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Abstract

Exact reconstruction of a band-limited signal from its non-uniform samples involves the
use of Lagrange interpolation, which is impractical to implement as it is computationally
difficult. This thesis develops approximate reconstruction methods based on time-warping
to obtain reconstruction of band-limited signals from non-uniform samples. A review of
non-uniform sampling theorems is presented followed by an alternative interpretation of the
Lagrange interpolation kernel by decomposing the kernel into its constituent components.
A discussion of time-warping and its use in the context of non-uniform sampling is made.
This includes an alternative interpretation known as the delay-modulation, which we show
to be a simpler representation for a specific case of non-uniform sampling where the sample
instants are deviations from a uniform grid. Based on some essential characteristics of the
Lagrange kernel, a framework using a modulated time-warped sine function is formed to
obtain various approximations to the Lagrange kernel. The thesis also formulates a vector
space representation of non-uniform sampling and interpolation and incorporates warped
sinc functions to obtain faster convergence in iterative algorithms for reconstruction of
band-limited signals from non-uniform samples.
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Chapter 1

Introduction

Reconstruction of signals from their sample values is an important topic in signal processing.

Uniform sampling is the most commonly known form of sampling and it occurs when samples

or values of continuous-time signals are obtained at equally spaced time intervals. Under

certain conditions, a continuous-time signal is recoverable from this set of samples. Though

reconstruction from uniform samples is convenient to implement, its limitation lies in the

need for the samples to be on a uniform grid.

A more general sampling scheme involves the notion of non-uniform sampling, which

is an extension of uniform sampling without constraining the sample instants to be on a

uniform grid. However, reconstruction from non-uniform samples is difficult as absence

of a uniform grid structure limits the use of time-invariant processes for reconstructing

continuous-time signals. In general, it is difficult to perfectly recover signals from samples

taken at an arbitrary set of time instants. Existing reconstruction methods for non-uniform

sampling assume some form of structure inherent in the sampling process that can be used

for recovering continuous-time signals.

Non-uniform sampling arises naturally in many data acquisition problems and can be

implemented in a rich variety of applications. Such applications typically require a high

degree of accuracy in the reconstruction process. For instance, an important application of

reconstructing signals from jittered samples occurs in biomedical devices. These devices can

be low-power energy scavenging sensors that use self-timed circuits, thus removing the need

for clock buffers and clock distribution that require large power consumption. However,

these self-timed circuits tend to introduce jitter in the sampling processor of the signal
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processing chip [1]. In biomedical applications such as wearable heartbeat detectors, an

accurately reconstructed electrocardiogram (ECG) signal from the jittered samples is espe-

cially important to prevent false alarms and misses in the detection of cardiac arrhythmia.

Another application of non-uniform sampling is in time-interleaved analog-to-digital

converters (TI-ADCs), where a signal is passed through multiple parallel channels, each

uniformly sampling the signal at the same rate. The output samples of the channels are

then multiplexed to obtain a full discrete-time representation of the signal. In the case where

the clock phases of these channels are asynchronous, interleaving samples from each channel

leads to recurrent non-uniform sampling. Recurrent non-uniform sampling can also be found

in sensor networks. Each sensor uniformly samples the environment asynchronously and

transmits a signal to a base station. The resultant signal obtained at the base station takes

the form of recurrent non-uniform sampling.

In addition to time domain processes, non-uniform sampling can also arise in either the

spatial or frequency domains. Such examples can be found in the non-uniform spacing of

elements in antenna arrays, and in towed acoustic arrays for underwater measurement, to

trade off between the length of the array and the number of elements. Non-uniformity of

the array element spacing is sometimes part of the array design, where for example, these

arrays have logarithmically spaced intervals. In some other cases, it might be the failure

of an array element in uniformly spaced arrays, and this corresponds to sampling with a

single missing sample instant from a set of uniform sample points.

Another potential application of non-uniform sampling involves sampling based on time-

varying signal parameters. Signals which can be characterized by a set of parameters, are

usually more efficiently represented if information about these parameters is factored into

the sampling instants. One such example as mentioned earlier are signals with fluctuations

in their local bandwidths. An efficient representation of such signals can be obtained by

sampling them based on their local bandwidths or characteristics, thus leading to a lower

overall sampling rate [29].

1.1 Background

One approach to reconstruction of band-limited signals from non-uniform samples is through

Lagrange interpolation. The Lagrange interpolation formula originated as an attempt to
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find a polynomial function that takes on N function values, fn associated with N distinct

time instants, tn. For reconstruction from non-uniform samples of band-limited signals, the

Lagrange interpolation series can be regarded as having infinitely many constraint points.

In the context of non-harmonic Fourier series, Paley and Wiener [21] studied the rela-

tionship between the Lagrange interpolation formula and the complex exponentials {ejλnx}
in L2(−π, π) by imposing the constraint of |λn − n| < 1

π2 where n ∈ Z. By relating to non-

uniform sampling, this corresponds to having the sample instants deviate by a bounded

amount from the uniform grid. Levinson [18] then showed that the best possible bound is

|λn−n| < 1
4 and given this constraint, Kadec [15] showed that the set {ejλnx} forms a Riesz

basis in L2(−π, π).

In his seminal paper on non-uniform sampling of band-limited signals [33], Yen intro-

duced several reconstruction theorems, mainly to deal with a finite number of non-uniform

samples on an otherwise uniform grid, the missing sample problem and recurrent non-

uniform sampling. These reconstruction theorems were shown without reference to La-

grange interpolation. It was later in the work of Yao and Thomas [32] that the Lagrange

interpolation functions were applied to reconstruct band-limited signals from non-uniform

samples. Separately, Higgins introduced non-uniform sampling theorems for band-limited

functions using an approach based on reproducing kernel Hilbert spaces [14].

Application of time-warping methods were used by Papoulis in [22] as a means to recon-

struct band-limited signals from jittered samples. In [5] and [36], time-warping was used

for reconstruction from samples of functions in the space of locally band-limited signals.

One practical approach to recovering a signal from its non-uniform samples is the use

of non-uniform splines. Iterative reconstruction methods for non-uniform sampling are

discussed in [9] - [11]. Some of the other discussions of non-uniform sampling revolve

around reconstruction of signals from recurrent non-uniform samples. These can be found

in [8]. Hardware implementation of non-uniform sampling are discussed in [27]. For a good

review of literature concerning other techniques in non-uniform sampling, one can refer to

[13] and [19].
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1.2 Outline of the Thesis

Exact reconstruction methods to recover band-limited signals from non-uniform samples

require knowledge about the non-uniform sampling grid. Subject to certain conditions,

reconstruction of a band-limited signal from non-uniform samples can be done through

Lagrange interpolation. However, the Lagrange kernel is impractical to implement due to

its computational complexity and large dynamic range. The importance of non-uniform

sampling of continuous-time signals in real-world applications and the complexity involved

in signal reconstruction drive the need for simple reconstruction techniques. This thesis

develops some approximate reconstruction methods for reconstruction of one dimensional

signals from their non-uniform samples.

Chapter 2 reviews some of the important concepts in non-uniform sampling theory. The

notion of sampling density is introduced as an analogue to sampling frequency. Other con-

cepts such as a set of uniqueness, stable sampling and interpolation are also discussed with

reference to similar concepts in the uniform sampling case. A general system is formulated

for analysis and synthesis of signals, where the composing functions of these kernels can

either be bases or frames. Next, we present the non-uniform sampling theorem which states

that the Lagrange kernel perfectly reconstructs band-limited signals from non-uniform sam-

ples, when the deviations of the sampling instances from a uniform grid are smaller than

a certain factor. In the last part of chapter 2, the Lagrange interpolation formula is inter-

preted as a system in which the kernel is separated into several components. A frequency

domain view of this system is presented for uniform sampling as an illustration.

Chapter 3 introduces the idea of time-warping of signals and discusses its applications,

advantages and limitations. An interpretation of time-warping referred to as delay modu-

lation is developed, which is suitable for characterizing non-uniform sampling for the case

when the sample instants are deviations from a uniform grid. Two different approaches

for determining the inverse warped signal are described. Time-warping is then applied

to non-uniform sampling by showing the different equivalent sampling systems. Different

two-dimensional input-output representations of delay modulation are also obtained and ap-

proximations to time-warping functions as well as the Fourier transform of warped signals

are made.

Chapter 4 uses the system-level interpretation of the Lagrange kernel to study the

14



characteristics of the Lagrange interpolation function and its components. Various forms of

approximations to the component are made while maintaining their essential characteristics.

Approximations include the shifted-sinc function, reconstruction by assuming sampling on

the uniform grid, piecewise sinusoidal approximation and non-uniform spline approximation.

A numerical experiment is done to show the result of the approximations by comparing them

with cubic spline interpolation of the samples.

Chapter 5 builds on an abstract vector space representation of non-uniform to show the

relationship between out-of-band frequency components and in-band frequency components.

Warped sinc kernels are then formulated as projections, which we use to modify an iterative

reconstruction, introduced by Grochenig et. al., to obtain fast convergence rates.
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Chapter 2

Construction of Band-limited

Signals on a Nonuniform Grid

In this chapter, some of the important concepts of non-uniform sampling theory are intro-

duced. We make a distinction between the analysis and synthesis processes by highlighting

the need to consider both sampling and reconstruction time instants. We discuss the density

conditions necessary for reconstruction of band-limited functions. A framework for time-

dependent signal representation (analysis) and reconstruction (synthesis) is also presented.

This framework is used to review some of the sampling theorems presented in [14], [18] and

[32]. We conclude by presenting a system interpretation of the Lagrange reconstruction

kernel.

2.1 Density of Non-uniform Samples

Sampling theory in general encompasses two stages: sampling and reconstruction. The

uniform sampling theorem states that if a function x(t) is band-limited with X(ω) = 0 for

|ω| > ω0, then x(t) is completely determined by its uniform samples taken at a frequency

ωs, where ωs > 2ω0. The function x(t) can be exactly reconstructed by passing the sample

impulse train through an ideal lowpass filter with cutoff frequency ωr such that ω0 < ωr <

ωs − ω0. The rest of this section deals with band-limited functions, and so we specifically

define PWω0 to be the space of all square-integrable functions, f whose Fourier transform

F (ω) is such that F (ω) = 0, ∀ |ω| > ω0. A more general discussion of sampling theory

would encompass the Landau condition which deals with the support of F (ω) as a union of
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a finite number of intervals [16]. However, we leave this as a future work, and this thesis

will only focus on the case where F (ω) is a low-pass signal with its support being a single

interval.

A similar distinction between the sampling and reconstruction processes can be made

in non-uniform sampling, and the focus of our discussion in this section will be about

conditions imposed on the samples and non-uniform sampling grid. In uniform sampling,

the sampling rate can be described by one parameter ωs. The analogue of sampling rate in

non-uniform sampling is characterized by the average sampling rate or density of samples.

For a set of sampling instances on the real axis {tn}, the sampling density is defined as

D(tn) := lim
r→∞

#{tn : tn ∈ [−r, r]}
2r

(2.1)

where # is the cardinality of the set bounded by interval r.

In [17], a distinction is made between a unique reconstruction of f(t) and reconstructing

f(t) in a stable way. A set {tn} is a set of uniqueness for f ∈ PWω0 if f(tn) = 0, ∀ n ∈ Z

implies that f(t) = 0. This means that samples of f(t) taken at a set of uniqueness

{tn} determine the function f(t) uniquely. It is also possible for a set of uniqueness to have

arbitrarily low density and such an example occurs in parametric signal identification where

a finite number of samples is sufficient to perfectly reconstruct the signal.

A set {tn} is referred to as a set of stable sampling for f ∈ PWω0 if

∫ ∞

−∞
|f(t)|2dt ≤ C ·

∞∑

n=−∞
|f(tn)|2 (2.2)

where C is a constant which is independent of f(t). The condition in Eqn. (2.2) ensures

that errors in the reconstruction of f(t) are bounded by errors in the sample values [13].

Furthermore, if {tn} is a set of stable sampling, the sampling density cannot be lower than

the Nyquist rate and so D(tn) satisfies

D(tn) ≥ ω0

π
. (2.3a)

A set of stable sampling always implies a set of uniqueness. This can be shown using

Eqn. (2.2) where the sample values f(tn) = 0, ∀ n ∈ Z ensures that f(t) = 0. However, a

set of uniqueness does not imply a set of stable sampling since a set of uniqueness can have
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an arbitrarily low sampling density while a set of stable sampling has to satisfy the density

condition in Eqn. (2.3a).

The time instants {tn} are referred to as a set of interpolation for PWω0 , if for any set

of values {an} ∈ l2, there exists a f ∈ PWω0 such that f(tn) = an, ∀n ∈ Z. It has been

shown in [17] that if {tn} is a set of interpolation, then the sampling density cannot be

higher than the Nyquist rate, such that

D(tn) ≤ ω0

π
. (2.3b)

Therefore, if {tn} does not satisfy Eqn. (2.3b), assigning any square-summable sequence

{an} as values taken at {tn} will not guarantee a function that lies in PWω0 . Hence, a

signal f ∈ PWω0 cannot take any arbitrary values at {tn} that is not a set of interpolation.

This means that if a set of values with a corresponding set of time instants over-constrain

the moment problem f(tn) = an such that no function band-limited to ω0 can fulfill the

moment problem, then the set of time instants is not a set of interpolation.

From the above definitions, one can easily see that to have a stable reconstruction for f

while reconstructing the signal through interpolation, the sampling density has to satisfy

D(tn) =
ω0

π
. (2.3c)

2.2 Analysis and Synthesis

Sampling and reconstruction of signals can be expressed more generally as signal analy-

sis and synthesis. In the following discussion, we show that in general, the analysis and

synthesis kernels are dependent on different sets of time instants. Assume that the signal

of interest is a member of a Hilbert space H. Consider two sets of functions {sn(t)} and

{ln(t)}, both of which span the space H, sampling and reconstructing the signal can be

interpreted as a system composed of analysis and synthesis functions. This is expressed as

x̂(t) =
∞∑

n=−∞
〈x(t), sn(t)〉 ln(t), (2.4)

where {sn(t)} are the analysis functions and {ln(t)} are the synthesis functions. Equivalently

by duality, the roles of {sn(t)} and {ln(t)} can be interchanged such that {ln(t)} is the set
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of analysis functions and {sn(t)} is the set of synthesis functions.

A block diagram representation of Eqn. (2.4) is shown in Fig. 2-1. The inner product

of x(t) with the set of analysis functions {sn(t)} is represented by filtering x(t) with a set

of time-dependent filter banks {sn(tn − t ; tn)}, followed by sampling each channel at time

instants, tn. The impulse anδ(t − tn) is passed through an impulse-to-sample converter

(I/S) to obtain the discrete-time samples an. These samples, an, are then passed through a

sample-to-impulse converter (S/I) which creates an impulse at time instant τn. The impulse

anδ(t− τn) is thereafter filtered with ln(t+ τn ; τn). From Fig. 2-1, the composing function

ln(t) is represented by the sample-to-impulse converter and the synthesis filter ln(t+τn ; τn).

The dependence of synthesis filters on another set of time instants {τn} indicates that the

synthesis filters do not necessarily have to depend on the sampling instants {tn}. The dual

system can be described in a similar manner with {sn(t)} and {ln(t)} interchanged.

I/Ssn(tn − t; tn) ln(t + τn; τn)

δ(t− tn) δ(t− τn)

anx(t) x̂(t)

1

Figure 2-1: Analysis and synthesis systems

The analysis and synthesis functions can either be bases or frames. No restriction on

either type has been placed in the formulation. The sets of functions, {sn(t)} and {ln(t)},
are bases when the sampling density is as given in Eqn. (2.3c). For the case of oversampling,

the sets of functions over-represent the PWω0 space and correspond to frames. The set of

functions {sn(t)} is called a frame if, for every x ∈ PWω0 ,

A ‖x(t)‖2 ≤
∑

n

|〈x(t), sn(t)〉|2 ≤ B ‖x(t)‖2 (2.5)

where A and B are called the frame bounds.

For the special case of uniform sampling at the critical sampling rate of 2ω0, the anal-

ysis and synthesis functions are both sinc functions and are orthonormal bases for PWω0 .

However, for non-uniform sampling, the analysis and synthesis functions are not necessarily
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equal. The following analyses are described by Higgins [13]. If either the set of analysis or

synthesis functions is a Riesz basis for PWω0 , then its biorthonormal basis, or dual basis is

also a Riesz basis. Since both {sn(t)} and {ln(t)} are Riesz bases, then

A
∑

n

|〈x(t), sn(t)〉|2 ≤
∥∥∥∥∥
∑

n

〈x(t), sn(t)〉 ln(t)

∥∥∥∥∥

2

≤ B
∑

n

|〈x(t), sn(t)〉|2 (2.6)

where A and B are positive constants. The left inequality of Eqn. (2.6) implies the conver-

gence of the square-summable sequence {an} where

an = 〈x(t), sn(t)〉 , (2.7)

while the right inequality shows the stable sampling property. In addition, {sn(t)} being a

Riesz basis also implies that {tn} is a set of interpolation. Therefore from Eqns. (2.3), this

means that if {sn(t)} or {ln(t)} is a Riesz basis for PWω0 , then the sampling density must

be equal to ω0
π .

If {sn(t)} is a frame for PWω0 , then

A ‖x(t)‖2 ≤
∑

n

|〈x(t), sn(t)〉|2 ≤ B ‖x(t)‖2 (2.8)

where A and B are positive constants. The left inequality of Eqn. (2.8) shows the stable

sampling property, while the right inequality shows the convergence of the square-summable

sequence {tn}. This implies that the sampling density satisfies Eqn. (2.3a), which indicates

oversampling.

In practical analysis and synthesis of signals, it is sometimes difficult to establish the dual

of a set of functions and so approximations to the duals are usually made. Generalizing

the system shown in Fig. 2-1 allows for freedom in designing the analysis and synthesis

functions while satisfying certain constraints.

2.3 Reconstruction of Band-limited Signals Using Lagrange

Interpolation

Perfect reconstruction of band-limited signals from non-uniform samples uses the Lagrange

interpolation formula subject to constraints imposed on the sample instants. In this section,
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the series expansion of a band-limited function based on its non-uniform samples will be

discussed, and the properties related to Lagrange reconstruction will be elaborated upon.

The non-uniform sampling theorem in [32] states that a signal x(t), belonging to the

class of functions band-limited to ω0 = π
T rad/s, can be represented as a series expansion

given by

x(t) =
∞∑

n=−∞
x(tn)ln(t) , (2.9)

if the sequence of sampling instants, {tn} is constrained by

|tn − nT | <
T

4
, ∀ n ∈ Z , (2.10)

where T is the sampling period. The set of composing functions {ln(t)} is unique and is

comprised of Lagrange interpolation functions which belong to PWω0 [34], and are given by

ln(t) =
G(t)

G′(tn)(t− tn)
(2.11a)

where

G(t) = (t− t0)
∞∏

k=−∞

(
1− t

tk

)(
1− t

t−k

)
. (2.11b)

The following discussion examines the properties of the Lagrange reconstruction formula

described in Eqns. (2.9) - (2.11). It is shown in [32] that the composing functions {ln(t)}
belong to PWω0 . Higgins [13] states, with reference to a theorem by Kadec, that if the

constraint on the sample instants as given in Eqn. (2.10) is satisfied, then the set {ejωtn}
forms a Riesz basis for the Hilbert space L2[− π

T ,
π
T ]. Since {ejωtn} is a Riesz basis, there

also exists a unique sequence, {ϕn(ω)} which by duality is also a Riesz basis.

Using the interpolation property, where

ln(tk) =





1, n = k

0, n 6= k

, (2.12)

the set of Lagrange interpolation functions, {ln(t)} can be shown to be biorthonormal to

the set of shifted sinc functions. If {ln(t)} is the inverse Fourier transform of the set of dual
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basis {ϕn(ω)},
ln(t) =

G(t)
G′(tn)(t− tn)

=
T

π

∫ π
T

− π
T

ϕn(ω)ejωtdω, (2.13)

then {ϕn(ω)} is biorthonormal to {ejωtn} in L2[− π
T ,

π
T ] since from Eqn. (2.12) and (2.13),

ln(tk) =
T

π

∫ π
T

− π
T

ϕn(ω)ejωtkdω =





1, n = k

0, n 6= k

. (2.14)

It can be shown that the set of shifted sinc functions,
{

sin π
T

(t−tn)
π
T

(t−tn)

}
is the inverse Fourier

transform of {ejωtn} in the interval − π
T ≤ ω ≤ π

T . Then by the isometry property of Fourier

transforms, the two set of sequences

{
G(t)

G′(tn)(t− tn)

}
and

{
sin π

T (t− tn)
π
T (t− tn)

}
(2.15)

are biorthonormal. The above result shows the relationship between the interpolation prop-

erty of the synthesis functions and the biorthonormality between the analysis and synthesis

functions.

Using the Riesz basis equation in Eqn. (2.6) with {ejωtn} as the analysis functions and

{ϕn(ω)} as the synthesis functions,

A
∞∑

n=−∞

∣∣〈X(ω), ejωtn
〉∣∣2 ≤

∥∥∥∥∥
∞∑

n=−∞

〈
X(ω), ejωtn

〉
ϕn(ω)

∥∥∥∥∥

2

≤ B
∞∑

n=−∞

∣∣〈X(ω), ejωtn
〉∣∣2 .

(2.16)

By inverse Fourier transformation,

A1

∞∑

n=−∞
|x(tn)|2 ≤

∥∥∥∥∥
∑

n

x(tn)
G(t)

G′(tn)(t− tn)

∥∥∥∥∥

2

≤ B1

∞∑

n=−∞
|x(tn)|2 . (2.17)

Similar to a previous argument for Riesz bases, the right inequality of Eqn. (2.17) shows

that the sampling expansion is stable. The set of sample instants {tn} is therefore a stable

sampling set, which also implies that it is a set of uniqueness. The left inequality shows

that the set of sample instants is a squared-summable sequence, and it follows that {tn} is

a set of interpolation because the samples of x(t) ∈ PWω0 are the set of squared-summable

sequence of values.
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When the signal x(t) belongs to the class of functions, PWπ−δ
T

, where 0 < δ ≤ π, the

signal would be oversampled if the sampling density remains as D(tn) = ω0
π . In this case,

there is a weaker constraint on the sample instants. Specifically, if

|tn − nT | < ∞

|tn − tm| > 0, n 6= m, n,m ∈ Z, (2.18)

the function x(t) ∈ PWπ−δ
T

can be expressed as

x(t) =
∞∑

n=−∞
x(tn)ln(t), (2.19a)

where the composing functions, {ln(t)} ∈ PWω0 are given as

ln(t) =
G(t)

G′(tn)(t− tn)
(2.19b)

and

G(t) = (t− t0)
∞∏

k=−∞

(
1− t

tk

)(
1− t

t−k

)
. (2.19c)

From the frame condition in Eqn. (2.8),

A2 ‖X(ω)‖2 ≤
∞∑

n=−∞

∣∣〈X(ω), ejωtn
〉∣∣2 ≤ B2 ‖X(ω)‖2 (2.20)

where {ejωtn} ∈ L2
[
− π
T ,

π
T

]
and X(ω) ∈ L2

[
−π+δ

T , π−δT
]
. By inverse Fourier transformation

of Eqn. (2.20),

A3 ‖x(t)‖2 ≤
∞∑

n=−∞
|x(tn)|2 ≤ B3 ‖x(t)‖2 . (2.21)

The left side of Eqn. (2.21) indicates that the sample instants {tn} are a set of stable

samples. However, {tn} is not a set of interpolation for PWω0 since the density condition in

Eqn. (2.3b) is not satisfied. Given any set of squared-summable sequence of values, {an},
the corresponding moment problem f(tn) = an does not give a f(t) that necessarily belongs

to PWπ−δ
T

.

In summary, given the condition on the sample instants in Eqn. (2.10), signals that

are band-limited to π/T rad/s can be recovered from their samples using the Lagrange
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interpolation functions. Signals that are band-limited to less than π/T rad/s can also be

recovered using the Lagrange interpolation functions if the condition on the sample instants

is as described in Eqn. (2.18).

2.4 System Interpretation of Lagrange Interpolation Func-

tion

In considering the use of Eqns. (2.9) and (2.11) for implementing the interpolation of non-

uniform samples, we can form the interpolating kernel, ln(t) and apply Eqn. (2.9) to the

non-uniform samples. An alternative is also suggested in [23] by noting that Eqn. (2.9) and

(2.11) can equivalently be expressed as

x(t) = G(t) ·
[( ∞∑

n=−∞
anδ(t− tn)

)
∗ 1
t

]
(2.22a)

where

an =
x(tn)
G′(tn)

. (2.22b)

In this interpretation, the stream of samples is pre-weighted using Eqn. (2.22b), pro-

cessed with a scaled Hilbert transformer and then modulated with G(t). Fig. 2-2 shows the

block diagram for non-uniform sampling followed by reconstruction using Eqns. (2.22).

h(t)
x̂(t)x(t) pδ(t) qδ(t) r(t)

G(t)
∞∑

n=−∞
δ(t− tn)

1

G′(t)

1

Figure 2-2: Lagrange interpolation reconstruction system

The filter, h(t) has impulse response

h(t) =
1
t

(2.23a)
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and its corresponding frequency response is

H(jΩ) = −jπsgn(Ω) (2.23b)

where

sgn(Ω) =





−1 ,Ω < 0

0 ,Ω = 0

1 ,Ω > 0

. (2.23c)

Due to its singularity at t = 0 and infinite impulse response, exact implementation of the

ideal Hilbert transformer is not practical. Analog and digital implementations of the Hilbert

transformer can be found in [25] and [12].

There are potential advantages with the implementation of the Lagrange reconstruction

formula using Eqns. (2.22a) and (2.22b). One important advantage is that G(t) only needs

to be generated once in contrast to computing a set of interpolation kernels, ln(t), though

in both interpretations, the key dependence is on G(t). Another potential advantage of the

system shown in Fig. 2-2 is that the separate components within the system can be varied

to form approximations to the Lagrange interpolation formula. These two advantages will

be exploited in the subsequent chapters of this thesis.

2.4.1 Frequency domain interpretation

In this section, we show with a simple example the interpretation of Fig. 2-2 for the special

case of uniform sampling by demonstrating in the frequency domain.

Fig. 2-3(a) illustrates the Fourier transform of a bandlimited continuous-time signal x(t).

The signal is uniformly sampled at times tn = nT ,

pδ(t) = x(t)
∞∑

n=−∞
δ(t− tn)

=
∞∑

n=−∞
x(nT )δ(t− nT ) . (2.24)

The Fourier transform of pδ(t) is a periodic replication of the spectrum X(jΩ) with a period

of 2π/T as shown in Fig. 2-3(b). For the case of uniform sampling, the function G(t) is
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Figure 2-3: Frequency domain plots for the Lagrange reconstruction system

given by

G(t) =
sin(πt/T )
π/T

(2.25)

which has all its zeros at the sampling locations. The first derivative of G(t) is

G′(t) = cos(πt/T ) . (2.26)

The sequence pδ(t) is then multiplied with 1/G′(t) to obtain the input qδ(t) of the Hilbert
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transformer as

qδ(t) =
1

cos(πt/T )

∞∑

n=−∞
x(nT )δ(t− nT )

=
∞∑

n=−∞
x(nT )

δ(t− nT )
cos(nπ)

=
∞∑

n=−∞
x(nT )

δ(t− nT )
(−1)n

=
∞∑

n=−∞
x(nT )δ(t− nT )(−1)n . (2.27)

This is equivalent to modulating pδ(t) by cos(nπ), which corresponds to shifting by π/T in

the frequency domain as shown in Fig. 2-3(c). When the signal qδ(t) is passed through the

Hilbert transformer, the output is

r(t) =
∫ ∞

−∞

∞∑

n=−∞
x(nT )cos(nπ)δ(τ − nT )· 1

t− τ dτ

=
∞∑

n=−∞
x(nT )

cos(nπ)
t− nT . (2.28)

Fig. 2-3(d) shows the output of the Hilbert transformer, which can be obtained by

multiplying Fig. 2-3(c) with the frequency response of the Hilbert transformer given by

Eqns. (2.23). The last procedure of the Lagrange interpolating system is to modulate r(t)

by G(t).

x̂(t) =
∞∑

n=−∞
x(nT )

sin(πt/T )cos(nπ)
π
T (t− nT )

=
∞∑

n=−∞
x(nT )

sin( πT (t− nT ))
π
T (t− nT )

. (2.29)

This last step can be described as aliasing cancellation since it can be seen from Figs. 2-3(e)

and 2-3(f) that the two complex exponential parts of the sine function, G(t) will modulate

r(t) by π/T and −π/T respectively. Their difference would cancel the replications, thus
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leaving the baseband portion which is the reconstructed signal spectrum.

x̂(t) = r(t)· sin(πt/T )
π
T

=
r(t)ejπt/T − r(t)e−jπt/T

j2 πT
= x̂1(t) + x̂2(t) . (2.30)

The above frequency domain interpretation of the Lagrange interpolation system sug-

gests that instead of interpreting of the time domain sinc function simply as a rectangular

low-pass filter in the frequency domain in the case of uniformly spaced samples, we can

view the interpolation with the sinc function as an aliasing cancellation operation for the

case of uniformly spaced samples.
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Chapter 3

Time-Warping in Non-uniform

Sampling

In this chapter, we represent non-uniform sampling of signals using time-warping. Delay

modulation is formulated as an interpretation of time-warping to describe non-uniform

sampling, specifically in the context where the sample instants are bounded deviations

from a known uniform grid, as defined in section 2 of this chapter. Possible techniques

for obtaining the inverse warping operator are examined. A discussion is also made about

two-dimensional input-output representations of delay modulation. The last section in this

chapter discusses approximations of the delay modulation function in various non-uniform

sampling problems.

3.1 Interpretation of Time-warping

Time-warping is the transformation of a signal through the distortion of the time-axis. This

can be described by the mapping

t = β(u) (3.1)

where the warping operator, β is a function of the input time, u and obtains the output

time, t such that t = β(u). In non-uniform sampling and reconstruction of signals, time-

warping can be applied in various ways throughout the entire process. In general, there are

two approaches to relate time-warping to the context of non-uniform sampling.

One approach is to interpret a non-uniform sampling problem as uniform sampling of a

31



time-warped signal, which is discussed in [22]. The initial band-limited signal is warped in

such a manner that the uniform sample values of the warped signal are equivalent to the

values obtained through non-uniform sampling of the pre-warped signal. In this case, the

samples lie on the uniform grid of the warped time-axis, and the samples can be interpolated

using the sinc kernel, which achieves the interpolation property on the uniform grid. The

reconstructed signal is then obtained by inverse warping the interpolated signal. However,

this process does not lead to perfect reconstruction of the signal since the post-warped signal

is non-bandlimited and sampling it uniformly would cause aliasing.

The warping function can also be used to warp the analysis and synthesis kernels. This

can be done when the kernels do not have a computationally simple expression. Time-

warping of simple and analytically well-defined functions allows for the creation of an ex-

tensive set of kernels with complicated functions that satisfy certain properties. An example

is to warp the sine function such that its zeros coincide with the sample instants, and this

creates a kernel which fulfills the interpolation property. It will be shown later in chapter 4

that the component G(t) of the Lagrange kernel can be modelled by a modulated warped

sine function.

3.1.1 Advantages and limitations of time-warping

Time-warping can be used to represent time-varying processes such as the Lagrange kernel,

which is used for reconstructing band-limited signals from non-uniform samples. These

time-varying processes are transformed by time-warping so that time-invariant operations

such as low-pass filtering could be used instead.

Time-warping operators can be constructed as unitary operators, where the inverse

operator is identical to its adjoint. The property gained from unitary operators is that they

preserve the inner products of warped functions such that

〈Ax,Ay〉 = 〈x, y〉 (3.2)

where A is a unitary time-warping operator. Hence, time-warping a set of orthonormal

functions using unitary operators results in the set of warped functions being orthonormal

as well [4]. This provides the ability to warp the orthonormal basis functions of a subspace

in L2 to form another set of orthonormal basis functions that spans a different or warped
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subspace in L2.

There are also some limitations of time-warping. As the warping operator is invertible,

i.e. both onto and one-to-one, the warping functions have to be continuous and monotoni-

cally increasing. The latter condition limits the range of functions that a warping operator

can map to. Since unitary time-warping operators are invertible, it is necessary that they

are both continuous and monotonically increasing.

Another limitation of time-warping is that not all functions can be obtained by time-

warping a given function, as there might be a case where the dynamic range of the pre-

warped signal is not a subset of the dynamic range of the desired signal. Similar to the

limitation for monotonically increasing warping functions, there is a constraint on the range

space of warping operators.

3.2 Formulation of Delay-modulation Method

In this section, an alternative interpretation of time-warping of signals is introduced. The

notion here is that time-warping of signals can be expressed as a time-varying time-shift

such that

β(t) = t− α(t) . (3.3)

This is also known as delay-modulation in communications theory [4], [35]. Delay modula-

tion is an alternative way of relating time-warping to non-uniform sampling, especially in

the context where the sample instants tn are deviations from a uniform grid with spacing

T , i.e.,

tn = nT + εn (3.4)

where the set {εn} contains the deviations of the sampling instants away from the uniform

grid.

One way of representing delay modulation is by modeling it as a linear time-varying

(LTV) system,

h(t, u) = δ (t− u− α(t)) (3.5)

where t is the observation (output) time and u is the excitation (input) time. The impulse

response is completely characterized by the output time-dependent delay function α(t). The

superposition of the input signal, x(t) with the LTV system causes a time-dependent shift
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of x(·) to obtain the warped signal

y(t) =
∫ ∞

−∞
h (t, u)x(u)du

=
∫ ∞

−∞
δ (t− u− α(t))x(u)du

= x (t− α(t)) . (3.6)

Though the delay function α(t) does not necessarily have to satisfy any constraints, β(t) in

Eqn. (3.3) can be restricted to be continuous and monotonic so that the warping function

is invertible. Therefore, 0 < β′(t) <∞ and so −∞ < α′(t) < 1.

3.3 Determining the Inverse Warping System

The aim of this section is to examine possible techniques for obtaining the inverse warp-

ing operator. We move beyond the constraint of requiring the warping functions to be

monotonically increasing while retaining the continuity constraint. Two different possible

expressions for the inverse warping function will be discussed. Throughout this section, the

forward warping operator has the impulse response as given in Eqn. (3.5).

3.3.1 Approach 1: Using the substitution of variables

The first approach uses a substitution of variables method to obtain the output of the

inverse system. The impulse response of the inverse system can be defined as

h1(t, u) = β′(u)δ(t− β(u)), (3.7)

where β(u) = u− α(u), and β′(u) is the first derivative of β(u) with respect to u.

The output of the inverse system is

x̂(t) =
∫ ∞

−∞
h1(t, u)y(u)du

=
∫ ∞

−∞
β′(u)δ (t− β(u)) y(u)du. (3.8)
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Let φ = β(u), and its derivative with respect to u is

dφ
du

= β′(u). (3.9)

By making a substitution of variables on Eqn. (3.8), the output of the inverse system is

x̂(t) =
∫ ∞

−∞
β′(u)δ(t− φ)y(β−1(φ))

1
β′(u)

dφ

=
∫ ∞

−∞
δ(t− φ)y(β−1(φ))dφ

= y(β−1(t))

= x(β(β−1(t)))

= x(t) . (3.10)

From Eqn. (3.10), we see that the scaling factor β′(u) in Eqn. (3.7) normalizes the output

of the inverse warping operation to obtain a unity gain through the warping and inverse

warping processes. If the warping function β(·) is monotonically increasing, it is possible

to obtain the output of the inverse system as x(t). However, this formulation of the inverse

system would not hold for intervals where β′(·) ≤ 0, since β(·) is not one-to-one and so

β−1(·) will not be a valid function. Therefore, the second line of Eqn. (3.10) is invalid when

β(·) is not one-to-one. At the stationary points of the warping function, which are instants

where β′(·) = 0, the impulse response h1(t, u) is zero. This is equivalent to α′(·) = 1, which

means that when the rate of the delay is the same as the rate of the time, the output value

of the inverse system would be zero. For warping functions with β′(·) ≥ 0, one way of

overcoming this zero output at the instance where α′(·) = 1, is to use the continuity of the

signal to interpolate the value.

Clearly, this inverse warping operator is only suitable for monotonically increasing warp-

ing functions. The next approach aims to obtain an inverse warping operator which could

also be extended to non-monotonically increasing functions.
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3.3.2 Approach 2: Using the generalized scaling property of the Dirac

delta function

The second approach to finding the inverse warping is to use the generalized scaling property

of Dirac delta functions,

δ(p(x)) =
∑

i

δ(x− xi)
|p′(xi)|

(3.11)

where xi are the roots of the scaling function, p(x) and i represents the root indices.

Similar to the first approach, the impulse response of the inverse system is defined as

h2(t, u) = |β′(u)|δ(t− β(u)) . (3.12)

In this impulse response, the normalizing function is the absolute value of β′(u) and so

|β′(·)| ≥ 0. The output of the reverse system is

x̂(t) =
∫ ∞

−∞
h2(t, u)y(u)du

=
∫ ∞

−∞
|β′(u)|δ (t− β(u)) y(u)du

=
∫ ∞

−∞
|β′(u)|y(u)

∑

i

δ (u− ui)
|β′(ui)|

du

=
∑

i

|β′(ui)|y(ui)
|β′(ui)|

=
∑

i

y(ui)

=
∑

i

x(β(ui))

= ix(t), where i = #(roots of t = β(ui)). (3.13)

Since the roots ui are the values of u when the polynomial p(u) = t−β(u) equals to zero, this

means that at the instants, ui, β(ui) = t. When the function β(u) is not monotonic, there

is the possibility that multiple roots can occur for particular values of t. This introduces

a scaling factor for certain intervals of the warping function. Therefore, a region of the

inversed warped signal is scaled by the number of roots present in β(u) for that region of

t. We can illustrate this with a pictorial representation in Fig. 3-1, which shows a non-

monotonically increasing warping function β(u). If the intervals of t where the warping

function has multiple roots are known, it is possible to recover x(t) by re-scaling those
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regions of the inverse warped signal.

1 root

3 roots

1 root

t

t0

u

β(u)

u0 u1 u2

Figure 3-1: Example of non-monotonic warping function.

3.4 Delay Modulation Representation of Non-uniform Sam-

pling

An interpretation of non-uniform sampling using delay modulation is presented in this

section. Specifically, delay modulation is used to represent the case of non-uniform sampling

where the sampling instants deviate from a uniform grid, as described in Eqn. (3.4). In

the first part of this section, we will impose constraints on the warping functions to ensure

that the non-uniform sample instants map to the uniform grid and vice-versa. The second

part of this section then shows how non-uniform sampling can be interpreted as a process

of inverse-warping a signal, uniform sampling of the inversed warped signal and warping

the output stream of samples.

The non-uniform sample instants, tn, can be characterized as uniform samples of an

inverse warping function β−1(t) such that it satisfies the properties

β−1(nT ) = tn ,

β(tn) = nT , ∀n ∈ Z . (3.14)
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If β−1(t) is expressed in terms of delay modulation such that β−1(t) = t + ε(t), then

Eqn. (3.14) gives

β−1(nT ) = tn

nT + ε(nT ) = nT + εn

ε(nT ) = εn . (3.15)

where the deviations, εn, are expressed as the uniform samples of the delay modulation

function, ε(t). Similarly, by expressing the forward warping function as β(t) = t−α(t), the

deviations εn are characterized by α(t) such that

β(tn) = nT

tn − α(tn) = nT

α(tn) = εn . (3.16)

The constraint given in Eqn. (3.16) ensures that the delay modulation function maps the

non-uniform sample instants, tn, onto the uniform grid. An additional constraint of −∞ <

α′(t) < 1 ensures that the warping function is invertible. Unless the class of functions which

α(t) belongs to is known, α(t) is not uniquely defined.

Non-uniform sampling can be viewed as a process of inverse warping the signal, uniformly

sampling it, and warping the output stream of samples. An illustration of this process

is shown in Fig. 3-2. We define the inverse warping operator C−1 to have the impulse

response given in Eqn. (3.7) while the impulse response of the warping operator, C is given

by Eqn. (3.5). Inverse time-warping the signal x(t) followed by uniform sampling gives

C−1 C
x(t) xp(t)

∞∑

n=−∞
δ(t− nT )

xq(t)

1

Figure 3-2: Equivalent non-uniform sampling using time-warping.
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xq(t) = x(β−1(t))
∞∑

n=−∞
δ(t− nT )

=
∞∑

n=−∞
x(tn)δ(t− nT ) , (3.17)

where the non-uniform sample values are located on the uniform grid. The signal xq(t) can

then be warped with β(t) to map the sample values onto the non-uniform grid such that

xp(t) = xq(β(t)) =
∞∑

n=−∞
x(tn)δ(β(t)− nT )

=
∞∑

n=−∞
x(tn)δ(t− tn) . (3.18)

Similarly, uniform sampling is represented as warping the signal, followed by non-uniform

sampling and an inverse warping of the output. This process is illustrated in Fig. 3-3 .

x(t)

∞∑

n=−∞
δ(t− tn)

C−1C
xnp(t)xnq(t)

1

Figure 3-3: Equivalent uniform sampling using time-warping.

3.5 Two-dimensional Representation of Delay Modulation

In this section, we introduce different input-output system characterizations of delay mod-

ulation. These characterizations allow us to describe the effects of sampling the warped

signal and show what this means in terms of the input system.

The time-varying impulse response, h(t, u) given in Eqn. (3.5) gives the relationship

between the input signal and output signal in terms of input time, u and output time, t.

This time-domain relationship as expressed in Eqn. (3.6), can be re-written by replacing u
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with u− α(t),

y(t) =
∫ ∞

−∞
h(t, u− α(t))x(u− α(t))du

=
∫ ∞

−∞
δ(t− α(t)− (u− α(t)))x(u− α(t))du

=
∫ ∞

−∞
δ(t− u)x(u− α(t))du . (3.19)

We can represent Eqn. (3.19) in two-dimensions as shown in Fig. 3.5. The input signal

can be seen as being laid out at each instance of t, and shifted by an amount α(t) which

depends on the observation time, t. For example, at time t = t0, the signal is shifted by an

amount α(t0). The output, y(t) of the LTV system can be obtained from Eqn. (3.19), by

evaluating the shifted two-dimensional signal along the diagonal line representing u = t.

u

t

u = t

t0 t1 t2

x(u− α(t2))

x(u− α(t0))

x(u− α(t1))

1

Figure 3-4: Two-dimensional input time - output time representation of delay modulation.

The time-warping operator can also be characterized in terms of the input frequency
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and the output frequency. The Fourier transform of the output signal is

Y (Ω) =
∫ ∞

−∞
y(t)e−jΩtdt

=
∫ ∞

−∞

[
1

2π

∫ π

−π
X(ω)ejωudω

]
e−jΩtdt

=
1

2π

∫ π

−π

[∫ ∞

−∞
ejω(t−α(t))e−jΩtdt

]
X(ω)dω

=
1

2π

∫ π

−π
H(Ω, ω)X(ω)dω (3.20)

where the bi-frequency transfer function H(Ω, ω) can be obtained by the two-dimensional

Fourier transform of h(t, u),

H(Ω, ω) =
∫ ∞

−∞

∫ ∞

−∞
h(t, u)ejωue−jΩtdu dt

=
∫ ∞

−∞

∫ ∞

−∞
δ(t− u− α(t))ejωue−jΩtdu dt

=
∫ ∞

−∞
ejω(t−α(t))e−jΩtdt . (3.21)

The third characterization is the input frequency to output time representation of the

time-varying system. Substituting the expression for the inverse Fourier transform of x(u)

into Eqn. (3.6),

y(t) =
∫ ∞

−∞
h (t, u)

[
1

2π

∫ π

−π
X(ω)ejωudω

]
du

=
1

2π

∫ π

−π

[∫ ∞

−∞
h (t, u) ejωudu

]
X(ω)dω

=
1

2π

∫ π

−π
g(t, ω)X(ω)dω (3.22)

where the input frequency and output time response function

g(t, ω) =
∫ ∞

−∞
h (t, u) ejωudu

=
∫ ∞

−∞
δ(t− u− α(t))ejωudu

= ejω(t−α(t)) . (3.23)
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By combining Eqn. (3.23) and Eqn. (3.22), y(t) can be expressed as

y(t) =
1

2π

∫ π

−π
X(ω)e−jωα(t)ejωtdω (3.24)

which can be interpreted as y(t) being the projection of X̃(t, ω) = g(t, ω)X(ω) onto the

t-axis. We can visualize this as laying out the signal x(u) for different time instants, t,

and carrying out the one-dimensional Fourier Transform along the u-axis to obtain X(ω).

Subsequently at each instant of observation time, t, X(ω) is multiplied with a phase shift of

e−jωα(t). The above perspective of delay modulation method allows an easier understanding

of time-warping of the signal.

3.6 Approximations of Time-warped Signals

This section explores the idea of making approximations involving the warping function.

The first part of the section uses the non-uniform sample instants, tn to obtain approxima-

tions of the delay modulation, ε(t). The second part then assumes that ε(t) is known and

uses the original signal and the warping function to form approximations to the frequency

spectrum of the warped function.

3.6.1 Approximation of time-warping functions

In this first part, we discuss how the inverse time-warping functions, β−1(t) = t+ ε(t) can

be approximated from non-uniform sampling instants, specifically for the cases of bounded

deviation from the uniform grid and recurrent non-uniform sampling.

In considering the case where the sample instants tn deviate from the uniform grid by

a bounded amount, we can represent the deviations εn with a delay modulation function

ε(t). One method of forming ε(t) is to use a series expansion

ε(t) =
∞∑

n=−∞
εnφn(t), (3.25)

where the set of functions {φn(t)} are either bases or frames that span the space which

ε(t) belongs to. This space is unknown in most cases and we can use the characteristics

of tn to form approximations of ε(t). An example is to approximate ε(t) while satisfying

the condition in Eqn. (3.15), and hence it is sufficient for the approximation scheme to
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fulfill the interpolation property. By approximating ε(t) to belong to the space of functions

band-limited to π
T , we can express

ε(t) =
∞∑

n=−∞
εn

sin π
T (t− nT )

π
T (t− nT )

. (3.26)

Another similar method to obtain ε(t), while satisfying the condition in Eqn. (3.15), uses

uniform splines to interpolate the deviations εn.

For the case of recurrent non-uniform sampling, the delay modulation function can be

described as a periodic function. An example would be to approximate the delay modulation

function with trigonometric polynomials as described in the following discussion. Assume

that the sample instants are divided into groups of N points each and the groups have a

recurrent period of TQ, which is N times the Nyquist period, T . Each period consists of N

non-uniform sample instants which are denoted by tp, p = 0, 1, . . . , N −1. The complete set

of sample instants are tp +nTQ, p = 0, 1, . . . , N − 1, n ∈ Z. The delay modulation function,

ε(t) can be sufficiently described as a real and periodic function with period, TQ such that

ε(nTQ + pT ) = ε((n+ 1)TQ + pT ) = tp, p = 0, 1, . . . , N − 1, (3.27)

and therefore, ε(t) can be expressed as a Fourier series

ε(t) = a0 +
∞∑

k=1

[
ak cos

(
k

2π
TQ

t

)
+ bk sin

(
k

2π
TQ

t

)]
. (3.28)

However, ε(t) is unknown and we want to approximate it from the sample instants. The first

N Fourier series coefficients of Eqn. (3.28) can be approximated from the sample instants,

tp, p = 0, 1, . . . , N − 1 by solving the system of equations

ε(pT ) = tp = a0+

N−1
2∑

k=1

[
ak cos

(
k

2π
TQ

pT

)
+ bk sin

(
k

2π
TQ

pT

)]
, p = 0, 1, . . . , N−1. (3.29)

This results in the approximation of ε(t) with N trigonometric polynomial terms.

In some other cases such as in polynomial-based frequency modulation, ε(t) may be
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approximated using a Taylor series expansion

ε(t) = a0 + a1t+ a2t
2 + . . . . (3.30)

However, if the Taylor series approximation is to be used for the special case of non-uniform

sampling where the sample instants are deviations from a uniform grid, then we have to

also consider the constraints given by the sample instants. For example, in the case where

the deviations from the uniform grid are less than 1/4 of the average sampling period, it

is sufficient to expect that ε(t) is bounded. However, a truncation of the Taylor series ex-

pansion for ε(t) would result in higher order terms which would contradict the boundedness

condition for ε(t).

3.6.2 Frequency representation of warped functions

Assume that x(t) has a Fourier transform X(Ω) with a band-width of π
T . Since the warped

function is expressed as an implicit function, it is generally difficult to express a warped

function in terms of its Fourier transform. An approximation of the Fourier transform can

be made through a Taylor series expansion of the time-warped signal such that

x(t+ ε(t)) = x(t) + ε(t)x′(t) + ε2(t)
x′′(t)

2!
+ · · ·+ εk(t)

x(k)(t)
k!

+ · · · (3.31)

The Taylor series expansion in Eqn. (3.31) shows that the impact of the kth term diminishes

with 1
k! . A first order approximation of the Fourier transform of x(t+ ε(t)) is

X(Ω) + [jΩX(Ω)] ∗ E(Ω) . (3.32)

The convolution of a band-limited spectrum X(Ω) with E(Ω) implies that the Fourier

transform of x(t+ ε(t)) is not band-limited to π
T .

Higher approximations show that, in general, the Fourier transform of x(t+ ε(t)) is not

band-limited. Assume that ε(t) has a Fourier transform E(Ω) which is band-limited to π
T

and let E = maxΩ |E(Ω)|. E(Ω) is therefore bounded by a rectangle, RE(Ω) of support 2π
T

and height E. The Fourier transform of the kth term in Eqn. (3.31) is

(jΩ)k

k!
X(Ω) ∗ E(Ω) ∗ · · · ∗ E(Ω) (3.33)
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where the dots represent a k-fold convolution of E(Ω), and the expression in Eqn. (3.33) is

bounded by
(jΩ)k

k!
X(Ω) ∗RE(Ω) ∗ · · · ∗RE(Ω) . (3.34)

From [28], it is shown that the k-fold convolution of RE(Ω) converges to a Gaussian function

as k tends to infinity. This implies that the Fourier transform of εk(t) is bounded by

|FT {εk(t)}| ≤ Ek√
π(k+1)

6

· e−
6T2

π2(k+1)
Ω2

. (3.35)

where FT {·} represents a Fourier transform. The above analysis shows that the Fourier

transform of x(t+ ε(t)) is in general not band-limited and the Fourier transform is bounded

by a function that approximately decays like a Gaussian function.

We can also look at the Fourier transform of the warping function in another perspective.

By considering the Fourier transform of y(t) = x(β(t)),

Y (Ω) =
∫ ∞

−∞
y(t)e−jΩtdt

=
∫ ∞

−∞
x(β(t))e−jΩtdt . (3.36)

Let τ = β(t) and β−1(t) = t+ ε(t). Eqn. (3.36) becomes

Y (Ω) =
∫ ∞

−∞
x(τ)

(
dβ−1(τ)
dτ

)
e−jΩβ

−1(τ)dτ

=
∫ ∞

−∞
x(τ)(1 + ε′(τ))e−jΩε(τ)e−jΩτdτ . (3.37)

Expressing Y (Ω) in terms of convolution,

Y (Ω) = X(Ω) ∗ [δ(Ω) + jΩE(Ω)] ∗ FT [e−jΩε(τ)] . (3.38)

Let us make the approximation that lim|τ |→∞ ε(τ) = 0 and that e−jΩε(τ) can be approxi-

mated by 1− jΩε(τ), then the Fourier transform of e−jΩε(τ) is

∫ ∞

−∞
[1− jΩε(τ)]e−jΩτdτ = δ(Ω) + ε(τ)e−jΩτ

∣∣∣∣
∞

−∞
+
∫ ∞

−∞
ε′(τ)e−jΩτdτ

= δ(Ω) + jΩE(Ω) . (3.39)
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Combining Eqns. (3.37) and (3.39), we obtain an approximation to the Fourier transform

of the warped function as

Y (Ω) = X(Ω) ∗ [δ(Ω) + jΩE(Ω)] ∗ [δ(Ω) + jΩE(Ω)] (3.40)

which gives a similar result to that obtained through the Taylor series expansion in Eqn. (3.33).

The above analysis shows that given the Fourier transform of both x(t) and ε(t), it is

possible to obtain approximations to the Fourier transform of the warped signal through a

simple convolution and sum process.
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Chapter 4

Approximations to the Lagrange

Interpolation Function

The reconstruction of a band-limited signal from its non-uniform samples in general involves

an interpolating kernel (the Lagrange kernel) that is impractical to implement. Unlike the

sinc kernel used in reconstruction from uniform samples, the kernel for the non-uniform case

is computationally difficult. In this chapter, we develop approximations for the exact in-

terpolation function to obtain efficient and accurate reconstructions. The properties of the

ideal Lagrange interpolating function and its component functions will be used to specify

a set of essential conditions from which we establish a framework for the approximations.

Examples of approximation to Lagrange interpolation include sinc functions, piecewise sinu-

soids and non-uniform splines. The performance of the proposed method is then compared

with direct cubic B-spline interpolation of non-uniform samples.

4.1 Characteristics of the Lagrange Interpolation Function

In this section, we study the properties of the Lagrange kernel and its components. These

insights will then be used to form approximations of the Lagrange kernel that preserve its

essential characteristics.

As given in Eqns. (2.11) and repeated here, for ease of reference, the equations describing
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Lagrange interpolation are

x(t) =
∞∑

n=−∞
x(tn)ln(t) , (4.1a)

where

ln(t) =
G(t)

G′(tn)(t− tn)
(4.1b)

and

G(t) = (t− t0)
∞∏

k=−∞
k 6=0

(
1− t

tk

)
, (4.1c)

with the sample instants constrained to |tn − nT | < T
4 .

As described by Eqn. (4.1c), G(t) consists of an infinite product of linear factors of

the form (1− t/tk), which implies that G(t) is a continuous function of t since G(t) is

differentiable at all values of t. The constraints in both Eqn. (2.10) and (2.18) require the

sample instants to be separate. Consequently, G(t) can only have simple real roots at tn

and so G′(tn) 6= 0.

To see how the amplitude of G(t) depends on the inter-sample distance, consider an

example in which a single sample instant deviates from the uniform grid. For the special

case of uniformly spaced sample instants,

G(t) = t
∞∏

k=−∞
k 6=0

(
1− t

kT

)
=

sin( πT t)
π
T

, (4.2)

where in each inter-sample interval, the extremum point magnitude is equal to the value of

G(t) at the arithmetic mean. We consider changes to the amplitude of G(t) in the immediate

interval of [(k − 1)T, (k + 1)T ], k ∈ Z when a sample instant tk deviates from t = kT by

εk, where −T/4 < εk < 0. From Rolle’s theorem, G(t) contains only one extremum point,

Gext, between adjacent sample instants, but the location and value of Gext are difficult to

determine analytically. Instead, we approximate the extremum by evaluating G(t̄), where t̄

denotes the arithmetic mean of the interval. G(t̄) would appear to be a good approximation

to Gext because changes in the inter-sample distance cause the magnitudes of Gext and G(t̄)

to change in the same direction.

From Eqn. (4.1c), we note that the factor for the zeroth sample instant has a different
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form from factors involving the rest of the sample instants. Thus, the analysis below will

separately consider the case for k = 0, and the case where k is an integer other than zero.

For the case where k = 0, the sample instant t0 deviates from t = 0 by ε0, where

−T/4 < ε0 < 0. The factor (t− 0) in Eqn. (4.2) is replaced with a factor (t− t0) to obtain

G(t) =
sin( πT t)

π
T

· t− ε0
t

. (4.3)

For the larger interval, the value of G(t) at the arithmetic mean, t̄l = ε0+T
2 is

G(t̄l) =
cos(πε02T )

π
T

· T − ε0
T + ε0

. (4.4)

Thus, G(t̄l) is bounded to the interval 1 < π
TG(t̄l) < 5

3 cos(π/8) ≈ 1.54. The value of G(t)

at the arithmetic mean of the smaller interval, t̄s = ε0−T
2 is

G(t̄s) = −cos(πε02T )
π
T

· T + ε0
T − ε0

, (4.5)

so that−1 < π
TG(t̄s) < −3

5 cos(π/8) ≈ −0.55. The analysis for k = 0 shows that | πTGext| > 1

for the inter-sample interval larger than T , while | πTGext| < 1 for the inter-sample interval

smaller than T .

For the case when k is an integer other than zero, tk = kT + εk and so

G(t) =
sin( πT t)

π
T

·
1− t

kT+εk

1− t
kT

=
sin( πT t)

π
T

· kT + εk − t
kT − t · kT

kT + εk
. (4.6)

Let εk = αkT such that −1/4 < αk < 0. Similar to the case of k = 0, we evaluate Eqn. (4.6)

at the arithmetic mean of the larger interval, t̄l = kT+εk+(k+1)T
2 , which is

G

(
kT + εk + (k + 1)T

2

)
=

sin(π2 (2k + 1) + παk
2 )

π
T

· αk − 1
αk + 1

· k

k + αk

=
(−1)k+1 cos(παk2 )

π
T

· αk − 1
αk + 1

· k

k + αk
. (4.7)

This bounds G(t̄l) such that (−1)k < π
TG(t̄l) < (−1)k 5

3 cos(π/8) k
k−1/4 . The arithmetic
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mean of the smaller interval, t̄s = kT+εk+(k−1)T
2 , gives a corresponding G(t) as

G

(
kT + εk + (k − 1)T

2

)
=

sin(π2 (2k − 1) + παk
2 )

π
T

· αk + 1
αk − 1

· k

k + αk

=
(−1)k cos(παk2 )

π
T

· αk + 1
αk − 1

· k

k + αk
. (4.8)

G(t̄s) is bounded by (−1)k+1 < π
TG(t̄s) < (−1)k+1 3

5 cos(π/8) k
k−1/4 .

From the above analysis, we see that for all k ∈ Z, an inter-sample interval larger than T

causes the magnitude of π
TG(t) within that interval to be larger that 1, whereas the converse

is true for inter-sample distances smaller than T . From Eqn. (4.1b), the dependence of ln(t)

on G(t) causes ln(t) to be similarly affected by the inter-sample distance.

Using a simple example, Fig. 4-1 illustrates how G(t) changes in the interval −T ≤ t ≤ T
when the zeroth sample instant deviates from the uniform grid by ε0 = −0.2T . When the

inter-sample distance is smaller than T , the magnitude of G(t) is small. Whereas the interval

with inter-sample distance larger than T has a large magnitude for G(t).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

time

 

 
π /T⋅ G(t)
sin (π t/T)
Sampling instances

Figure 4-1: Plot of G(t) (solid) when one sampling instant deviates from uniform grid by
ε0 = −0.2, and sine function (dashed).
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Another key characteristic of the Lagrange interpolation function, ln(t) is that it satisfies

the interpolation property

ln(tk) =





0, n 6= k

1, n = k

. (4.9)

If the sampling instants are identical to the reconstruction time instants, this also implies

the property of consistent resampling, i.e. resampling the reconstructed signal on the non-

uniform grid {tn} yields the original samples {x(tn)}. Representing the reconstruction and

sampling processes by operator P , consistent sampling indicates that P is an idempotent

operator, i.e. P 2 = P .

Equation (4.9) shows that the Lagrange interpolation function has zeros at all the sample

locations except at the time instant where we evaluate the interpolation function, i.e. t = tn.

From Eqn. (4.1c), G(t) is a product of factors involving all the sample instants, and thus

G(t) contributes to all the zeros of the Lagrange interpolation function. For sample instant

tn|n=k, the factor 1
t−tk in the Lagrange interpolation function contributes a pole that is

cancelled by a corresponding zero in G(t). The result of this pole-zero cancellation is

Hk(tk) = lim
t→tk

G(t)
t− tk

. (4.10)

Since the interpolating property of the Lagrange kernel states that lk(tk) = 1, the role of

G′(t) is to normalize Eqn. (4.10). As G(t) is differentiable,

lk(tk) = lim
t→tk

G(t)
(t− tk)G′(tk)

= 1

G′(tk) = lim
t→tk

G(t)
t− tk

. (4.11)

It is important to note that the maximum value of the Lagrange interpolation function

need not occur at the sample instants tn and it is not necessary that maxt(ln(t)) = 1. This

is a property which has also been observed and described in [33].

The following list summarizes the characteristics of the Lagrange interpolation function:

1. G(t) is continuous at tn and G′(tn) 6= 0,

2. the zeros of G(t) occur at the sampling instants tn,

3. the magnitude of π
TG(t̄), where t̄ ∈ (tn, tn+1), is greater than 1 when the inter-sample
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distance is larger than T and is smaller than 1 when the inter-sample distance is

smaller than T ,

4. G(t) accounts for the zeros in the interpolating property of ln(t),

5. G′(tn) is a normalizing factor that accounts for the required gain in the interpolating

property, and

6. the maximum of the interpolating function does not have to occur at the sampling

locations.

4.2 Framework for Approximations of the Lagrange Kernel

In this section, we formulate a representation for G(t) based on the characteristics observed

in Section 4.1. A special case of G(t) occurs when the zeros are uniformly spaced at tn = nT

and so

G(t) =
T

π
sin
(π
T
t
)
. (4.12)

In the case where the zeros are non-uniformly spaced at tn, Eqn. (4.12) can be warped with

a function β(t) to relocate the uniformly spaced zeros so that sin( πT β(tn)) = 0. We do not

want to create additional zeros and a sufficient condition would require β(t) to be strictly

monotonically increasing, β′(t) > 0. This imposes the constraint of β(tn) = nT on the

warping function.

We can relate G(t) to the sine-type function by representing G(t) as a modulated time-

warped sine function

G(t) = s(t) sin
(π
T
β(t)

)
, (4.13)

where s(t) is a modulating function that represents the effects of the inter-sample distance

on G(t). The derivative of G(t) is

G′(t) = s′(t) sin
(π
T
β(t)

)
+
π

T
s(t)β′(t) cos

(π
T
β(t)

)

and at t = tn,

G′(tn) =
π

T
s(tn)β′(tn)(−1)n. (4.14)
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Since G(t) has simple roots at the instants tn, G′(tn) is non-zero and so

|G′(tn)| =
∣∣∣π
T
s(tn)β′(tn)(−1)n

∣∣∣ > 0

|s(tn)β′(tn)| > 0 ,

where the constraint β′(t) > 0 implies that |s(tn)| > 0. Furthermore, G(t) is non-zero

everywhere except at {tn} and so it is necessary that s(t) is constrained by 0 < A ≤ s(t) ≤
B <∞, where A and B are positive constants.

A fixed G(t) is not associated with a unique choice of {β(t), s(t)}. If G(t) and β(t) are

fixed, then s(t) is uniquely defined by

s(t) =





G(t)

sin( πT β(t)) , t 6= tn, n ∈ Z

T
π (−1)nG

′(tn)
β′(tn) , t = tn, n ∈ Z .

(4.15)

For the case when both G(t) and s(t) are fixed, there is a unique β(t) such that

β(t) =
(
k − 1

2

)
π

T
+
T

π
arcsin

(
G(t− (k − 1

2) πT )
s(t− (k − 1

2) πT )

)
, k ∈ Z , (4.16)

where β(t) is defined only when |s(t)| ≥ |G(t)|. This condition ensures that within each in-

terval tn ≤ t < tn+1,∀n ∈ Z, G(t) can be warped from the range of values of s(β−1(t)) sin( πT t).

The Lagrange interpolation function is alternatively represented as

ln(t) =
G(t)

G′(tn)(t− tn)
=

s(t) sin
(
π
T β(t)

)
π
T s(tn)β′(tn)(−1)n(t− tn)

=
s(t) sin

(
π
T (β(t)− nT )

)

s(tn)β′(tn) πT (t− tn)
, (4.17)

and so the reconstruction of a band-limited signal from its non-uniform samples is

x̂(t) =
∞∑

n=−∞
x(tn)

s(t) sin
(
π
T (β(t)− nT )

)

s(tn)β′(tn) πT (t− tn)
. (4.18)

Fig. 4-2 shows an alternative representation of non-uniform sampling and reconstruction

using the Lagrange kernel, where the reconstruction kernel is constructed by warping a sine

function. It takes on a similar form as the system in Fig. 2-2, but with an additional pre-

modulation by 1/s(t)β′(t) before the non-uniform sampling and reconstruction process and
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post-modulation by s(t) as the final stage.

1

t

x̂(t)x(t)

s(t)sin( π
T
β(t))

π
T
t

1

s(t)β′(t)

∞∑

n=−∞
δ(t− tn) (−1)n

Figure 4-2: Representation of alternative Lagrange interpolation system.

sin( π
T t)

π
T t

∞∑

n=−∞
δ(t− tn)

x̂(t)

1

s(t)β′(t)
(−1)n

C−1

s(t)

x(t) 1

t
C

xq(t) xr(t) xs(t)xp(t)

1

Figure 4-3: Equivalent non-uniform sampling and reconstruction using time-warping.

Another interpretation of Eqn. (4.18) is to warp the output of the Hilbert transformer

instead of warping the sine function. The block diagram of this interpretation is shown

in Fig. 4-3 and it is equivalent to the system in Fig. 4-2 up to and including the Hilbert

transformer. The signal at the output of the Hilbert transformer is

xp(t) =
∞∑

n=−∞

x(tn)
s(tn)β′(tn)

(−1)n

t− tn
. (4.19)

Passing xp(t) through the inverse warping operator C−1 with impulse function as given in

Eqn. (3.7).

xq(t) = xp(β−1(t)) =
∞∑

n=−∞

x(tn)
s(tn)β′(tn)

(−1)n

β−1(t)− tn
. (4.20)

Modulating xq(t) with the sine function gives the input to the warping operator as

xr(t) =
∞∑

n=−∞
x(tn)

sin π
T (t− nT )

s(tn)β′(tn) πT (β−1(t)− tn)
. (4.21)

The next step requires warping xr(t) by the operator C with impulse response defined by
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Eqn. (3.5) to give

xs(t) = xr(β(t)) =
∞∑

n=−∞
x(tn)

sin π
T (β(t)− nT )

s(tn)β′(tn) πT (t− tn)
. (4.22)

Lastly, xs(t) is modulated by s(t) to obtain

x̂(t) = s(t)xs(t)

=
∞∑

n=−∞
x(tn)

s(t) sin π
T (γ(t)− nT )

s(tn)β′(tn) πT (t− tn)
. (4.23)

This alternative representation by warping the signals can be interpreted as performing the

modulation with a sine function in a space spanned by warped sinc functions.

4.3 Approximation Methods

In this section, we approximate the Lagrange interpolation function using three differ-

ent methods. Reconstruction by shifted sinc functions is presented using the framework

of Eqn. (4.13). We then form approximations to G(t) by constructing s(t) and β(t) as

piecewise polynomials. Another approximation method involves approximating G(t) with

non-uniform splines, while maintaining the Lagrange kernel characteristics in the approxi-

mation.

4.3.1 Approximation using sinc function

Assume that the sampling instants tn = nT + εn, where εn are the deviations from the

uniform grid. We define Gn(t) as a sine function that is shifted by εn and so

Gn(t) =
sin( πT (t− εn))

π/T
. (4.24)

The derivative of Eqn. (4.24) is

G′n(t) = cos
(π
T

(t− εn)
)

(4.25)
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which when evaluated at tn, has the value G′n(tn) = (−1)n. Let the scaled Hilbert trans-

former remain as h(t) = 1/t. This gives the approximation as

x̂(t) =
∞∑

n=−∞
x(tn)

Gn(t)
(t− tn)G′n(tn)

=
∞∑

n=−∞
x(tn)

sin( πT (t− tn))
π
T (t− tn)

(4.26)

The sinc kernel ln(t) = sin( π
T

(t−tn))
π
T

(t−tn) does not satisfy the interpolation property since ln(tn) =

1 while ln(tk) 6= 0 for n 6= k. Hence, for non-uniform sample instants, this approximation

method causes inter-symbol interference and does not result in consistent sampling.

For the special case where the deviations from the uniform grid are equal and constant

such that εn = ε, Eqn. (4.26) becomes

x̂(t) =
∞∑

n=−∞
x(nT + ε)

sin( πT (t− nT − ε))
π
T (t− nT − ε) (4.27)

and this perfectly reconstructs x(t). Another way of forming an approximation is to assume

that the samples lie on the uniform grid and through sinc interpolation,

x̂(t) =
∞∑

n=−∞
x(tn)

sin( πT (t− nT ))
π
T (t− nT )

. (4.28)

In this approximate reconstruction, the sinc reconstruction kernel satisfies the interpolation

property on the uniform grid and there is no inter-symbol interference. However, Eqn. (4.28)

does not fulfill the consistent resampling property, and the samples are not at the correct

sample instants which leads to error in the reconstruction. This method can be used when

the sample instants are unknown.

Figs. 4-4(a) and 4-4(b) respectively show the interpolation of the non-uniform samples

using the shifted sinc approximation and the reconstruction using sinc interpolation while

assuming the sample instants to be on the uniform grid.

The methods involving the sinc functions are unable to approximate the signal while

satisfying the consistent resampling property. More accurate approximations to G(t) can be

obtained by constraining the approximations to satisfy the Lagrange interpolation function

properties discussed in section 4.1.
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Figure 4-4: Plots of approximation using (a) shifted sinc approximation and (b) sinc filter.

4.3.2 Approximation with piecewise sinusoids

Using Eqn. (4.13), G(t) can be approximated by forming β(t) and s(t) as piecewise poly-

nomial functions. In this subsection, we will approximate G(t) as a piecewise sinusoidal

function by forming s(t) as a piecewise constant function and β(t) as a piecewise linear

function with non-equidistant constraint points at {tn} such that β(tn) = nT . β(t) can be

expressed as

β(t) =
∞∑

n=−∞

[
nT +

T

Tn
(t− tn)

]
[u(t− tn)− u(t− tn+1)] (4.29)

where

u(t) =





0, t ≤ 0

1, t > 0

and the interval of each piece is

Tn = |tn − tn+1|. (4.30)

Substituting Eqn. (4.29) into Eqn. (4.13), Ĝ(t) can be expressed as

Ĝ(t) = s(t)
∞∑

n=−∞
sin
(
π

T

(
nT +

T

Tn
(t− tn)

))
(u(t− tn)− u(t− tn+1)) . (4.31)
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Let s(t) be a piecewise constant function with s(t) = An > 0, for tn ≤ t < tn+1 and so Ĝ(t)

is formulated a piecewise sinusoidal function such that

Ĝ(t) =
∞∑

n=−∞
An sin

(
π

T

(
nT +

T

Tn
(t− tn)

))
[u(t− tn)− u(t− tn+1)] . (4.32)

The amplitudes, An of the piecewise sinusoids are constrained to ensure that the deriva-

tives of Ĝ(t) are continuous at the sample instants, tn. This requires that

lim
t→t−n

Ĝ(t) = lim
t→t+n

Ĝ(t)

lim
t→t−n

sn−1(t)
π

Tn−1
cos
(
π(n− 1) +

π

Tn−1
(t− tn−1)

)
= lim

t→t+n
sn(t)

π

Tn
cos
(
πn+

π

Tn
(t− tn)

)

An−1
π

Tn−1
= An

π

Tn

An =
Tn
Tn−1

An−1, n ∈ Z , (4.33)

which implies that An is proportional to the inter-sample distance Tn.

4.3.3 Approximation with non-uniform splines

One common approach to approximate reconstruction from non-uniform samples is to di-

rectly interpolate the samples with non-uniform splines [6]. However, our approach is to

instead use non-uniform splines to approximate G(t). In this formulation, we use B-splines

for their smoothness as well as their finite support, which makes them computationally easy

to implement.

G(t) is approximated by creating a function G̃(t) that behaves like Eqn. (4.13), i.e.

constraining the zeros of G̃(t) to be at the sampling instants tn, which is analogous to

approximating β(t). This is implemented by placing an additional sequence of constraint

points at the arithmetic mean of two sampling instants, and scaling the magnitude of the

extra constraint points to be proportional to the inter-sampling distance. The series of

constraint points of G̃(t) at the sampling instants ti = τ2i are

G̃(τ2i) = 0, i ∈ Z (4.34)
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while the extra constraint points at instants τ2i+1 = ti+ti+1

2 are given by

G̃(τ2i+1) = (−1)i|ti+1−ti |p, i ∈ Z, p ∈ R (4.35)

where p is a weighting factor that will be dependent on the degree of spline used, and this

is analogous to forming s(t).

For a given set of instants {τ0, τ1, . . . , τN+1}, a non-uniform B-spline of degree N is

defined as given in [24].

BN (t; τ0, . . . , τN+1) =
(τN+1 − τ0)

(−1)N+1

N+1∑

k=0

(t− τk)Nu(t− τk)
D(τk)

(4.36)

where

D(τk) =
N+1∏

l=0
l 6=k

(τk − τl) .

Since the sample instants are non-uniform, BN (t) is not shift-invariant. In addition, the

degree N controls the smoothness of the approximation, and since G(t) has to be at least

continuous, this constrains the splines to be of degree N ≥ 2. Using the N th order B-splines

given in Eqn. (4.36), the approximation to G(t) is

G̃(t) =
∞∑

i=−∞
ciBN (t; τi, . . . , τi+N+1) (4.37)

where {ci} can be obtained from the constraint points {G̃(τi)} by solving a linear system

of equations.

Fig. 4-5(a) shows the approximation of a warped sine function and 4-5(b) shows how

the weighting factor p can achieve the effect of a modulated warped sine function.

From the approximation to G(t) in Eqn. (4.37), we form the set of interpolating functions

as

ln(t) =
G̃(t)

G̃′(tn)(t− tn)
, n ∈ Z . (4.38)

The set of interpolation functions for the spline approximation method is shown in Fig. 4-6,

where the interpolating kernels fulfill the interpolation property. It can also be observed

that the maximum point of the interpolating kernels does not have to be at the sample

instants tn.
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Figure 4-5: (a) Cubic spline and (b) weighted cubic interpolation of sine-type function.
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Figure 4-6: Interpolating property obtained by forming the interpolation kernels with non-
uniform splines.
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The importance of the weighting factor in obtaining a better approximation can also

be shown by comparing Figs. 4-7(a) and 4-7(b), which show the interpolation results of

approximating G(t) with an unweighted cubic spline and a weighted cubic spline respec-

tively. In both figures, the original sinusoidal signal of 4Hz, as shown by the dashed line,

is sampled non-uniformly at tn = nT + εn, where T = 0.05s and εn is a sequence of in-

dependent and identically distributed (i.i.d.) uniform random variables with support of

[−0.25T, 0.25T ]s. In the weighted spline approximation, the value of p = 1.735 obtains the

best approximation.
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Figure 4-7: Plot of approximate interpolation with (a) unweighted cubic spline approxima-
tion and (b) weighted cubic spline approximation

The amount of computations required to perform the N th degree spline interpolation

for G̃(t) is on the same order as the computation required for the N th degree direct spline

interpolation of the nonuniform samples. This is because the constraint points accounting

for the zeros of G(t) do not add to the computational requirements, leaving the computation

of G̃(t) to depend only on the additional set of constraint points in Eqn. (4.35).

4.4 Numerical Experiments

In this section, we present the simulation results that illustrate the performance of the ap-

proaches for approximating G(t). We specifically compare the performance of the methods

using non-uniform cubic spline and piecewise sinusoid approximation of G(t) with that of

a direct cubic spline approximation of the signal. The optimal weighting factor for cubic
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splines was found experimentally to be p = 1.735.

The first set of simulations was performed by sampling approximately band-limited

white noise with support of [−5, 5]s. The signals were sampled non-uniformly with average

sampling period of T = 0.05s and with the signal bandwidth varying from 0 to π/T rad/s.

Let r be the bandwidth-sampling frequency ratio. The deviations of the sampling times

from the uniform grid were a sequence of independent and identically distributed (i.i.d.)

random variables drawn from a uniform distribution with support of [−0.25T, 0.25T ]s. The

reconstruction error was evaluated in the region of [−1, 1]s to mitigate the end effects. To

evaluate the reconstruction performance, we compute the normalized mean squared error

(MSE) of the output.

MSE =

∫ −1
1 |x̂(t)− x(t)|2dt
∫ −1

1 |x(t)|2dt
(4.39)

The average MSE was taken from 100 realizations of the reconstruction.

From Fig. 4-8, we see that the error for the direct spline interpolation increases faster

than the reconstruction error of the two proposed methods involving the approximation of

G(t) as r increases. Though the proposed methods have a larger error when r is small,

the spline approximation of G(t) and the piecewise sinusoidal approximation of G(t) per-

form better than direct spline approximation when r > 0.3470 and r > 0.4653 respectively.

Specifically, the proposed methods become preferable for the case of sampling and recon-

struction from non-uniform samples as the average sampling rate approaches the Nyquist

rate.

An intuitive explanation of the simulation starts from the fact that G(t) and the La-

grange interpolation functions are both band-limited functions. Approximation of G(t) with

piecewise functions maintains all the zeros. This translates to a sharp decay at π/T rad/s

for the Fourier transform of ln(t). In contrast, the Fourier transform of the cardinal cubic

spline function decays as 1/|Ω|4 and so signal frequency components near π/T rad/s are

attenuated. Therefore, the direct spline approximation tends to result in a good reconstruc-

tion for a low signal bandwidth relative to π/T rad/s, but does not work as well for signals

with a larger bandwidth relative to π/T rad/s. Direct spline interpolation with higher

degree splines will lead to better performance since the Fourier transform of the cardinal

function will tend towards the frequency response of an ideal low-pass filter as the degree

of the spline increases [2].
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For small values of r, the proposed approximation methods have larger reconstruction

errors due to oscillations arising from the inability to fulfill the partition of unity property

∞∑

n=−∞

L(t)
L′(tn)(t− tn)

= 1 (4.40)

which is a necessary condition for reconstructing constant signals. Future work will consider

approximations which account for this property.

In the second set of simulations, the amount of deviation of the sampling instant from the

uniform grid is varied. In this case, the deviations of the sampling times from uniform were

a sequence of i.i.d. random variables drawn from a uniform distribution with support that

varied from 0s to [−0.25T, 0.25T ]s. The signal bandwidth was maintained at 18π rad/s.

Fig. 4-9 shows the MSE plots for the same methods of approximation as the previous

simulation. The result shows that when the sampling rate is slightly greater than the

Nyquist rate, the methods of approximating G(t) have an improvement over direct spline

interpolation for all deviation values.
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Figure 4-8: Reconstruction MSE by varying normalize frequency.
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Figure 4-9: Reconstruction MSE by varying deviation from the uniform grid.
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Chapter 5

Vector Space Representation and

Iterative Reconstruction

In this chapter, we study the problem of non-uniform sampling using an abstract vector

space representation of non-uniform sampling and reconstruction. This is based upon earlier

work done by Dey [26] on abstract vector space representation of non-uniform sampling

and aliasing. In the second part of the chapter, we perform signal reconstruction from

non-uniform samples with an iterative algorithm studied by Gröchenig [11], Wiley [30] and

Marvasti et. al. [20]. The algorithm is modified using a warped sinc function to obtain a

faster rate of convergence.

5.1 Abstract Vector Space Representation of Non-uniform

Sampling and Interpolation

In this section, we represent non-uniform sampling and interpolation with an abstract vector

space formulation. We use this vector space perspective to analyze the effect of aliasing due

to reconstruction from non-uniform samples.

Assume that the signals of interest belong to the space of finite energy signals, i.e.

L2 space. The L2 space can be expressed as a direct-sum decomposition into a low-pass

component and a high-pass component such that

L2 = V �W (5.1)
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where V is the space of signals band-limited to (−ω0, ω0), andW is the space of signals that

are band-limited to (−∞,−ω0]∪[ω0,∞). Let xV(t) ∈ V and xW(t) ∈ W, with corresponding

Fourier transforms of XV(ω) and XW(ω) respectively. The Fourier transforms XV(ω) and

XW(ω) are orthogonal under the inner product

〈XV(ω), XW(ω)〉 =
∫ ∞

−∞
XV(ω)X∗W(ω) dω (5.2)

which by Parseval’s theorem

∫ ∞

−∞
XV(ω)X∗W(ω) dω =

∫ ∞

−∞
xV(t)x∗W(t) dt

= 〈xV(t), xW(t)〉 . (5.3)

This implies that xV(t) and xW(t) are orthogonal under the inner product in Eqn. (5.3)

and so V is orthogonal to W.

Let the linear operator f(·) represent the composition of sampling at time instants

tn and reconstruction with the Lagrange kernel ln(t), where the domain of f(·) is L2.

Assume that the sampling density is ω0/π and the sample instants tn satisfy the constraint

given in Eqn. (2.18). These assumptions are sufficient for the Lagrange kernel output

to be a function with Fourier transform band-limited to (−ω0, ω0), and so the operator

f(·) has range, R(f) = V. From the non-uniform sampling theorem in Eqns. (2.18) -

(2.19), a function xV(t) ∈ V sampled at tn will be perfectly reconstructed through Lagrange

interpolation. This implies that f(xV(t)) = xV(t). The Lagrange kernel, ln(t) fulfills the

interpolation property, which is a sufficient condition for the operator f(·) to possess the

consistent re-sampling property for any x(t) ∈ L2,

f(f(x(t))) = f(x(t)) . (5.4)

N (f) is the null space of f(·) and it is the space that contains functions in L2 which have

zeros at all the time instants tn. The interpolation property of ln(t) guarantees that every

function in N (f) has zeros at all the time instants tn. It can also be shown that the only

vector that lives in both V andN (f) is the zero vector. A different direct-sum decomposition
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of L2 is induced by f(·) such that

L2 = V �N (f) . (5.5)

The range space R(f) = V and the null-space N (f) are not necessarily orthogonal for any

sampling grid {tn}.
The consistent re-sampling property in Eqn. (5.4) implies that f(·) is a projection op-

erator, and since V is not orthogonal to N (f) for the case of non-uniform sampling, f(·) is

an oblique projection onto the space V along the direction of N (f). Assume that a signal

x(t) in L2 is composed of xV(t) ∈ V and xW(t) ∈ W,

x(t) = xV(t) + xW(t) . (5.6)

The effect of the oblique projection operator on x(t) is

f(x(t)) = f(xV(t) + xW(t))

= xV(t) + f(xW(t)) . (5.7)

Since f(x(t)) ∈ V, the aliasing error in the subspace V induced by operator f(·) is given as

an oblique projection of signals in the out-of-band spaceW onto the in-band space V, where

the aliased component is f(xW(t)). The above discussion shows that reconstruction from

non-uniform samples of a non-bandlimited signal results in a band-limited reconstruction.

5.1.1 Reconstruction of non-uniform samples from out-of-band signals

The preceding abstract vector space description is used to show the effects of aliasing from

non-uniform sampling and reconstruction using Lagrange interpolation. We specifically

consider the case where the signal x(t) = w(t) has a Fourier transform that is only non-zero

in the frequency interval (ω0, 3ω0). Uniform sampling of the signal is equivalent to a periodic

replication of the signal spectrum in the frequency domain, and the aliased version that lies

in (−ω0, ω0) also takes on the same spectral shape as the signal spectrum in (ω0, 3ω0).

However, this is not necessarily true for non-uniform sampling.

In this part, we find the resultant aliased in-band signal when w(t) is non-uniformly sam-

pled and reconstructed using Lagrange interpolation. Alternatively, the aliasing problem

67



can be posed as finding an in-band signal ṽ(t) ∈ V operated by f(·) such that

ṽ(t) = f(ṽ(t)) = f(w(t)) . (5.8)

This means that we want to find the in-band signal ṽ(t) that is the projection through f(·)
of w(t) onto the space V. Let b(t) ∈ V be the baseband modulated version of w(t), where

w(t) = b(t)ej
2π
T
t . (5.9)

Non-uniform sampling of w(t) at time instants tn = nT + εn, followed by Lagrange inter-

polation of the sample sequence is

f(w(t)) =
∞∑

n=−∞
w(tn)

G(t)
G′(tn)(t− tn)

=
∞∑

n=−∞
b(tn)ej

2π
T
tn G(t)
G′(tn)(t− tn)

=
∞∑

n=−∞
b(tn)ej

2π
T

(nT+εn) G(t)
G′(tn)(t− tn)

=
∞∑

n=−∞
b(tn)ej

2π
T
εn G(t)
G′(tn)(t− tn)

. (5.10)

Non-uniform sampling ṽ(t) at {tn}n∈Z, followed by Lagrange interpolation is expressed as

f(ṽ(t)) =
∞∑

n=−∞
ṽ(tn)

G(t)
G′(tn)(t− tn)

, (5.11)

and from Eqn. (5.8),

f(w(t)) = f(ṽ(t))
∞∑

n=−∞
b(tn)ej

2π
T
εn G(t)
G′(tn)(t− tn)

=
∞∑

n=−∞
ṽ(tn)

G(t)
G′(tn)(t− tn)

. (5.12)

Comparing both sides of Eqn. (5.12), the in-band signal ṽ(t), obtained from the oblique

projection of w(t) onto V, has its sample values at tn as

ṽ(tn) = b(tn)ej
2π
T
εn . (5.13)
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In Eqn. (3.16), we formulated a delay modulation function α(t) with α(tn) = εn and so

Eqn. (5.13) can be expressed as

ṽ(tn) = b(tn)ej
2π
T
α(tn) . (5.14)

From the above result, the alias of xW(t) under the operator f(·) can be approximated as

its base-band version b(t) modulated by ej
2π
T
α(t), where

f(w(t)) ≈ b(t)ej 2π
T
α(t) . (5.15)

Modulation of the base-band version of w(t) by a warped cosine function indicates that the

aliased signal can be interpreted as a smearing of the frequency spectrum of b(t). In the

special case of uniform sampling, where tn = nT and εn = 0, the projection of w(t) by the

operator f(·) gives f(w(t)) = b(t), and this is equivalent to α(t) = 0.

5.1.2 Warped sinc kernels as projections in vector space

Building on the idea that non-uniform sampling followed by Lagrange interpolation is an

oblique projection of a signal onto the band-limited subspace, the approximate reconstruc-

tion methods can be examined to determine if they are equivalent to projections onto

approximation spaces. Obtaining reconstruction methods which are projection operators

is important because this allows consistent resampling to be achieved. A projection, P is

a linear transformation that is idempotent, i.e. P 2 = P . This means that a projection

operator is an operator which gives a consistent reconstruction of a function x that lies in

any arbitrary Hilbert space. We observe that the approximate reconstruction by uniform

sinc interpolation of non-uniform samples, which is defined by

x̂(t) =
∞∑

n=−∞
x(tn)

sin π
T (t− nT )

π
T (t− nT )

, (5.16)

is not a projection as it does not fulfill the consistent re-sampling property. However,

Eqn. (5.16) can be modified to fulfill the consistent re-sampling property through time-

warping the sinc kernel. The warped sinc reconstruction formula

x̂(t) =
∞∑

n=−∞
x(tn)

sin π
T (β(t)− nT )

π
T (β(t)− nT )

(5.17)

69



as presented in [5], [22] and [36], is a projection onto the subspace Vβ, i.e. the space spanned

by low-pass filters with time-varying “bandwidths”. We let the linear operator g(·) represent

the process of non-uniform sampling at tn and reconstruction with warped sinc functions.

The corresponding range space is R(g) = Vβ and the null space consists of functions in L2

that are zero at time instants tn. Therefore, the null space of g(·) is N (g) = N (f).

An illustration of the range spaces and null spaces of f(·) and g(·) is shown in Fig. 5-1.

W

Vβ

N (f) = N (g)

x

g(x)

f(x)

V

1

Figure 5-1: Projection onto band-limited subspace and subspace spanned by low-pass filters
with time-varying “bandwidth”.

The warping function β(t) maps the subspace V to the subspace Vβ. The distance

between these two spaces can be measured using the error resulting from the oblique pro-

jection by the operator g(·) of a signal in V onto Vβ. Assume that the original signal

x(t) = v(t) ∈ V. Using the operator g(·), the oblique projection of x(t) onto the subspace

Vβ is given by Eqn. (5.17). The reconstruction error is

eg(t) = x(t)− x̂(t) . (5.18)

We constrain the warping function β(t) to be invertible and assume that there exist an m

such that 0 < m ≤ β′(t). The inverse warping function β−1(t) can be expressed as β−1(t) =

t + ε(t), where we constrain the delay modulation function ε(t) to satisfy ε(nT ) = εn.

Assume that ε(t) is a finite-energy function whose Fourier transform E(ω) is band-limited

to 2π
T and let ζ = maxω |E(ω)|. We also assume that x(t) has a Fourier transform X(ω)
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with ξ = maxω |X(ω)|. By reformulating the error analysis in [36], it can be shown that the

reconstruction error is bounded by

|eg(t)| ≤
√

2
4π
T
ξζ · e 2πζ

T (5.19)

and the energy of the reconstruction error is bounded by

‖eg(t)‖22 ≤
3Tξ2

2m
· e 4π

T
ζ ·
(
e

2πζ
T − 1

)2
, (5.20)

which is dependent on the sampling period, T and the magnitude of the Fourier transform

of ε(t). Eqn. (5.20) shows that the bound on the total error energy tends to zero as ζ → 0

and 2π/T → 0. This implies that as the magnitude and bandwidth of the Fourier transform

of ε(t) becomes smaller, β−1(t)→ t and so β(t) also tends to t, effectively bringing the space

Vβ “closer” to the subspace V. The scope of this thesis does not consider how to select an

optimal ε(t) and this is left for consideration in future work.

5.2 Iterative Reconstruction

This section considers an iterative method for reconstructing band-limited signals from non-

uniform samples. The iterative reconstruction method is based on an algorithm used in [9],

[10] and [11], which is a variant of the alternating projections algorithm [31]. It involves a

sequence of projections onto some convex sets to obtain approximations that converge to

the original signal. In this section, the convex sets are specifically chosen to be the in-band

subspace V and the approximation subspace Vβ spanned by warped sinc functions. These

subspaces are linear and are therefore convex.

The methods in [11] involve the use of approximation subspace spanned by piecewise

constant and piecewise linear functions. Since the original signal belongs to V, the projection

from V onto the space spanned by piecewise polynomial functions in general has a larger

error in the projection as compared to Vβ, which leads to a long convergence time. The

subspace, Vβ, spanned by warped sinc functions is in some sense closer to V and so leads

to a faster convergence rate.

In this section, we formulate the iterative algorithm using warped sinc functions. The

first subsection describes the iterative reconstruction algorithm using an abstract vector

71



space illustration. In the second subsection, we follow the derivation of the convergence

rate in [11] to show that approximate reconstruction by projecting on the space spanned

by warped sinc functions leads to a faster convergence rate.

5.2.1 Iterative reconstruction algorithm

The formulation of the iterative reconstruction algorithm used in this section was introduced

by Gröchenig [11]. LetQ represent the operation of sampling x(t) ∈ V at instants tn followed

by reconstruction using Eqn. (5.17) to obtain x̂(t) ∈ Vβ. This is equivalent to an oblique

projection of x(t) onto Vβ along the null space of Q,

x̂(t) = Qx(t)

=
∞∑

n=−∞
x(tn)

sin π
T (β(t)− nT )

π
T (β(t)− nT )

(5.21)

where β(t) is an invertible warping function satisfying the constraint β(tn) = nT, ∀n ∈ Z.

This constraint is sufficient for Eqn. (5.21) to satisfy the consistent re-sampling property,

which gives

x̂(tn) = x(tn), ∀n ∈ Z. (5.22)

Let the operator P represent the filtering of x̂(t) with an ideal low-pass filter to obtain

x̃(t) ∈ V, which is an orthogonal projection of x̂(t) onto V. Let the combination of the

above two operations be represented by operator S = PQ.

Assume that operator S satisfies ‖I − S‖2 < 1, which is a sufficient condition guaran-

teeing the convergence of the algorithm [11]. The inverse of the operator is

S−1 =
∞∑

k=0

(I − S)k, (5.23)

where I is the identity operator. The reconstructed signal can thus be expressed as

x(t) = S−1Sx(t) =
∞∑

k=0

(I − S)kSx(t)

= Sx(t) + (I − S)Sx(t) + (I − S)2Sx(t) + (I − S)3Sx(t) + . . .

= Sx(t) + (I − S)Sx(t) + (I − S)[(I − S)Sx(t)]

+(I − S)[(I − S)2Sx(t)] + . . . (5.24)
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Let the zeroth approximation be

x0(t) = 0 (5.25)

and from Eqn. (5.24), the (k + 1)th approximation of x(t) can be expressed as

xk+1(t) = Sx(t) + (I − S)xk(t)

= [Sx(t)− Sxk(t)] + xk(t)

= PQ[x(t)− xk(t)] + xk(t) (5.26)

such that

x(t) = lim
k→∞

xk(t) . (5.27)

This algorithm can be illustrated using the abstract vector space representation shown

in Fig. 5-2. The numbers in Fig. 5-2 represent the steps of the algorithm described below.

For steps 3 and 4, the figure illustrates the case when k = 1.

1

3

4

2

W

Vβ

V

N (f) = N (g)

Sx1 x̃ = x1

x̂

e1 = x̃− Sx1

x2 x

L2

1

Figure 5-2: Illustration of iterative reconstruction algorithm.

Initialize index k = 0 and x0(t) = 0.

1. Sample x(t) at tn and reconstruct using the warped sinc kernel in Eqn. (5.21) to obtain

x̂(t), where this operation is represented by operator Q.

2. Filter x̂(t) with an ideal low-pass filter to obtain x̃(t), and let this operation be denoted

by P.
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3. Let S = PQ and so x̃(t) = Sx(t). Similarly, let S operate on xk(t).

4. Let ek(t) be the kth approximation error between Sxk(t) and x̃(t) so that

ek(t) = Sx(t)− Sxk(t). (5.28)

Add the error ek(t) to xk(t) to obtain the (k + 1)th approximation

xk+1(t) = xk(t) + ek(t). (5.29)

5. Let k = k + 1 and repeat steps 3 and 4.

+

− +

+

S

S
ek(t) xk+1(t)x(t)

xk(t)

x̃(t)

1

Figure 5-3: Block diagram of iterative reconstruction.

C/D S/I

T

∞∑

n=−∞
x(tn)δ(t− nT )

∞∑

n=−∞
δ(t− tn)

x(t) x̃(t)
sin π

T
t

π
T

t

sin π
T

t
π
T

t
C

x̂(t)

P

Q

1

Figure 5-4: Block diagram of S operator.

The block diagram representation of the algorithm is shown in Fig. 5-3, where the

detailed description of operator S is shown in the block diagram of Fig. 5-4. In this case,
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we represent operator Q with the warped sinc interpolator. The dotted arrow in Fig. 5-3

indicates the update of xk(t) by xk+1(t).

5.2.2 Convergence of iterative algorithm

As shown in [11], the error between the original signal, x(t) ∈ V and the kth approximate

reconstuction, xk(t) ∈ V can be bounded by

‖x− xk‖ ≤ ‖I − S‖k+1 1 + ‖I − S‖
1− ‖I − S‖ ‖x‖ . (5.30)

Since ‖I − S‖ < 1, the term ‖I − S‖k+1 in Eqn. (5.30) tends to zero as k tends to infinity.

This shows that

lim
k→∞

‖x− xk‖ = 0 (5.31)

and so the iterative algorithm obtains an approximation that converges to the original

signal.

In the next part, we show that choosing the operator Q to project on the space spanned

by warped sinc functions leads to a faster convergence rate than projecting onto the space

spanned by piecewise linear functions. We use the method in [11] to estimate the error

of non-uniform sampling and reconstructing x(t) as ‖x− Sx‖. Since x(t) ∈ V, we get the

identity x = Px, and

‖x− Sx‖2 = ‖Px− PQx‖2

≤ ‖x−Qx‖2 = ‖x− x̂‖2

=
∫ ∞

−∞
|x(t)− x̂(t)|2dt . (5.32)

Let χn(t) be rectangular functions with support [tn, tn+1) such that the set of functions

{χn(t)} form a partition of unity

∞∑

n=−∞
χn(t) = 1 , (5.33)
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and so we can express Eqn. (5.32) as

∫ ∞

−∞
|x(t)− x̂(t)|2

∞∑

n=−∞
χn(t)dt =

∞∑

n=−∞

∫ tn+1

tn

|x(t)− x̂(t)|2dt . (5.34)

For each interval [tn, tn+1), there is a scaling function θn(t) such that

θn(t)x(t) = x(t)− x̂(t) (5.35)

where the consistent re-sampling property of Eqn. (5.22) indicates that θn(tn)x(tn) =

θn(tn+1)x(tn+1) = 0.

Wirtinger’s inequality states that if h, h′′ ∈ L2(a, b) and h(a) = h(b) = 0, then

∫ b

a
|h(t)|2dt ≤

(
b− a
π

)4 ∫ b

a
|h′′(t)|2dt . (5.36)

Using Wirtinger’s inequality,

∞∑

n=−∞

∫ tn+1

tn

|θn(t)x(t)|2dt

≤
∞∑

n=−∞

(
tn+1 − tn

π

)4 ∫ tn+1

tn

|θ′′n(t)x(t) + 2θ′n(t)x′(t) + θn(t)x′′(t)|2dt

≤
∞∑

n=−∞

(
tn+1 − tn

π

)4 [∫ tn+1

tn

|θ′′n(t)x(t)|2dt+
∫ tn+1

tn

|2θ′n(t)x′(t)|2dt+
∫ tn+1

tn

|θn(t)x′′(t)|2dt
]

≤
∞∑

n=−∞

(
tn+1 − tn

π

)4 ∫ tn+1

tn

|θn(t)x′′(t)|2dt . (5.37)

If there exists a non-negative constant A such that

A = max
n

∫ tn+1

tn

|θn(t)|2dt , (5.38)

and a non-negative constant δ such that δ = maxn |tn+1 − tn|, then by Cauchy-Schwarz
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inequality,

∞∑

n=−∞

(
tn+1 − tn

π

)4 ∫ tn+1

tn

|θn(t)x′′(t)|2dt ≤
∞∑

n=−∞

(
δ

π

)4(∫ tn+1

tn

|θn(t)|2dt
∫ tn+1

tn

|x′′(t)|2dt
)

≤ A

(
δ

π

)4 ∞∑

n=−∞

∫ tn+1

tn

|x′′(t)|2dt

= A

(
δ

π

)4 ∥∥x′′(t)
∥∥2 (5.39)

Bernstein’s inequality states that if h ∈ PWω0 , then h′ ∈ PWω0 and

∥∥h′
∥∥ ≤ ω0 ‖h‖ . (5.40)

We can obtain a further bound in Eqn. (5.39) by using Bernstein’s inequality,

A

(
δ

π

)4 ∥∥x′′(t)
∥∥2 ≤ A

(
δ

π

)4

ω0
2
∥∥x′(t)

∥∥2 ≤ A
(
δω0

π

)4

‖x(t)‖2 . (5.41)

Therefore,

‖x(t)− Sx(t)‖2 ≤ A
(
δω0

π

)4

‖x(t)‖2 (5.42)

and

‖I − S‖ ≤
√
A

(
δω0

π

)2

. (5.43)

From Eqn. (5.30), the error between the original signal and the reconstruction from the kth

iteration is bounded by

‖x− xk‖ ≤
(
√
A

(
δω0

π

)2
)(k+1)

π2 +
√
A(δω0)2

π2 −
√
A(δω0)2

‖x‖ . (5.44)

In comparison, the convergence rate obtained by piecewise linear approximation is given in

[11] as Eqn. (5.43) with A = 1. If maxn |θn(t)| < 1/
√
δ, this is a sufficient condition for

A < 1, and the convergence rate using the warp sinc functions is faster than that for the

piecewise linear approximation. Future work can be done to obtain a better bound on the

convergence rate.

A simple simulation of the iterative algorithm is shown in Fig. 5-5 by comparing operator

Q as a warped sinc interpolation, and with operator Q as a linear interpolation. The
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simulation was performed by sampling approximately band-limited white noise with support

of [−5, 5]s. The signals were sampled non-uniformly with average sampling period, T =

0.05s with the signal bandwidth varying from 0 to π/T . The deviations of the sampling

times from the uniform grid were a sequence of independent and identically distributed

(i.i.d.) random variables drawn from a uniform distribution with support of [−0.2T, 0.2T ]s.

The reconstruction error was evaluated in the region of [−1, 1] to mitigate the end effects.

To evaluate the reconstruction performance, we compute the log-error energy between the

x(t) and the kth output xk(t). Although the result shows that warped sinc interpolation

achieves a better convergence than linear interpolation, the error of both methods did not

converge to zero. This might be due to finite precision error obtained in the simulation.

Future work can be done to improve the convergence properties of the iterative algorithm

in the simulation.
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Figure 5-5: Illustration of iterative reconstruction algorithm.
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