, signal pro-

cessing systems are described by a collection of nodes and associated node variables,

connected using branch functions that may generally be linear or nonlinear. The

value of a node variable is the sum of the output variables from the incident branch

functions that are directed toward the node, in addition to possible contribution from

an external input, and the node variable is used as an input to the incident branch

functions that are directed away from the node.

In continuous- and discrete-time signal-flow graphs where the instantaneous values

of the node variables are real scalars, a given node variable wk in a signal-flow graph

containing P nodes may be related to the branch variables vjk as

wk =

Nk∑

j=1

vjk (+xk), k = 1, . . . , P, (2.5)

where vjk represents the output value of the branch that connects node j to node

k, with the total number of such branches directed toward node k denoted Nk, and
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where xk is a potential external input to the node. A given branch variable may

accordingly be written as

vjk = Mjk(wj), (2.6)

where Mjk : R → R is the branch function that maps from the value of the variable

at node j to the contribution of the branch to the variable at node k. [28] [29]

A pertinent question is that of whether a signal-flow graph represented as an

interconnection of functions implements an overall functional relationship, and the

examples depicted in Fig. 2-1 illustrate that this is generally not the case. Referring

to this figure, the input and output variables in systems (a)-(c) satisfy the respective

equations da = 2ca, db = cb/2 and cc = 0. As such, the relationships between the

input and output variables in systems (a) and (b) are functions. For system (c), the

output variable dc may take on any value as long as the input variable cc is zero, and

we say that the system cannot be realized as a function from cc to dc.

Figure 2-1: (a) A signal-flow graph that is a function. (b) A signal-flow graph that is
a function and contains a closed loop. (c) A signal flow graph that is not a function.

The issue of whether a signal-flow graph is a map will be especially relevant

in systems that are implemented using a technology that necessitates the functional

dependency of outputs on inputs, as with digital signal processors and general-purpose

computers. The issue will be less critical in implementations that make use of, e.g.,

analog and continuous-time technology, although the question of whether a system is

a map will still in this domain provide insight into whether an observed output value

is unique.

Systems (b) and (c) in Fig. 2-1 are also examples of signal-flow graphs that contain

closed loops, i.e. loops containing no storage elements, and a natural question is that

of what bearing this has, if any, on whether a signal-flow graph implements an overall
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functional relationship. In discrete-time systems, the existence of delay-free loops, a

subclass of closed loops, is related to whether the overall signal-flow graph implements

a function. As was shown in [12], a discrete-time signal-flow graph having causal

branch functions that contains no delay-free loops is known to be a function itself,

since it is computable. However, as is illustrated by systems (b) and (c) in Fig. 2-1,

the existence of a delay-free loop does not imply anything in general about whether

a system is a function.

2.2.2 Interconnective systems

We also call attention to a class of input-output representations where the behaviors

of subsystems are separated from the relationships that couple them together, as has

been done in, e.g., [4,37,38]. From this perspective, a system is viewed as having two

parts: constitutive relations, e.g. a set of systems that are uncoupled from one an-

other, and an interconnecting system to which the subsystems and the overall system

input and output are connected. The variables that are shared by the interconnecting

system and the constitutive relations are referred to as the interconnection terminal

variables, and each such variable may either be an input to or output from the in-

terconnection. The designation of whether each interconnection terminal variable

is an interconnection input or an interconnection output will be referred to as the

input-output configuration. We will refer to this form of system representation as an

interconnective representation.

In an interconnective representation, the constitutive relations and the intercon-

necting system may all be possibly nonlinear and time-varying systems that are al-

lowed to have memory. The key point of the representation is to emphasize the

distinction between the many independent constitutive subsystems, which are indi-

vidually connected to a common interconnecting subsystem. Many of the results in

Chapters 3 and 4 will pertain to the interconnecting component of an overall system in

an interconnective representation, and as such will have the convenient property that

they will not depend on the specific behaviors of the constitutive relations, facilitating

their application in a variety of systems. Example interconnective representations for
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a generic system and for the feedback system in Fig. 3-1 are respectively illustrated

in Figs. 2-2 and 2-3.

Figure 2-2: An interconnective representation of a generic signal processing system.

Figure 2-3: An interconnective representation of the feedback system in Fig. 3-1.

As was previously mentioned, the behavior of an interconnection of systems is the

intersection of the behaviors of the individual systems, and the interconnected system

in Fig. 2-3 illustrates this. Referring to this figure, if we represent Subsystem 1 and
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Subsystem 2 using functions M1 and M2 for which

x5[n] = M1(x2[n]) (2.7)

and

x3[n] = M2(x6[n]), (2.8)

then the behavior Sr of the uncoupled constitutive relations may be written as

Sr =








x1[n]

x4[n]

x2[n]

M1(x2[n])

M2(x6[n])

x6[n]




:




x1[n]

x4[n]

x2[n]

x6[n]



∈ C4





, (2.9)

where C4 = C × C × C × C is used to denote the set of allowable signals over which

the relationships in the system are defined. The behavior Sc of the interconnecting

system is likewise written as

Sc =









x1[n]

x5[n]

x1[n] + x3[n]

x5[n]

x3[n]

x5[n]




:




x1[n]

x5[n]

x3[n]


 ∈ C3






, (2.10)

and the interconnected behavior Si is the set of all signals consistent with both be-

haviors, i.e.

Si = Sr ∩ Sc. (2.11)

23



2.3 Image representations

In moving between input-output and behavioral representations, it will be useful to

refer to systems for which all of the terminal variables xk are viewed as outputs that

are driven by a set of hidden internal variables φk. This type of system representation

is referred to as an image representation, [2,39] reflective of the fact that the behavior

of the system is the image of a function M that relates the internal variables to the

terminal variables as

M







φ1

...

φJ





 =




x1

...

xK


 , (2.12)

with the behavior of the system being written in the case where φk are real as

S =





M







φ1

...

φJ





 :




φ1

...

φJ


 ∈ R

J





. (2.13)

As an example illustrating this, an image representation for the interconnecting

component of the system in Fig. 2-3 is depicted in Fig. 2-4. Referring to this figure,

the form of the expression for its behavior in Eq. 2.10 is reflected in the structure

of the system. It will often be the case that an expression for the behavior of an

input-output system will be suggestive of an image representation.

Image representations will also be useful in realizing input-output representations

of systems, given a pre-specified behavior. The general strategy in doing this, depicted

in Fig. 2-5, will be to begin with a behavior that is specified in terms of a function

from a set of hidden input variables to the set of output terminal variables. The task

will then be to perform system manipulations on the image representation to arrive

at a behaviorally-equivalent system where the hidden variables are instead outputs.

At this point there will be no dependence on the hidden variables, and the resulting

system may be regarded as implementing a functional relationship between the ter-

minal variables. Section 2.4 discusses the specifics of a class of system manipulations
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Figure 2-4: Image representation for the interconnecting component of the system in
Fig. 2-3.

that will be useful in doing this.

Figure 2-5: The general strategy behind obtaining a functional relationship from an
image representation of a system.
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2.4 Manipulations between representations

In viewing signal processing systems from the perspectives of the previously-mentioned

representations, it will often be the case that the representation in which a useful result

is most directly stated will be different from the domain in which it is implemented.

As an example of this, in Chapter 3 we will discuss conservation from a behavioral

perspective, and in Chapter 4 these principles will be related to signal-flow graph

representations. This section establishes some tools for translating between these

domains.

2.4.1 Behaviorally-equivalent, multiple-input, multiple-output

systems

Given a pre-specified behavior, there may in general be a number of different functions

or interconnections of functions to which the behavior corresponds. As a straight-

forward example, consider a map that is invertible in the sense that it is both a

one-to-one and onto mapping from the set of variables in its domain to the set of

variables in its codomain. It is straightforward to show that the inverse map is

behaviorally-equivalent to the forward map, with the input and output variables ex-

changed. Written formally, function M : C → D has as its behavior the set of

allowable (c, d) variable pairs given by Eq. 2.4. If M is invertible, the behavior of the

inverse function M−1 : D → C is in turn given by

S ′ =






 M−1(d)

d


 : d ∈ D



 . (2.14)
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As M is a one-to-one and onto correspondence between the sets C and D, we may

equivalently write

S ′ =







 M−1(M(c))

M(c)


 : c ∈ C




 (2.15)

=






 c

M(c)


 : c ∈ C



 (2.16)

= S, (2.17)

and we say that M and M−1 are behaviorally equivalent. Behavioral equivalence of

inverse systems lays the groundwork for a number of theorems regarding the inversion

of linear and nonlinear systems, discussed in greater detail in [4]. In this thesis, there

will not be a particular emphasis on inversion, although essentially any of the following

results can be applied to that problem by drawing upon the behavioral equivalence

property of inverse systems, e.g. Eqns. 2.15-2.17.

We have seen that for a single-input, single-output system, a behaviorally-equivalent

function with the input and output configurations interchanged is an inverse. For sys-

tems with many inputs and outputs, the concept of obtaining behaviorally-equivalent

systems will be useful in this thesis as well. We note that for the multiple-input,

multiple output case, behavioral equivalence implies inversion only in the case where

all of the input and output configurations are interchanged, and we will in general

be interested in behaviorally-equivalent systems where some subset of configurations

are interchanged.

Motivated by these considerations, the following theorem provides a necessary

and sufficient condition under which the configuration for an input-output pair of

terminal variables in a two-input, two-output function may be reversed, such that

the resulting system is itself a valid map. As the domains and codomains of the input

and output variables are allowed to be arbitrary and accordingly may themselves

be sets of vectors or n-tuples of variables, the theorem is immediately applicable to

general multiple-input, multiple output systems as well.
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Theorem 2.1. This theorem pertains to a two-input, two-output system, written as

two functions M1 : C1 × C2 → D1 and M2 : C1 × C2 → D2 that each operate on a

pair of variables (c1, c2), with c1 ∈ C1 and c2 ∈ C2, such that M1(c1, c2) = d1 and

M2(c1, c2) = d2, where d1 ∈ D1 and d2 ∈ D2. Then a behaviorally-equivalent pair of

functions M ′
1 : D1 ×C2 → C1 and M ′

2 : D1 ×C2 → D2 exists, if and only if each of the

functions M
(c2)
1 : C1 → D1, defined as

M
(c2)
1 (c1) ≡ M1(c1, c2), (2.18)

is an invertible function for all c2 ∈ C2. Writing the behavior of the original pair of

functions as

B = {(c1, c2, M1(c1, c2), M2(c1, c2)) : c1 ∈ C1, c2 ∈ C2} , (2.19)

and writing the behavior of the primed pair of functions as

B′ = {(M ′
1(d1, c2), c2, d1, M

′
2(d1, c2)) : d1 ∈ D1, c2 ∈ C2} , (2.20)

the specific notion of behavioral equivalence is that B = B′. A summary of the result

in this theorem is illustrated in Fig. 2-6.

Proof. We first show that invertibility of M
(c2)
1 for all c2 ∈ C2 implies that a pair of

primed functions exists that are behaviorally equivalent to the original pair. In doing

so we explicitly define M ′
1 using the inverse of M

(c2)
1 , i.e.

M ′
1(d1, c2) ≡ M

(c2)
1

−1
(d1), (2.21)

and we define M ′
2 in terms of M2 and M ′

1 as

M ′
2(d1, c2) ≡ M2 (M ′

1(d1, c2), c2) , (2.22)
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with M ′
1 defined as in Eq. 2.21. The behavior B′ of the primed system is accordingly

B′ =
{(

M
(c2)
1

−1
(d1), c2, d1, M2

(
M

(c2)
1

−1
(d1), c2

))
: d1 ∈ D1, c2 ∈ C2

}
. (2.23)

As we have assumed that both of M
(c2)
1 and M

(c2)
1

−1
are invertible functions for all

c2 ∈ C2, we may perform the substitution c1 = M
(c2)
1

−1
(d1) and write

B′ =
{(

c1, c2, M
(c2)
1 (c1), M2 (c1, c2)

)
: M

(c2)
1 (c1) ∈ D1, c2 ∈ C2

}
(2.24)

= {(c1, c2, M1 (c1, c2) , M2 (c1, c2)) : c1 ∈ C1, c2 ∈ C2} , (2.25)

resulting in B′ = B.

In showing that the existence of a behaviorally-equivalent pair of primed functions

implies that M
(c2)
1 is invertible for all c2 ∈ C2, we proceed by proving the contrapositive

statement, “if M
(c2)
1 is not invertible for all c2 ∈ C2, then there does not exist a pair

of primed functions that is behaviorally equivalent to the original pair.” Let ĉ2 ∈ C2

denote a value corresponding to a function M
(ĉ2)
1 that is not invertible. Then for this

function M
(ĉ2)
1 there exist at least two distinct input values that correspond to the

same output value, i.e. there exist values c′1 ∈ C1 and c′′1 ∈ C1, c′1 6= c′′1, such that

M
(ĉ2)
1 (c′1) = M

(ĉ2)
1 (c′′1), (2.26)

or equivalently, such that

M1(c
′
1, ĉ2) = M1(c

′′
1, ĉ2) (2.27)

The corresponding output value is denoted d̂1 = M1(c
′
1, ĉ2) = M1(c

′′
1, ĉ2). We now

have some information about two of the elements in the behavior of the original

system, i.e. these elements are

(
c′1, ĉ2, d̂1, M2(c

′
1, ĉ2)

)
∈ B (2.28)

and (
c′′1, ĉ2, d̂1, M2(c

′′
1, ĉ2)

)
∈ B. (2.29)
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The pertinent question is whether behaviorally-equivalent primed functions exist,

i.e. we are interested finding functions whose behavior, written as in Eq. 2.20, has as

two of its elements the left-hand sides of Eqns. 2.28 and 2.29. However as c′1 6= c′′1, no

satisfactory function M ′
1 can exist.

Figure 2-6: Illustration of Thm. 2.1.

For a system that is a multiple-input, multiple output linear map from a vector of

Ni real input scalars to a vector of No real output scalars, the map may be represented

in terms of a gain matrix G : R
Ni → R

No as




d1

d2

...

dNo




= G




c1

c2

...

cNi




, (2.30)

where each of the scalar coefficients ck and dk are real-valued. The behavior of the

system may accordingly be written in the form of Eq. 2.4 as

B =

{[
c1, c2, . . . , cNi

, (Gc)1, (Gc)2, . . . , (Gc)No

]tr

: c =
[

c1 c2 · · · cNi

]tr

∈ R
Ni

}
,

(2.31)

with (Gc)k indicating the value of entry k in the vector (Gc).1 Writing the set B in

1In this thesis, boldface variables will specifically be used to denote column vectors in R
N . Vectors

in abstract vector spaces will generally be written as usual using italicized variables, i.e. we will write
x ∈ R

N and x ∈ V .
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terms of the range of a block matrix as

B = range





 INi

G





 , (2.32)

we see that the behavior of a linear map of the form of Eq. 2.30 is a vector space.

The number of linearly-independent columns of the matrix in the right-hand side of

Eq. 2.32 is the dimension of the vector space, and as such the vector space B has

dimension Ni.

The following corollary illustrates the application of Thm. 2.1 to multiple-input,

multiple output linear, maps of the form of Eq. 2.30. It is applicable to systems that

can be represented from an input-output perspective as a matrix multiplication, as is

the case with, e.g., linear, memoryless interconnections.

Corollary 2.1. This corollary pertains to an Ni-input, No-output linear, memoryless

system that accepts Ni real-valued scalars and produces No real-valued scalars, i.e. the

system may be represented as a matrix multiplication of the form of Eq. 2.30, where

G : R
Ni → R

No is a real-valued matrix. Then a behaviorally-equivalent matrix G′

exists for which 


c1

d2

...

dNo




= G′




d1

c2

...

cNi




, (2.33)

if and only if the gain from c1 to d1 through G is nonzero, i.e. if and only if G1,1 6= 0.

Writing the behavior of G as in Eq. 2.31 and the behavior of G′ as

B′ =

{[
(G′c)1, c2, . . . , cNi

, d1, (G
′c)2, . . . , (G

′c)No

]tr

: c =
[

d1 c2 · · · cNi

]tr

∈ R
Ni

}
,

(2.34)

the specific notion of behavioral equivalence is that G = G′.

Proof. We proceed by applying Thm. 2.1 to the operation of matrix multiplication

by G as specified by Eq. 2.30. Referring to the notation in Thm. 2.1, the domains
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and codomains of the maps are C1 = R, C2 = R
Ni−1, D1 = R, and D2 = R

No−1. The

associated maps M1 : R×R
Ni−1 → R and M2 : R×R

Ni−1 → R
No−1 may accordingly

be written in terms of G as

M1


c1,




c2

...

cNi





 =


G




c1

...

cNi







1

(2.35)

and

M2


c1,




c2

...

cNi





 =





G




c1

...

cNi







2
...

G




c1

...

cNi







No




. (2.36)

The map M1 may equivalently be written as a sum in terms of the elements of G, i.e.

M1


c1,




c2

...

cNi





 = G1,1c1 + G1,2c2 + · · · + G1,Ni

cNi
, (2.37)

which is an invertible map for all [c2, . . . , cNi
]tr ∈ R

N1−1, if and only if G1,1 6= 0. We

therefore apply Thm. 2.1 and claim that a behaviorally-equivalent system exists. In

showing that the system is linear, we select M ′
1 and M ′

2 as was done in the proof for

Thm. 2.1, i.e.

M ′
1


d1,




c2

...

cNi





 = (d1 − G1,2c2 − · · · − G1,Ni

cNi
)/G1,1 (2.38)
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and

M ′
2


d1,




c2

...

cNi





 = M2


(d1 − G1,2c2 − · · · − G1,Ni

cNi
)/G1,1,




c2

...

cNi





 . (2.39)

By inspection, the map M ′
1 is linear. As a composition of linear maps is itself linear,

M ′
2 is linear as well.

2.4.2 Behaviorally-equivalent interconnections of functions

Thm. 2.1 provides a necessary and sufficient condition for behavioral equivalence,

and a pertinent question is that of how such a behaviorally-equivalent system might

be obtained from an original system. When we have a system represented in an in-

terconnective form as in, e.g. Fig. 2-2, a convenient way of doing this will often be

to perform behaviorally-equivalent modifications to the interconnecting system, with

variable sharing between the original constitutive relations and modified interconnec-

tion resulting in an overall system that is behaviorally equivalent.

Given a pre-specified system represented as an interconnection of functions and

a pair of terminal variables whose input-output configurations we wish to exchange,

a convenient way of obtaining a behaviorally-equivalent system will specifically be

to identify a functional path from the unmodified input to the unmodified output,

and refer to this as the interconnecting system. Then the inputs and outputs to

the interconnecting system are the overall input and output whose configurations

we wish to exchange, in addition to the internal inputs and outputs connected to

the functional path. The desired system can likewise be obtained by creating a

behaviorally-equivalent path where the overall input and output configurations have

been exchanged and the internal input and output configurations remain unmodified,

using, e.g. the straightforward rules depicted in Fig. 2-7.

An example of the use of these rules in inverting the nonlinear system as discussed

in [4, 7] is illustrated in Fig. 2-8. Referring to this figure, the elements along the
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outlined path in Fig. 2-8(a) are replaced with the behaviorally-equivalent elements

depicted in Fig. 2-7, resulting in the inverse system in Fig. 2-8(b).

Figure 2-7: (a) Elements along a functionally-dependent path from an input to an out-
put whose configurations are to be exchanged. (b) Behaviorally-equivalent elements
that reverse the path.

Figure 2-8: (a) Nonlinear system illustrating the functional path, or interconnecting
system, from c[n] to d[n] that is used in exchanging the input-output configurations
of these variables. (b) Behaviorally-equivalent system obtained by performing path
reversal in the interconnecting system.
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2.5 Partial taxonomy of 2-input, 2-output linear

systems

On a number of occasions related to viewing conservation principles under a change

of basis, we will be interested in implementing a linear transformation of the behavior

of a set of variables in a larger system. A specific sub-class of these transformations

that we will commonly encounter will be those corresponding to linear transformations

from R
2 to R

2. As the pertinent variables in the original system may be represented

in a number of possible input-output configurations, applying an appropriate trans-

formation generally involves realizing the pertinent behavior in a system that has a

compatible input-output configuration.

Toward these ends, Fig. 2-9 depicts a partial taxonomy of behaviorally-equivalent

linear signal-flow graphs that implement the linear transformation

x3 = ax1 + bx2 (2.40)

x4 = cx1 + dx2. (2.41)

Referring to this figure, the signal-flow graphs were generated by beginning with

various implementations for the transformation specified in Eqns. 2.40-2.41, taking

x1 and x2 as inputs and x3 and x4 as outputs, and performing path reversal to realize

the depicted systems. The bent arrows in the figure indicate these manipulations.

Still referring to this figure, interconnections along upper-right, lower-left diagonals

have equivalent bottom branch configurations, and interconnections along upper-left,

lower-right diagonals have equivalent upper branch configurations.
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Chapter 3

Conservation framework

As was previously mentioned, we are concerned in this thesis with conservation laws

reminiscent of Eq. 1.1, with the general motivating problems being

• the design of signal processing algorithms for which a conservation law of the

form of Eq. 1.1 is obeyed,

• the identification of conservation laws of the form of Eq. 1.1 in existing signal

processing algorithms, and

• the role of these conservation laws in obtaining new and useful results.

Toward these ends, we focus in this chapter on gaining further insight into the fun-

damental principles of conservation laws that take the form of Eq. 1.1.

In particular, we explore the question of what properties the left-hand side of

Eq. 1.1 has, in addition to that of what causes the right-hand side of Eq. 1.1 evaluate to

zero, laying much of the groundwork needed to address the remaining issues regarding

the synthesis, identification, and use of conservation in signal processing algorithms.

The details uncovered in doing so will in turn form a foundation for the remainder

of the thesis. As the principles developed in this chapter will apply in a number of

essentially unrelated applications, they will be viewed as a unifying framework within

which to discuss conservation in signal processing systems.

A common theme in the remainder of the thesis will be that conservation is a prop-

erty of a linear interconnecting system, and the results in this chapter form a very
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general foundation for applications such as this. We begin the chapter by formalizing

the pertinent notion of conservation, introducing what we will refer to as an organized

variable space (OVS) and illustrating its use by describing known conservation princi-

ples in existing classes of signal processing algorithms. In cases where conservation is

a result of variables lying in a vector space, we draw a distinction between whether an

equation of the form of Eq. 1.1 corresponds to pairwise orthogonality of vectors or to

orthogonality of vector subspaces, and we present a theorem establishing conditions

on which this distinction may equivalently be based. We conclude the chapter by

showing that the set of all conservative vector spaces forms a smooth manifold, in the

process writing the generating set of matrices for the Lie group that can be used to

move between them.

3.1 Organized variable spaces

In physical systems where conservation laws of the form of Eq. 1.1 hold, the corre-

sponding conjugate variables may represent two of a wide range of different quantities.

In these systems, a natural way to define conjugate variables in turn often involves

identifying variables that can generically be thought of as efforts and flows. In signal

processing systems, however, the system variables may be unitless or may have no par-

ticular physical meaning. Although an effort-flow classification may still be effective

in certain cases, e.g. for signal processing systems that simulate electrical networks

or that move along continuous trajectories as in [21], it ultimately has the potential

to lead to misguided or ambiguous concepts. For example, describing a quantity as

a flow implies that something has been differentiated with respect to time, a notion

that may require further clarification within the context of a discrete-time system.

The concept of conjugate variables in this thesis therefore explicitly does not make

use of this type of distinction.

A natural question, then, is that of how we might expect to identify candidate

variables that may potentially result in a conservation principle of the form of Eq. 1.1.

This thesis takes the viewpoint that the critical issue is not what the variables rep-
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resent, but rather the way that they are organized in giving rise to an expression

akin to the left-hand side of Eq. 1.1, and that the behavior of the underlying signal

processing system is what leads to the right-hand side of the equation evaluating to

zero. These ideas are formalized in this thesis using an idea that we refer to as an

organized variable space (OVS).

3.1.1 The correspondence map

The central idea behind the OVS is to organize a collection of system variables, and

to do so using the tools of linear algebra. The motivation behind the use of linear

algebra is to allow conjugate variables to be defined as linear combinations of system

variables, a property that will allow conservation in systems such as wave-digital

filters to be placed on equal footing with conservation in, e.g., electrical networks.

The interpretation will be that the values of the variables in a signal processing

system can be thought of as coefficients in a basis expansion of a vector that lies in a

finite-dimensional inner product space (V, 〈., .〉), defined over the real numbers, and

that a quadratic form of a specific class can be used to map these coefficients to a real

number. If the underlying signal processing system constrains its system variables so

that the quadratic form evaluates to 0, the OVS will be said to be conservative for

the behavior of the system.

A good reference for the basic principles in the theory of quadratic forms is [27],

and an attempt will be made in this thesis to formulate the key ideas in a way that

does not require such a reference. One reason is that as the theory of quadratic

forms is a rich topic in its own right, some of the accepted terminology in that field

coincides with familiar concepts in inner product spaces. For example, an “orthogonal

decomposition of a vector space” in the theory of quadratic forms does not generally

have the usual inner-product space interpretation. Our approach will be to begin

with an inner product space and use the inner product, in addition to a linear map,

to define a quadratic form. This is indeed reminiscent of the usual progression in the

theory of quadratic forms, where a bilinear form is first defined and is then used to

create a quadratic form. However, the approach here in explicitly defining an inner
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product will allow us to use the properties of inner products after the quadratic form

has been defined, and to relate these back to the structure of the quadratic form in

useful ways.

We will specifically be concerned with an even-dimensional inner product space

(V, 〈., .〉), where 2L = dimV ≥ 2, in addition to an associated quadratic form Q :

V → R that is defined in terms of the inner product as

Q(x) = 〈Cx, x〉, (3.1)

where C : V → V is a linear map that will be assumed to be self-adjoint1 in this

definition without loss of generality, i.e. C∗ = C. The key restriction on C is that it

will be required to be invertible, with a total of L positive and L negative eigenvalues.

The map C in this definition will be referred to as a correspondence map because

in mapping V onto itself, it implicitly specifies a correspondence between any two

vectors x, x′ ∈ V for which Cx = x′.

It is straightforward to verify that the quadratic form in the left-hand side of

1In this thesis, the adjoint of a linear map M : V → V on an inner product space (V, 〈., .〉) will
be denoted M∗, i.e. 〈Mx, x′〉 = 〈x, M∗x′〉, ∀x, x′ ∈ V .
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Eq. 1.1 has a valid correspondence map by writing it in the following way:

Q







e1

...

eK

f1

...

fK







= e1f1 + · · · + eKfK

=

〈




1
2

. . .

1
2

1
2

. . .

1
2




︸ ︷︷ ︸
C




e1

...

eK

f1

...

fK




,




e1

...

eK

f1

...

fK




〉
, (3.2)

with 〈., .〉 denoting the standard inner product on R
2K . In this equation, the matrix

C can be diagonalized as

C = StrΛS, (3.3)

with

S =




√
2

2

√
2

2

. . .
. . .

√
2

2

√
2

2
√

2
2

−
√

2
2

. . .
. . .

√
2

2
−

√
2

2




(3.4)
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and

λ =




1
2

. . .

1
2

−1
2

. . .

−1
2




, (3.5)

i.e. it is a map from R
2K to R

2K that has a total of K positive and K negative

eigenvalues.

In the language of quadratic forms, the previously-mentioned conditions on the

eigenvalues of the correspondence map C used in defining Q(x) is equivalent to saying

that Q(x) is regular, with signature (L, L), again where 2L = dimV . In this thesis,

we will refer to a regular quadratic form defined on a 2J-dimensional vector space

that has signature (J, J) as being balanced.

3.1.2 Partition decompositions

A technique that will be used to further describe the structure of a quadratic form

Q(x) defined as in Eq. 3.1 will be to refer to certain direct-sum decompositions of

V that have special properties with respect to Q(x). The first such decomposition

that we will call attention to will be referred to as a partition decomposition of V .

A partition decomposition will specifically be defined as a direct-sum decomposition

of V whose decomposition subspaces linearly separate Q(x) into balanced quadratic

forms acting on the subspaces. Written formally, a partition decomposition will refer

to a set of vector subspaces {V1, . . . , VK} (Vk 6= {0}, k = 1, . . . , K) for which

V = V1 ⊕ · · · ⊕ VK (3.6)
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and for which there exist balanced quadratic forms Qk : Vk → R, k = 1, . . . , K, such

that Q(x) can be written as

Q (x1 + · · · + xK) = Q1 (x1) + · · ·+ QK (xK) , xk ∈ Vk, k = 1, . . . , K. (3.7)

The specific sense in which the quadratic forms Qk(xk) are balanced is that they can

be defined in terms of individual correspondence maps Ck : Vk → Vk as

Qk(xk) = 〈Ckxk, xk〉, xk ∈ Vk, (3.8)

where each Ck is a linear, invertible map that has an equal number of positive and

negative eigenvalues, and where the inner product 〈., .〉 as defined on V also serves as

the inner product on the subspace Vk.

Note that as the quadratic forms Qk(xk) are balanced, the subspaces Vk in a

partition decomposition will be even-dimensional. We will typically label a set of

vector subspaces forming a partition decomposition as Dp = {V1, . . . , VK}, and the

subspaces Vk in a partition decomposition will be referred to as partition subspaces.

A special name will be given to a partition decomposition where each subspace

has dimension 2. In this case the decomposition will have a total of L = dim V/2

subspaces, which is the maximum number of partition subspaces allowed in a par-

tition decomposition of a 2L-dimensional vector space V . This type of partition

decomposition will accordingly be referred to as a maximal-Dp decomposition.

3.1.3 Conjugate decompositions

We have emphasized the viewpoint that the left-hand side of Eq. 1.1 can be thought

of as a quadratic form acting on a vector in R
2K . An alternative perspective, and

one that is widely used in describing power conservation principles including those

in electrical network theory, is to instead view the left-hand side of Eq. 1.1 as an

inner product taken between two vectors, each of which is in a smaller-dimensional

space R
K . Formalizing the relationship between these two interpretations may be
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fairly straightforward in the case of Eq. 1.1, where the form of the left-hand side

of the equation is naturally suggestive of an inner product. However in the more

general case where a balanced quadratic form Q(·) has been defined over an abstract,

even-dimensional inner product space (V, 〈., .〉), the relationship between Q(·) and its

interpretation as an inner product has the potential to be more elusive. In facilitating

our understanding of this relationship, we will make use of a direct-sum decomposition

of V that we will refer to as a conjugate decomposition.

A conjugate decomposition of an even-dimensional inner product space (V, 〈., .〉)
having a balanced quadratic form Q : V → R describes how to decompose a vector in

V so that Q(·) acts like an inner product on the decomposed elements. It is specifically

defined as a set of two vector subspaces {VA, VB} of equal dimension that decompose

V as

V = VA ⊕ VB, (3.9)

such that elements in the subspaces can be mapped to the arguments of an inner

product in a smaller-dimensional inner product space (U, 〈., .〉U) in a way that Q(·),
acting on a vector in V , is equivalent to the inner product 〈., .〉U acting on the mapped

components taken from VA and VB. The formal condition on the subspaces VA and

VB in the decomposition will be that given these subspaces, there exists an inner

product space (U, 〈., .〉U) over the real numbers, as well as invertible, linear maps

MA : VA → U and MB : VB → U , for which

Q(xA + xB) = 〈MAxA, MBxB〉U , xA ∈ VA, xB ∈ VB. (3.10)

We will typically label a set of vector subspaces forming a conjugate decomposition

as Dc = {VA, VB}, and the subspaces VA and VB will be referred to as conjugate

subspaces.

We have been careful to provide a definition for a conjugate decomposition in a

way that depends on the existence of an inner product space (U, 〈., .〉U) and on the

existence of maps MA : VA → U and MB : VB → U , as opposed to requiring that

they be specified explicitly. The reason for this is that, given one set of maps and
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an inner product space that are known to satisfy Eq. 3.10, linear transformations

can be used to obtain other suitable combinations of maps and inner product spaces,

i.e. for a given conjugate decomposition they will not be unique. Nonetheless, it will

be useful to give names to a particular inner product space and pair of maps that

satisfy Eq. 3.10 for a pre-specified conjugate decomposition of V . We will specifically

refer to an appropriate inner product space (U, 〈., .〉U) as a comparison space and

the mappings MA and MB will be referred to as conjugate mappings.

3.1.4 OVS definition

With the previously-mentioned terms having been established, we are prepared to

write formal definitions for two key elements in the conservation framework. The

first will be referred to as an organization of an inner product space, and the sec-

ond, which will consist of an organization in addition to the collection of elements

composing an inner product space, will be referred to as an organized variable

space.

An organization O of an inner product space (V, 〈., .〉) will be defined as a 3-tuple

containing a correspondence map, a partition decomposition, and a conjugate decom-

position, with the additional requirement that each partition subspace is decomposed

by the conjugate subspaces and vice-versa vice-versa. We proceed by writing the

definitions formally.

Definition 3.1. An organization of an even-dimensional inner product space (V, 〈., .〉)
over the real numbers is defined as a 3-tuple

O = (C,Dp,Dc) (3.11)

whose elements are

C: a correspondence map for a balanced quadratic form

Dp: an associated partition decomposition, and

Dc: an associated conjugate decomposition,

45



with the partition and conjugate decompositions satisfying

VA = (VA ∩ V1) ⊕ · · · ⊕ (VA ∩ VK), (3.12)

VB = (VB ∩ V1) ⊕ · · · ⊕ (VB ∩ VK), (3.13)

and

Vk = (Vk ∩ VA) ⊕ (Vk ∩ VB), k = 1, . . . , K. (3.14)

In Eqns. 3.12-3.14, K denotes the number of subspaces in the partition decomposition

Dp.

Definition 3.2. An organized variable space (OVS) is defined as an even-dimensional

inner product space (V, 〈., .〉) over the real numbers, in addition to an organization of

the space. An OVS is written

U = (V, 〈., .〉,O), (3.15)

with O being an organization of (V, 〈., .〉).

A set of vectors S ⊂ V for which the quadratic form Q(x) associated with an OVS

U is known to evaluate to 0, i.e. for which

Q(x) = 0, x ∈ S, (3.16)

will be referred to as a conservative set for U. We will also say that U is conser-

vative over S. Note that although the set S in Eq. 3.16 is required to be a subset

of V , it need not be a vector space.

3.2 Examples of organized variable spaces

Before going further, we present some examples of OVSs defined over various known

signal processing systems that are conservative over their respective behaviors. The

examples are specifically chosen to illustrate the use of the language of OVSs and to
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provide insight into the situations where an OVS can be applied. This appears to be

the first occasion in which some of these systems have been placed on equal footing

in this sense, and a path for future research might include applying useful known

theorems regarding one type of system to other systems, using the OVS as a vehicle

for translating between the domains.

In this section and in the various examples throughout this thesis, we will often

encounter signal processing systems that are composed of an interconnection of sub-

systems, and where the constraints imposed by the interconnection will be sufficient

to result in conservation. As the sharing of variables between the interconnecting

system and any subsystems will only further restrict the associated conservative set,

we will discuss conservation in these examples with the subsystems generally remain-

ing unspecified. This underscores the breadth of systems to which conservation can

be applied, which as is the case with electrical networks includes systems that are

nonlinear, time-varying and stochastic.

3.2.1 Electrical networks

The power conservation principle for an electrical network containing a total of K

elements, with associated currents ik and voltages vk, is written as

v1i1 + · · · + vKiK = 0. (3.17)

In the OVS language, we interpret the voltage and current variables as being coeffi-

cients in a basis expansion of a vector in R
2K such that

[v1, . . . , vK , i1, . . . , iK ]tr ∈ R
2K . (3.18)

The corresponding OVS is written

U = (R2K , 〈., .〉,O), (3.19)
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with 〈., .〉 denoting the standard inner product on R
2K , and with the elements of the

organization O = (C,Dp,Dc) being

C =
1

2


 0K IK

IK 0K


 (3.20)

Dp =
{
span

(
e(1), e(K)

)
, . . . , span

(
e(K+1), e(2K)

)}
(3.21)

Dc =
{
span

(
e(1), . . . , e(K)

)
, span

(
e(K+1), . . . , e(2K)

)}
, (3.22)

where C is a matrix that swaps and scales the first and second halves of a vector, and

where e(k) denotes the length-2K column vector containing zeros in all of its entries,

with the exception of the kth, which has value one. The associated quadratic form is

Q(x) = 〈Cx,x〉 , x ∈ R
2K (3.23)

and may equivalently be written using the standard inner product 〈., .〉RK on the

comparison space R
K as

Q(x) = 〈MAx, MBx〉
RK , x ∈ R

2K , (3.24)

with example conjugate mappings being specified as matrices from R
2K to R

K as

MA =
[

IK 0K

]
(3.25)

and

MB =
[

0K IK

]
. (3.26)

It is straightforward to verify that MA and MB invertibly map vectors in the respective

conjugate subspaces to R
K .2

It is a result of Tellegen’s theorem that U is conservative over the behavior of the

2This is an appropriate place to emphasize a benefit of having developed the organized variable
space in a coordinate-free setting. Working in R

N , for example, we would have been confronted with
matrices such as those in Eqns. 3.25-3.26, which, being matrices that do not have right inverses,
might have obscured their interpretation as invertible linear maps from the conjugate subspaces to
the comparison space.
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interconnection, i.e. that the Kirchoff laws for the network imply

Q(x) = 0, x ∈ S, (3.27)

where S denotes the set of vectors that satisfy these laws. It should be noted that

while Tellegen’s theorem for electrical networks implies that the quadratic form eval-

uates to zero, the theorem is actually a statement of conservation in a broader sense

that relates to orthogonality of vector spaces. The spirit of this more general form is

embodied in what we refer to as strong conservation, which is covered later in this

chapter in Section 3.4.

3.2.2 Feedback systems

In the language established by Willems regarding dissipative systems, [37, 38] the

interconnection structure in a feedback system in the form of the system in Fig. 3-1 is

referred to as being neutral.3 We illustrate that for this system, neutrality coincides

with OVS conservation.

Referring again to Fig. 3-1, the assumption is that the interconnecting structure

is linear, memoryless and time-invariant, and that the subsystems can generally be

nonlinear, time-varying and stochastic. Using the OVS language, we interpret the

instantaneous values of the interconnection variables, at time n = n0 as being coeffi-

cients in a basis expansion of a vector in R
6 such that

[x1[n0], x2[n0], x3[n0], x4[n0], x5[n0], x6[n0]]
tr ∈ R

6. (3.28)

The corresponding OVS is written

U = (R6, 〈., .〉,O), (3.29)

with 〈., .〉 denoting the standard inner product on R
6, and with the elements of the

3The interested reader is also pointed toward [41] and [42], which discuss the concepts of loss-
lessness and dissipation as they pertain to electrical network theory.
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Figure 3-1: An interconnected system with feedback.

organization O = (C,Dp,Dc) being

C =
1

2




0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1

−1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0




(3.30)

Dp =
{
span

(
e(1), e(4)

)
, span

(
e(2), e(5)

)
, span

(
e(3), e(6)

)}
(3.31)

Dc =
{
span

(
e(1), e(2), e(3)

)
, span

(
e(4), e(5), e(6)

)}
. (3.32)

It is straightforward to verify that C is balanced, i.e. that it has 3 positive eigenvalues

and 3 negative eigenvalues. The associated quadratic form is

Q(x) = 〈Cx,x〉 , x ∈ R
2K (3.33)

and may equivalently be written using the standard inner product 〈., .〉R3 on the

comparison space R
3 as

Q(x) = 〈MAx, MBx〉
RK , x ∈ R

2K (3.34)
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with example conjugate mappings being

MA =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0


 (3.35)

and

MB =




0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


 . (3.36)

The quadratic form may accordingly be written as

Q(x) = −x1[n0]x4[n0] + x2[n0]x5[n0] − x3[n0]x6[n0]. (3.37)

We claim that this OVS U is conservative over the behavior of the interconnection,

i.e. that

Q(x) = 0, x ∈ S, (3.38)

where S is the set of vectors permitted by the interconnection structure. This can be

verified by writing the interconnection equations,

x2[n0] = x1[n0] + x3[n0] (3.39)

x4[n0] = x5[n0] = x6[n0], (3.40)

and substituting them into Eq. 3.37 to obtain

Q(x) = −x1[n0]x5[n0] + (x1[n0] + x3[n0]) x5[n0] − x3[n0]x5[n0]

= 0, x ∈ S. (3.41)

This conservation principle, in conjunction with appropriate conditions on the

subsystems, forms the basis for the theorems regarding open-loop conditions for closed

loop stability that are presented in, e.g., [37,38,43,44]. In [43], transformations on the
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system in Fig. 3-1 are also used to turn positivity conditions for system stability into

conic conditions. In the language of OVSs, this is equivalent to saying that there are

multiple organizations that result in conservation over the interconnection behavior.

In exploring this perspective further, we refer to a related OVS U(σ) that is written

in terms of a real-valued scalar parameter σ and that is defined over the inner product

space (R6, 〈., .〉), in addition to an organization O(σ) written as

O(σ) =
(
C(σ),Dp,D(σ)

c

)
. (3.42)

The elements of the organization are

C(σ) =
1

2




0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1

−1 0 0 0 0 0

0 1 0 0 −2σ 0

0 0 −1 0 0 2σ




(3.43)

Dp =
{
span

(
e(1), e(4)

)
, span

(
e(2), e(5)

)
, span

(
e(3), e(6)

)}
(3.44)

D(σ)
c =

{
span

(
e(1), (e(2) − σe(5)), (e(3) − σe(6))

)
, span

(
e(4), e(5), e(6)

)}
,(3.45)

and the quadratic form can be written in terms of the system variables as

Q(σ)(x) = −x1[n0]x4[n0] + (x2[n0]− σx5[n0])x5[n0]− (x3[n0]− σx6[n0])x6[n0]. (3.46)

Mapping the conjugate subspaces to the comparison space R
3, the quadratic form

can be written using the standard inner product 〈., .〉R3 as

Q(σ)(x) = 〈M (σ)
A x, MBx〉R3, x ∈ R

6, (3.47)
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with example conjugate mappings being

M
(σ)
A =




1 0 0 0 0 0

0 1 0 0 −σ 0

0 0 −1 0 0 σ


 (3.48)

and

MB =




0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


 . (3.49)

It is straightforward to verify that the OVS U
(σ) is conservative over the behavior

of the interconnection for any finite value of σ by substituting the interconnection

equations 3.39-3.40 into Eq. 3.46, i.e. we have

−x1[n0]x4[n0]+(x2[n0]−σx5[n0])x5[n0]−(x3[n0]−σx6[n0])x6[n0] = 0, x ∈ S, (3.50)

where S denotes the set of vectors permitted by the interconnection structure.

We have not directly addressed the question of whether the matrix C(σ), defined

in Eq. 3.43, is balanced. The line of reasoning that we will use in answering this,

and which we will use throughout the thesis in similar situations, utilizes a theorem

referred to in the theory of quadratic forms as Sylvester’s law of inertia. The theorem

states that given a real, symmetric matrix R : R
N → R

N , performing a change of

coordinates as

R̂ = StrRS, (3.51)

with S : R
N → R

N being an invertible matrix, will result in a matrix R̂ : R
N → R

N

that has the same signature as that of R. As this is equivalent to saying that R̂

will have the same number of positive and negative eigenvalues as R, we conclude

that performing an invertible, linear transformation on the correspondence map for a

balanced quadratic form will result in a new map that is balanced, and as such will

also be a valid correspondence map.
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That the matrix C(σ) defined in Eq. 3.43 is balanced can accordingly be verified by

noting that it is related to the balanced correspondence map C in Eq. 3.30 according

to

C(σ) =
(
S(σ)

)tr
CS(σ), (3.52)

with S(σ) being defined in terms of the conjugate mappings M
(σ)
A and MB in Eqns. 3.48-

3.49 as

S(σ) =


 M

(σ)
A

MB


 . (3.53)

3.2.3 Wave-digital interconnections

The wave-digital class of signal processing structures, discussed in, e.g., [18], have

among their many desirable properties stability characteristics that are exceptionally

robust to parameter perturbations. Structures within this class are composed of a

specific set of subsystems and interconnections that are analogous to the physical

components used in the design and implementation of microwave filters. An overall

wave-digital structure is assembled by sharing variables between so-called elements

and interconnecting structures, done in such a way that every element shares its

variables with an interconnecting structure, as opposed sharing directly with another

element.

A good reference regarding conservation in wave-digital filters is [17], in which

the conserved quantity is referred to as pseudopower. In wave-digital filters, a pseu-

dopower is defined for each interconnection port, and the specific sense of conservation

is that the sum of the port pseudopowers, taken over all ports in the system, evaluates

to zero.

The approach in [17] was to write the conservation principle before having de-

fined any specific wave-digital interconnections. As such, the conservation principle

in [17] can be thought of as a condition in determining whether an interconnection

structure is admissible within the wave-digital framework. In describing the conser-

vation principle using the OVS language, we instead choose to consider in detail the

two commonly-used wave-digital interconnections that are depicted in Fig. 3-2. In
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Section 6.3 we will discuss wave-digital filters with greater generality as we use the

OVS framework in conjunction with intervening results to provide a straightforward

method for generating the set of all linear wave-digital interconnections.

Figure 3-2: (a) Parallel and (b) series wave-digital interconnections.

Again referring to Fig. 3-2, we define OVSs in terms of the inner product space

(R6, 〈., .〉) as

U
(a) =

(
R

6, 〈., .〉,O(a)
)

(3.54)

and

U
(b) =

(
R

6, 〈., .〉,O(b)
)

(3.55)

that respectively correspond to the so-called parallel and series interconnections in

Fig. 3-2(a) and Fig. 3-2(b), and with 〈., .〉 denoting the standard inner product on

R
6. Referring to either structure, the interconnection variables will be interpreted as

coefficients in a basis expansion of a vector in R
6, in the sense that

[a1, a2, a3, b1, b2, b3] ∈ R
6. (3.56)
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The associated elements of the organizations O(a) = (C(a),Dp,Dc) and O(b) = (C(b),Dp,Dc)

are

C(a) =
1

2




γ 0 0 0 0 0

0 (1 − γ) 0 0 0 0

0 0 1 0 0 0

0 0 0 −γ 0 0

0 0 0 0 −(1 − γ) 0

0 0 0 0 0 −1




(3.57)

C(b) =
1

2




(1 − γ) 0 0 0 0 0

0 γ 0 0 0 0

0 0 γ(1 − γ) 0 0 0

0 0 0 −(1 − γ) 0 0

0 0 0 0 −γ 0

0 0 0 0 0 −γ(1 − γ)




(3.58)

Dp =
{
span

(
e(1), e(4)

)
, span

(
e(2), e(5)

)
, span

(
e(3), e(6)

)}
(3.59)

Dc =
{
span

(
e(1) + e(4), e(2) + e(5), e(3) + e(6)

)
,

span
(
e(1) − e(4), e(2) − e(5), e(3) − e(6)

)}
, (3.60)

with the partition decomposition Dp and conjugate decomposition Dc being common

to both O(a) and O(b). The respective quadratic forms associated with U(a) and U(a)

can be written as

Q(a)(x) = γ(a2
1 − b2

1) + (1 − γ)(a2
2 − b2

2) + (a2
3 − b2

3) (3.61)

and

Q(b)(x) = (1 − γ)(a2
1 − b2

1) + γ(a2
2 − b2

2) + γ(1 − γ)(a2
3 − b2

3). (3.62)

Q(a)(x) and Q(a)(x) can also be formulated in terms of the standard inner product
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〈., .〉R3 on the comparison space R
3 as

Q(a)(x) = 〈M (a)
A x, M

(a)
B 〉R3 (3.63)

and

Q(b)(x) = 〈M (b)
A x, M

(b)
B 〉R3, (3.64)

with example sets of conjugate mappings for the two OVSs being

M
(a)
A =




γ 0 0 γ 0 0

0 (1 − γ) 0 0 (1 − γ) 0

0 0 1 0 0 1


 (3.65)

M
(a)
B =




1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1


 (3.66)

and

M
(b)
A =




(1 − γ) 0 0 (1 − γ) 0 0

0 γ 0 0 γ 0

0 0 (1 − γ) 0 0 (1 − γ)


 (3.67)

M
(b)
B =




1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 γ 0 0 −γ


 . (3.68)

It is straightforward to verify by substituting the interconnection equations into the

corresponding quadratic forms that U(a) is conservative over the behavior of the in-

terconnection depicted in Fig. 3-2(a) and that U(b) is conservative over the behavior

of the interconnection depicted in Fig. 3-2(b), i.e. that

Q(a)(x) = 0, x ∈ S(a) (3.69)
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and

Q(b)(x) = 0, x ∈ S(b), (3.70)

where S(a) and S(b) denote the behaviors of the respective interconnections.

3.2.4 Lattice filters

The FIR and IIR classes of lattice structures are used in a wide range of signal

processing applications including adaptive filtering, speech modification and speech

coding. Among their attractive qualities is the fact that they have causally stable

and invertible responses, even in the presence of heavily-quantized coefficients as long

as the coefficients have magnitude less than 1. [29]

A lattice structure is assembled by connecting the linear, memoryless interconnec-

tions in Fig. 3-3 to intermediate two-port causal systems that are generally allowed to

contain memory. The interconnection in Fig. 3-3(a) is typical of FIR lattice structures,

and the interconnection in Fig. 3-3(b) is typical of IIR lattice structures. Referring

to this pair of figures, the variables a, b, c, d denote the instantaneous values of the

interconnection inputs and outputs. The behavior of the the FIR interconnection is

identical to that of the IIR interconnection as can be verified using path reversal, and

as such we proceed by describing a single OVS that will be shown to be conservative

over the behavior of either.

The OVS will specifically be defined over the inner product space (R4, 〈., .〉), as

U = (R4, 〈., .〉,O), (3.71)

with 〈., .〉 denoting the standard inner product on R
4. The interconnection variables

will be interpreted as coefficients in a basis expansion of a vector in R
4 such that




a

b

c

d



∈ R

4, (3.72)
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Figure 3-3: (a) FIR and (b) IIR lattice interconnections.

and the elements of the organization O = (C,Dp,Dc) will be defined as

C =
1

2




(k2 − 1) 0 0 0

0 −1 0 0

0 0 −(k2 − 1) 0

0 0 0 1




(3.73)

Dp =
{
span

(
e(1), e(3)

)
, span

(
e(2), e(4)

)}
(3.74)

Dc =
{
span

(
e(1) + e(3), e(2) + e(4)

)
, span

(
e(1) − e(3), e(2) − e(4)

)}
. (3.75)

The quadratic form Q(·) associated with the correspondence map C is accordingly

written as

Q(x) = (k2 − 1)(a2 − c2) − (b2 − d2), (3.76)

and may be represented using the standard inner product 〈., .〉R2 on the comparison

space R
2 as

Q(x) = 〈MAx, MBx〉R2 , (3.77)
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with example conjugate mappings being

MA =


 (k2 − 1) 0 (k2 − 1) 0

0 −1 0 −1


 (3.78)

and

MB =



 1 0 −1 0

0 1 0 −1



 . (3.79)

It is a straightforward exercise to verify that U is conservative over the behavior of

the interconnection, i.e. that

Q(x) = 0, x ∈ S, (3.80)

where S denotes the interconnection behavior. This can be done, for example, by

writing equations for either interconnection structure in Fig. 3-3 and combining them

with Eq. 3.76.

3.3 Transformations on Q(x) and conservative sets

Section 3.2 illustrated how the OVS describes conservation and what the OVS can

be used to describe. Beyond being a language for describing a class of conservation

principles, the OVS will find its perhaps most compelling applications in the design

and analysis of signal processing systems, and a primary mechanism in facilitating

this will be the application of invertible, linear transformations.

The focus will in particular be on invertible transformations for several reasons,

some of which will become more clear as we proceed with the discussion. A key

motivation to mention upfront is that this will avoid the use of transformations that

map elements of a behavior to 0, resulting in conservation by way of introducing an

ambiguity. I.e. if noninvertible transformations were allowed, it would be possible to

make any set a conservative set by mapping all of its elements to the zero element, re-

sulting in an OVS that would provide little insight into the behavior of the underlying

60



system.

3.3.1 Relationships between transformations of OVS elements

We will mainly be concerned with performing transformations on sets, conservative or

otherwise, in addition to performing transformations on the quadratic form associated

with an OVS. In many applications, transformations applied to the conservative set

will correspond to a modification of system behavior, and transformations applied

to the quadratic form will result in a modification of the way that conservation is

described.

From a mathematical perspective, a conservative set S and quadratic form Q(x)

are related by the equation Q(x) = 0, x ∈ S, and performing a transformation on

one accordingly corresponds to a transformation on the other. For an OVS U =

(V, 〈., .〉, (C,Dp,Dc)) and a linear transformation T : V → V , this relationship may

be written formally as an equivalence between two statements, i.e.

Q(Tx) = 0, x ∈ S ⇔ Q(x) = 0, x ∈ T (S), (3.81)

where the notation T (S) is used to indicate the set that results from applying T to

every element of S, i.e.

T (S) = {Tx : x ∈ S} . (3.82)

When applying a transformation to a quadratic form Q(x), it is straightforward

to show that the resulting functional

Q′(x) = Q(Tx) (3.83)

will also be a valid quadratic form, e.g.

Q(Tx) = 〈CTx, Tx〉 = 〈T ∗CTx, x〉 = Q′(x), (3.84)

although it is not generally the case that a valid partition decomposition Dp and
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conjugate decomposition Dc for Q(x) will also be valid partition decomposition and

conjugate decomposition for Q′(x). It will therefore be customary to transform these

elements in conjunction with Q(x) as

D′
p = {V ′

1 , . . . , V
′
K}

=
{
T−1(V1), . . . , T

−1(VK)
}

(3.85)

and

D′
c = {V ′

A, V ′
B}

=
{
T−1(VA), T−1(VB)

}
, (3.86)

where the notation T−1(Vk) represents an application of T−1 to every element of Vk,

consistent with convention in Eq. 3.82. We will likewise transform any conjugate

mappings MA : VA → U and MB : VB → U associated with Q(x) as

M ′
A = MAT (3.87)

and

M ′
B = MBT. (3.88)

It can be verified that Dp, Dc , MA, and MB being valid for Q(x) implies that D′
p,

D′
c, M ′

A, and M ′
B, as respectively defined in Eqns. 3.85, 3.86, 3.87, and 3.88, are valid

for Q′(x), as defined in Eq. 3.83. The general strategy in doing this involves beginning

with the defining equations for partition decompositions, conjugate decompositions,

and conjugate mappings, and performing a change of variables. In particular, we

demonstrate that the transformed partition decomposition D′
p is valid for Q′(x) by
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beginning with Eq. 3.7 and performing a change of variables as

Q
(
Tx(1) + · · · + Tx(K)

)
= Q1

(
Tx(1)

)
+ · · ·+ QK

(
Tx(K)

)
, Tx(k) ∈ Vk, k = 1, . . . , K

Q
(
T

(
x(1) + · · · + x(K)

))
= Q1

(
Tx(1)

)
+ · · ·+ QK

(
Tx(K)

)
, x(k) ∈ T−1(Vk), k = 1, . . . , K

Q′ (x(1) + · · ·+ x(K)
)

= Q′
1

(
x(1)

)
+ · · · + Q′

K

(
x(K)

)
, x(k) ∈ V ′

k , k = 1, . . . , K,

with the quadratic forms Q′
k : V ′

k → R that operate on the transformed partition

subspaces being defined as

Q′
k(x) = Qk(Tx), x ∈ V ′

k , k = 1, . . . , K. (3.89)

The transformed conjugate decomposition D′
c and any conjugate mappings M ′

A and

M ′
B can likewise be shown to be valid for Q′(x) by beginning with Eq. 3.10 and

performing the following manipulations:

Q
(
Tx(A) + Tx(B)

)
=

〈
MATx(A), MBTx(B)

〉
U

, Tx(A) ∈ VA, Tx(B) ∈ VB

Q
(
T

(
x(A) + x(B)

))
=

〈
MATx(A), MBTx(B)

〉
U

, x(A) ∈ T−1(VA), x(B) ∈ T−1(VB)

Q′ (x(A) + x(B)
)

=
〈
M ′

Ax(A), M ′
Bx(B)

〉
U

, x(A) ∈ V ′
A, x(B) ∈ V ′

B.

3.3.2 Canonical conjugate bases

A convenient property of an arbitrary OVS is that the correspondence map C for the

quadratic form Q(x) performs a swapping operation on the first and second halves of

length-2L column vectors in R
2L when represented in an appropriate basis, i.e. the

two halves of the vector play the roles of conjugate variables in an expression of the

form of Eq. 1.1. In particular, given a 2L-dimensional OVS U = (V, 〈., .〉, (C,Dp,Dc))

and a basis B = {v1, . . . , v2L} of V , where every element x ∈ V maps to a unique

column vector of coefficients x ∈ R
2L as

x = x1v1 + · · · + x2Lv2L, x ∈ V, (3.90)
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the basis B is said to be a canonical conjugate basis if the representation of C as

a matrix in this basis takes the form

C(B) =


 0L IL

IL 0L


 . (3.91)

It is fairly straightforward to select such a basis using, for example, the following

steps:

(1) Pick a basis B′ for V for which the transpose of a matrix written in the basis

coincides with the adjoint of the associated linear map.4 Denote C, represented

as a matrix in this basis, as C(B′).

(2) Perform an eigen decomposition of C(B′) as

C(B′) = Rtr




λ1 0
. . .

0 λ2L


R, (3.92)

with Rtr = R−1 and with λ1, . . . , λ2L being ordered from largest to smallest.5 As

a consequence of the requirement that C is balanced, λ1, . . . , λL will be strictly

positive and λL+1, . . . , λ2L will be strictly negative.

(3) Define the change of basis matrix S as

S =

√
2

2



 IL IL

IL −IL








√
|λ1| 0

. . .

0
√

|λ2L|


R. (3.93)

4Such a basis will always exist.
5As C is self-adjoint, C(B′) is symmetric, and consequently such a decomposition will always

exist.
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It is straightforward to verify that the matrix C(B′) is written in terms of S as

C(B′) = Str


 0L IL

IL 0L


S, (3.94)

and consequently the basis B that is obtained by applying S to the elements of

B′ is a canonical conjugate basis, i.e.

C(B) =


 0L IL

IL 0L


 . (3.95)

The key motivation behind representing correspondence maps in a canonical con-

jugate basis is that it results in a quadratic form resembling the standard expression

involved in power conservation and other similar laws. Specifically, given an arbitrary

2L-dimensional OVS U = (V, 〈., .〉, (C,Dp,Dc)) with a canonical conjugate basis B,

the associated quadratic form may be represented in this basis as a map from R
2L to

R as

Q(B) ([a1, . . . , aL, b1, . . . , bL]) = 2a1b1 + · · · + 2aLbL. (3.96)

From this, we may also define a comparison space U = R
L and associated conjugate

mappings

M
(B)
A =

√
2
[

IL 0L

]
(3.97)

and

M
(B)
B =

√
2
[

0L IL

]
(3.98)

in the basis.

Another important consequence of the fact that an arbitrary OVS has a canonical

conjugate basis is that it allows many of the results that will be developed in the

remainder of the thesis to not be critically dependent on the specific OVS to which

they apply. For example, Section 3.4 will discuss the synthesis of conservative sets

that are vector subspaces, and will do so by working with a canonical conjugate basis.

Likewise, Chapter 5 will discuss the variational properties of certain conservative
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OVSs, and the development will proceed by writing theorems regarding the particular

comparison space R
L without loss of generality.

3.3.3 Dp-invariant transformations

It will also be useful to call attention to the particular case where an OVS is defined as

U =
(
R

2L, 〈., .〉, (C, {V1, . . . , VK}, {VA, VB})
)
, with 〈., .〉 denoting the standard inner

product on R
2L, where

VA = span
(
e(1), . . . , e(L)

)
, (3.99)

VB = span
(
e(L+1), . . . , e(2L)

)
, (3.100)

and where the partition subspaces span subsets of the vectors e(k) ∈ R
2L as

V1 = span
(
e(1), . . . , e(dim V1)

)
(3.101)

V2 = span
(
e(dim V1+1), . . . , e(dim V1+dim V2)

)
(3.102)

...

VK = span
(
e(2L−dim VK), . . . e2L

)
. (3.103)

In this situation, which was commonly encountered in the examples in Section 3.2,

the correspondence map C is written as a 2L × 2L matrix that takes the form

C =




E1 F1

. . .
. . .

EK FK

G1 H1

. . .
. . .

GK HK




, (3.104)

with each sub-matrix Ek, Fk, Gk, Hk that corresponds to the associated partition sub-

space Vk being a (dim Vk/2) × (dim Vk/2) matrix.
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For this OVS, the associated quadratic form may be written as

Q(x) =
[
x1, . . . ,xdimV1/2

]
C1




x1

...

xdim V1/2




+ · · ·+ [x2L−dim VK
, . . . ,x2L]CK




x2L−dim VK

...

x2L


 , (3.105)

with each matrix Ck being the dim Vk × dim Vk matrix defined as

Ck =


 Ek Fk

Gk Hk


 , k = 1, . . .K. (3.106)

Each matrix Ck will be balanced, and we can accordingly write a matrix Sk for each

as in Eq. 3.93, resulting in

Ck = Str
k



 0dimVk/2 IdimVk/2

IdimVk/2 0dimVk/2



Sk. (3.107)

Partitioning each matrix Sk into four sub-matrices of equal size as

Sk =


 E

(S)
k F

(S)
k

G
(S)
k H

(S)
k


 , (3.108)

we may construct a 2L × 2L transforming matrix

S =




E
(S)
1 F

(S)
1

. . .
. . .

E
(S)
K F

(S)
K

G
(S)
1 H

(S)
1

. . .
. . .

G
(S)
K H

(S)
K




(3.109)
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that can be used to represent the correspondence map in a canonical conjugate form

while leaving the partition subspaces unchanged.

Written formally, we define the transformed quadratic form as

Q′(x) = Q(Sx) (3.110)

= 〈CSx, Sx〉 (3.111)

=

〈
 0L IL

IL 0L


x,x

〉
, (3.112)

with Eq. 3.112 following from the adjoint theorem and Eq. 3.107. We note that the

transformed partition subspaces remain unchanged,

Vk = S−1(Vk), k = 1, . . . , K, (3.113)

as S is an invertible transformation that has the partition subspaces as invariant

subspaces, i.e. S is Dp-invariant. The conjugate subspaces are transformed as

V ′
A = S−1(VA) (3.114)

and

V ′
B = S−1(VB), (3.115)

and will in general be different from the original conjugate subspaces. Likewise, any

conjugate mappings MA : R
2L → R

L and MB : R
2L → R

L will be transformed,

resulting in

M ′
A = MAS (3.116)

and

M ′
B = MBS. (3.117)

As in a canonical conjugate basis the conjugate mappings may be represented as

M ′
A =

√
2
[

IL 0L

]
(3.118)
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and

M ′
B =

√
2
[

0L IL

]
, (3.119)

knowledge of the transformation S used in changing to this basis allows us to deter-

mine valid conjugate mappings for the original OVS U by writing

MA =
√

2
[

IL 0L

]
S−1 (3.120)

and

MB =
√

2
[

0L IL

]
S−1. (3.121)

If we are given a conservative set S for the OVS U, it may be transformed as

S ′ = S−1(S) (3.122)

to obtain a conservative set S ′ for the transformed OVS

U
′ =



R
2L, 〈., .〉, ({V1, . . . , VK} , {V ′

A, V ′
B}) ,



 0L IL

IL 0L







 . (3.123)

It is an illustrative and fairly straightforward exercise to find a Dp-invariant trans-

formation that transforms to a canonical conjugate basis for one of the examples in

Section 3.2.

3.3.4 Q(x)-invariant transformations

Given an OVS U = (V, 〈., .〉, (C,Dp,Dc)), another important consideration will be

that of determining the set of transformations that leave the quadratic form Q(x)

unchanged. This will, in particular, facilitate the discussion of conservative vector

spaces in Subsection 3.4.2. Written formally, we are interested in the set GQ of

transformations T : V → V that satisfy

Q′(x) = Q(Tx) = 〈CTx, Tx〉 = 〈Cx, x〉 = Q(x), T ∈ GQ, x ∈ V. (3.124)
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As Q(x) is a balanced quadratic form, i.e. as it is nondegenerate, the theory of

quadratic forms states that the set GQ is a group, with the group law being com-

position of maps. We verify that the group axioms are satisfied:

(1) Closure. Given transformations T and T ′ for which Q(Tx) = Q(x), x ∈ V

and Q(T ′x) = Q(x), x ∈ V , we have that Q(TT ′x) = Q(T ′x) = Q(x), x ∈ V .

(2) Associativity. Given transformations T, T ′, T ′′ ∈ GQ, associativity of linear

maps implies that T (T ′T ′′) = (TT ′)T ′′.

(3) Identity element. The identity element is the identity map I, which is shown

to formally satisfy Eq. 3.124 by writing Q(Ix) = Q(x) x ∈ V , and which indeed

satisfies TI = IT = T for any T ∈ GQ.

(4) Inverse element. We first show that every element T ∈ GQ is invertible. From

Eq. 3.124, we have that each T ∈ GQ satisfies

T ∗CT = C, (3.125)

where C is an invertible map by virtue of being a correspondence map. The

transformation T must consequently be invertible for Eq. 3.125 to hold. It

remains to be shown that T ∈ GQ implies T−1 ∈ GQ. Multiplying both sides of

Eq. 3.125 by T−1∗ on the left and by T−1 on the right results in

C = T−1∗CT−1, (3.126)

and we conclude that T ∈ GQ implies T−1 ∈ GQ.

The elements of the group GQ can be generated by choosing a canonical conjugate

basis B and multiplying matrices that leave the correspondence map, represented

as a matrix in this basis, unchanged. The group of such matrices forms a matrix

Lie group, and the following theorem explicitly lists the 1-dimensional subgroups of

matrices that generate the group.
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Theorem 3.1. The group G(B)
Q of 2L × 2L matrices T that satisfy

T tr


 0L IL

IL 0L


T =


 0L IL

IL 0L


 (3.127)

is a matrix Lie group that can be generated by multiplying matrices from the following

subgroups:

(1)

T
[q;t)
1 =




q
↓

q+L
↓

1
. . .

1

q → et

1
. . .

1

q + L → e−t

1
. . .

1




,

1 ≤ q ≤ L, t ∈ R,
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(2)

T
[q,r;t)
2 =




q
↓

r+L
↓

1

r → . . . t

q + L → −t
. . .

1




,

1 ≤ q ≤ L, 1 ≤ r ≤ L, q 6= r, t ∈ R,

(3)

T
[q,r;t)
3 =




r
↓

q
↓

1
. . .

r + L → t

q + L → −t
. . .

1




,

1 ≤ q ≤ L, 1 ≤ r ≤ L, q 6= r, t ∈ R,
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(4)

T
[q,r;t)
4 =




r+L
↓

q+L
↓

1

r → . . . t

q → −t

. . .

1




,

1 ≤ q ≤ L, 1 ≤ r ≤ L, q 6= r, t ∈ R,

(5)

T
[q]
5 =




q
↓

q+L
↓

1
. . .

1

q → −1

1
. . .

1

q + L → −1

1
. . .

1




,

1 ≤ q ≤ L,
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(6)

T
[q]
6 =




q
↓

q+L
↓

1
. . .

1

q → 0 1

1
. . .

1

q + L → 1 0

1
. . .

1




,

1 ≤ q ≤ L.

The group G(B)
Q is, in particular, isomorphic to the matrix indefinite orthogonal group

O(L, L), i.e. the group of invertible 2L × 2L matrices preserving a quadratic form

whose matrix is diagonal, with the first L diagonal elements being 1 and the last L

diagonal elements being −1. Consequently, G(B)
Q has four connected components as

does GQ, and T
[p]
5 and T

[p′]
6 can be used to move between them for any fixed p and p′.

Proof. As the group GQ is isomorphic to the so-called indefinite orthogonal group

O(L, L), the proof of this theorem amounts to the standard exercise of using the Lie

algebra for the connected component of GQ that contains the identity element to write

the one-parameter generating subgroups, in addition to writing transformations for

moving discontinuously between the four connected components of GQ. Appendix A

goes through this argument in detail.

-
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3.4 Conservation over vector spaces

In the examples in Section 3.2, OVSs were defined over signal processing systems for

which the associated quadratic form Q(x) evaluated to 0 for all vectors x permitted

by a linear interconnection, i.e. each OVS was conservative over a set S = W that

was a vector space. The first key issue that we explore in this section is that of how

conservation over a vector space is viewed from the perspective of the comparison

space U . As was previously mentioned, conservation implies that the inner product

〈., .〉U on the comparison space will evaluate to 0, and if this corresponds to vector

space orthogonality on the comparison space, the OVS will receive the special desig-

nation of being strongly conservative. We conclude the section by providing a method

for generating the manifold of all conservative vector spaces for a pre-specified OVS

using the set of transformations in Thm. 3.1.

Another reason for focusing on conservation over vector spaces has to do with

the previously-mentioned emphasis on signal processing systems represented as a

linear interconnection of subsystems that are allowed to be time-varying, nonlinear

or stochastic. Conservation over vector spaces is therefore an appealing focus of study

because of its broad applicability, in addition to its natural amenability to analysis.

3.4.1 Strong conservation

In discussing conservation over vector spaces, we will specifically refer to an OVS

denoted U = (V, 〈., .〉, (C,Dp, {VA, VB})), along with a comparison space U having an

associated abstract inner product 〈., .〉U , as well as conjugate mappings MA and MB

from the conjugate subspaces VA and VB to U . Given a vector subspace W ⊂ V over

which U is conservative, we may use Eq. 3.10 to write the conservation principle in

terms of the conjugate mappings as

〈MAxA, MBxB〉U = 0, xA + xB ∈ W, xA ∈ VA, xB ∈ VB. (3.128)
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The key issue is that Eq. 3.128 may either represent pairwise orthogonality between

the vectors MAxA and MBxB for each xA + xB ∈ W , or it may be representative of

orthogonality between vector spaces. The former will be referred to as weak conser-

vation and the latter will be referred to as strong conservation. Fig. 3-4 depicts an

example of this distinction for the case where V = R
4, U = R

2, where 〈., .〉R2 is the

standard inner product on R
2, and where the conjugate mappings are

MA =


 1 0 0 0

0 1 0 0


 (3.129)

and

MB =



 0 0 1 0

0 0 0 1



 . (3.130)

Figure 3-4: Conservation over subspaces of R
4, as viewed from the perspective of the

comparison space R
2. (a) Pairwise orthogonality, corresponding to weak conservation.

(b) Orthogonal subspaces, corresponding to strong conservation.

In providing a formal definition for strong conservation, we will refer to vector

subspaces WA and WB that represent the respective sets of vectors xA and xB that
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result from decomposing each vector in W into the components in the conjugate

subspaces VA and VB. In doing this, it will be convenient to make use of oblique

projection operators

PA : V → V (3.131)

and

PB : V → V, (3.132)

i.e. linear maps for which P 2
A = PA and P 2

B = PB, that additionally satisfy the

following relationships:

range(PA) = VA (3.133)

range(PB) = VB (3.134)

PA + PB = I, (3.135)

where I is the identity operator on V .6 The operators PA and PB can be used to

uniquely decompose an arbitrary vector x ∈ V into its respective components xA ∈ VA

and xB ∈ VB as

x = PAx + PBx (3.136)

= xA + xB, (3.137)

with the components xA and xB being written as

xA = PAx (3.138)

and

xB = PBx. (3.139)

6It is straightforward to verify that a pair of oblique projections PA and PB satisfying Eqns. 3.133-
3.135 always exists. E.g. define PA = P 2

A
as satisfying Eq. 3.133 and also null(PA) = VB , consistent

with the property of oblique projections that range(PA) ⊕ null(PA) = V . Then Eq. 3.134 follows
from Eq. 3.135, and PA = P 2

A
implies PB = P 2

B
.
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The subspaces WA and WB are formally defined in terms of PA and PB as

WA = {PAx : x ∈ W} (3.140)

and

WB = {PBx : x ∈ W} . (3.141)

Given a pair of conjugate mappings MA and MB, we will also refer to the vector

subspaces of the comparison space U that are obtained by respectively mapping WA

and WB to U through MA and MB:

MA(WA) = {MAx : x ∈ WA} (3.142)

and

MB(WB) = {MBx : x ∈ WB} . (3.143)

With this notation established, we present the following theorem that formally estab-

lishes the definition of strong conservation.

Theorem 3.2. Given a 2L-dimensional OVS that is conservative over a vector sub-

space W ⊂ V , in addition to arbitrary conjugate mappings MA and MB that map to

an abstract comparison space (U, 〈., .〉U), the following are equivalent:

(1) WA ⊆ W

(2) WB ⊆ W

(3) WA ⊕ WB = W

(4) dim WA + dim WB = dim W

(5) MA(WA) and MB(WB) are orthogonal vector spaces under 〈., .〉U .

An OVS that is conservative over a vector subspace W and satisfies (1)-(5) will be

referred to as strongly conservative, and a conservative OVS that is not strongly

conservative will be referred to as weakly conservative.
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Proof. We proceed by proving the equivalence of (1)-(5) in the following order:

(a) (1) ⇔ (2)

(b) (1) and (2) ⇔ (3)

(c) (3) ⇔ (4)

(d) (3) ⇔ (5).

(a): (1) ⇒ (2).

WA ⊆ W ⇒ {PAx : x ∈ W} ⊆ W (3.144)

⇒



x − PAx︸ ︷︷ ︸

PBx

: x ∈ W



 ⊆ W (3.145)

⇒ WB ⊆ W. (3.146)

(a): (1) ⇐ (2).

WB ⊆ W ⇒ {PBx : x ∈ W} ⊆ W (3.147)

⇒



x − PBx︸ ︷︷ ︸

PAx

: x ∈ W



 ⊆ W (3.148)

⇒ WA ⊆ W. (3.149)

(b): (1) and (2) ⇔ (3). We note that any time we write WA +WB, WA ⊕WB may

equivalently be written, as WA ⊆ VA, WB ⊆ VB, and VA⊕VB = V . In proceeding with

the proof, the following line of reasoning can be used to show that WA ⊕ WB ⊇ W :

WA + WB = {xA + xB : xA ∈ WA, xB ∈ WB} (3.150)

= {PAx + PBx′ : x, x′ ∈ W} (3.151)

⊇ {PAx + PBx′ : x, x′ ∈ W, x = x′} (3.152)

=



(PA + PB)︸ ︷︷ ︸

I

x : x ∈ W



 (3.153)

= W. (3.154)
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Therefore, WA + WB = W if and only if WA + WB ⊆ W , which as is indicated by

Eq. 3.150 will occur if and only if WA ⊆ W and WB ⊆ W .

(c): (3) ⇒ (4). It is a fundamental result in linear algebra that

dim(WA + WB) = dim WA + dim WB − dim WA ∩ WB. (3.155)

As WA ⊆ VA, WB ⊆ VB and VA ⊕ VB = V , we have

WA ∩ WB = {0}, (3.156)

resulting in

dim WA + dim WB = dim(WA + WB) = dim W. (3.157)

(c): (3) ⇐ (4). Using Eqns. 3.155 and 3.156 in conjunction with statement (4),

we write

dim W = dim WA + dim WB = dim(WA + WB). (3.158)

It was shown in Eqns. 3.150-3.154 that W ⊆ WA + WB, and using Eq. 3.158 we

conclude that W = WA + WB.

(d): (3) ⇔ (5). With ⊥U used to denote orthogonality of vector subspaces of U

under 〈., .〉U , we write

MA(WA) ⊥U MB(WB) ⇔ 〈yA, yB〉U = 0, yA ∈ MA(WA), yB ∈ MB(WB) (3.159)

⇔ 〈MAxA, MBxB〉U = 0, xA ∈ WA, xB ∈ WB (3.160)

⇔ Q(xA + xB) = 0, xA ∈ WA, xB ∈ WB (3.161)

⇔ Q(xA + xB) = 0, xA + xB ∈ WA + WB,

xA ∈ WA, xB ∈ WB. (3.162)

The theorem pertains to conservation over the subspace W , stated formally as

Q(xA + xB) = 0, xA + xB ∈ W, xA ∈ WA, xB ∈ WB, (3.163)
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and we conclude that Eq. 3.162 is equivalent to Eq. 3.163 if and only if W = WA +

WB.

Illustrating the use of Thm. 3.2 with the examples depicted in Fig. 3-4, we write

the OVS U = (R4, 〈., .〉, (C,Dp,Dc)), with the elements of the organization being

C =
1

2




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




(3.164)

Dp = {VA, VB}

=
{
span

(
e(1), e(3)

)
, span

(
e(2), e(4)

)}
(3.165)

Dc =
{
span

(
e(1), e(2)

)
, span

(
e(3), e(4)

)}
, (3.166)

and we define the projection operators PA : R
4 → R

4 and PB : R
4 → R

4 as

PA =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




(3.167)

and

PB =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




. (3.168)

We also select U = (R2, 〈., .〉R2) as the comparison space, with the conjugate mappings

being written as in Eqns. 3.129-3.130. In these definitions, 〈., .〉 is used to denote the

standard inner product on R
4, and 〈., .〉R2 is used to denote the standard inner product

on R
2.

Referring to Fig. 3-4, the subspace W (a) in Fig. 3-4(a) is weakly conservative,

and the subspace W (b) in Fig. 3-4(b) is strongly conservative. This can be seen by
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checking for any of the equivalent conditions in Thm. 3.2. For example, defining the

subspaces

W
(a)
A = PA(W (a)) (3.169)

W
(a)
B = PB(W (a)) (3.170)

W
(b)
A = PA(W (b)) (3.171)

W
(b)
B = PB(W (b)), (3.172)

it is straightforward to show that

dim W︸ ︷︷ ︸
2

6= dim W
(a)
A︸ ︷︷ ︸

2

+ dimW
(a)
B︸ ︷︷ ︸

2

, (3.173)

as is indicative of weak conservation, and that

dim W︸ ︷︷ ︸
2

= dim W
(b)
A︸ ︷︷ ︸

1

+ dimW
(b)
B︸ ︷︷ ︸

1

, (3.174)

as is indicative of strong conservation.

3.4.2 The manifold of conservative vector spaces

A question that will be especially pertinent in designing conservative signal processing

algorithms is that of given a pre-specified OVS, what vector subspaces are conserva-

tive, and the answer relates to the Q(x)-invariant transformations that were discussed

in Subsection 3.3.4. In particular, an arbitrary conservative vector space can be gener-

ated by beginning with an arbitrary conservative vector space of the same dimension,

and applying transformations from the group preserving the quadratic form Q(x).

As this group was shown to be a Lie group, there is a smoothness to the set of such

transformations, and we say that the set of conservative vector spaces forms a smooth

manifold.

We further illustrate with an example that the set of conservative vector spaces

for a pre-specified OVS is not a vector space itself, as can be seen by defining the
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following 1-partition OVS:

U =


R

2, 〈., .〉,





 0 1

1 0


 ,

{
R

2
}

, {span
(
e(1)

)
, span

(
e(2)

)
}





 , (3.175)

with 〈., .〉 denoting the standard inner product on R
2. The associated quadratic form

is written as

Q





 x1

x2





 = 2x1x2. (3.176)

By inspection, the entire set S of vectors x for which Q(x) = 0 is S = span
(
e(1)

)
∪

span
(
e(2)

)
, which is not a vector space but rather a union of vector spaces.

This statement regarding the synthesis of conservative vector spaces is formal-

ized in the following theorem, which paraphrases a standard result in the theory of

quadratic forms using the terminology of OVSs.

Theorem 3.3. Given an OVS U = (V, 〈., .〉, (C,Dp,Dc), the manifold of J-dimensional

vector subspaces W ⊂ V over which U is conservative may be obtained by beginning

with an arbitrary J-dimensional conservative subspace W ′ ⊂ V and applying the group

of transformations in GQ preserving the associated quadratic form Q(x) = 〈Cx, x〉.

Proof. We proceed by showing that given any two J-dimensional conservative sub-

spaces W ⊂ V and W ′ ⊂ V , there exists a transformation T ∈ GQ for which

W ′ = {Tx : x ∈ W} . (3.177)

The subspaces W and W ′ are of the same dimension, and consequently there exists

a linear map that invertibly maps W to W ′. We refer to this map as T ′ : W → W ′.

As W and W ′ are conservative, the map T ′ is an isometry between the spaces, i.e.

Q(x) = Q(T ′x) = 0, ∀x ∈ W. (3.178)

As discussed in [27], the extension theorem of Witt states that given an isometry

between any two subspaces of a quadratic space, there exists an extension of the
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isometry to an isometry on the whole space. Written formally, given the subspaces

W and W ′, there exists an extension T : V → V of T ′ that satisfies

Tx = T ′x, x ∈ W (3.179)

and

Q(Tx) = Q(x), x ∈ V. (3.180)

Therefore for any such subspaces W and W ′, there exists a transformation T that is

in the group GQ and satisfies Eq. 3.177.

It follows that, given a conservative vector space W of dimension J , the set of

transformations used to realize all conservative vector spaces W ′ of dimension J is

contained in GQ. In showing that GQ is contained in the set of all such transformations,

we observe that every T ∈ GQ is invertible, and consequently every vector space

W ′ = {Tx : x ∈ W} is a conservative space and has the same dimension as W .

A related question is that of what the maximum dimension of a conservative

space can be. In the language of quadratic forms, a subspace W ⊂ V for which

Q(x) = 0, x ∈ W is referred to as a totally isotropic subspace, and the maximum

allowable dimension of a totally isotropic subspace of V is referred to as the isotropy

index. In general, a given quadratic form that is non-degenerate with signature (p, q)

has an isotropy index that is the minimum of p and q.

As we are concerned with balanced quadratic forms, i.e. those whose signature

is (L, L) for a 2L-dimensional OVS, we conclude that the maximum dimension of a

conservative vector space for a 2L-dimensional OVS is L. An L-dimensional vector

space over which a 2L-dimensional OVS is conservative will accordingly be referred

to as a maximal conservative vector space.
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Chapter 4

Conservative interconnecting

systems

In Chapter 3 we discussed conservation from the perspective of abstract vector spaces,

and in this chapter the ideas are interpreted within the context of linear intercon-

nection structures. The theme will be to use the results in Chapter 2 to apply the

principles in Chapter 3 to systems in an input-output representation. In doing so,

there will be a focus on linear signal-flow graphs, and many of the results will be

equally applicable to interconnections represented as multiple-input, multiple-output

linear systems.

The chapter begins by using the theorems in Chapter 3 related to the synthesis

of conservative vector spaces to develop techniques for generating conservative linear

interconnections, also connecting these results to electrical network-based transfor-

mations. The structure of the Lie group GQ will also be interpreted within this

context, facilitating discussion of signal-flow graph conditions for strong and weak

conservation. These conditions will be useful in arriving at strategies for identify-

ing conservation in pre-specified linear interconnections, illustrating their application

within the context of a speed control system for a chain of vehicles.
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4.1 Image representations of conservative intercon-

nections

In Chapter 3, the tools of group theory were used as a foundation for discussing

conservation over vector spaces. It was shown in Thm. 3.3 that given an OVS, any

conservative J-dimensional vector space could be generated by beginning with an

arbitrary J-dimensional conservative vector space and applying transformations from

the group preserving the associated quadratic form. The group was in turn decom-

posed into subgroups of transformations in Thm. 3.1. In this section, these subgroups

will be used to gain insight into the specific structure of the behavior of conservative

vector spaces. The approach will be to view the families of transformations as manip-

ulations of image representations that are realized as linear signal-flow graphs, with

an electrical analog being provided for each. This perspective will allow the families of

transformations to be interpreted using familiar signal processing and electrical net-

work principles, providing insight into the structure of the group and the relationship

between the families of transformations, and laying the groundwork for the develop-

ment of signal-flow graph theorems pertaining to strongly- and weakly-conservative

interconnections. As an arbitrary conservative vector space is a subspace of a max-

imal conservative vector space, we will focus our attention on maximal conservative

spaces.

Given a pre-specified 2L-dimensional OVS U = (V, 〈., .〉,O), with O = (C,Dp,Dc),

we may formally write the process in Thm 3.3 in terms of 2L × 2L matrices corre-

sponding to a canonical conjugate basis B for U as

W = range (RNt
RNt−1 · · ·R1R0) , (4.1)

where R0 is a (singular) matrix whose range is a J-dimensional vector space over which

U is conservative, and where each of R1, . . . , RNt
is one of the (invertible) matrices

listed in Thm. 3.1. The conservative vector subspace Wk obtained after applying k
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such transformations, k = 0, . . . , Nt, is accordingly written as

Wk = range (Rk · · ·R1R0) , (4.2)

with W0 being the initial conservative space, W1 being the conservative space obtained

after applying R1, W2 being the conservative space obtained after applying R2, and

so forth.

Signal-flow graph representations of the matrices in Thm. 3.1, can likewise be

cascaded in a manner that is one-to-one with the cascade of matrices in Eq. 4.1.

These representations, in addition to associated electrical network representations,

are depicted in Fig. 4-1. Referring to this figure, the signal-flow graphs are direct im-

plementations of the matrices in Thm. 3.1, and the electrical network representations

are multi-port systems that implement the transformations under the requirement

that the port condition is satisfied, i.e. under the requirement that the current enter-

ing any port is equal to the current leaving the port.

Still referring to Fig. 4-1, the variables a1, . . . , aL and a′
1, . . . , a

′
L represent the en-

tries of a vector x ∈ R
2L in the conjugate subspace VA, and the variables b1, . . . , bL

and b′1, . . . , b
′
L represent the entries that are in VB. The systems preserve the associ-

ated quadratic form, i.e. if the set of unprimed variables lies in a conservative space,

then the set of primed variables lies in a conservative space as well. As such, in a

canonical conjugate basis any conservative space may be obtained by beginning with

a system whose behavior is an arbitrary conservative space and cascading the appro-

priate systems in a process that is one-to-one with the use of the cascade of matrices

in Eq. 4.1.

In particular, any conservative space may be obtained in this way by beginning

first with a signal-flow graph-based image representation for an arbitrary conservative

space W0, corresponding to R0 in Eq. 4.1, and cascading the appropriate transfor-

mation signal-flow graphs, corresponding to R1, . . . , RNi
in this equation. This is

specifically done by connecting the output variables a′
1, . . . , a

′
L, b′1, . . . , b

′
L in the ini-

tial image representation to the corresponding input variables a1, . . . , aL, b1, . . . , bL in
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the next signal-flow graph, connecting the output variables in that signal-flow graph

to the input variables in the next, and so on. The resulting signal-flow graph will

in turn be an image representation of a conservative space WNt
that is of the same

dimension as the initial conservative space W0.
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Figure 4-1: Classes of one-parameter subgroups of G(B)
Q and corresponding represen-

tations as matrices, signal-flow graphs and multi-port electrical networks.
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A pertinent question is that of how we might obtain an image representation of

initial J-dimensional conservative space, and the answer is fairly straightforward. In

particular, such a space may be obtained by beginning with the constraints

a1 = · · · = aL = 0 (4.3)

and

b1 = · · · = bL = 0, (4.4)

and then for each ak, bk pair, k = 1, . . . , J , removing this constraint from exactly one

of ak and bk. The resulting vector space will thus be J-dimensional and conservative,

as the product of each pair will be zero, i.e.

akbk = 0, k = 1, . . . , L, (4.5)

and a total of J variables will be unconstrained real numbers. An image representation

that is generated in this manner can then be manipulated to obtain an input-output

representation of a conservative interconnection, using the path reversal technique

discussed in Chapter 2. An example depicting this process is illustrated in Fig. 4-2.

Referring to Fig. 4-2, it is straightforward to verify that the condition in Cor. 2.1

required to perform path reversal is met, as the gain from the input to the output of

each of the paths to be reversed is 1.

A similar approach can be taken using the electrical network representations in

Fig. 4-1, although due to Tellegen’s theorem we are restricted to L-dimensional,

i.e. maximal, conservative spaces. The strategy is to begin with an initial network that

satisfies the port condition and whose port behavior is conservative, representative of

the range W0 of the transformation R0 in Eq. 4.1. The appropriate multi-port net-

works in Fig. 4-1, each implementing one of the transformations Rk for k = 1, . . . , Nt,

can then be cascaded with this system, resulting in an electrical network whose port

behavior is that of any L-dimensional conservative vector space. The initial conser-

vative space, whose behavior is W0, can be generated by either shorting or leaving
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Figure 4-2: (a) Image representation for a conservative interconnection generated by
cascading the transforming systems in Fig. 4-1. (b) Behaviorally-equivalent inter-
connection in input-output form, obtained using path reversal. (c) Simplified input-
output representation. (d) Resulting structure after rearranging the layout of the
graph.

open the unprimed ports on the transformation corresponding to R1. In particular,

shorting a particular port k implies that the port voltage ak is zero and that the port

current bk is unconstrained. Likewise, leaving a particular port k open implies that

the port voltage ak is unconstrained and that the port current bk is zero. Both op-

erations satisfy the port condition and have a conservative initial behavior, resulting

in a cascade of electrical networks whose final port behavior is conservative. Fig. 4-3

illustrates an example where this process is performed using the same transforma-

tions and initial conservative space as in Fig. 4-2, resulting in an electrical network

corresponding to three elements in series.
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Figure 4-3: (a) Port-conservative electrical network generated by cascading the trans-
forming networks in Fig. 4-1. (b) Simplified representation. (c) Resulting network
after rearranging its layout. (d) Network obtained after removing the 1 : 1 transform-
ers.
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4.2 Comments on the structure of GQ

The representations of the families of transformations in Fig. 4-1 may be used to

gain insight into the structure of the group of transformations that preserve the

quadratic form associated with a given OVS, denoted previously as GQ. We have

seen that the transformations in Fig. 4-1 preserve the quadratic form written in a

canonical conjugate basis in particular, and that for an arbitrary OVS of the same

dimension, a change of basis can be used to obtain a corresponding quadratic form-

preserving transformation. It was also shown in the proof for Thm. 3.1 that the

group of transformations that preserves the quadratic form for an arbitrary OVS

of dimension 2L is, to within a change of basis, identical to the so-called indefinite

orthogonal group with signature (L, L), denoted O(L, L). As such, the group GQ was

said to be isomorphic to O(L, L), and the statement of being isomorphic was written

GQ
∼= O(L, L). In this section, we use the signal-flow graph and electrical network

representations of these transformations to gain insight into the structure of GQ and

its relationship to the structure of O(L, L). It will be shown that some of the families

of transformations, in particular T
[q,r;t)
3 , T

[q,r;t)
4 and T

[q,r;t)
6 , do not always preserve the

strength of conservation, while the others do. This is in turn related to the issue of

which of the four connected components of GQ a given transformation lies.

4.2.1 Isomorphisms with O(L, L), SO(L, L) and SO+(L, L)

It was shown in the proof for Thm. 3.1 that the group GQ is isomorphic to O(L, L),

and as O(L, L) is known to have four connected components, GQ was shown to have

four connected components as well. The group O(L, L) is specifically the group of

transformations that preserves the quadratic form

Q
(
[x1, . . . , x2L]tr

)
= x2

1 + · · ·+ x2
L − x2

L+1 − · · · − x2
2L, (4.6)
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and the four connected components of O(L, L) relate to whether a given transforma-

tion reverses the orientation of the subspaces

V+ = span(e1, . . . , eL) (4.7)

and

V− = span(eL+1, . . . , e2L). (4.8)

There are two subgroups of O(L, L) that commonly receive special attention. One

is the so-called special orthogonal group, denoted SO(L, L), which consists of two of

the components of O(L, L). These components are specifically the one that reverses

the orientation of both subspaces V+ and V− and the one that contains the identity

element. The latter component is a subgroup itself and is denoted SO+(L, L). It

was shown in the proof of Thm. 3.1 that to within a change of basis, each of the

transformations in the family T
[q]
5 reverses the orientations of both V+ and V−, each

of the transformations in the family T
[q]
6 reverses the orientation of one of V+ and V−,

and that the other families of transformations T
[q;t)
1 , . . . , T

[q,r;t)
4 reverse the orientation

of neither subspace. As such, a group of transformations that is isomorphic to the

orthogonal group O(L, L) may be obtained by beginning with the identity element and

applying transformations from T
[q;t)
1 , . . . , T

[q]
6 . If an even number of transformations

in the family T
[q]
6 is used, the resulting transformation will be in a group that is

isomorphic to the special orthogonal group SO(L, L). Likewise, if an even number of

transformations in T
[q]
6 is used and an even number of transformations in T

[q]
5 is used,

the resulting transformation will be in a group that is isomorphic to SO+(L, L). The

relationship between these groups is illustrated in Fig. 4-4.

4.2.2 The families T
[q;t)
1 , T

[q,r;t)
2 and T

[q]
5 generate all strongly-

conservative vector spaces

As is indicated in Fig. 4-4, the transformations in families T
[q;t)
1 , T

[q,r;t)
2 and T

[q]
5

preserve strong conservation, i.e. given a space W that is strongly conservative, the

94



Figure 4-4: The structure of the group GQ in terms of the families T
[q;t)
1 , . . . , T

[q]
6 .

transformed space W ′ = {Tx : x ∈ W} is strongly conservative if T is generated

using the transformations in these families. This can be readily seen by noting that

these transformations preserve the dimension of the behaviors of the variables making

up the conjugate subspaces. As such, the if the necessary and sufficient condition

for strong conservation that is mentioned in Thm. 3.2, and which pertains to the

dimensions of these spaces, is satisfied before transformation, then it will be satisfied

after transformation as well.

It can also be shown that, beginning with a strongly-conservative space where in

a given pair of conjugate variables one is unconstrained and the other is set to zero,

transformations from the families T
[q;t)
1 , T

[q,r;t)
2 and T

[q]
5 can be used to generate all

vector spaces that are strongly-conservative. This is equivalent to showing that the

process may be used to generate an arbitrary vector space for the behavior of one of

the conjugate spaces, as the behavior of the other space will be the (unique) orthog-

onal complement. This can be seen by viewing the effect of the transformations on
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the conjugate subspace VA = R
L and making the observation that an arbitrary vector

subspace WA of VA can be generated by beginning with a diagonal projection matrix

T0 whose range is the dimension of WA, and multiplying an appropriate invertible

matrix T to obtain a resulting matrix whose range is WA. As the matrix T is invert-

ible, it admits an LUP decomposition, i.e. there exists a lower-triangular matrix L,

an upper-triangular matrix U , and a permutation matrix P for which LUP = T , and

accordingly we may write range(LUPT0) = WA. For any diagonal projection matrix

T0 and permutation matrix P , the range of the matrix PT0 is the span of some subset

of the vectors e1, . . . , eL, which can be generated by taking a given conjugate variable

and either leaving it unconstrained or setting it to zero. This is exactly the effect that

our technique for generating an initial strongly-conservative space has on the conju-

gate subspace VA. The matrix LU can be generated by multiplying the elementary

row multiplication and row addition matrices, which is precisely how the matrices in

the families T
[q;t)
1 , T

[q,r;t)
2 and T

[q]
5 operate on the conjugate subspace VA as well. As

such, our technique can create an arbitrary vector space WA ⊂ VA, and we conclude

that it can be used to create an arbitrary strongly-conservative space.

We may use these observations to conclude that Tellegen’s theorem, which as was

previously mentioned is a statement of strong conservation for electrical networks,

applies to a broader class of interconnections than those that are a result of the

Kirchoff laws. In particular, the electrical network representations of T
[q;t)
1 , T

[q,r;t)
2

and T
[q]
5 in Fig. 4-1, when connected to an initial set of ports where each is either

shorted or open, generate the broadest class of electrical interconnections to which

a statement of strong conservation, such as Tellegen’s theorem, can apply. These

interconnections involve ideal transformers, underscoring potential reasons why they

are not a primary focus in the study of electrical networks.
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4.2.3 The families T
[q;t)
1 , T

[q,r;t)
2 , T

[q]
5 , and T

[q]
6 generate all con-

servative vector spaces

It was shown in Thm. 3.1 that the families T
[q;t)
1 , . . . , T

[q]
6 can be used to generate GQ,

the group of transformations that preserves the C-induced quadratic form Q. As was

previously mentioned, this was based on the observation that given a 2L-dimensional

OVS, GQ is isomorphic to the indefinite orthogonal group O(L, L), which has four

connected components. As such, the transformations T
[q;t)
1 , . . . , T

[q,r;t)
4 generate a

group that is isomorphic to the component containing the identity element, denoted

SO+(L, L), and the theory of Lie groups tells us that two additional transformations

are required to move between SO+(L, L) and the other three components making up

O(L, L). We saw that two such transformations can be obtained by selecting any

transformation in the family T
[q]
5 and selecting any transformation in the family T

[q]
6 ,

as for any fixed q1, q2 between 1 and L, T
[q1]
5 reverses the orientation of both of the

subspaces V+ and V−, and T
[q2]
6 reverses the orientation of one of the subspaces V+ and

V−, with V+ and V− being defined as in Eqns. 4.7-4.8. As such, the transformations

in families T
[q;t)
1 , . . . , T

[q]
6 allow for the use of all transformations in T

[q]
5 and T

[q]
6 , and

families T
[q;t)
1 , . . . , T

[q]
6 can accordingly be said to generate GQ redundantly.

Using identities relating the transformations in families T
[q,r;t)
3 and T

[q,r;t)
4 to those

in T
[q,r;t)
2 and T

[q]
6 , we conclude that the redundancy in families T

[q;t)
1 , . . . , T

[q]
6 can be

reduced by eliminating T
[q,r;t)
3 and T

[q,r;t)
4 . The identities that we use are specifically

T
[q,r;t)
3 = T

[r]
6 T

[q,r;t)
2 T

[r]
6 (4.9)

and

T
[q,r;t)
4 = T

[q]
6 T

[q,r;t)
2 T

[q]
6 . (4.10)

Eqns. 4.9-4.10 can be readily derived by performing signal-flow graph manipulations

on their representations in Fig. 4-1. Fig. 4-5 depicts these identities as viewed from

the perspective of signal-flow graphs.

The generating set consisting of T
[q;t)
1 , T

[q,r;t)
2 , T

[q]
5 , and T

[q]
6 , in addition to other
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Figure 4-5: Signal-flow graph representations of the identities in Eqns. 4.9-4.10, which
relate families T

[q,r;t)
3 and T

[q,r;t)
4 to families T

[q,r;t)
2 and T

[q]
6 .

relevant sets of subgroups of GQ, are listed in Table 4.1. Referring to this table, a key

point is that the previously-mentioned generating set differs from the set preserving

strong conservation only in that the family T
[q]
6 is omitted from the latter. In Section

4.4, this fact will be used as the basis of a technique for strengthening the sense of

conservation in conservative systems that are known to be weakly-conservative.

Set of subgroups of GQ (∼= O(L, L)): T
[q;t)
1 T

[q,r;t)
2 T

[q,r;t)
3 T

[q,r;t)
4 T

[q]
5 T

[q]
6

Generates GQ: • • • • •1 •1

Generates subgroup ∼= SO(L, L): • • • • •
Generates subgroup ∼= SO+(L, L): • • • •

Generates GQ: • • •2 •
Preserves strong conservation: • • •

1No more than one transformation in each of T
[q]
5 and T

[q]
6 is required.

2No more than one transformation in T
[q]
5 is required.

Table 4.1: Some relevant sets of subgroups of GQ. A dot indicates that the subgroup
corresponding to the column is in the set corresponding to the row.
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4.3 Generating matched conservative interconnect-

ing systems

In Section 4.1 it was shown that a signal-flow graph for a maximal conservative inter-

connection with 2L terminal variables could be obtained by beginning with a conserva-

tive image representation involving L exogenous variables, applying transformations

from the group preserving the C-induced quadratic form for an appropriately-defined

OVS, and using path reversal to bring the image representation to the form of a linear

map, represented as a signal-flow graph with an associated gain matrix G. In this

section, we address the question of how to design conservative linear interconnections

from the perspective of designing, from the outset, an appropriate interconnection

gain matrix G. As such, we illustrate that the interconnection gain matrix for a

conservative interconnection takes on a special form, and that strong conservation

imposes specific additional structure on G. Moreover, all conservative and strongly-

conservative behaviors will be shown to be obtainable by designing gain matrices

with the appropriate respective form. This will facilitate the design of strongly- and

weakly-conservative signal-flow graph interconnections, where the conditions on G

will be related to flow graph transposition, negation of certain branches, and separa-

bility of the graph into independent sub-graphs interconnecting each of the conjugate

spaces. In particular, separability of the signal-flow graph will be related to conserva-

tion strength, and will be shown to be a mechanism by which conservation principles

applicable to “two distinct networks having the same topology” arise.

We will specifically focus discussion on conservation in linear interconnecting sys-

tems where the correspondence map for the OVS is represented in its canonical con-

jugate basis. As was shown in Chapter 3, an arbitrary correspondence map can be

represented in this way. We will be referring to an OVS U that is defined as

U =
(
R

2L, 〈., .〉,O
)
, (4.11)

with 〈., .〉 denoting the standard inner product on R
2L, and with the conjugate sub-
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spaces and the correspondence map in the organization O = (C,Dp, {VA, VB}) being

written as

C =


 0L IL

IL 0L


 (4.12)

VA = span(e1, . . . , eL) (4.13)

VB = span(eL+1, . . . , e2L), (4.14)

where IL and 0L are respectively the L×L identity and zero matrices. The associated

quadratic form is accordingly

Q
(
[a1, . . . , aL, b1, . . . , bL]tr

)
= 2a1b1 + . . . 2aLbL. (4.15)

The variables a1, . . . , aL denote the interconnection terminal variables in the conjugate

subspace VA and the variables b1, . . . , bL denote the interconnection terminal variables

in the conjugate subspace VB. Conservation of U over a vector space W corresponds

to the conservation law

2a1b1 + . . . 2aLbL = 0, [a1 . . . , aL, b1, . . . , bL]tr ∈ W. (4.16)

In discussing linear interconnections having conservative behaviors, we will specif-

ically be interested in interconnections that are maps, and which have a total of 2L

interconnection terminal variables a1, . . . , aL, b1, . . . , bL. A natural subclass consists

of those interconnections having L inputs and L output, and for which every conju-

gate pair of variables ak and bk has one input and one output. We refer to this class of

interconnections as being input-output matched. One reason for specifying to this

class is that it is common in many existing systems for which we have identified con-

servation to have an ensemble of two-variable constitutive relations that are maps,

each of which is connected to a pair of conjugate variables in the interconnection,

and this necessitates the use of one input and one output variable for each pair of

conjugate variables.
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We will define an L-dimensional linear, matched input-output interconnection as

one that contains a total of 2L interconnection terminal variables, denoted using the

notation in Eq. 4.15 as a1, . . . , aL, b1, . . . , bL, and for which the following statements

hold for a given conjugate pair of variables ak and bk, k = 1, . . . , L:

ak is an interconnection input ⇔ bk is an interconnection output (4.17)

ak is an interconnection output ⇔ bk is an interconnection input. (4.18)

Such an interconnection has a total of L inputs and consequently has a linear behavior

with L degrees of freedom, i.e. its behavior is an L-dimensional vector space. We will

denote the interconnection terminal variables in the conjugate subspace VA using the

vector a = [a1, . . . , aL]tr and the interconnection terminal variables in the conjugate

subspace VB as using b = [b1, . . . , bL]tr.

In determining the behavior of the linear interconnecting system, we establish

an indexing convention for the input and output interconnection terminal variables,

equating interconnection input variables ck, k = 1, . . . , L and interconnection output

variables dk, k = 1, . . . , L to the conjugate variables ak and bk. In equating these

variables, the subscript k of ck or dk will refer to which of the L pairs of conjugate

variables ak or bk that the variable ck or dk is equated. Using this notation, the

rules in Eqns. 4.17-4.18 describing an input-output matched interconnection may be

written as

ak = ck ⇔ bk = dk (4.19)

ak = dk ⇔ bk = ck, (4.20)

with exactly one of Eqns. 4.19-4.20 being held. We introduce a permutation matrix

P that encodes which of Eqns. 4.19-4.20 holds for a given index k, i.e. P encodes the

relationship between the variables a1, . . . , aL, b1, . . . , bL, c1, . . . , cL, and d1, . . . , dL as


 a

b


 = P


 c

d


 , (4.21)
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with the vectors c = [c1, . . . , cL]tr and d = [d1, . . . , dL]tr respectively denoting the

interconnection input and output variables. The interconnection gain matrix G is in

turn related to c and d according to

d = Gc, (4.22)

and we have


 a

b


 = P


 c

Gc


 (4.23)

= P


 IL

G


 c. (4.24)

The structure that satisfying exactly one of Eqns. 4.19-4.20 for each index k imposes

on the matrix P can be readily seen by viewing P as being composed of four L × L

matrix blocks, i.e.

P =


 P (ac) P (ad)

P (bc) P (bd)


 . (4.25)

Satisfying exactly one of Eqns. 4.19-4.20 implies that each of the matrices P (ac), P (ad),

P (bc), and P (bd) will be diagonal, with zero- and one-valued entries. The structure

that is imposed by Eqns. 4.19-4.20 on the diagonal elements of the blocks of P is

specifically that exactly one of the following holds for each k = 1, . . . , L:

P
(ac)
k,k = P

(bd)
k,k = 1 and P

(ad)
k,k = P

(bc)
k,k = 0 (4.26)

P
(ac)
k,k = P

(bd)
k,k = 0 and P

(ad)
k,k = P

(bc)
k,k = 1, (4.27)

and we observe from these equations and the previously-mentioned structure of P
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that the blocks satisfy

P (bd) = P (ac) (4.28)

P (ad) = IL − P (ac) (4.29)

P (bc) = IL − P (ac) (4.30)

and are individually symmetric and idempotent.

4.3.1 A condition for conservation

With the structure of the correspondence between conjugate variables and intercon-

nection inputs and outputs in place, it is straightforward to determine conditions

on the interconnection gain matrix G that result in conservation of the OVS U, as

defined in Eq. 4.11. We are specifically interested in conditions on G under which the

quadratic form associated with this OVS evaluates to zero, resulting in a conservation

law of the form of Eq. 4.16. Eqns. 4.21-4.22 may accordingly be used to relate G to

the variables ak and bk in Eq. 4.16.

Before writing this relationship formally, we make the observation that the per-

mutation matrix P in Eq. 4.21 is in the group GQ preserving the quadratic form

in Eq. 4.15 associated with the OVS U. This can readily be seen by writing the
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expression for the transformed quadratic form explicitly:

Q(Px) = 〈P trCPx,x〉 (4.31)

=

〈
 P (ac) P (ad)

P (bc) P (bd)




tr 
 0L IL

IL 0L





 P (ac) P (ad)

P (bc) P (bd)


x,x

〉
(4.32)

=

〈

 P (ac) P (ad)

P (bc) P (bd)




tr 

 P (bc) P (bd)

P (ac) P (ad)



x,x

〉
(4.33)

=

〈
 P (ac) IL − P (ac)

IL − P (ac) P (ac)





 IL − P (ac) P (ac)

P (ac) IL − P (ac)


x,x

〉
(4.34)

=

〈
 0L IL

IL 0L


x,x

〉
(4.35)

= Q(x), x ∈ R
2L, (4.36)

with Eq. 4.32 following from the definition of P in Eq. 4.25 and with Eq. 4.34 following

from Eqns. 4.28-4.30. We therefore conclude that the following relationship holds

between the quadratic form associated with U and the interconnection input and

output variables:

Q







 a

b







 = 2〈a,b〉RL = 2〈c,d〉RL, (4.37)

with 〈., .〉RL denoting the standard inner product on R
L.

In establishing conditions for conservation, we are specifically interested in the

Eq. 4.37 evaluating to zero. Substituting Eq. 4.22 in Eq. 4.37, we wish to find condi-

tions on G for which the following equation is satisfied:

〈c, Gc〉RL = 0, ∀c ∈ R
L. (4.38)

Decomposing the matrix G into its symmetric and skew-symmetric components as

G =
1

2
(G + Gtr) +

1

2
(G − Gtr) (4.39)
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and substituting this into the expression 〈c, Gc〉RL in Eq. 4.38, we obtain

〈
c,

(
1

2
(G + Gtr) +

1

2
(G − Gtr)

)
c

〉

RL

=

〈
c,

1

2
(G + Gtr)c

〉

RL

+

〈
c,

1

2
(G − Gtr)c

〉

RL

=

〈
c,

1

2
(G + Gtr)c

〉

RL

. (4.40)

We are interested in conditions on G for which 〈c, Gc〉RL = 0 for all vectors c, written

formally in terms of Eq. 4.40 as

〈
c,

1

2
(G + Gtr)c

〉

RL

= 0, c ∈ R
L, (4.41)

and accordingly Eq. 4.41 is satisfied if and only if the symmetric component of G

is zero. This is equivalent to the condition that the matrix G is skew symmetric,

i.e. that

G = −Gtr. (4.42)

Fig. 4-6 depicts a maximal conservative interconnection, represented in terms of its

interconnection gain matrix G.

Figure 4-6: A maximal conservative interconnection.
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4.3.2 A condition for strong conservation

In Thm. 3.2 it was shown that a conservative vector space W is strongly-conservative

if and only if the dimensions of the behaviors of the conjugate spaces sum to the

dimension of W , and from this we write a condition for strong conservation involving

the interconnection gain matrix G. The approach is specifically to constrain the

dimensions of the behaviors of the conjugate spaces to sum to L by creating an

interconnecting system that is composed of two linear maps: one that has a behavior

of dimension LA with a total of LA inputs and couples the variables in VA, denoted

Interconnection A, and one that has a behavior of dimension LB = L − LA with

a total of LB inputs that couples the variables in VB, denoted Interconnection B.

Interconnection A will accordingly have a total of LB outputs and Interconnection

will have a total of LA outputs.

We will denote the respective gain matrices for Interconnection A and Intercon-

nection B as G(A) : R
LA → R

LB and G(B) : R
LB → R

LA. The specific relationship

between the vectors of input variables c(A) ∈ R
LA and output variables d(A) ∈ R

LB

for Interconnection A is given by

d(A) = G(A)c(A), (4.43)

and the relationship between the vectors of input variables c(B) ∈ R
LB and output

variables d(B) ∈ R
LA for Interconnection B is accordingly

d(B) = G(B)c(B). (4.44)

In determining conditions on G(A) and G(B) that will result in conservation, we first

write expressions relating the vectors of conjugate variables a and b to the vectors c(A),

d(A), d(B), and c(B), and in doing so, we must specify that the vectors of conjugate

variables a ∈ R
L and b ∈ R

L are in a matched input-output configuration. This

relationship was stated formally in Eqns. 4.17-4.18.

We proceed by establishing an indexing convention for the elements of the input
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and output vectors c(A), d(A), d(B), and c(B), and we use permutation matrices to spec-

ify the correspondence between these indices and the indices of the conjugate vectors

a and b. The convention is that the index of a given input variable for Interconnec-

tion A is identical to that of the corresponding output variable for Interconnection

B, and vice-versa. Written formally, we implement the rules in Eqns. 4.17-4.18 by

requiring that exactly one of the following holds for each pair of conjugate variables

ak and bk, k = 1, . . . , L:

ak = c(A)
p ⇔ bk = d(B)

p (4.45)

ak = d(A)
p ⇔ bk = c(B)

p , (4.46)

where for each k, the value of p is in the range p = 1, . . . , LA if Eq. 4.45 holds and

is in the range p = 1, . . . , LB is Eq. 4.46 holds, in such a way that each conjugate

variable pair ak-bk is connected to one input-output pair c
(A)
p -d

(B)
p or c

(B)
p -d

(A)
p . In other

words, the pth input to Interconnection A will be matched to the pth output from

Interconnection B, and vice-versa, and the index p for this pair will not necessarily

be the index k for the associated pair of conjugate variables.

As the strategy in generating linear interconnections with strongly-conservative

behaviors is to specify two interconnections, one coupling the variables in the vector

a and the other coupling the variables in the vector b, we will use two permutation

matrices to encode the correspondence between the vectors of input and output vari-

ables and the vectors of conjugate variables. In particular, the permutation matrix

denoted P (A) : R
L → R

L will be used to encode the correspondence between a, c(A)

and d(A) as

a = P (A)


 c(A)

d(A)


 , (4.47)

and the permutation matrix denoted P (B) : R
L → R

L will be used to encode the
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correspondence between b, c(B) and d(B) as

b = P (B)


 d(B)

c(B)


 . (4.48)

Note that in the vector in the right-hand side of Eq. 4.48, the order of the input and

output sub-vectors has been reversed with respect to those in the vector in Eq. 4.47.

As every element of c(A) is matched to an element of d(B) and every element of c(B) is

matched to an element of d(A), this convention facilitates discussion of the relationship

between P (A) and P (B) that must be satisfied so that the variables in Interconnection

A and Interconnection B are in a matched input-output configuration, i.e. so that

exactly one of Eqns. 4.45-4.46 holds. These equations, in particular, specify that the

permutation matrices for Interconnection A and Interconnection B are equal, i.e. that

P (A) = P (B). (4.49)

This relationship follows directly from Eqns. 4.45-4.46, which stated another way,

specify that the entry of a to which a given entry of c(A) maps is the same entry of

b to which the corresponding entry of d(B) maps, and accordingly that the the entry

of b to which a given entry of c(B) maps is the same entry of a to which the corre-

sponding entry of d(A) maps. As the mapping is the same for each interconnection,

the corresponding permutation matrices encoding the mapping are identical.

With the relationship between the input and output variables and conjugate vari-

ables established, we proceed by determining conditions on the respective gain matri-

ces G(A) and G(B) for Interconnections A and B that will result in conservation. As we

have explicitly constrained the dimensions of the behaviors of these interconnections

to be vector spaces whose dimensions sum to L, i.e. the dimension of the behavior of

the overall set of terminal variables, these conditions will specifically result in strong

conservation. Following the form of Eq. 4.37, we write the associated quadratic from
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as

Q





 a

b




 = 2〈a,b〉L

= 2

〈
P (A)


 c(A)

G(A)c(A)


 , P (B)


 G(B)c(B)

c(B)




〉

RL

. (4.50)

The right-hand side of Eq. 4.50 is obtained by performing the substitutions in Eqns. 4.47-

4.48, followed by those in Eqns. 4.43-4.44. Eq. 4.50 may be further simplified by using

the identity P (A) = P (B) and noting that the transpose of a permutation matrix is

its inverse, resulting in

Q





 a

b




 = 2

〈
 c(A)

G(A)c(A)


 , P (A)trP (B)


 G(B)c(B)

c(B)




〉

RL

(4.51)

= 2
〈
c(A), G(B)c(B)

〉
R

LA
+ 2

〈
G(A)c(A), c(B)

〉
R

LB
(4.52)

= 2
〈
c(A), G(B)c(B)

〉
R

LA
+ 2

〈
c(A), G(A)trc(B)

〉

R
LA

(4.53)

= 2
〈
c(A),

(
G(B) + G(A)tr

)
c(B)

〉
R

LA

. (4.54)

Here 〈., .〉
R

LA and 〈., .〉
R

LB respectively denote the standard inner products on R
LA

and R
LB , and Eq. 4.53 in particular is obtained by taking the adjoint of G(A), which

coincides with its transpose when using these inner products. Setting the quadratic

form to zero for all values of the input vectors c(A) and c(B), we obtain

〈
c(A),

(
G(B) + G(A)tr

)
c(B)

〉
R

LA

= 0, ∀c(A) ∈ R
LA, c(B) ∈ R

LB , (4.55)

which is satisfied if and only if G(B) + G(A)tr = 0, i.e. if and only if

G(B) = −G(A)tr. (4.56)

We have thus shown that by beginning with an arbitrary linear interconnection

map coupling the variables in one conjugate subspace and creating an interconnection
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map for the other conjugate subspace whose gain matrix is the negative transpose

of that of the first, we will obtain an interconnection whose behavior is strongly

conservative. An interconnection that was created using this strategy is depicted in

Fig. 4-7.

Figure 4-7: A maximal, strongly-conservative interconnection.

An important consequence of developing this technique is that if the interconnec-

tion map for one of the conjugate subspaces is represented as a linear, memoryless

signal-flow graph, the signal-flow graph for the other conjugate subspace may be cre-

ated in a straightforward way. Specifically, the second signal-flow graph is obtained

from the first by taking the signal-flow graph transpose and negating all of either

the input or output branches. That this process creates a pair of linear signal-flow

graphs whose gain matrices satisfy Eq. 4.56 is a direct consequence of the transposi-

tion theorem, discussed in detail in, e.g. [28]. In particular, the matrix transpose in

the right-hand side of Eq. 4.56 corresponds to taking the signal-flow graph transpose,

and the negation in the right-hand side of this equation corresponds to the negation

of the inputs or of the outputs in the resulting graph.
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4.4 Identifying maximal-Dp conservation in matched

interconnecting systems

In the previous section, techniques were developed for creating conservative, matched

input-output interconnections, and the general strategy was to begin by formulating

conditions for imposing strong and weak conservation on interconnection gain matri-

ces. The sense of conservation specifically pertained to an OVS whose correspondence

map was written as a matrix in a canonical conjugate basis, i.e. an OVS for which

the conservation law was written as a standard inner product, and invertible trans-

formation interconnections were applied to variables in the partition subspaces to

obtain interconnections having other conservation laws. In this section, we pose the

related question of, given a linear, input-output matched interconnection and pre-

specified partition subspaces, how to determine what conservation laws, if any, might

be obeyed.

As was discussed in Chapter 3, a partition-invariant change of basis matrix may in

general be selected for transforming an arbitrary OVS into a canonical conjugate rep-

resentation. As such, the strategy will be to begin with a pre-specified interconnection

gain matrix G and collection of partition subspaces Dp, and apply transformations

to each of the partition subspaces in an attempt to obtain an interconnection whose

gain matrix G′ satisfies G′ = −G′tr, i.e. whose behavior is conservative. If this is

successful, the resulting transformations can be used to define an OVS that is conser-

vative over the behavior of the original interconnection G. We will focus discussion on

matched input-output interconnections having N interconnection terminal variables,

with the OVS being defined over the inner product space
(
R

N , 〈., .〉
)

and having a

total of N/2 = L partition subspaces, with 〈., .〉 denoting the standard inner product

on R
N . In this sense, the discussion will apply to an arbitrary maximal-Dp OVS, and

its partition decomposition may be written as

Dp = {V1, . . . , VL}, (4.57)
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with

Vk = span
(
e(k), e(k+L)

)
, k = 1, . . . , L. (4.58)

The conjugate decomposition and correspondence map will initially be unspecified.

Defining the behavior W of the interconnection as

W = range





 IL

G





 , (4.59)

with IL denoting the L × L identity matrix, we are interested in a transformation

T : R
N → R

N for which the following hold:

(1) T is invertible.

(2) The subspaces V1, . . . , VL, defined in Eq. 4.58, are invariant subspaces of T .

(3) The transformed subspace W ′, defined as

W ′ = {Tx : x ∈ W} , (4.60)

is conservative, in the sense that the OVS defined by Eqns. 4.11-4.12 and

Eqns. 4.57-4.58 is conservative over W ′.

Looking into these requirements further, (2) implies that T can be written as

T =




T
(1)
1,1 T

(1)
1,2

. . .
. . .

T
(L)
1,1 T

(L)
1,2

T
(1)
2,1 T

(1)
2,2

. . .
. . .

T
(L)
2,1 T

(L)
2,2




, (4.61)

with each entry T
(k)
1,1 , T

(k)
1,2 , T

(k)
2,1 , T

(k)
2,2 (k = 1, . . . , L) being a real scalar composing a
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matrix T (k) that denotes the action of T on subspace Vk, i.e.

T (k) =


 T

(k)
1,1 T

(k)
1,2

T
(k)
2,1 T

(k)
2,2


 . (4.62)

As it is required that T is invertible, the transformation on each of the subspaces

Vk must be invertible as well, and so each matrix T (k) must be invertible. Based upon

the results in Section 4.3, requirement (3) is equivalent to the requirement that W ′ is

the behavior of some matched input-output interconnection having a skew-symmetric

gain matrix, i.e.

W ′ = range





 IL

G′




 , (4.63)

for some L × L matrix G′ satisfying

G′ = −G′tr. (4.64)

A primary issue addressed in this section will be that of, given an interconnection

behavior W , how to obtain an invertible matrix in the form of Eq. 4.61 that results

in a conservative vector space W ′, i.e. that results in an interconnection having a

gain matrix satisfying Eq. 4.64. If such a transformation exists, it will then be used

to define a conjugate decomposition D′
p = {VA, VB} and correspondence map C ′, the

remaining ingredients needed to define an OVS that is conservative over W . In this

case we will say that the interconnection is conservative, with a conservation law that

is defined by the quadratic form associated with C ′. The strategy for obtaining such

a matrix T will in turn be used to show that, with the exception of a degenerate

case, all 2-input, 2-output linear interconnections are conservative, and that for these

interconnections a closed-form expression for T can be written.

As was the case with the interconnecting system in the example in Subsection

3.2.2, multiple conservation laws will generally exist for a pre-specified interconnection

structure, and a secondary issue addressed in this section will be that of how to

obtain multiple such laws. It will be shown that given an OVS that is conservative
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for the interconnection, another OVS having the same partition decomposition and

potentially with a different conservation law may be obtained using transformations

related to the behavior of the interconnection. An OVS with a having a distinct

conservation law may be obtained by parameterizing the set of such transforming

matrices using a modified Iwasawa decomposition.

4.4.1 Partition transformations for identifying and strength-

ening conservation

As was previously mentioned, we are interested in applying invertible transformations

to the partition subspaces so as to obtain an interconnection behavior that is conser-

vative. The emphasis will be on linear, matched input-output interconnections, and

as we have previously written a straightforward condition for conservation in terms of

the interconnection gain matrix for this class of interconnections, the strategy will be

to use a graph-based approach. In particular, the search for transformations resulting

in a conservative space will be equivalent to the task of choosing parameters in an ap-

propriate transformation graph that, when coupled with the original interconnection,

results in a new interconnection whose graph matrix satisfies G = −Gtr, i.e. that is

skew-symmetric.

The condition that the transforming system has the partition subspaces as its

invariant subspaces is equivalent to the requirement that the transforming systems

couple variables in a given partition subspace only to variables in the same subspace.

As such, we are interested in a total of L 2-input, 2-output systems whose behaviors

realize the transformations T (k), defined in Eq. 4.62, i.e. we are interested connecting a

system from Fig. 2-9 to each pair of variables ck, dk in the original interconnection, and

choosing the variables in the transforming system so that the coupled interconnection

has a gain matrix that is skew-symmetric.

We proceed by determining how the parameters in the transforming system af-

fect the gain matrix when coupled to the original interconnection. Denoting the gain

matrix for the coupled interconnection as G′, we will write an equation relating G′
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to G when one such 2-input, 2-output transforming system is coupled to the inter-

connection. As the overall transforming system may be composed of L such systems,

this relationship can be applied a total of L times to determine the gain matrix for

the final coupled interconnection. The relationship between an original interconnec-

tion and the modified interconnection obtained by coupling a transforming system is

depicted in Fig. 4-8.

Figure 4-8: A linear interconnection coupled to a 2-input, 2-output transforming
system.

The transforming system in Fig. 4-8 consists of four branch gains. We will refer

to the gains gc and gd as the input and output gains, respectively, as they modify

the gains in the paths from c′k to ck and dk to d′
k. The gain gt will be referred

to as the crosstalk gain, as it allows modification of the crosstalk from c′k to d′
k,

and we will refer to gf as the feedback gain. Denoting the respective vectors of

interconnection inputs and outputs corresponding to G as c and d and denoting

the vectors of interconnection inputs and outputs corresponding to G′ as c′ and d′,

we write the relationships between the interconnection terminal variables and gain

matrices as

d = Gc (4.65)

and

d′ = G′c′. (4.66)
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The relationships between the vectors c, d, c′, and d′ in Fig. 4-8 can be written

formally as

c = (IL + (1 − gc)Pk) c′ + gfPkd (4.67)

and

d′ = (IL + (1 − gd)Pk)d + gtPkc
′, (4.68)

where Pk is an L × L diagonal matrix with zeros in all of its diagonal entries except

the kth, which has value 1. By performing straightforward algebraic manipulations

on Eqns. 4.67-4.68, the relationship between the input and output in the coupled

interconnection can be written as

d′ =
[
gtPk + (IL + (1 − gd)Pk) G (I − gfPkG)−1 (I + (1 − gc)Pk)

]
c′. (4.69)

Eq. 4.69 takes the form of Eq. 4.66, and we conclude that the gain matrix for the

coupled interconnection is

G′ = gtPk + (IL + (1 − gd)Pk) G (I − gfPkG)−1 (I + (1 − gc)Pk) . (4.70)

Looking further into the form of Eq. 4.70, the innermost term can be manipulated

using the matrix inversion lemma to obtain

G (I − gfPkG)−1 = G + gfGPk (IL − gfPkG)−1 PkG

= G + gf

(
(IL − gfPkG)−1)

k,k
GPkG (4.71)

i.e. the innermost term, which is affected by the feedback gain gf , corresponds to the

addition of a scaled rank-1 matrix to G that consists of the outer product between

G’s kth row and kth column. We accordingly substitute Eq. 4.71 into Eq. 4.70 to

116



obtain

G′ = gtPk + (IL + (1 − gd)Pk)
(
G + gf

(
(IL − gfPkG)−1)

k,k
GPkG

)

︸ ︷︷ ︸
bG

(I + (1 − gc)Pk) ,

(4.72)

denoting the innermost term, i.e. the right-hand side of Eq. 4.71, as Ĝ.

The form of Eq. 4.72 allows us to make the following observations relating the

branch gains in Fig. 4-8 to their effect in modifying the gain matrix.

(1) A nonzero feedback gain gf corresponds to adding to G a matrix to that is

proportional to GPkG, resulting in the matrix Ĝ that is indicated in Eq. 4.72.

(2) The input gain gc scales column k of Ĝ by 1 − gc.

(3) The output gain gd scales row k of Ĝ by 1 − gd.

(4) A nonzero crosstalk gain gt adds a constant to the kth diagonal entry of Ĝ.

4.4.2 A strategy for identifying transformations

With the relationship between the branch gains and the corresponding modifications

to G now in place, we develop a strategy for identifying conservation in a class of

linear interconnections. We will focus on transforming systems that take the form of

Fig. 4-8, with the feedback gain gf being zero. This will allow us to specialize the

set of modifications on G to those that result in column scalings, row scalings, and

addition of terms along the matrix diagonal.

Another important reason for specializing to this class is that it will result in a

straightforward condition for invertibility of the transforming system. Setting the

feedback gain to gf = 0, we write the relationship between the the variables ck, dk,

c′k, and d′
k for the transforming system in Fig. 4-8 as


 c′k

d′
k


 =


 g−1

c 0

gt gd




︸ ︷︷ ︸
T (k)


 ck

dk


 . (4.73)
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The relationship between the original interconnection behavior W and the trans-

formed interconnection behavior W ′ is accordingly given by Eq. 4.60, with the ele-

ments composing T in Eq. 4.60 being defined in terms of 2×2 matrices T (1), . . . , T (L)

taking the form of Eq. 4.62. For the system in Fig. 4-8, we have in particular that

T (i) = IL for i 6= k and that T (k) is defined as in Eq. 4.73. As we are interested

in a transformation T that is invertible, which is equivalent to each of T (1), . . . , T (L)

being invertible, we require of T (k) that its determinant is well-defined and nonzero,

i.e. that the input and output gains gc and gd are both nonzero.

With this established, it is straightforward to write a strategy for obtaining an

OVS over which the interconnection behavior is conservative:

(1) Beginning with the gain matrix G for the original interconnection, perform a

sequence of row and column scalings in an attempt to obtain a matrix G̃ that

is skew-symmetric with the exception of its diagonal elements, i.e. that satisfies

G̃ + G̃tr = D, (4.74)

where D is a diagonal L × L matrix.

(2) Apply a sequence of transformations of the form of Fig. 4-8, with the input

gains and output gains chosen to encode the manipulations in Step (1), and

with the crosstalk gains chosen so as to cancel crosstalk in the interconnection,

i.e. with g
(k)
t in each being the negative of the kth diagonal element of G̃.

(3) Write the 2× 2 matrices T (k) composing the overall matrix T that corresponds

to this transformation. The matrix T can then be used to define the following
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OVS, which will be conservative over W :

U =
(
R

2L, 〈., .〉,O
)

(4.75)

O = (C,Dp,Dc) (4.76)

C = T tr



 0L IL

IL 0L



T (4.77)

Dp =
{
span

(
e(1), e(L+1)

)
, span

(
e(2), e(L+2)

)
, . . . , span

(
e(L), e(2L)

)}
(4.78)

Dc =
{

span
((

T tr
)
1
, . . . ,

(
T tr

)
L

)
, span

((
T tr

)
L+1

, . . . ,
(
T tr

)
2L

)}
, (4.79)

with (T tr)k being the transpose of row k of T and with 〈., .〉 denoting the

standard inner product on R
2L.

That the OVS defined in Step (3) is a valid OVS can be seen by noting that

partition subspaces for the correspondence map

Ĉ =



 0L IL

IL 0L



 (4.80)

can be written as

V̂A = span
(
e(1), . . . , e(L)

)
(4.81)

and

V̂B = span
(
e(L+1), . . . , e(2L)

)
. (4.82)

Then referring to Eq. 4.77, the row space of the first L rows of T is mapped by T to

V̂A and the row space of the last L rows of T is mapped by T to V̂B. These spaces

are written formally as the spans of the transposes of rows of T in Eq. 4.79. As T is

a partition-invariant transformation, the partition decomposition in Eq. 4.78, which

is valid for Ĉ, is also valid for C.

The goal in performing the row and column scalings in Step (1) was to result in a

matrix G̃ satisfying Eq. 4.74, and the question still remains of what failing to be able

to do this implies, if anything, about the existence of an OVS that is conservative

over W . This issue is discussed further in Subsection 4.4.5, where we conclude that
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specializing to the class of invertible transforming systems having zero feedback gain

does, indeed, allow for the possibility of overlooking a transformation that might

otherwise result in obtaining a conservative space W ′.1

Even with the restriction that the feedback gain in these transformations is zero,

the strategy can be used to conclude that every 2-input, 2-output linear interconnec-

tion having a gain matrix written as

G =


 f g

h i


 (4.83)

is conservative as long as both g and h are nonzero, i.e. as long as the input c1 affects

the output d2 and the input c2 affects the output d1. In this case, scaling the first

column by g and scaling the second column by −h results in a matrix G̃ that is

written as

G̃ =


 fg −gh

gh −hi


 , (4.84)

satisfying the requirement in Eq. 4.74 in Step (1). The corresponding transforming

systems in Step (2) are in turn those whose input and output gains are g
(1)
c = g,

g
(2)
c = −h, g

(1)
d = 1, and g

(2)
d = 1, and whose crosstalk gains are g

(1)
t = −fg and

g
(2)
t = hi, canceling the diagonal entries of G̃. Applying the transforming systems

results in an interconnection whose gain matrix G′ is

G′ =



 0 −gh

gh 0



 . (4.85)

Fig. 4-9 illustrates the process of beginning with a 2-input, 2-output linear in-

terconnection and applying appropriate transforming systems so that the resulting

interconnection has a skew-symmetric gain matrix, i.e. so that it is conservative. In

1It is not enough to conclude that such transformations can be overlooked simply because the
number of available parameters in the matrix has been reduced from four to three. We will see
in Subsection 4.4.5 that the set of all such transformations can indeed be described by a three-
parameter group, although this group is not the group of invertible lower triangular matrices, i.e. it
is not those of the form of the matrix in Eq. 4.73.

120



particular, Fig. 4-9(a) depicts a linear interconnection whose gain matrix G is as

specified as in Eq. 4.83, Fig. 4-9(b) depicts the use of the previously-mentioned trans-

forming systems, and Fig. 4-9(c) shows the system in Fig. 4-9(b) after performing

signal flow-graph simplifications that reveal the elements in the final interconnection

gain matrix G′ specified in Eq. 4.84. The transformed system, depicted in Fig. 4-9(c),

is conservative for an OVS in a canonical conjugate basis, and the original system,

depicted in Fig. 4-9(a), is conservative for the transformed OVS that is defined as

U
′ =

(
R

4, 〈., .〉,O′) (4.86)

O′ =
(
C ′,D′

p,D′
c

)
(4.87)

C ′ =




g−1 0 −f 0

0 −h−1 0 −i

0 0 1 0

0 0 0 1







0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0







g−1 0 0 0

0 −h−1 0 0

−f 0 1 0

0 −i 0 1




=




−2fg−1 0 g−1 0

0 2h−1i 0 −h−1

g−1 0 0 0

0 −h−1 0 0




(4.88)

D′
p = {span (e1, e3) , span (e2, e4)} (4.89)

D′
c =





span







g−1

0

0

0




,




0

−h−1

0

0







, span







−f

0

1

0




,




0

−i

0

1











= {span(e1, e2), span(e3 − fe1, e4 − ie2)} , (4.90)

with 〈., .〉 denoting the standard inner product on R
4. As the transformed intercon-

nection in the example in Fig. 4-9(c) is conjugate-separable, the transformed OVS U′

for the interconnection in Fig. 4-9(a) is strongly conservative over its behavior, and
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the associated conservation law is

g−1c1(d1 − fc1) − h−1c2(d2 − ic2) = 0. (4.91)

Figure 4-9: (a) A general 2-input, 2-output, linear interconnection. (b) Intercon-
nection with transforming systems applied to partition subspaces. (c) Transformed
interconnection after performing flow graph simplifications, revealing that the system
in (a) is strongly-conservative under this transformation.

4.4.3 A strategy for strengthening weak conservation

While the strategy in Subsection 4.4.2 provides a mechanized way to identify whether

a linear interconnection has a conservation law, it does not directly address the ques-

tion of whether an interconnection is strongly conservative in particular. Indeed, the

system in Fig. 4-9 happens to be strongly conservative under the transformation that

resulted from the use of the strategy, but as the strategy is based upon the condition

that was developed in Subsection 4.3.1 pertinent to the existence of conservation, as

opposed to its strength, this will not always be the case.

In this subsection we address the issue of obtaining a strongly-conservative OVS

for a linear interconnection by providing an algorithm for performing transforma-

tions on a weakly-conservative OVS in an attempt to obtain an OVS that is strongly

conservative, i.e. in an attempt to strengthen it. We are again interested in transfor-

mations that preserve the partition decomposition of the OVS, and as such we require

that the transformations have the partition subspaces as invariant subspaces. We are
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therefore interested in invertible transformations that:

(1) are composed of 2 × 2 matrices, as in Eqns. 4.61-4.62,

(2) preserve the fact that the OVS is conservative over the behavior of the inter-

connection, and

(3) do not preserve conservation strength.

As will be discussed in Subsection 4.4.5, the set of transformations referred to in

requirement (2) will in general depend on the behavior of the interconnection. With

the goal being to present a straightforward algorithm that can be applied to an arbi-

trary interconnection, we interpret (2) as requiring that the transformation preserves

conservation over an arbitrary behavior. Put another way, we require that such a

transformation be in the group of transformations GQ preserving the quadratic form

associated with C.

We are interested in transformations in GQ that have the partition subspaces as

invariant subspaces and that do not preserve the strength of conservation. Referring

to the transformations listed in Fig. 4-1, those that meet the invariant subspace

requirement are in classes T
[q;t)
1 , T

[q]
5 and T

[q]
6 . Of those classes, the transformations

composing T
[q]
6 , which we refer to as the gyrator transformations, are the only ones

that do not preserve the strength of conservation, as is indicated in Table 4.1. With

this in mind, we write the following algorithm that attempts to strengthen weakly-

conservative interconnections:

(1) Apply gyrator transformations to some subset of the partition subspaces.

(2) Check whether the interconnection is strongly conservative, e.g. by checking

whether the dimensions of the behaviors of the conjugate subspaces sum to L,

or equivalently by checking whether the interconnection is conjugate-separable.

(3) If the interconnection is not strongly conservative, apply gyrator transforma-

tions to a different subset of the partition subspaces and go to step (2).
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The process is depicted in Fig. 4-10 for a 2-input, 2-output linear interconnec-

tion. The original interconnection is depicted in Fig. 4-10(a) and the transformed

interconnection, transformed using the technique in Subsection 4.4.2, is depicted in

Fig. 4-10(b). As is apparent in the simplified signal-flow graph depicted in Fig. 4-

10(c), the interconnection is not conjugate-separable, and as such the interconnection

in Fig. 4-10(a) is weakly conservative under this transformation. Fig. 4-10(d) depicts

the application of a gyrator transformation to the partition subspace V1, resulting in

a simplified interconnection in Fig. 4-10(e) that is conjugate separable and as such is

strongly-conservative for a 4-dimensional OVS in a canonical conjugate basis, under

the transformation defined by

a1 = d1 − fc1 (4.92)

b1 = g−1c1 (4.93)

a2 = −h−1c2 (4.94)

b2 = d2 − ic2. (4.95)

The conservation law is accordingly

a1b1 + a2b2 = (d1 − fc1)g
−1c1 − h−1c2(d2 − ic2) = 0. (4.96)

4.4.4 Identifying conservation in a bilateral vehicle speed

control system

As an example illustrating the identification of conservation laws in an existing sys-

tem, we consider a distributed system for controlling the speed of a chain of vehicles.

The system is bilateral, i.e. the speed of each vehicle in the chain is a function of

the distances between the vehicles immediately leading and following it. The system

relating the speeds of the vehicles, discussed in detail in [20], is depicted in Fig. 4-

11. Referring to this figure, the systems H1(s) and H2(s) in the chain will remain

unspecified, and as such we will initially be interested in obtaining a conservation
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Figure 4-10: (a) A general 2-input, 2-output, linear interconnection. (b) Intercon-
nection with transforming systems as specified by the technique in Subsection 4.4.2
applied to partition subspaces. (c) Transformed interconnection in (b) after perform-
ing flow graph simplifications, revealing that the system in (a) is weakly-conservative
under this transformation. (d) Transformed interconnection having a gyrator trans-
formation applied to the first partition subspace. (e) Transformed interconnection in
(d) after performing flow graph simplifications, revealing that under that transforma-
tion, the system in (a) is strongly-conservative.

law involving the instantaneous values of the interconnection variables. Although the

chain of systems is infinite, it is composed of a series of identical summing junctions,

one of which is indicated by the dotted box in this figure. The strategy will accord-

ingly be to determine a conservation law for a single such junction, as a summation

of the conservation laws for an arbitrary number of junctions in the chain will itself

be a conservation law.

We proceed by writing the gain matrix G for the interconnection in the dotted

box in Fig. 4-11:

G =


 1 1

1 1


 . (4.97)
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Figure 4-11: Block diagram relating vehicle speeds for a chain of vehicles under
bilateral speed control.

The relationship between the interconnection inputs and outputs is


 d1

d2


 = G


 c1

c2


 , (4.98)

and the behavior W of the interconnection is accordingly

W = range







1 0

0 1

1 1

1 1







, (4.99)

in the sense that the vector x of interconnection terminal variables will always be an

element of W , i.e.

x =




c1

c2

d1

d2



∈ W. (4.100)

The goal is to find an OVS U = (R4, 〈., .〉,O) that is conservative over W and that

has an orientation O = (Dc,Dp, C) where the partition subspaces in Dp are

V1 = span(e1, e3) (4.101)

and

V2 = span(e2, e4). (4.102)
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Noting that the matrix G in Eq. 4.97 satisfies the condition that g and h are both

nonzero when written as in Eq. 4.83, it is possible to use the previously-established

result pertaining to conservation in 2-input, 2-output linear interconnections to obtain

the desired OVS. However, it is instructive to proceed by performing the appropriate

manipulations on G, bringing it into a skew-symmetric form.

The manipulations will specifically be written in terms of how they relate to the

corresponding gains in the transforming systems as depicted in Fig. 4-8, and there

will be two such transforming systems, one for each partition subspace. We begin

with the input and output gains being g
(1)
c = g

(1)
d = g

(2)
c = g

(2)
d = 1 and with the

crosstalk gains being g
(1)
t = g

(2)
t = 0, i.e. we will begin with the original, untrans-

formed interconnection, and we indicate the sequence of changes in the transforming

system gain terms that result in the corresponding changes to the interconnection

gain matrix:


 1 1

1 1


 g

(2)
c =−1−→


 1 −1

1 −1


 g

(1)
t =−1−→


 0 −1

1 −1


 g

(2)
t =1−→


 0 −1

1 0


 (4.103)

The original interconnection, the transforming systems indicated by the manipu-

lations in Eq. 4.103, and the simplified transformed interconnection are depicted in

Fig. 4-12. As is apparent in Fig. 4-12(b), the gyrator transformation is used the parti-

tion subspace V1 so that the transformed interconnection is conjugate-separable, and

we conclude that with the conjugate decomposition and correspondence map being

defined as

Dc =






span







1

0

0

0




,




0

−1

0

0







, span







−1

0

1

0




,




0

−1

0

1












(4.104)

= {span (e1, e2) , span (e3 − e1, e4 − e2)} (4.105)
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and

C =




1 0 −1 0

0 −1 0 −1

0 0 1 0

0 0 0 1







0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0







1 0 0 0

0 −1 0 0

−1 0 1 0

0 −1 0 1




=




−2 0 1 0

0 2 0 −1

1 0 0 0

0 −1 0 0




, (4.106)

the OVS U is strongly conservative over the behavior W of the original interconnec-

tion. We can in turn write the following conservation law for the interconnection:

c1(d1 − c1) − c2(d2 − c2) = 0. (4.107)

Using this example as a springboard for discussion, an alternative system for vehicle

control that is based upon the principles in this thesis is discussed in Section 6.5.

Figure 4-12: (a) Interconnection structure for the system in Fig. 4-11. (b) Intercon-
nection with transforming systems applied to partition subspaces. (c) Transformed
interconnection after performing flow graph simplifications, revealing that the system
in (a) is strongly-conservative under this transformation.
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4.4.5 Obtaining all conservation laws for a conservative be-

havior

As was illustrated with the feedback network in Subsection 3.2.2, a linear intercon-

nection will in general have multiple conservation laws. The strategy in Subsection

4.4.2 can be used to obtain one such law for a pre-specified interconnection, and in

this subsection we address the question of obtaining multiple conservation laws from

an initial law by applying transformations to the partition subspaces. We specifically

are interested in transformations that are invertible and that have the partition sub-

spaces as invariant subspaces. As this class of transformations can be composed of

matrices T (k) as in Eqns. 4.61-4.62, we are interested in 2 × 2 matrices T (k) that:

(1) preserve the fact that the OVS is conservative over the behavior of the inter-

connection and

(2) result in distinct conservation laws.

In satisfying requirement (2) it will be useful to distinguish between transforma-

tions that modify the OVS but do not affect the quadratic form, as with the gyrator

transformation, and those that do modify the quadratic form. Toward these ends, we

will make use of what will be referred to as a modified Iwasawa decomposition of each

invertible 2 × 2 matrix T (k) composing the overall transformation as in Eqns. 4.61-

4.62. We specifically define a modified Iwasawa decomposition of an arbitrary 2 × 2

matrix T (k) as

T (k) = (−1)n





 0 1

1 0







r 
 t 0

0 1
t





 1 x

0 1





 cos φ − sin φ

sin φ cos φ


 η,

n ∈ {0, 1}
r ∈ {0, 1}

t > 0

0 ≤ φ < π

η > 0

,

(4.108)

with n and r being binary variables that respectively select whether the expression

is negated and whether an initial gyrator transformation is used, and with x being a

129



real number. It can be shown that an arbitrary 2 × 2 invertible transformation can

be uniquely decomposed into the form of Eq. 4.108, and that the sign and magnitude

of the determinant of T (k) will respectively be (−1)r and η2.2

As is apparent in Eq. 4.108, an important consequence of the modified Iwasawa

decomposition is that it arranges an invertible transformation so that the components

that lie in GQ, namely


 −1 0

0 −1


,


 0 1

1 0


 and


 t 0

0 1
t


, are separated out from

those that do not. Elements of GQ do not have an effect on the quadratic form,

and accordingly we conclude that the set of 2 × 2 matrices that result in distinct

conservation laws can be parameterized by the variables x, φ and η in Eq. 4.108, as

an identical quadratic form will result given an arbitrary choice of n, r and t.

It is also an illustrative exercise to verify, using the modified Iwasawa decom-

position, that the limited set of transformations that were used in the strategy for

identifying conservation in Subsection 4.4.2 indeed have the potential to fail to iden-

tify conservation laws. In particular, the lower-triangular form of the transformation

in Eq. 4.73 restricts the parameter φ in its modified Iwasawa decomposition to be

φ = π/2, allowing for the potential to overlook a wide range of conservation laws.

With this in mind, it is all the more remarkable that the reduced set of transformation

in Subsection 4.4.2 can be used to identify conservation in arbitrary 2-input, 2-output

interconnections, with the exception of those in a degenerate class.

In satisfying requirement (1), we use the fact that requirement (2) means that

we need not consider transformations that result in other conservative behaviors, as

these are precisely the transformations that preserve the quadratic form, i.e. that

leave the conservation law unchanged. As such, we are interested in transformations

that preserve the fact that the OVS is conservative by leaving the behavior of the

interconnection W unchanged. Put another way, we are interested in transformations

that have W as an invariant subspace.

2The decomposition in Eq. 4.108 is referred to as a modified Iwasawa decomposition because of
its resemblance to the form of the Iwasawa decomposition for an invertible 2 × 2 matrix, T (k) =[

cosφ − sinφ

sin φ cosφ

] [
t 0
0 1

t

] [
1 x

0 1

]
. Indeed the uniqueness of our modified decomposition in

Eq. 4.108 follows in a straightforward way from the fact that an Iwasawa decomposition is unique,
as is discussed in, e.g., [11].
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We conclude that requirements (1) and (2) can be re-written as the following

requirements:

(1) The overall matrix T must have the interconnection behavior W as an invariant

subspace.

(2) The matrices T (k) composing T must be of the form

T (k) =


 1 xk

0 1





 cos φk − sin φk

sin φk cos φk


 ηk,

0 ≤ φk < π

ηk > 0
. (4.109)

The specific details of satisfying these requirements will in general relate to the rela-

tionship between W and the partition subspaces.
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Chapter 5

Variational principles of

strongly-conservative spaces

A convenient aspect of many physical systems is that they operate at extremal points

of variational problems. Variational principles indeed form much of the theoretical

foundation of classical mechanics, embodied by what is referred to as the principle

of stationary, or least, action. As its name suggests, the principle states that the

trajectory of a mechanical system will lie at a stationary point of a quantity that is

obtained by integrating the corresponding Lagrangian with respect to time, referred

to as the action. [1]

Electrical networks in steady state operate according to a similar principle: the

vector of currents i lies at a stationary point of the total content Q(i), a scalar quantity

that is obtained by summing the individual contents Q(k)(ik) of the elements in the

network, each of which involves integrating the corresponding voltage. As is the

case with classical mechanics, where an alternative formulation of the variational

principle may be obtained in terms of a dual function, i.e. the Hamiltonian, the

vector of voltages v in a steady-state electrical network lies at a stationary point of

a dual scalar quantity, referred to as the total co-content R(v). As with content, the

total co-content can be obtained by summing the individual contents R(k)(vk) of the
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network elements, each of which involves integrating the corresponding current.12

The focus of this chapter will be on formulating similar variational principles for

systems that have a strongly-conservative OVS. The development will be done in the

spirit of electrical network theory as opposed to that of classical mechanics, in the

sense that the variational principles will pertain to continuous, differentiable functions

in conjunction with a previously-established conservation law. This is in contrast

to the commonly-followed sequence in classical mechanics, where the principle of

stationary action is stated first, and where conservation laws are subsequently derived

from it by performing continuous transformations, i.e. using Noether’s theorem. [1]

In a number of applications, the use of the variational principles in this chapter

will represent a natural progression for applying the framework that begins with using

the techniques developed in Chapters 3 and 4 for creating and identifying conserva-

tion. However we emphasize that the results in Chapters 3 and 4 are intended to

stand on their own right. Indeed in electrical network theory, there are a number of

useful results that are based on Tellegen’s theorem and do not require the concepts

of content and co-content, even though in using these principles a significant number

of additional results can be proven.

As is the case with electrical networks, the discussion will focus on an inner product

that is taken between vectors of conjugate variables. The material in this chapter will

accordingly be pertinent to the comparison space of the OVS, which as a consequence

of strong conservation will naturally contain a pair of orthogonal vector spaces related

to the conservative set. As was mentioned in Chapter 3, a fundamental property of

the OVS is that an arbitrary 2L-dimensional OVS always has conjugate mappings

to the comparison space R
L, such that the standard inner product on R

L coincides

with the quadratic form for the OVS. The results in this chapter will likewise be

formulated without loss of generality in R
L and using the standard inner product,

1The standard variables used in denoting content and co-content in the literature are respectively
G(·) and J(·). To avoid a conflict in notation, we will refer to these quantities using Q(·) and R(·).

2Consistent with the previously-established convention, a boldface variable will denote a column
vector, and a subscript k will be used in denoting the scalar value in its kth entry.
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denoted in this chapter as 〈., .〉.3

Drawing upon previously-defined concepts of content and co-content, we begin

the chapter by developing more general notions of content and co-content that seem

not to appear in the literature, and we prove their stationarity. The remainder of the

chapter involves connecting these concepts with existing results, using the tools of

optimization theory to facilitate their interpretation as minimization and maximiza-

tion, and using the tools of stability theory to show that they can serve as potential

Lyapunov functions when dynamics are involved.

5.1 OVS content and co-content

There have been several definitions, refinements and generalizations of the terms

content and co-content in the electrical network theory literature. Millar [26] defined

the content Q(k)(i) and co-content R(k)(v) for a nonlinear resistor having an invertible

v-i characteristic as

Q(k)(i) =

∫ i

v(τ)dτ (5.1)

and

R(k)(v) =

∫ v

i(τ)dτ, (5.2)

with v(i) and i(v) indicating the functional relationships between current and voltage,

and with the lower limits of integration being specified on a case-by-case basis. [31]

Also in [26], generalized definitions of content and co-content applicable to a broader

class of dynamic and time-varying elements were defined in terms of voltage and

current trajectories v(t) and i(t) as

Q(k)(t) =

∫ t

v(τ)i′(τ)dτ (5.3)

3It has been the convention previously to write the inner product for a comparison space U as
〈., .〉U . As all inner products that appear in this chapter will be taken on the comparison space, we
remove the subscript for notational clarity and write 〈., .〉.
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and

R(k)(t) =

∫ t

i(τ)v′(τ)dτ, (5.4)

with v′(t) and i′(t) denoting the first derivatives of the functions v(t) and i(t) with

respect to time. Chua [8] provided a definition of content and co-content for memo-

ryless elements having a parameterizable v-i characteristic essentially by interpreting

v(·) and i(·) in Eqns. 5.3-5.4 not as voltage and current trajectories through time

but rather as functions v(y) and i(y) describing the v-i characteristic for a specific

element in terms of an independent parameter y. Based upon another result in [8],

co-content has been defined for a multi-port, voltage-controlled element, i.e. for an

element where the vector of port currents i was taken to be a function of the port

voltages v. The expression was written in [9] using a path integral as

R(k)(v) =

∫ v

0

i(v) · dv. (5.5)

In defining suitable notions of OVS content and co-content, we wish to address

vector-valued relationships as in Eq. 5.5, but we also aim to do so in a way that

does not require an a priori specification of which conjugate variables are functions of

others. We accordingly draw on the positive aspects of these definitions to formulate

concepts of content and co-content that are parametric and that involve vector-valued

functions of an independent, vector-valued parameter. This type of generalization

does not seem to exist currently in the literature.

5.1.1 Definition

We will be working in the vector space R
L, with 〈., .〉 denoting the standard inner

product on the space. Conservation will specifically involve two subspaces A ⊆ R
L

and B ⊆ R
L that are orthogonal, i.e. that meet the formal requirement

〈a,b〉 = 0, a ∈ A, b ∈ B. (5.6)
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We will be referring to variations of the vectors a and b with respect to a vector

y ∈ R
M , where a and b are varied in such a way that they remain in the respective

subspaces A and B.

The strategy in doing this will be to utilize two vector-valued functions,

f : R
M → R

L (5.7)

and

g : R
M → R

L, (5.8)

that are written in terms of a vector-valued independent variable y as f(y) and

g(y), and to focus on small variations around any point y⋆ for which f(y⋆) ∈ A and

g(y⋆) ∈ B. The assumption implicit in doing this will be that the functions are

smooth in the vicinity of any such point, i.e. that the Jacobians of f and g exist at

y⋆. Using the notation fk(y) and gk(y) to denote the functionals f : R
M → R and

g : R
M → R that respectively map y to the kth entry of f(y) and g(y), the Jacobians

of f and g, evaluated at a point y⋆, will be written as

Jf (y
⋆) =




∂f1
∂y1

· · · ∂f1
∂yM

...
. . .

...

∂fL
∂y1

· · · ∂fL
∂yM




y=y⋆

(5.9)

=




(∇f1(y
⋆))tr

...

(∇fL(y⋆))tr


 (5.10)
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and

Jg(y
⋆) =




∂g1

∂y1
· · · ∂g1

∂yM

...
. . .

...

∂gL

∂y1
· · · ∂gL

∂yM




y=y⋆

(5.11)

=




(∇g1(y
⋆))tr

...

(∇gL(y⋆))tr


 . (5.12)

Our formal definitions of the functions for total content

Q : R
M → R (5.13)

and co-content

R : R
M → R (5.14)

will be written as a sum of quantities pertaining to the entries of a vector in R
L that

are referred to as the individual contents

Q(k) : R
M → R (5.15)

and co-contents

R(k) : R
M → R, (5.16)

k = 1, . . . , L. We will specifically define the individual contents and co-contents as

any such functions that satisfy the following relationships:

∇Q(k)(y) = gk(y)∇fk(y) (5.17)

∇R(k)(y) = fk(y)∇gk(y) (5.18)

Q(k)(y) + R(k)(y) = fk(y)gk(y), (5.19)
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with the total content and co-content being written formally as

Q(y) =

L∑

k=1

Q(k)(y) (5.20)

and

R(y) =

L∑

k=1

R(k)(y). (5.21)

Note that there is some redundancy in Eqns. 5.17-5.19. In particular, exactly one

of Eqns. 5.17 and 5.18 may be eliminated without affecting the definition. This can

be seen by substituting Eq. 5.19 into Eq. 5.17, resulting in

∇
(
fk(y)gk(y) − R(k)(y)

)
= gk(y)∇fk(y). (5.22)

Using linearity of the gradient, Eq. 5.22 can be rearranged as

∇R(k)(y) = ∇ (fk(y)gk(y)) − gk(y)∇fk(y) (5.23)

= fk(y)∇gk(y), (5.24)

where Eq. 5.24 follows from the product rule for gradients. We conclude that Eqns. 5.17

and 5.19 imply Eq. 5.18, and by a similar line of reasoning, Eqns. 5.18 and 5.19 imply

Eq. 5.17. The reason for writing all three equations is to emphasize the symmetry in

the definitions.

The total content f(y) and co-content g(y) are not required to evaluate to vectors

in the orthogonal subspaces A and B, and any values of y for which they do are

precisely those points around which a variational principle may be stated. In doing

this we will consider small variations of y for which f(y) remains in A to first order

as well as small variations of y for which g(y) remains in B to first order. Related

to this, the directional derivative will be of use, which is commonly defined in vector
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calculus in any of the following equivalent forms:

Duf(y) = lim
δ→0

f(y + δu) − f(y)

δ
(5.25)

=




Duf1(y)
...

DufL(y)


 (5.26)

=




(∇f1(y))tr u
...

(∇fL(y))tr u


 (5.27)

= Jf (y)u. (5.28)

The interpretation is that Duf(y) is the rate at which the function f changes at the

point y in the direction u. [36] The variational principle is stated in the following

theorem.

Theorem 5.1 (Points of orthogonality have stationary OVS content and co-content).

This theorem pertains to two orthogonal subspaces A ⊆ R
L and B ⊆ R

L and two

functions f : R
M → R

L and g : R
M → R

L, as well as a point y⋆ for which f(y⋆) ∈ A

and g(y⋆) ∈ B, and for which Jf (y
⋆) and Jg(y

⋆) exist. At any such point, the total

content Q is stationary with respect to small variations taken in any direction u(Q) for

which Du(Q)f(y⋆) ∈ A. Likewise, the total co-content R is stationary with respect to

small variations taken in any direction u(R) for which Du(R)g(y⋆) ∈ B. Furthermore,

Q(y⋆) = −R(y⋆) at any such point.

Proof. We proceed by evaluating the directional derivatives of the total content and

co-content in the respective directions u(Q) and and u(R), and showing that they

evaluate to zero, i.e. we demonstrate that these quantities are stationary with respect

to the allowed variations in y.

By linearity of the directional derivative, the directional derivative of the total

content Du(Q)Q(y⋆) is the sum of the directional derivatives of the individual contents,
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written as

Du(Q)Q(y⋆) =
L∑

k=1

Du(Q)Q(k)(y⋆). (5.29)

Writing the directional derivatives in terms of the gradients of the individual contents

Q(k) and substituting in the definition of Q(k) from Eq. 5.17, we obtain

Du(Q)Q(y⋆) = u(Q)tr

L∑

k=1

∇Q(k)(y⋆) (5.30)

= u(Q)tr

L∑

k=1

gk(y
⋆)∇fk(y

⋆). (5.31)

The summation over k can be written as a matrix multiplication involving a matrix

whose columns are the gradients of the functionals fk, which when left-multiplied by

u(Q)tr

evaluates to the directional derivative of f , resulting in

Du(Q)Q(y⋆) = u(Q)tr
[
∇f1(y

⋆) · · · ∇fL(y⋆)
]
g(y⋆) (5.32)

=
[

Du(Q)f1(y
⋆) · · · Du(Q)fL(y⋆)

]
g(y⋆) (5.33)

= (Du(Q)f(y⋆))tr g(y⋆). (5.34)

As Du(Q)f(y⋆) ∈ A, g(y⋆) ∈ B and A ⊥ B, we have

Du(Q)Q(y⋆) = 0. (5.35)

Following the same line of reasoning, the directional derivative of R likewise evaluates
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to zero in the direction u(R):

Du(R)R(y⋆) =

L∑

k=1

Du(R)R(k)(y⋆) (5.36)

= u(R)tr

L∑

k=1

∇R(k)(y⋆) (5.37)

= u(R)tr

L∑

k=1

fk(y
⋆)∇gk(y

⋆) (5.38)

= u(R)tr
[
∇g1(y

⋆) · · · ∇gL(y⋆)
]
f(y⋆) (5.39)

=
[

Du(R)g1(y
⋆) · · · Du(R)gL(y⋆)

]
g(y⋆) (5.40)

= (Du(R)f(y⋆))tr g(y⋆) (5.41)

= 0, (5.42)

again where Eq. 5.42 follows from orthogonality of the subspaces A and B.

It remains to be shown that Q(y⋆) = −R(y⋆). This can be seen by writing the sum

of the total content and co-content in terms of the individual contents and co-contents

as

Q(y⋆) + R(y⋆) =

L∑

k=1

Q(k)(y⋆) + R(k)(y⋆) (5.43)

=

L∑

k=1

fk(y
⋆)gk(y

⋆) (5.44)

= 0, (5.45)

where Eq. 5.44 is obtained by performing the substitution in Eq. 5.19, and Eq. 5.45

follows from orthogonality of the subspaces A and B.

There are many potential interpretations for the meanings of our definitions of

content and co-content as they pertain to conservative signal processing systems. For

M = 1, the individual contents and co-contents may represent time trajectories in a

continuous-time system. A common situation with M = L arises when a conservative

interconnection is coupled to a memoryless nonlinearity whose image representation
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is described by the functions f and g, with y being a vector of the exogenous vari-

ables φk in the representation. Nonlinearities that can be represented as a functional

relationship may likewise be described by setting f(y) = y or g(y) = y. Still another

situation is where a variable, conservative interconnection is coupled to fixed subsys-

tems. In this case, variations in the OVS defined over the interconnection might result

in transformations of the conjugate mappings to the comparison space R
L where the

variational principles are applied, and from the perspective of this space the variations

would resemble those associated with a fixed conservative interconnection coupled to

varying subsystems. In Chapter 6, we will discuss these interpretations in greater

detail within the context of specific applications.

5.1.2 Relationship to integral definitions

Existing notions of content and co-content have been formulated as integrals, taken

either with respect to a single variable or along a multidimensional path. In this

subsection, we show that such definitions are particular instances of our notions of

OVS content and co-content as defined in Eqns. 5.13-5.21. In doing so, we begin

by taking the path integrals of Eqns. 5.17 and 5.18, in addition to the sum of these

equations.

As Eqns. 5.17-5.18 are gradient fields, their path integrals are path invariant. It is

therefore sufficient to specify an initial and a final point of integration, denoted y(0)

and y, respectively. Integrating both sides of Eq. 5.17 results in

∫ y

y(0)

∇Q(k)(u) · du =

∫ y

y(0)

gk(u)∇fk(u) · du (5.46)

Q(k)(y) − Q(k)
(
y(0)

)
=

∫ y

y(0)

gk(u)∇fk(u) · du, (5.47)

with Eq. 5.47 following from the gradient theorem. Integrating both sides of Eq. 5.18,

143



we likewise obtain

∫ y

y(0)

∇R(k)(u) · du =

∫ y

y(0)

fk(u)∇gk(u) · du (5.48)

R(k)(y) − R(k)
(
y(0)

)
=

∫ y

y(0)

fk(u)∇gk(u) · du. (5.49)

In integrating the sum of Eqns. 5.17 and 5.18, we first use the product rule for

gradients to write

gk(y)∇fk(y) + fk(y)∇gk(y) = ∇ (fk(y)gk(y)) , (5.50)

and we accordingly write the integral of Eq. 5.50 as

∫ y

y(0)

∇Q(k)(u) · du +

∫ y

y(0)

∇R(k)(u) · du =

∫ y

y(0)

∇ (fk(u)gk(u)) · du (5.51)

Q(k)(y) − Q(k)
(
y(0)

)
+ R(k)(y) − R(k)

(
y(0)

)
= fk(y)gk(y) − fk

(
y(0)

)
gk

(
y(0)

)
.(5.52)

The first key observation in connecting the notions of OVS content and co-content

to previous definitions is that, as it would seem, the definitions in [8,9,26,31] implicitly

specify functions f (k) and g(k), as well as a point y(0) for which

Q(k)
(
y(0)

)
+ R(k)

(
y(0)

)
= fk

(
y(0)

)
gk

(
y(0)

)
, k = 1, . . . , L, (5.53)

i.e. for which Eqns. 5.47, 5.49 and 5.52 take the form of Eqns. 5.17-5.19. Assuming

that Eq. 5.53 holds, the lower limits of integration may be dropped for notational

convenience, and we have the individual contents and co-contents written in integral

form as

Q(k)(y) =

∫ y

gk(u)∇fk(u) · du (5.54)

and

R(k)(y) =

∫ y

fk(u)∇gk(u) · du. (5.55)

If each functional fk(y) and gk(y) is a function only of the kth entry of y,

Eqns. 5.54-5.55 can equivalently be written in terms of f (k) : R → R and g(k) : R → R
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as

Q(k) (yk) =

∫ yk

g(k)(u)f (k)′(u)du (5.56)

and

R(k) (yk) =

∫ yk

f (k)(u)g(k)′(u)du, (5.57)

with f (k)′(u) and g(k)′(u) respectively denoting the first derivatives of f (k) and g(k).

Eqns. 5.56-5.57 take the form of the expressions for parametric individual content

and co-content that were defined in [8].

In addressing the case where the value of g is a function of the value of f , it is

useful to set M = L and define

f(y) = y, (5.58)

with the gradients of the functionals fk being

∇fk(y) = e(k). (5.59)

In Eq. 5.59, e(k) is used to denote a column vector with zeros in all entries except

for the kth, which has value 1. We likewise write the total content in terms of the

expression for individual content in Eq. 5.54 as

Q(y) =
L∑

k=1

∫ y

gk(u)∇fk(u) · du (5.60)

=

L∑

k=1

∫ y

gk(u)e(k) · du (5.61)

=

∫ 1

0

L∑

k=1

gk(u(τ))e(k)tr

u′(τ)dτ, (5.62)

where Eq. 5.62 was obtained using the vector calculus definition of path integration,

stated in terms of a parameterized path u : R → R
M for which u(0) = y(0) and

u(1) = y, and exchanging the summation and integration. As

L∑

k=1

gk(u(τ))e(k)tr

= gtr(u(τ)), (5.63)
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Eq. 5.62 can be written as

Q(y) =

∫ 1

0

gtr(u(τ))u′(τ)dτ (5.64)

=

∫ y

g(u) · du. (5.65)

Likewise if f is a function of the value of g, we have

R(y) =

∫ y

f(u) · du. (5.66)

Eqns. 5.65 and 5.66 take the form of the definitions of multidimensional content and

co-content, as written in, e.g., [8, 9].

We have seen thus far that integrating the equations for OVS content and co-

content results in familiar expressions for these quantities, and we wish to emphasize

further that the utility of OVS content and co-content lies beyond their formulations

simply as differential expressions for integral quantities. As was previously mentioned,

the main point of defining OVS content and co-content in the way that we have

done is specifically to avoid a priori specification of inputs or outputs through the

use of a parametric representation, and to do so in a multidimensional setting. The

implications of this with respect to existing definitions is perhaps best seen by writing

the definitions of total OVS content and co-content in integral form.

Summing over the integral expression for the individual contents as written in

Eq. 5.54, we obtain

Q(y) =
L∑

k=1

∫ y

gk(u)∇fk(u) · du (5.67)

=

∫ 1

0

L∑

k=1

gk(u(τ)) (∇fk(u(τ)))tr u′(τ)dτ, (5.68)

with u : R → R
M representing a path for which u(0) = y(0) and u(1) = y. Using the
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identity written in Eqns. 5.26-5.27, we perform the substitution

(∇fk(u(τ)))tr u′(τ) = Du′(τ)fk(u(τ)), (5.69)

resulting in

Q(y) =

∫ 1

0

〈
Du′(τ)f (u(τ)) , g (u(τ))

〉
dτ. (5.70)

An intuitive interpretation for total OVS content is therefore that it represents an

integral along a path through the vector field g, taken with respect to changes in the

vector field f along the path. The total OVS co-content is likewise written in integral

form as

R(y) =

∫ 1

0

〈
f (u(τ)) , Du′(τ)g (u(τ))

〉
dτ (5.71)

and has a complementary interpretation.

5.1.3 Composing f(y) and g(y) as functions on subvectors

As was previously mentioned in Eqns. 5.20-5.21, total content and co-content are

formulated as the respective sums of the individual contents and co-contents. In

this sense, the total content and co-content are linearly separable, and we further

emphasize in this subsection that if the functions f(y) and g(y) are decomposable into

functions on subvectors, the total content and co-content are likewise decomposable

in a conformal way.

This stems from the observation that if the functional f (k)(y) depends only on

certain entries in y, then the individual content Q(k)(y) depends only on those entries

as well. Likewise, if g(k)(y) depends only on certain entries of y, then R(k)(y) depends

only on those same entries. This can be seen by reviewing the definition in Eq. 5.17,

which results in the following implication:

∂fk(y)

∂yi
= 0 ⇒ ∂Q(k)(y)

∂yi
= 0. (5.72)
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Eq. 5.18 accordingly results in

∂gk(y)

∂yi
= 0 ⇒ ∂R(k)(y)

∂yi
= 0. (5.73)

A consequence of Eq. 5.72 is that if the function f(y) is defined in terms of a total

of J functions f (j) : R
M (j) → R

L(j)
, j = 1, . . . , J , as

f(y) = f







y(1)

...

y(J)





 =




f (1)
(
y(1)

)

...

f (L)
(
y(L)

)


 , (5.74)

with y(j) denoting a subvector of y, then each function f (j)
(
y(j)

)
has a well-defined

content Q(j) : R
M (j) → R, written Q(j)

(
y(j)

)
. Likewise, Eq. 5.73 implies that if we

have a function g(y) defined in terms of a total of J functions g(j) : R
M (j) → R

L(j)
,

j = 1, . . . , J , as

g(y) = g







y(1)

...

y(J)





 =




g(1)
(
y(1)

)

...

g(L)
(
y(L)

)


 , (5.75)

then each function g(j)
(
y(j)

)
has a well-defined co-content R(j) : R

M (j) → R, written

R(j)
(
y(j)

)
. The total OVS content and co-content may accordingly be written as

Q(y) =
J∑

j=1

Q(j)
(
y(j)

)
(5.76)

and

R(y) =

J∑

j=1

R(j)
(
y(j)

)
, (5.77)

i.e. the terms in the sums involve a decomposition of the vector y that is conformal

with the decompositions of f(y) and g(y) in Eqns. 5.74-5.75.
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5.1.4 Re-parameterizing f(y)-g(y), f(y)-Q(y) and g(y)-R(y) con-

tours

We have defined OVS content and co-content, as well as the pertinent functions f(y)

and g(y), in terms of a vector-valued parameter y. A relevant question in doing

this is that of what relationships, if any, are affected by a re-parameterization of y.

The specific sense of re-parameterization that we address will be a replacement of

the variable y with a function h : R
M → R

M , resulting in re-parameterized functions

f̂(y) and ĝ(y) that are written formally as

f̂(y) = f (h(y)) , (5.78)

and

ĝ(y) = g (h(y)) . (5.79)

In discussing this, we will assume that f(y), g(y) and h(y) are continuous and every-

where differentiable, and we will additionally require that the image of h(y) is R
M .

Written formally, we require that the Jacobians Jf (y), Jg(y) and Jh(y) exist at all

points y ∈ R
M , and that

{
h(y) : y ∈ R

M
}

= R
M . (5.80)

It is straightforward to demonstrate that the relationship between f(y) and g(y)

is identical to the relationship between f̂(y) and ĝ(y). In particular, it follows from

Eq. 5.80 that the surface traced out by f(y) and g(y) when evaluated at all points

y ∈ R
M is identical to the surface traced out by f̂(y) and ĝ(y), as substituting h(y) in

place of y does not restrict the set of all points for which f(y) and g(y) are evaluated.

We claim that the relationship between f(y) and Q(y) also remains unaffected, as

does the relationship between g(y) and R(y). As Q(y) and R(y) are defined in terms

of f(y) and g(y), this must be verified with greater care. The approach in doing so

is to define the re-parameterized individual contents Q̂(k)(y) and co-contents R̂(k)(y)

as

Q̂(k)(y) = Q(k) (h(y)) (5.81)
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and

R̂(k)(y) = R(k) (h(y)) , (5.82)

k = 1, . . . , L, with the re-parameterized total content and co-content in turn being

Q̂(y) =

L∑

k=1

Q̂(k)(y) (5.83)

and

R̂(y) =

L∑

k=1

R̂(k)(y), (5.84)

and to demonstrate that Q̂(k)(y) and R̂(k)(y) are valid individual contents and co-

contents for the re-parameterized functions f̂(y) and ĝ(y).

Taking the gradient of both sides of Eq. 5.81 results in

∇Q̂(k)(y) = ∇Q(k) (h(y)) (5.85)

= J tr
h (y)

(
∇Q(k)(y)

∣∣
h(y)

)
, (5.86)

where Eq. 5.86 follows from the multidimensional chain rule. Substituting in the

expression for ∇Q(k)(y) in Eq. 5.17 results in

∇Q̂(k)(y) = J tr
h (y)

(
∇fk(y)|

h(y)

)
gk (h(y)) (5.87)

= gk (h(y))∇fk (h(y)) (5.88)

= ĝk(y)∇f̂k(y), (5.89)

where Eq. 5.88 again follows from the multidimensional chain rule, i.e. from the equa-

tion ∇fk (h(y)) = J tr
h (y)

(
∇fk(y)|h(y)

)
, and where Eq. 5.89 follows from substituting

Eqns. 5.78-5.79 into Eq. 5.88. We conclude that re-parameterizing the expression for

an individual content as Q(k) (h(y)) is equivalent to forming an individual content

from the re-parameterized functionals fk (h(y)) and gk (h(y)).

The same holds for the individual co-contents, as can be verified by substituting
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h(y) for y in Eq. 5.19, resulting in

R(k) (h(y)) = fk (h(y))gk (h(y)) − Q(k) (h(y)) (5.90)

R̂(k)(y) = f̂k(y)ĝk(y) − Q̂(k)(y), (5.91)

i.e. the re-parameterized co-content satisfies Eq. 5.19. As was previously mentioned,

Eqns. 5.17 and 5.19 imply Eq. 5.18, and we conclude that Q (h(y)) and R (h(y)) are a

valid content and co-content corresponding to f (h(y)) and g (h(y)). From Eq. 5.80,

the image of h(y) is R
M , and we conclude that the f(y)-Q(y) and g(y)-R(y) contours

are invariant to re-parameterization by h(y).

5.1.5 Some example contours

It is worth pointing out that that even in the case where f(y) and g(y), as well the

corresponding content Q(y) and co-content R(y), are everywhere differentiable, a

fairly broad class of contours can result. An example of this is depicted in Figs. 5-

1, 5-2 and 5-3, which illustrate the relevant contours for the case where individual

content and co-content corresponding to the 1-dimensional functions

fk(y) =





(yk − 1)2, yk ≥ 1

0, −1 ≤ yk < 1

−(yk + 1)2, yk < −1

(5.92)

and

gk(y) =





1, yk ≥ 1

sin
(

π
2
yk

)
, −1 ≤ yk < 1

−1, yk < −1

(5.93)

have been computed as

Q(k)(y) =






(yk − 1)2, yk ≥ 1

0, −1 ≤ yk < 1

(yk + 1)2, yk < −1

(5.94)
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Figure 5-1: Plots comparing fk(yk), gk(yk) and yk, as pertaining to Eqns. 5.92-5.95.

and

R(k)(y) = 0. (5.95)

In particular Fig. 5-1 illustrates that the fk(y)-gk(y) contour is not representable as

a function, Fig. 5-2 depicts a fk(y)-Q(k)(y) contour that is not differentiable, and

Fig. 5-3 illustrates that the gk(y)-R(k)(y) contour has compact support.

It is illustrative to see the progression from contours that represent functional

relationships to those that do not. In particular, invertibility of the fk(yk)-gk(yk)

contour appears to be related to convexity of the fk(yk)-Q
(k)(yk) contour, and in turn

to whether the gk(yk)-R
(k)(yk) represents a functional relationship, as is depicted

by the ensemble of contours in Fig. 5-4. Referring to this figure, we emphasize that

the irregularities in certain of the gk(yk)-R
(k)(yk) contours are not artifacts due to
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Figure 5-2: Plots comparing fk(yk), Q(k)(yk) and yk, as pertaining to Eqns. 5.92-5.95.
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the plotting routines used, but rather are a result of the contour smoothly changing

direction and turning back on itself as yk increases.

Figure 5-4: (a) Example contours progressing from invertible to noninvertible f(y)-
g(y) relationships. (b) Corresponding f(y)-Q(k)(y) contours. (c) Corresponding g(y)-
R(k)(y) contours.

5.1.6 Functionally-related f(y)-Q(y) and g(y)-R(y) contours

We have established the concepts of OVS content and co-content by specifying a

set of conditions in Eqns. 5.17-5.19 that must be obeyed. In the case where the

individual contents Q(k)(y) are differentiable and functionally dependent on fk(y) or

the co-contents R(k)(y) are differentiable and functionally dependent on gk(y), it is

possible to use the defining equations 5.17-5.19 to begin with a pre-specified Q(k)(y)

or R(k)(y) and write functionals fk(y) and gk(y) for which Q(k)(y) or R(k)(y) are

well-defined.

The particular sense in which we demonstrate this is to begin with a sum of

individual contents, denoted

Q(k,...,k+ℓ)(y) =

ℓ∑

i=k

Q(i)(y), (5.96)

with each individual content Q(i)(y) in the sum being differentiable and individually
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depending only on the entries of y in the range yk, . . . ,yk+ℓ, and with the equation

fi(y) = yi, i = k, . . . , k + ℓ (5.97)

formally establishing the functional dependency of Q(k,...,k+ℓ)(y) on fk(y), . . . , fk+ℓ(y).

Then combining Eqns. 5.17 and 5.97 results in

gi(y)e(i) = ∇Q(i)(y), i = k, . . . , k + ℓ (5.98)

and substituting this into Eq. 5.96 results in

∇Q(k,...,k+ℓ)(y) =




...

0

gk(y)
...

gk+ℓ(y)

0
...




. (5.99)

We conclude that given a differentiable content Q(k,...,k+ℓ)(y) that is functionally de-

pendent on fk, . . . , fk+ℓ, we may obtain valid functions f(y) and g(y) using the con-

dition in Eq. 5.97, in addition to

gi(y) =
∂Q(k,...,k+ℓ)(y)

∂yi

, i = k, . . . , k + ℓ. (5.100)

Furthermore, as Q(k,...,k+ℓ)(y) depends only on yk, . . . ,yk+ℓ, each functional gi(y)

in Eq. 5.100 will depend only on these values as well, and we say that gi(y), i =

k, . . . , k + ℓ is a function of fi(y), i = k, . . . , k + ℓ.

Likewise, given a sum of co-contents defined as

R(k,...,k+ℓ)(y) =
ℓ∑

i=k

R(i)(y), (5.101)
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with each individual co-content R(i)(y) in the sum being differentiable and individ-

ually depending only on the entries of y in the range yk, . . . ,yk+ℓ, and with the

functional dependence of each R(i)(y) on gi(y) being written formally as

gi(y) = yi, i = k, . . . , k + ℓ (5.102)

then a function f(y) corresponding to a well-defined co-content R(k,...,k+ℓ)(y) may be

obtained by satisfying

fi(y) =
∂R(k,...,k+ℓ)(y)

∂yi

, i = k, . . . , k + ℓ. (5.103)

Furthermore, each functional fi(y) in Eq. 5.103 will depend only on yk, . . . ,yk+ℓ, and

we say that fi(y), i = k, . . . , k + ℓ is a function of gi(y), i = k, . . . , k + ℓ.

We have just demonstrated that a differentiable Q(y) being functionally dependent

on f(y) results in a function g(y) that is functionally dependent on f(y), and likewise

that a differentiable R̂(y) being functionally dependent on ĝ(y) results in a function

f̂(y) that is functionally dependent on ĝ(y). A pertinent question is that of how

these are related to the co-content R(y) corresponding to f(y) and g(y), as well as

to the content Q̂(y) corresponding to f̂(y) and ĝ(y). Indeed, these quantities are

straightforward to define using Eq. 5.19 as

R(i)(y) = yigi(y) − Q(i)(y), i = k, . . . , k + ℓ (5.104)

and

Q̂(i)(y) = f̂i(y)yi − R̂(i)(y), i = k, . . . , k + ℓ. (5.105)

However, the (gk(y), . . . , gk+ℓ(y))-R(k,...,k+ℓ)(y) and (fk(y), . . . , fk+ℓ(y))-Q(k,...,k+ℓ)(y)

surfaces will not generally exhibit a functional relationship, as was seen with the line

contours in Fig. 5-4.

A multidimensional example illustrating this issue is depicted in Figs. 5-5, 5-6

and 5-7. In particular, Fig. 5-5 depicts surfaces for which Q(k,k+1)(y) is a function
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of (fk(y), fk+1(y)), (gk(y), gk+1(y)) is a function of (fk(y), fk+1(y)), and for which

R(k,k+1)(y) happens also to be a function of (gk(y), gk+1(y)). In Fig. 5-6, dimples are

incrementally added to the original (fk(y), fk+1(y))-Q(k,k+1)(y) surface, resulting in

a final (gk(y), gk+1(y))-R(k,k+1)(y) surface that no longer exhibits a functional rela-

tionship. Fig. 5-7 depicts the final surface in greater detail, along with the associated

functional relationship from (fk(y), fk+1(y)) to (gk(y), gk+1(y)).
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Figure 5-5: Example surfaces for which Q(k,k+1)(y) and (gk(y), gk+1(y)) are func-
tions of (fk(y), fk+1(y)). Top: vector field representing the two dimensional function
from (fk(y), fk+1(y)) to (gk(y), gk+1(y)). Bottom left: surface representing the func-
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R(k,k+1)(y) surface, obtained using, e.g., Eq. 5.104.
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Figure 5-6: Left column: surfaces for which Q(k,k+1)(y) is a function of
(fk(y), fk+1(y)). Right column: corresponding parametric (gk(y), gk+1(y))-
R(k,k+1)(y) surfaces, obtained using, e.g., Eq. 5.104.
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Figure 5-7: Example surfaces corresponding to the bottom row in Fig. 5-6. Top:
vector field representing the two dimensional function from (fk(y), fk+1(y)) to
(gk(y), gk+1(y)). Bottom left: surface representing the function from (fk(y), fk+1(y))
to Q(k,k+1)(y). Bottom right: parametric (gk(y), gk+1(y))-R(k,k+1)(y) surface, ob-
tained using, e.g., Eq. 5.104.
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5.2 Connections with optimization theory

In Thm. 5.1, stationarity of OVS content Q(y) and co-content R(y) was established

for any point y⋆ where the functions f(y⋆) and g(y⋆) lied in orthogonal vector sub-

spaces A and B. Paraphrasing the theorem, any small movement δu(Q) for which

f
(
y⋆ + δu(Q)

)
remained in A was shown to be a point of zero slope for Q(y), and

any small movement δu(R) for which g
(
y⋆ + δu(R)

)
remained in B was shown to be

a point of zero slope for R(y).

In this sense, Thm. 5.1 related f(y) to Q(y) and g(y) to R(y), and it is this pair

of relationships that bears a resemblance to dual cost functions in certain constrained

optimization problems. As the theorem does not involve minimization, maximization,

or any notion of convexity or concavity, we take a moment to emphasize the occa-

sions where the variational principle coincides with common classes of optimization

problems. The intent of this section is to draw on a the rich body of work in the field

of optimization theory to gain further insight into the meaning behind content and

co-content in these situations, utilizing a few specific examples as a prelude to future

research. We will focus attention to functions f(y) and g(y) that are continuous

and everywhere differentiable, although Thm. 5.1 does not require these properties

at every point y.

We proceed by making the following observation pertaining to the use of Thm. 5.1

in cases where it is known that every stationary point of Q(y) for which f(y) ∈ A

is a global minimum, and where every stationary point of R(y) for which g(y) ∈ B

is also a global minimum. Then in these cases we have that any vector y⋆ satisfying

f(y⋆) ∈ A and g(y⋆) ∈ B is a solution to both of the following optimization problems:

min
y∈RM

Q(y) (5.106)

s.t. f(y) ∈ A
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and

max
y∈RM

−R(y) (5.107)

s.t. g(y) ∈ B.

Furthermore for any such vector y⋆, Thm. 5.1 implies that the optimal cost for (5.106)

is equal to the optimal cost for (5.107).

Indeed the form of these problems, in addition to the equivalence of their cost

functions, is reminiscent of the form of dual problems in optimization theory. Two

major distinctions, however, are that the two problems are coupled together through

the variable y, and that there is no guarantee a priori that the functions f(y) and g(y)

will generally be dual in any traditional sense. Motivated by this, Figs. 5-8 through

5-11 depict some example f(y)-g(y) contours that result in standard, uncoupled dual

optimization problems that are dual in the sense of monotropic optimization. [32] The

assumption is that the functions f(y) and g(y) used in generating the contours are

everywhere differentiable, even though many of these contours have edges that are not

smooth. An example where smooth functions were used in generating non-smooth

contours was depicted in Figs. 5-1 through 5-3.

The uncoupling of the problems specifically occurs by taking advantage of the

fact that neither of f(y) and g(y) is required to be invertible. For example, in the

contours in Fig. 5-8 depicting primal equality constraints and dual linear cost, the

associated variable y does not play a role in the primal problem and as such has a

dual cost contribution that is uncoupled.

5.3 Dynamics of OVS content and co-content

As was initially discussed in [26] and emphasized in [19, 40], an electrical network

containing 2-terminal resistors, voltage sources, and linear capacitors has “shrinking

co-content,” i.e. the sum of the individual co-contents of the memoryless components

is nonincreasing with respect to time. This observation has served as a foundation for
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Figure 5-8: f(y)-g(y) contours corresponding to primal equality constraints and dual
linear cost terms; and vice-versa.
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Figure 5-9: f(y)-g(y) contours corresponding to primal inequality constraints and
dual inequality constraints with linear cost.
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(a)

(b) (c)

Figure 5-10: f(y)-g(y) contours corresponding to primal and dual scaled power law
cost terms, useful for example in constructing convex p-norms.
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Figure 5-11: f(y)-g(y) contours corresponding to primal absolute value cost terms
and dual inequality constraints and vice-versa.
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various nonlinear electrical network designs aimed at performing linear and nonlinear

optimization and image processing, e.g. [9,19,22,40]. In these applications, in addition

to others too numerous to cite, co-content not only acted as a cost function, but also

played the role of a Lyapunov function in facilitating stability analysis of the systems.

In developing OVS content and co-content, we have been careful to provide formu-

lations for which a concept of time is not required. However in designing conservative

systems having dynamic behavior, it may be of interest to use content and co-content

in describing their time evolution. Within this context, we present a theorem resem-

bling the shrinking co-content principle in [40] that embodies the spirit of that result

within the context of OVS content and co-content.

Pertinent to this, we are concerned with functions

f : R
M → R

L (5.108)

and

g : R
M → R

L (5.109)

that are continuous and everywhere differentiable, and that have valid associated

total content

Q : R
M → R (5.110)

and co-content

R : R
M → R, (5.111)

i.e. that satisfy Eqns. 5.17-5.19.

Theorem 5.2 (Principle of shrinking OVS content). This theorem pertains to the

functions in Eqns. 5.108-5.111, in addition to two orthogonal vector spaces A ⊆ R
L

and B ⊆ R
L, as well as two augmented vector spaces Aaug ⊆ R

K+L and Baug ⊆ R
K+L

that satisfy the following properties:

(1) Aaug is orthogonal to Baug, under the standard inner product on R
K+L.
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(2) For an arbitrary vector x ∈ R
L,


 w

x


 ∈ Aaug ⇔ w ∈ A. (5.112)

(3) 
 w

0(K)


 ∈ Baug ⇔ w ∈ B, (5.113)

with 0(K) denoting the length-K column vector of zeros.

Then for any differentiable trajectory y : R → R
L that satisfies


 f(y(t))

x(t)


 ∈ Aaug (5.114)

and 

 g(y(t))

x′(t)



 ∈ Baug (5.115)

for some differentiable x : R → R
K , the total content Q(y(t)) is nonincreasing with

respect to t, i.e.
dQ(y(t))

dt
≤ 0. (5.116)

Given a fixed value of t = t⋆, Eq. 5.116 is satisfied with equality if and only if

f(y(t⋆)) ∈ A and g(y(t⋆)) ∈ B, i.e. if and only if the conditions required for ap-

plying Thm. 5.1 hold.

Exchanging the roles of f and g, A and B, and Aaug and Baug, a dual theorem

pertinent to shrinking co-content R(y(t)) can be stated as well.

Proof. We begin by noting that Eq. 5.114 implies that




df(y(t))
dt

dx(t)
dt


 ∈ Aaug. (5.117)

As Aaug and Baug are orthogonal vector subspaces, the following may be written using
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Eqns. 5.115 and 5.117:

L∑

ℓ=1

dfℓ(y(t))

dt
gℓ(y(t)) +

K∑

k=1

(
dxk(t)

dt

)2

= 0. (5.118)

Applying the multidimensional chain rule results in

L∑

ℓ=1

gℓ(y(t))
dfℓ(y(t))

dt
=

L∑

ℓ=1

gℓ(y(t)) (∇fℓ(y(t)))tr y′(t), (5.119)

and substituting in the expression for individual content in Eq. 5.17, we obtain

L∑

ℓ=1

gℓ(y(t))
dfℓ(y(t))

dt
=

L∑

ℓ=1

(
∇Q(ℓ)(y(t))

)tr
y′(t) (5.120)

=

L∑

ℓ=1

dQ(ℓ)(y(t))

dt
, (5.121)

with Eq. 5.121 again following from the multidimensional chain rule. The right-hand

side of this equation is equal to the total content, and we have

L∑

ℓ=1

gℓ(y(t))
dfℓ(y(t))

dt
=

dQ(y(t))

dt
. (5.122)

Substituting Eq. 5.122 into Eq. 5.118 results in

dQ(y(t))

dt
+

K∑

k=1

(
dxk(t)

dt

)2

= 0, (5.123)

and we conclude that
dQ(y(t))

dt
≤ 0. (5.124)

With this in place, the conditions for which

dQ(y(t⋆))

dt
= 0 (5.125)

follow in a straightforward way from requirements (1) and (2) in the statement of the
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theorem. In particular,

dQ(y(t⋆))

dt
= 0 ⇔


 g(y(t⋆))

0(K)


 ∈ Baug ⇔ g(y(t⋆)) ∈ B, (5.126)

and f(y(t⋆)) ∈ A by construction.

Some example subsystems indicating the use Thm. 5.2 are depicted in Fig. 5-12.

Referring to this figure, the interpretations of the functions f(y) and g(y) is that they

are nonlinearities composing an image representation of subsystems. For the systems

in Fig. 5-12(a) and (c), the orthogonal vector subspaces A and B are realized using

conjugate signal-flow graphs with the convention that inputs to Interconnection B

are negated with respect to outputs from Interconnection A. The systems in Fig. 5-

12(b) and (d) have interconnecting structures that implement the augmented vector

subspaces Aaug and Baug. Under the interpretation that the integrator boxes are time

integrals, the respective total content and co-content for these systems, a subsystem

of which is depicted in each of Figs. 5-12(b) and (d), is nonincreasing with respect to

time.
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Figure 5-12: (a) Conservative subsystem for which dQ(y(t⋆))/dt = 0. (b) Subsystem
with dQ(y(t⋆))/dt ≤ 0 and that becomes (a) in steady state. (c) Conservative sub-
system for which dR(y(t⋆))/dt = 0. (d) Subsystem with dR(y(t⋆))/dt ≤ 0 and that
becomes (c) in steady-state.
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Chapter 6

Examples and conclusions

This chapter contains a collection of examples, with the intent being to illustrate

the use of various aspects of the framework presented in this thesis. In doing this,

an emphasis will be placed on providing insight into potential ways in which the

framework can be applied. With this in mind, certain of the applications may be

viewed as illustrative examples, while others, such as the system for traffic density

control in Section 6.5, represent a way of solving a problem that appears to be new.

A key goal of the thesis has been to unify various signal processing systems within

a cohesive framework. From this perspective, the examples in this chapter serve also

as concluding remarks for the thesis, providing additional context for the elements of

the framework and suggesting potential in future applications.

6.1 Inversion of feedback-based compensation sys-

tems

The example in this section illustrates the use of the results in Chapter 2 pertaining

to system inversion. The specific context is that we are given a system containing

an invertible nonlinearity that has been approximately compensated for by closing a

feedback loop around it. From the output of this compensated system, we wish to

design a system that provides an exact inverse, i.e. that can be used to obtain the
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input signal to the compensated system.

Fig. 6-1 illustrates the formulation of the problem. As was discussed in, e.g. [5], it

is sometimes possible to compensate for a memoryless nonlinear system f represented

as in Fig. 6-1(a) by projecting the associated error forward in time to future samples

using, e.g. a compensating system that takes the form of Fig. 6-1(b). The function g

in Fig. 6-1(b), sometimes not written explicitly in this class of compensating systems,

is a memoryless nonlinearity that may for example represent quantization in the

processing or damping in feeding back the error. Under certain conditions on f , the

spectrum of d[n] due to the error will tend to have a highpass response, and if the

input signal c[n] is sufficiently oversampled so that most of its energy falls in a low

frequency band for which the contribution from the error is relatively minor, a simple

lowpass system as in Fig. 6-1(c) can be used for reconstruction.1

Using the results in Chapter 2 related to system inversion, path reversal can be

performed on the path from c[n] to d[n] in Fig. 6-1(b), resulting in the behaviorally-

equivalent nonlinear reconstruction system in Fig. 6-1(d). The sense of behavioral

equivalence is specifically that every c[n]-d[n] signal pair consistent with the system

in Fig. 6-1(b) is a c′[n]-d′[n] signal pair consistent with the system in Fig. 6-1(d),

i.e. they are inverses. As the system in Fig. 6-1(d) is a nonlinear feedforward system,

it is guaranteed to be stable.

Figs. 6-1, 6-3 and 6-4 illustrate the use of the systems in Fig. 6-1 in compen-

sating for a nonlinearity and performing approximate, lowpass; and exact, nonlinear

reconstruction. The signal c[n] is a trumpet solo recorded over background accom-

paniment at 44.1 kHz, oversampled by a factor of 16 using the function resample in

GNU Octave, which in doing so uses a length-1160 FIR, Kaiser interpolation filter

having 60dB stopband rejection, as specified by the heuristic method in [29]. For this

example, the nonlinear functions f and g depicted in Fig. 6-2 are used. The function

g represents quantization in the feedback loop, and the function f is the undesired

nonlinearity in the system. In systems such as power amplifiers, the function f may

1Specific conditions on f for which the associated error in the compensating system has a highpass
response is not the focus here. The assumption is simply that the compensating and reconstruction
systems in Fig. 6-1(b)-(c) are useful within the context of whatever specific application is at hand.
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(a)

(d)

(c)

(b)

Figure 6-1: (a) Original system. (b) Compensating system. (b) Lowpass approximate
reconstruction system. (c) Nonlinear exact reconstruction system.

often be more benign than the one depicted in Fig. 6-2. The function f was chosen

in this example to illustrate the effectiveness of the technique with regard to systems

having a fairly severe nonlinearity.

The original signal c[n] and distortion error signal f(c[n])− c[n] pertaining to this

example are depicted in Fig. 6-3. Using the 2-norm as an indication of closeness, we

have for this example that

||f(c[n]) − c[n]|| ≈ 37.8. (6.1)

Performing approximate lowpass reconstruction using the system in Fig. 6-1(c) with

α = 0.6, which was experimentally determined to correspond to the minimum 2-norm

reconstruction error, resulted in

||ĉ[n] − c[n]|| ≈ 11.7. (6.2)

Performing exact reconstruction using the system in Fig. 6-1(d) resulted in an error

signal with a 2-norm that essentially reflected the numerical error in GNU Octave:

||c′[n] − c[n]|| ≈ 1.27 × 10−14. (6.3)

The error signals for the lowpass reconstruction method and the nonlinear reconstruc-
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Figure 6-2: Nonlinear characteristics for the systems f and g in Fig. 6-1.

Figure 6-3: (left) Original signal c[n]. (right) Distortion error signal f(c[n]) − c[n].

tion method obtained using the results in Chapter 2 are depicted in Fig. 6-4.

6.2 A generalized Tellegen’s theorem for signal-

flow graphs

The results in Chapter 4 pertaining to the creation of conservative, linear signal-flow

graph interconnections can be used to generalize an existing theorem for signal-flow

graph nodes that resembles Tellegen’s theorem for electrical networks. This theorem,
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Figure 6-4: (left) Lowpass reconstruction error signal ĉ[n] − c[n]. (right) Nonlinear
reconstruction error signal c′[n] − c[n].

which is commonly referred to as “Tellegen’s theorem for signal-flow graphs,” has

been used in deriving various signal-flow graph theorems, including those related to

transposition and calculation of parameter sensitivities. [3, 10, 13, 16, 28, 33] The the-

orem states that for two topologically-equivalent signal-flow graphs, with P denoting

the number of network nodes and M (k) denoting the number of inputs to a particular

node k, the following equation is satisfied:

P∑

k=1

M (k)∑

j=1

(
w′(k)v

(k)
j − w(k)v

′(k)
j

)
= 0. (6.4)

In Eq. 6.4, w(k) and v
(k)
j respectively denote the node variables and node inputs

in the first network, and w′(k) and v
′(k)
j respectively denote the node variables and

node inputs in the second network. The convention is specifically that the variables

associated with a single node k are related according to

w(k) =

M (k)∑

j=1

v
(k)
j (6.5)
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and

w′(k) =
M (k)∑

j=1

v
′(k)
j (6.6)

in the first and second networks, respectively, and that the node inputs may generally

be connected to branches or to variables that are external to the system. As Eqns. 6.5-

6.6 and the proof of Eq. 6.4 in, e.g., [28] do not involve specification of the branch

functions or subsystems, Tellegen’s theorem for signal-flow graphs can be applied

to a wide variety of networks including those that have nonlinear and time-varying

branches.

Using the results pertaining to conditions for conservation in Chapter 4, we de-

rive a generalization of the theorem applicable to signal-flow graphs where the nodes

are allowed to have inputs and outputs with non-unity gains. As with the original

theorem, the branches that connect the nodes will be allowed to be arbitrary. There

will again be two networks, although this time the networks will not be topologically

equivalent but rather topologically complementary, i.e. the number of outputs from

a particular node in the first network will equal the number of inputs to the corre-

sponding node in the second network, and vice-versa. In particular, the relationship

between a corresponding pair of generalized nodes will be that they are transposes,

with the associated equations being

w
(k)
j = d

(k)
j

M (k)∑

i=1

c
(k)
i v

(k)
i , j = 1, . . . , N (k) (6.7)

and

w
′(k)
i = c

(k)
i

N(k)∑

j=1

d
(k)
j v

′(k)
j , i = 1, . . . , M (k). (6.8)

In Eqns. 6.7-6.8, M (k) denotes the number of inputs to a specific node k in the first

network, which equals the number of outputs from node k in the second, and N (k)

denotes the number of outputs from a specific node k in the first network, which equals

number of inputs to node k in the second. The variables w
(k)
j and w

′(k)
i represent node

outputs and the variables v
(k)
i and v

′(k)
j represent node inputs in the first and second
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networks, respectively. In the first network, a given generalized node k has input

gains specified by c
(k)
i and output gains specified by d

(k)
j , and in the second network

the roles of these variables are exchanged. Fig. 6-5 depicts the relationships between

these variables for a pair of nodes in the two networks.

Figure 6-5: A pair of nodes in the first (a) and second (b) networks as respectively
described by Eqns. 6.7 and 6.8.

Theorem 6.1 (Generalized Tellegen’s theorem for signal-flow graphs). Consider a

pair of topologically-complementary signal-flow graphs described by Eqns. 6.7-6.8 and

depicted in Fig. 6-5, and that contain a total of P generalized nodes in each. For any

set of values taken on by the node inputs and node outputs in the two networks,

P∑

k=1




M (k)∑

i=1

w
′(k)
i v

(k)
i −

N(k)∑

j=1

w
(k)
j v

′(k)
j


 = 0. (6.9)

Proof. We proceed by demonstrating that the innermost expression in Eq. 6.9 evalu-

ates to zero, in the sense that

M (k)∑

i=1

w
′(k)
i v

(k)
i −

N(k)∑

j=1

w
(k)
j v

′(k)
j = 0, k = 1, . . . , P. (6.10)
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We do this by defining an OVS that corresponds to the specific pair of nodes k

pertinent to Eq. 6.10 and that is conservative over the behavior of the nodes, as

specified in Eqns. 6.7-6.8.

The OVS is defined as U =
(

R
2M (k)+2N(k)

, 〈., .〉,O
)
, with 〈., .〉 denoting the stan-

dard inner product on R
2M (k)+2N(k)

. The interpretation is that the node inputs and

node outputs are coefficients in a basis expansion of a vector in R
2M (k)+2N(k)

, in the

sense that

[
v

(k)
1 , . . . , v

(k)

M (k), w
(k)
1 , . . . , w

(k)

N(k), w
′(k)
1 , . . . , w

′(k)

M (k), v
′(k)
1 , . . . , v

′(k)

N(k)

]tr

∈ R
2M (k)+2N(k)

.

(6.11)

In specifying the elements of the organization O = (C,Dp,Dc), we define K(k) =

M (k) + N (k) and write

C =
1

2


 IK(k) 0K(k)

0K(k) IK(k)


 (6.12)

Dp =
{

span
(
e(1), e(K(k))

)
, . . . , span

(
e(K(k)+1), e(2K(k))

)}
(6.13)

Dc =
{

span
(
e(1), . . . , e(K(k))

)
, span

(
e(K(k)+1), . . . , e(2K(k))

)}
. (6.14)

The associated quadratic form Q(x) = 〈Cx,x〉 is written as

Q(x) =

M (k)∑

i=1

w
′(k)
i v

(k)
i −

N(k)∑

j=1

w
(k)
j v

′(k)
j . (6.15)

Substituting in Eqns. 6.5-6.6, we obtain

Q(x) =
M (k)∑

i=1

N(k)∑

j=1

c
(k)
i d

(k)
j v

′(k)
j v

(k)
i −

N(k)∑

j=1

M (k)∑

i=1

d
(k)
j c

(k)
i v

(k)
i v

′(k)
j

= 0, (6.16)

i.e. U is conservative over the behavior of a pair of nodes in the networks. Eq. 6.10

in turn holds, as does Eq. 6.9.

We can alternatively prove this theorem using the condition for conservation in
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Chapter 4. Specifically, negating the inputs to each generalized node in Fig. 6-5(b),

we observe that the gain matrix for any such node is the negative transpose of the

gain matrix for the corresponding node in Fig. 6-5(a), and the two nodes form a con-

servative interconnection in a canonical conjugate basis with the v
′(k)
j being negated,

i.e. Eq. 6.10 holds.

As is depicted in Fig. 6-6, Tellegen’s theorem for signal flow graphs can be seen

as a special case of Thm. 6.1 by setting N (k) = M (k) and c
(k)
j = d

(k)
i = 1 in Eqns. 6.7-

6.8, and by bringing out one of the node outputs in each node pair to obtain a

corresponding pair of conventional signal-flow graph nodes.

Figure 6-6: (a) First and (b) second network pertaining to Tellegen’s theorem for
signal-flow graphs, as a special case of Thm. 6.1.

6.3 The set of lossless wave-digital building blocks

This example uses the results in Chapter 4 regarding the creation of conservative,

linear interconnections, in combination with the results in Chapter 3 pertaining to

canonical conjugate bases and the results in Chapter 2 pertaining to linear trans-

forming flow-graphs, to prescribe a method for creating an arbitrary element from

the set of lossless wave-digital building blocks. The conservation principle for the
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wave-digital class of structures, which are known to have exceptional stability and

robustness properties, was stated in [17]. Using the notation in [17], it was written

formally as
K∑

k=1

pk = 0, (6.17)

with pk denoting the so-called instantaneous pseudopower absorbed by a particular

wave-digital building block. For an n-port building block, the absorbed pseudopower

was specifically written as

p =
n∑

v=1

(a2
v − b2

v)gv, (6.18)

with gv denoting the admittance at a particular port v. In designing the lossless

portion of wave-digital structures, the frequently-used strategy has been to refer to a

table of commonly-used of building blocks, as in [18]. Two such blocks were discussed

in the example in Subsection 3.2.3.

A problem with designing wave-digital structures using a limited collection of

lossless building blocks is the inherent possibility of overlooking a wide range of inter-

connection behaviors and associated filter topologies. We address this by using the

techniques in Chapter 4 to formulate a technique for obtaining an arbitrary linear

wave-digital building block that is lossless for a pre-specified set of port admittances.

The strategy, which is depicted in Figs. 6-7 and 6-8, follows in a straightforward

way from the condition for strong conservation in Chapter 4. In particular, the gen-

eral approach is to begin with a conjugate-separable pair of linear interconnections

where the gain matrix for one is arbitrary and the gain matrix for the other is its

negative transpose. This pair of interconnections is strongly conservative in a canoni-

cal conjugate basis, and by applying appropriate two-input, two-output transforming

systems having branch gains that are specified in terms of the desired port admit-

tances, an interconnecting system having the desired behavior can be obtained. The

specific transforming systems corresponding to a desired port impedance gk are de-

picted in Fig. 6-7(a) for the two two possible input-output configurations that may

be encountered. These structures, which were obtained from the partial taxonomy of
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Figure 6-7: (a) Systems for transforming a conservation law in a canonical conjugate
basis to a wave-digital conservation law. (b) Transforming systems coupled to a
strongly-conservative interconnection.

transforming systems in Fig. 2-9, are joined to the terminal variables of the conjugate-

separable graphs as depicted in Fig. 6-7(b).

An issue in using the approach in Fig. 6-7 is that the technique will generally result

in delay-free loops, but as a consequence of the relationship between conservation

and the gain matrices for conjugate signal-flow graph interconnections, the loop can

always be factored out. In particular, Fig. 6-8 illustrates a method for eliminating

these. Referring to this figure, the process involves replacing the delay-free loop with

a multiple-input, multiple-output system that is computable. This is done by writing

an equation relating the variables in the loop and solving for the variables that are

outputs. In particular, the structure of the transforming systems in Fig. 6-7(a) and

the relationship between the internal gains in the conjugate-separable interconnecting

structures implies that any such loop can be replaced with a four-input, four-output
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linear system implementing




g(A)

h(A)

g(B)

h(B)




=
1

1 + (Gk,ℓ)2




−Gk,ℓ 1 −1 Gk,ℓ

1 Gk,ℓ −Gk,ℓ (Gk,ℓ)
2

−1 −Gk,ℓ Gk,ℓ 1

Gk,ℓ (Gk,ℓ)
2 1 −Gk,ℓ







i(A)

f (A)

i(B)

f (B)




, (6.19)

with the naming convention for the variables being as depicted in Fig. 6-8(a). It is

furthermore noted that this technique will not introduce additional delay free loops,

as its only affect on G and −Gtr is to set an entry in each to zero.

It is an illustrative exercise to begin with an interconnection implementing

â1 = â2 (6.20)

b̂1 = −b̂2, (6.21)

which is strongly conservative under the interpretation that the variables âk and

b̂k represent coefficients of vectors in conjugate subspaces for an OVS, and then to

apply the technique in this section to obtain a two-input, two-output wave-digital

interconnection having arbitrary port impedances.

6.4 Linearly-constrained p-norm minimization

This example illustrates the use of the techniques in Chapters 4-5 in writing an

algorithm for linearly-constrained, convexp-norm minimization. We are specifically

interested in solving

min
x∈RK

1

p
||x||pp

s.t. Ax = b, (6.22)

with A being an M × K matrix, and with p > 1.

In doing this, we define functions f : R
K+M → R

K+M and g : R
K+M → R

K+M ,
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(a) (b)

Figure 6-8: (a) Identification of a delay-free loop in the system in Fig. 6-7(b). (b)
Replacement of the delay free loop with a computable subsystem.
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and use the relationships in Fig. 5-10 and Thm. 5.1 to write the desired conditions

for content and co-content stationarity:

fk(y) =





|yk|

1
p−1 , yk ≥ 0

−|yk|
1

p−1 , yk < 0
, k = 1, . . . , K (6.23)

fk+K(y) = bk, k = 1, . . . , M (6.24)

g(y) = y (6.25)

VA = range







 IK

A







 ⊆ R
K+M (6.26)

VB = V ⊥
A ⊆ R

K+M (6.27)

f(y) ∈ VA (6.28)

g(y) ∈ VB. (6.29)

A system depicting Eqns. 6.23-6.29 is illustrated in Fig. 6-9(a). Referring to this

figure, the conservative interconnecting systems have been created using the technique

in Chapter 4 for creating strongly-conservative systems. Making the substitution in

Fig. 5-12(c)-(d), we obtain a dynamic system whose co-content decreases with respect

to time until it reaches a minimum. As the co-content corresponds to the negative

of the dual cost and we are dealing with a convex optimization problem, this primal

cost, i.e. content, will be minimized by this system as well.

Illustrating the dynamics of this system with an example, we select

A =


 −1.6 −0.8 2 −0.8 −0.4

1.3 −0.1 −1 1 0.5


 (6.30)

and

b =


 1.5

1.4


 . (6.31)

Fig. 6-10 depicts coefficient trajectories for various values of p that were obtained

by performing a discrete-time simulation of the system in Fig. 6-9(b), with A and x

being defined as in Eqns. 6.30-6.31. In computing the discrete-time simulation, the
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Figure 6-9: (a) Desired conservative system. (b) Co-content-minimizing system that
becomes (a) in steady state.

approach was to fix the constant of integration and finely discretize the time axis,

subsequently approximating the integrator with a first-order accumulator followed by

a single-sample delay to avoid delay-free loops. The net result was a system where

the integrator was replaced with a causal system of the form

H(z) = ε
z−1

1 − z−1
, (6.32)

with increasingly fine time discretization corresponding to smaller values of ε. For

the plots in Fig. 6-10, ε = 0.005 was chosen.

6.5 A distributed system for vehicle density con-

trol

In this example, the line of reasoning that was used in the example in Section 6.4

is applied to the problem of designing a system for controlling a chain of N vehicles
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Figure 6-10: Trajectories of x as minimum-||x||p solution is computed. Top panel:
p = 1.05, middle panel: p = 1.3, bottom panel: p = 2.
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following behind a leading vehicle. The key goal is for each to maintain a target

following distance, pre-selected to be both safe and to result in a desired traffic density,

and for any perturbations in the vehicle positions to be dealt with gracefully while

avoiding collisions with others in the chain. If a chain of vehicles is assembled where

each operates under a car-following based system for adaptive cruise control, growing

oscillatory behavior usually results. [20] The goal here is to create a distributed system

that behaves as desired while avoiding these kind of oscillations.

This example continues the theme of discussion in Subsection 4.4.4 about identi-

fying a conservation principle in a distributed vehicle control system. However, the

sequence of development in this section is to begin with a problem statement and,

using the framework in this thesis, arrive at a conservative distributed system that

offers a solution that is complementary to the approach in [20].

With a translational offset removed, the positions of the vehicles in the chain will

be denoted x0, . . . , xN−1, and the distance between the (k−1)st and kth vehicles will

be denoted dk. The convention will be that the position of the leading vehicle is fixed

to x0 = 0, and that the position axis moving backwards away from the leading vehicle,

through the chain of vehicles that are hopefully following it, will be increasing. A

negative relative velocity of a specific vehicle will accordingly bring it closer to the

lead, and a positive relative velocity will take it further from the lead.

The overall system will be designed to minimize a sum of distance penalties Q(dk),

where the penalty function Q is selected to take a minimum value at the target

following distance. The minimization involved in doing this is written formally as

min
x0,...,x9,d1,...,d9

N−1∑

k=1

Q(dk)

s.t. x0 = 0 (6.33)

dk = xk − xk−1, k = 1, . . . , N − 1. (6.34)

Using the general approach in Section 6.4, a content-minimizing system can be de-

signed for finding a local minimum of the optimization problem formulated in (6.33).

The resulting system for N = 10 is depicted in Fig. 6-11. Referring to this figure,
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Figure 6-11: Interconnected system of vehicles designed to minimize the distance
penalty in (6.33), for N = 10. The variables available to a particular vehicle k are
dk, xk and dk+1 for k = 1, . . . , 8, and dk and xk for k = 9.

Interconnection A was obtained by writing a signal-flow graph for implementing the

linear equality constraints in (6.33), Interconnection B was obtained by taking its

negative transpose to create a strongly-conservative interconnection, and the subsys-

tems implementing the memoryless, nonlinear function g were selected to have Q as

their individual contents by using

g(x) =
dQ(x)

dx
. (6.35)

Integrators were appropriately interconnected to result in a total content function

whose contribution from the memoryless elements decreases with time until reaching

a local minimum, serving also as a Lyapunov function for the system.

Still referring to Fig. 6-11, the signal-flow graph representations of Interconnec-

tions A and B indicate that the system is well-suited to a distributed implementation.

In particular, the variables used in controlling the position of a particular vehicle k

are those that are available locally: dk and dk+1 for k = 1, . . . , 8, and dk for k = 9.

This suggests an implementation that is obtained by implementing a straightforward

algorithm in each vehicle k for controlling the setpoint of its cruise control system:

(1) Measure the distance dk to the leading vehicle.

(2) If a trailing vehicle exists, measure the distance dk+1 to the trailing vehicle.

Otherwise set dk+1 = 0.
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(3) Compute the setpoint vk for the cruise control system in vehicle k according to

vk =
dxk

dt
= −(g(dk+1) − g(dk)) (6.36)

and repeat.

An interactive simulation of the system in Fig. 6-11 was written in the language

Processing. As with the example in Section 6.4, the integrators were approximated

using discrete-time systems as

H(z) = σ
z−1

1 − z−1
, (6.37)

with σ = 0.1 for this example, and with one sample period of the simulation being

computed every video frame. In the simulation, the user has the option to choose

from three penalty functions: a symmetric penalty function, with g and Q respectively

being

g(d) = gs(d) = 3(d − 1) (6.38)

Q(d) = Qs(d) =
3

2
(d − 1)2, (6.39)

an asymmetric penalty function, with g and Q respectively being

g(d) = ga(d) =






1
10

(d − 1), d > 1

4(d − 1), d ≤ 1
(6.40)

Q(d) = Qa(d) =





1
20

(d − 1)2, d > 1

2(d − 1)2, d ≤ 1
, (6.41)
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and a nonconvex penalty function, with g and Q respectively being

g(d) = gn(d) =





3(d − 1), d > 7
8

−3
(
d − 3

4

)
, 5

8
< d ≤ 7

8

3
(
d − 1

2

)
, d ≤ 5

8

(6.42)

Q(d) = Qn(d) =





3
2
(d − 1)2, d > 7

8

−3
2

(
d − 3

4

)2
, 5

8
< d ≤ 7

8

3
2

(
d − 1

2

)2
, d ≤ 5

8

. (6.43)

Screen captures from the simulation are depicted in Fig. 6-12. The horizontal line

of orange rectangles represents the positions of vehicles in the chain, and clicking on

any one of the blue sliders perturbs a vehicle position by overriding the output value

of the associated integrator. Subsystems in the inset system diagram indicate the

instantaneous values of the associated products in the conservation law by glowing

red if the product is positive and blue if the product is negative. As a consequence

of conservation, the presence of a red glowing block implies that there must also be

a blue glowing block, and vice-versa.

Two typical steady-state configurations are depicted in Fig. 6-12(a) and Fig. 6-

12(b), which respectively are representative of the two convex and one nonconvex

penalty functions. Figs. 6-12(c)-(e) depict the system approximately 30 frames after

discontinuously setting x5 = −1 while using each of the three penalty functions, with

the initial state for each being as depicted in Fig. 6-12(a). In Fig. 6-12(c), the use

of the symmetric penalty function Qs results in collision avoidance with the trailing

vehicles quickly catching up. In Fig. 6-12(d), the use of the asymmetric penalty

function Qa results in collision avoidance with the trailing vehicles more gradually

reaching the target following distance. In Fig. 6-12(e), the nonconvex penalty function

causes some of the vehicles to follow more closely than others, corresponding to the

two local minima of Qn. These examples suggest potential in further exploring the

use of other penalty functions as well.
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Figure 6-12: Screen captures from a simulation of the vehicle control system in Fig. 6-
11. (a) Steady-state configuration typical of using the symmetric and asymmetric
penalty functions Qs and Qa respectively listed in Eqns. 6.39 and 6.41. (b) Steady-
state configuration typical of using the nonconvex penalty function Qn in Eq. 6.43.
(c) Configuration approximately 30 frames after discontinuously setting x5 = −1
when using the symmetric penalty function Qs. (d) Configuration approximately 30
frames after discontinuously setting x5 = −1 when using the asymmetric penalty
function Qa. (e) Configuration approximately 30 frames after discontinuously setting
x5 = −1 when using the nonconvex penalty function Qn. Subsystems in the inset
system diagrams are colored red if the associated product in the conservation law is
positive at that time, and blue if the associated product is negative at that time.

193



194



Appendix A

Proof of Thm. 3.1

We begin by writing the identity


 0L IL

IL 0L


 =

1

2


 IL IL

IL −IL





 IL 0L

0L −IL





 IL IL

IL −IL


 (A.1)

and observing that this implies that G(B)
Q is isomorphic to the so-called indefinite

orthogonal group, denoted O(L, L). The group O(L, L) is specifically a Lie group

that consists of the set of invertible 2L × 2L matrices T for which

T tr



 IL 0L

0L −IL



T =



 IL 0L

0L −IL



 . (A.2)

The group O(L, L) is known to have four connected components, and as such G(B)
Q has

four connected components as well. Referring to O(L, L), the component in which a

given matrix lies indicates which of the subspaces

V+ = span
(
e(1), . . . e(L)

)
(A.3)

and

V− = span
(
e(L+1), . . . e(2L)

)
(A.4)

has its orientation reversed by the matrix.
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The two components where neither or both orientations are reversed, i.e. the two

components whose elements have a positive determinant, is commonly referred to

as the special orthogonal group SO(L, L) ⊂ O(L, L). The subgroup of SO(L, L)

that consists of a single connected component containing transformations that re-

verse neither orientation is commonly denoted SO+(L, L). The set of one-parameter

continuous subgroups for generating SO+(L, L) can be obtained in the usual way

using the exponential map. [23]

The approach in proving that the families of transformations in Thm. 3.1 generate

G(B)
Q is thus to show that T

[q;t)
1 , T

[q,r;t)
2 , T

[q,r;t)
3 , and T

[q,r;t)
4 are those that are obtained

from the Lie algebra for G(B)
Q and accordingly generate the connected component of

G(B)
Q that contains the identity element. The final step then involves showing that

an arbitrary element of T
[q]
5 and an arbitrary element of T

[q]
6 can be used to move

between the four components of G(B)
Q , generating the entire group.

In obtaining the one parameter subgroups for generating the connected component

containing the identity element, we make the substitution

T = eUt, (A.5)

where U is a 2L × 2L matrix and t is a real parameter, and we write Eq. 3.127 as

eU trt



 0L IL

IL 0L



 eUt =



 0L IL

IL 0L



 , (A.6)

which by performing left and right matrix multiplications results in


 0L IL

IL 0L


 eU trt


 0L IL

IL 0L


 = e−Ut. (A.7)

Using the identity Y −1eUY = eY −1UY , we obtain

e

0

B

B

B

@

2

6

6

6

4

0L IL

IL 0L

3

7

7

7

5

U trt

2

6

6

6

4

0L IL

IL 0L

3

7

7

7

5

1

C

C

C

A

= e−Ut. (A.8)
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Writing the matrix U in terms of four L × L matrices E, F , G, and H as

U =


 E F

G H


 , (A.9)

the condition required of U for satisfying Eq. 3.127 is


 0L IL

IL 0L





 E F

G H




tr 
 0L IL

IL 0L


 = −


 E F

G H


 . (A.10)

Performing further simplifications, we obtain


 0L IL

IL 0L





 Etr Gtr

F tr H tr





 0L IL

IL 0L


 = −


 E F

G H


 , (A.11)

resulting in 
 H tr F tr

Gtr Etr


 = −


 E F

G H


 . (A.12)

The set of matrices U satisfying the condition on the sub-matrices in Eq. A.12 there-

fore form a vector space of dimension (2L2 − L), which is also the dimension of the

associated Lie algebra.

We will use D[r,q] to denote the L×L matrix containing all zeros, with the exception

of the entry in row r and column q, which has value 1. Then it is a straightforward

matter to verify that the family T
[q;t)
1 is generated by substituting

U =


 D[q,q] 0L

0L −D[q,q]


 (A.13)

into Eq. A.5; the family T
[q,r;t)
2 is generated by substituting

U =


 D[r,q] 0L

0L −D[q,r]


 (A.14)
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into Eq. A.5; the family T
[q,r;t)
3 is generated by substituting

U =


 0L 0L

D[r,q] − D[q,r] 0L


 (A.15)

into Eq. A.5; and the family T
[q,r;t)
4 is generated by substituting

U =


 0L D[r,q] − D[q,r]

0L 0L


 (A.16)

into Eq. A.5. The matrix U in each substitution satisfies Eq. A.12, and as there are

a total of 2L2 −L such distinct matrices, they can be used to generate the connected

component of G(B)
Q that contains the identity element.

It remains to be shown that an arbitrary element of T
[q]
5 and an arbitrary element

of T
[q]
6 can be used to move between the four components of G(B)

Q , generating the

entire group. In doing this, we perform similarity transformation to relate these to

the transformations that move between the connected components of O(L, L). In

particular, we write T
[q]
5 as

T
[q]
5 =


 IL − 2D[q,q] 0L

0L IL − 2D[q,q]


 (A.17)

=
1

2


 IL IL

IL −IL





 IL − 2D[q,q] 0L

0L IL − 2D[q,q]





 IL IL

IL −IL


 , (A.18)

and we write T
[q]
6 as

T
[q]
6 =


 IL − D[q,q] D[q,q]

D[q,q] IL − D[q,q]


 (A.19)

=
1

2


 IL IL

IL −IL





 IL 0L

0L IL − 2D[q,q]





 IL IL

IL −IL


 . (A.20)

From the form of the middle matrix in Eq. A.18, we conclude that T
[q]
5 maps to a
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transformation in O(L, L) that reverses the orientation of both V+ and V−, and the

form of the middle matrix in Eq. A.20 likewise tells us that T
[q]
6 maps to a trans-

formation in O(L, L) that reverses the orientation of V− but not V+. Combinations

of these can therefore be used to move between the four connected components of

O(L, L), and as such, combinations of T
[q]
5 and T

[q]
6 can be used to move between the

four connected components of G(B)
Q , completing the proof.
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Appendix B

Glossary of terms

Balanced quadratic form: A quadratic form whose associated matrix is invertible,

with the number of positive and negative eigenvalues being equal.

Comparison space: A vector space on which the quadratic form associated with

an OVS acts as an inner product.

Canonical conjugate basis: A basis in which the correspondence map for a 2L-

dimensional OVS is written as

C =


 0L IL

IL 0L


 .

In a canonical conjugate basis, the associated quadratic form written xtrCx takes the

form of the standard inner product on R
L.

Conjugate decomposition Dc: A direct-sum decomposition of the vector space

V = VA⊕VB used in defining an OVS that designates the components of vectors that

map to a comparison space.
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Conservative set: A set of vectors over which an OVS is conservative, i.e. for which

the associated quadratic form evaluates to zero.

Correspondence map C: A linear, invertible, self-adjoint map indicating a corre-

spondence between elements of the vector space used in defining an OVS. The associ-

ated quadratic form is written in terms of a correspondence map as Q(x) = 〈Cx, x〉.

Input-output matched interconnecting system: An interconnecting system

where for a given pair of conjugate variables, exactly one is an input and one is

an output.

Maximal-Dp decomposition: A partition decomposition having the maximum

number of elements permitted by the structure of the OVS. For an OVS defined

using a 2L-dimensional vector space, a maximal-Dp decomposition will have a total

of L subspaces, with each being a 2-dimensional subspace.

Organization O: A correspondence map, partition decomposition, and conjugate

decomposition used in defining an OVS.

Organized variable space (OVS) U: An inner product space in addition to an

organization of the space.

Partition decomposition Dp: A direct-sum decomposition of the vector space

V = V1 ⊕ · · · ⊕ VK used in defining an OVS that indicates the subspaces over which

the associated quadratic form is linearly-separable.

Strongly-conservative set: A conservative set that is a vector subspace, and that

results in conservation being viewed in a comparison space as orthogonality between

vector subspaces.
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Weakly-conservative set: A conservative set that is a vector subspace and that is

not strongly conservative. Weak conservation is viewed in a comparison subspace as

pairwise orthogonality, as opposed to orthogonality between vector subspaces.
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Epilogue

Over the course of the graduate program here at MIT, I had the good fortune of

hearing Amar Bose give various lectures at Bose Corporation regarding his view on

research. A common point in some of these talks was that the logical progression of

a technical document can sometimes be very different from the chronological order in

which the contributing research might have been done. As this thesis was supervised

in Al Oppenheim’s unique and characteristic style of an “intellectual adventure,” I

believe that Amar Bose’s comment is especially relevant. The intent of this epilogue

is to offer a glimpse into the way in which the thesis evolved chronologically, with

the goal being to give the reader a view of the document from a somewhat different

perspective that is complementary to the written sequence.

In embarking on the research for this thesis, the intellectual adventure began with

a simple question from Al: “What can thermodynamics inspire about signal process-

ing?” My initial approach in attempting to answer this mostly involved trying to

muster as much creativity as possible in thinking about what existing signal process-

ing systems might implicitly be behaving according to the laws of thermodynamics.

I made a decision early on to steer away from the commonly-discussed connections

with information entropy by opting to think about deterministic systems.

Also around this time I was thinking about dual circuits, bond graphs, and the

relationship between positive-real and minimum-phase systems. There was no deep

connection that I was trying to find between these other than that they all had

convenient properties and happened to be physical systems. It seemed intriguing

that the straightforward mechanical process of obtaining a dual circuit resulted in

a network with an inverted impedance, and I thought that perhaps the technique
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could be used to invert certain linear or nonlinear signal-flow graphs that happened

to simulate circuits. (The eventual results in Chapter 2 regarding the inversion of

nonlinear signal-flow graphs ended up having little to do with electrical networks.)

It also seemed remarkable, at this point before having really dived into Jan

Willems’ work in dissipative system theory, that an interconnection of stable (positive-

real) electrical elements resulted in an overall stable system. I remember wondering

why the signal-flow graphs that can be drawn for simulating electrical networks seem

very different from the wave-digital structures, even though those structures also have

similar properties.

About a year after having begun the Ph.D. research, I was sitting in on a class

that John Wyatt was teaching, pertaining to functional analysis and linear algebra

for signal processing. In one the lectures, he presented a proof of Tellegen’s Theorem

from a linear algebra perspective, viewing it as a statement of orthogonality between

vector subspaces. Al had introduced me to Tellegen’s Theorem for electrical networks

as I was working on my master’s thesis, since in that work I had made use of the

Tellegen-like theorem that exists for signal-flow graphs. Viewing energy conservation

in terms of orthogonal vector spaces resonated with me and Al, and I began to think

more about using orthogonality as a means of identifying thermodynamic laws in

signal processing algorithms.

From May 2009 to May 2012, there were four committee meetings and a year of

intense writing. In the first meeting I argued that if signal processing algorithms can

be constructed to obey the laws of thermodynamics in some sense, they ought to have

convenient properties. The rationale was that many physical systems happened to

have convenient properties, and that these systems also happened to obey the laws

of thermodynamics. As examples, I had a few slides with signal flow graphs that

essentially simulated the voltage and current equations in electrical networks.

A few days before the second committee meeting, I came to the conclusion that

if the thesis were going to discuss thermodynamics, and if conservation of energy

corresponded to the linear algebra concept of orthogonality, then the tools of linear

algebra could probably be used in picking out variables from a signal processing
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system in a way that maps to an inner product that evaluates to zero. The main

idea was that there ought to be some structure to these maps, and although I had no

idea how it might be useful, that it could perhaps at least be of academic interest.

I spent probably more time than I needed to drawing a very busy figure graphically

depicting vector space decompositions and linear maps, which ended up resembling

a snowman standing next to a giant flower.

Although the idea of organizing variables using linear algebra was not mature

enough to make an impact in the second meeting, a number of things had fallen into

place by the third meeting, which also represented a shift of focus away from thermo-

dynamics and toward conservation. There was an emphasis on viewing conservation

as being related to the linear interconnecting component of a signal processing algo-

rithm, including an early version of a result in Chapter 4 about creating what would

later be referred to as strongly-conservative interconnections. The idea of organizing

variables to form an inner product had not yet been cleanly separated from condi-

tions under which the inner product might evaluate to zero, but there was reference

to the possibility that Lie groups could be used to determine all conservative vector

spaces. There were also preliminary versions of the stationary content and co-content

theorems that would later appear in Chapter 5, shown to illustrate ways in which

conservation could potentially be useful.

One influence that had nudged me down the path toward Lie groups was a cul-

tural interest in Lorentz transformations that various members of the Digital Signal

Processing Group had adopted at the time, and which had been nurtured by Al after

reading Einstein’s book on special relativity. The stationary content and co-content

examples were inspired by Jack Dennis’ Ph.D. thesis, which my academic advisor

Sanjoy Mitter had pointed me toward some time before.

By the fourth committee meeting, the formal math behind the concept of the

organized variable space had materialized, although it would subsequently go through

a revision during the writing. More work had been done on the use of group theory

in creating conservative vector spaces, and a slide distinguished between strong and

weak conservation within this context. There was also a result about system inversion
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that had solidified while writing a paper for the 2011 IEEE DSP Workshop, and

which would form the basis for the necessary and sufficient condition for behavioral

equivalence in Chapter 2.

The framework significantly solidified during the process of writing. The writing

of the thesis initially began with an early draft of what would become Chapter 3. This

version mostly consisted of theorems, corollaries and lemmas provided without much

additional description, put down on paper as a way of trying to organize everything

without having the material in other chapters to provide context. Then a preliminary

draft of Chapter 5 was written. Chapters 3 and 5 would eventually be re-written,

almost in their entirety. In writing Chapter 4, the text grew to the point that the

chapter split into two, with the first part eventually becoming Chapter 2. Chapter 6

provided a natural place to collect examples that I had been using in thinking about

how the framework might be applied, and some of these developed fairly late in the

process. For example, the bilateral vehicle density control example was motivated

by a discussion with Berthold Horn that took place more than a semester before the

thesis defense date, but the particular solution in the thesis came together about a

week and a half before the defense.

I hope that this epilogue has offered an alternative perspective into the thesis,

illustrating that the sequence of preparing a technical document can sometimes be

very different from the sequence of presentation.
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