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Abstract—This paper considers compensation of anticipated
erasures in a discrete-time (DT) signal such that the desired inter-
polation can still be accomplished, with minimum error, through
a linear time-invariant (LTI) filter. The algorithms presented
may potentially be useful in the compensation of a fault in a
digital-to-analog converter where samples are dropped at known
locations prior to reconstruction. We develop four algorithms.
The first is a general solution that, in the presence of erasures,
minimizes the squared error for arbitrary LTI interpolation
filters. In certain cases, e.g. oversampling and a sinc-interpolating
filter, we specialize this solution so it perfectly compensates for
erasures. The second solution is an approximation to the general
solution that computes the optimal, finite-length compensation
for arbitrary LTI interpolation filters. The third is a finite-
length, windowed version of the oversampled, sinc-interpolating
solution using discrete prolate spheroidal sequences. The last is
an iterative algorithm in the class of projection onto convex sets.
Analysis and results from numerical simulations are presented.

Index Terms—erasures, interpolation, LTI reconstruction,
erasure compensation, discrete prolate sphroidal sequences,
projection-onto-convex-sets, broken pixels

EDICS: DSP-RECO Signal Reconstruction or

DSP-SAMP Sampling, Extrapolation, and Interpolation

I. INTRODUCTION

INTERPOLATING a continuous-time (CT) signal from a

discrete-time (DT) representation is an integral part of a

variety of techniques for signal processing. In one of the most

common forms of interpolation, the DT signal is represented

as impulses on a uniformly spaced grid and the interpolation is

accomplished by low-pass filtering this uniform impulse train.

In most situations, the lowpass filter is fixed. Thus, if erasures

occur in the DT signal, without additional compensation, the

desired interpolation will be distorted.

For example, consider a system designed for low-pass

reconstruction from uniform samples in which, perhaps be-

cause of a faulty digital-to-analog (D/A) converter, specific

samples are forced to zero. This problem might occur in a

flat-panel display with defective pixel LEDs. Such displays

inherently rely on a form of low-pass filtering accomplished

by viewing the display from an appropriate distance. As

illustrated in Figure 6(a), with defective LEDs and without

additional compensation, the perceived output is degraded. As
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we develop in this paper, under certain conditions, it is possible

to compensate for the erasures by adjusting the other sample

values, and still achieve a suitable reconstruction at the output

of a linear time-invariant (LTI) filter.

It is important to note that this problem is not one of data

recovery. It is assumed that the correct values of the DT signal

are known. It is the conversion process preceding the low-pass

filter that forces particular values to zero. In the example of

the display, the video card knows the value to transmit to the

defective pixel, but the pixel itself cannot display it because

it is broken. In anticipation of these erasures, we can change

the original DT signal so the distortion after interpolation is

reduced.

II. PROBLEM STATEMENT

Mathematically, the problem can be viewed as one of

sampling grid conversion. Consider a discrete-time (DT) rep-

resentation, x[n], on a uniform grid I,

I = {0,±1,±2,±3, . . .}

such that conversion to a uniform impulse train with spacing

T and interpolation using a filter, h(t), returns our desired
continuous-time (CT) signal r(t),

r(t) =
∑

n∈I
x[n]h(t − nT ) (1)

It should be emphasized that x[n] is not restricted to

being samples of a function. Compensation of the erasure

pertains only to the interpolation of a CT signal from a DT

representation.

Because of the erasure, we are forced to represent the signal

on a non-uniform grid, I ′, that is the grid I with one point
removed. For convenience, and without loss of generality, we

choose n = 0 as the erasure point so that

I ′ = {±1,±2,±3, . . .}

Our goal is to find a DT representation, x̂[n], on the non-
uniform grid, I ′, that minimizes the squared interpolation
error. Specifically, we desire an interpolation r̂(t),

r̂(t) =
∑

n∈I′

x̂[n]h(t − nT ) (2)

that minimizes the energy of the error,

E2 =
∫ ∞

−∞
|r̂(t) − r(t)|2dt =

∫ ∞

−∞
|e(t)|2dt (3)
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where e(t) = r̂(t) − r(t). We can equivalently express (2) as

r̂(t) =
∞∑

n=−∞
x̂[n]h(t − nT ) (4)

if we impose the additional constraint that x̂[0] = 0. For
convenience, we define x̂[n] − x[n] = c[n], or equivalently,
x̂[n] = x[n] + c[n]. Combining (1), (4), and our definition
of c[n], e(t) can be expressed as an expansion in the basis
{h(t − nT )},

e(t) =
∞∑

n=−∞
c[n]h(t − nT ) (5)

with the constraint c[0] = −x[0]. We can equivalently rewrite
equation (3),

E2 =
∫ ∞

−∞

( ∞∑

n=−∞
c[n]h(t − nT )

)2

dt (6)

The objective then is to determine c[n] for n "= 0 that

minimizes E2. It is important to note that expressing x̂[n]
in this form of x[n] with additive compensation c[n] is
not restrictive, both in the general case and in our further

development where we impose certain additional restrictions

on x̂[n]. While in this paper we only consider full erasure, we
can generalize to the case where the affected value is fixed to

any constant value, x̂[0] = C. In this case, the constraint on
the compensation is c[0] = −x[0] + C. For convenience, and
without loss of generality, we focus exclusively on the case

where C = 0, corresponding to full erasure.
If {h(t − nT )} forms an orthogonal set, e.g the shift-

orthogonal sinc-interpolating kernel or B-splines, then by

Parseval’s relation,

∫ ∞

−∞
|e(t)|2dt = T

∞∑

n=−∞
|c[n]|2 (7)

The scaling on the right side of (7) assumes that ‖h(t −
nT )‖2 = T 2, as is standard in sampling theory. Note that

in the orthogonal case from (7), the error is the energy

of c[n]. Since the value of c[0] is constrained, the optimal
compensation signal is

c[n] = −x[0]δ[n] (8)

This is a degenerate solution, equivalent to not compen-

sating the erasure. Consequently, non-trivial solutions are

possible only if {h(t − nT )} is not an orthogonal set.
In Section 3 of this paper, we discuss the general solution

to the problem, where h(t) is an arbitrary LTI filter and all
values of x[n] may be adjusted. In Section 4, we focus on
the case where h(t) is bandlimited and derive solutions that
compensates with zero error for the case of an oversampled,

sinc-interpolating filter (LPF). In Section 5, we consider the

case in which only a finite number of values may be adjusted,

and we derive the optimal solution for arbitrary LTI inter-

polation filters. Sections 6 and 7 present two alternatives for

finite-length compensation, a heuristic solution that is an ap-

proximation to the optimal solution and an iterative algorithm

which converges to the optimal solution for oversampled, sinc-

interpolating filters. Lastly, in Section 8, we discuss how the

algorithms developed may be use to compensate an image with

pixels that are permanently set to zero.

III. GENERAL SOLUTION

In this section we derive the optimal compensation for

arbitrary LTI interpolation filters h(t). We first focus on the
case of a single erasure. In that case, the solution can be

computed by minimizing the objective function (6) subject

to the constraint p = c[0] + x[0] = 0, using the method of
Lagrange multipliers. Defining the Lagrangian q = E2 + λp
and setting to zero the partial derivatives with respect to c[k]
for all k "= 0,

∂

∂c[k]
q =

∫ ∞

−∞
2

( ∞∑

n=−∞
c[n]h(t − nT )

)
h(t − kT ) (9)

= 2
∞∑

n=−∞
c[n]

(∫ ∞

−∞
h(t − nT )h(t − kT )dt

)
= 0 (10)

which simplifies to,

∞∑

n=−∞
c[n]φhh((k − n)T ) = 0 (11)

where φhh(τ) is the CT deterministic autocorrelation of the
filter h(t), defined as

φhh(τ) =
∫ ∞

−∞
h(t)h(t − τ)dt (12)

For k = 0, the derivative has an extra term with λ′, the
Lagrange multiplier. Specifically,

∂

∂c[0]
q = 2

∞∑

n=−∞
c[n]φhh(−nT ) + λ′ = 0 (13)

Eqs. (11) and (13) can be combined into a single condition

(14), where all the constant terms have been incorporated into

λ = − 1
2λ′.

∞∑

n=−∞
c[n]φhh((k − n)T ) = λδ[k] (14)

The second derivative in both cases reduces to,

∂2

∂c[k]2
q = 2

∫ ∞

−∞
|h(t − kT )|2dt = 2φhh(0) (15)

which is always positive, ensuring that the optimization

finds a minimum. Since n and k are integers, the values

φhh((n−k)T ) are uniform samples of the CT autocorrelation
φhh(τ). If we define a DT sequence φhh[n] = φhh(nT ) of
the uniform samples, equation (14) can then be expressed in

the frequency domain as (16), where Φhh(ejω) is the discrete-
time Fourier transform (DTFT) of φhh[n]. Note that since h(t)
is not restricted to be bandlimited, Φhh(ejω) in general has
aliased components. We should also note that when h(t) is
not bandlimited to π/T , φhh[n] "=

∑
m h[m]h[m−n], the DT

autocorrelation of the sampled filter h[n] = h(nT ).
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Incorporating the constraint c[0] = −x[0], the Lagrange op-
timization reduces to two equations in the frequency domain,

C(ejω)Φhh(ejω) = λ (16)

1
2π

∫

<2π>
C(ejω)dω = −x[0] (17)

where λ and C(ejω) are the unknowns. In the case where,
Φhh(ejω) "= 0,∀ω and the integral, κ =

∫ ∞
−∞

1
Φhh(ejω)dω

converges, these two equations have a unique solution,

Copt(ejω) =
−x[0]/κ

Φhh(ejω)
(18)

In the case where ∃ω : Φhh(ejω) = 0, the solution is not
unique and cannot be represented by (18). In this important

case, where Φhh(ejω) has zeros on the unit circle, the optimal
solutions compensate perfectly with zero error. We can derive

the optimal solution by inspection, expressing the error (6) in

the frequency domain. To express (6) in the frequency domain,

we first expand the square and define a new signal k[n],

E2 =
∫ ∞

−∞

(
∑

n

∑

m

c[n]c[m]h(t − nT )h(t − mT )

)
dt

(19)

=
∑

n

∑

m

c[n]c[m]
(∫ ∞

−∞
h(t − nT )h(t − mT )dt

)
(20)

=
∑

n

c[n]

(
∑

m

c[m]φhh[n − m]

)

︸ ︷︷ ︸
k[n]

(21)

K(ejω), the DTFT of k[n], can be expressed as,

K(ejω) = C(ejω)Φhh(ejω) (22)

Eq. (21) is the inner-product of c[n] and k[n]. Using
Plancherel’s theorem for DT sequences [1], we can express

(21) in frequency domain as,

E2 =
∫

<2π>
C(ejω)K∗(ejω)dω (23)

=
∫

<2π>
|C(ejω)|2Φhh(ejω)dω (24)

where Φ∗
hh(ejω) = Φhh(ejω) because φhh[n] is even and

symmetric. If c[n] has frequency components only where

Φhh(ejω) = 0, while meeting the constraint c[0] = −x[0], it
results in perfect compensation with zero error. A particularly

simple solution is a pair of impulses, i.e. if Φhh(ejωz ) = 0
then,

Copt(ejω) = −x[0]π (δ(ω − ωz) + δ(ω + ωz)) (25)

is a solution that compensates with zero error.

Generalization to multiple erasures requires constrained

minimization with multiple constraints. For example, assume

that there are two erasures at indices n1 and n2. The erasures

specify two constraints,

p1 = c[n1] + x[n1] = 0 (26)

p2 = c[n2] + x[n2] = 0

As before, we minimize E2 subject to these constraints.

Defining the Lagrangian q = E2 + λ′
1p1 + λ′

2p2 and setting to

zero the partial derivatives with respect to c[k] for all k results
in a condition of the form,

∞∑

n=−∞
c[n]φhh((k−n)T ) = λ1δ[k−m1]+λ2δ[k−m2] (27)

where λ1 = − 1
2λ′

1 and λ2 = − 1
2λ′

2. In the frequency domain

(27) can be expressed as,

C(ejω)Φhh(ejω) = λ1e
−jωm1 + λ2e

−jωm2 (28)

As in the single-sample case, if Φhh(ejω) "= 0,∀ω then

a unique solution to (28) exists. If ∃ω1,ω2 : Φhh(ejω1) =
0,Φhh(ejω2) = 0, |ω1| "= |ω2|, then solutions that compensate
with zero error exist. The exact form of the multiple-erasure

perfect compensation solutions are explored in the following

section. Both of these solutions, the unique one and the perfect

one, generalize to N erasures in a straightforward manner.

IV. BANDLIMITED SOLUTIONS

In this section, we focus on the special case where e(t) is
bandlimited and h(t) is a band-limiting filter with H(jω) = 0
for ω > π/T . In this case, by Parseval’s relation, there is
perfect norm equivalence between CT and DT and the error

can be determined directly in the discrete-time domain,

∫ ∞

−∞
|e(t)|2dt = T

∞∑

n=−∞
|e[n]|2 (29)

Where e[n] = e(nT ) is samples of e(t), expressed as c[n]
filtered by h[n] = h(nT ), a sampled representation of the
interpolation filter h(t),

e[n] = e(nT ) =
∞∑

k=−∞
c[k]h(T (n− k)) =

∞∑

k=−∞
c[k]h[n− k]

(30)

In this case, the entire problem can be posed in DT.

Combining (30), (29), and (3), our error metric reduces in

the frequency domain to

E2 =
T

2π

∫

<2π>
|H(ejω)C(ejω)|2dω (31)

This expression in analogous to (24), except since h(t)
is band-limited, Φhh(ejω) = |H(ejω)|2, where H(ejω) is
the DTFT of the sampled CT filter h[n] = h(nT ). If
∀ω,H(ejω) "= 0 the optimal solution for the band-limited case
is,

Copt(ejω) =
−x[0]/κ

|H(ejω)|2 (32)

where κ =
∫ ∞
−∞

1
|H(ejω)|2 dω. The solution (32) precludes an

important special case: the classical sampling model where

x[n] are samples of a band-limited function and h(t) is an
ideal low-pass, sinc-interpolating filter with a guard-band.

Specifically, let x(t) be a band-limited, continuous-time
signal that is at least slightly oversampled. In addition, we

assume that 1/T = RΩc/π, where x(t) is band-limited to
Ωc and R > 1 is the oversampling ratio. We denote the ratio
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π/R by γ. x(t) is represented by its samples x[n] = x(nT )
on the uniform grid I. Low-pass filtering the scaled impulse-
train p(t) =

∑∞
n=−∞ x[n]δ(t − tn) through h(t) gives our

desired interpolation r(t), where h(t) = sin(Ωct)
πt is the impulse

response of an ideal, sinc-interpolating filter with cutoff Ωc.

Note that because of oversampling, Ωc < π/T so {h(t−nT )}
is not an orthogonal set. Since h(t) is bandlimited, we can pose
the problem in DT. In this case, h[n] = h(nT ), an ideal DT
sinc-interpolating filter with cutoff γ = ΩcT = π/R and gain

1/T . Without loss of generality, we normalize the time and
frequency axes such that T = 1 and Ωc = π/R.
Proceeding analogously to the previous section, we can find

a solution that compensates with zero error. According to (31),

minimizing the energy of e[n] is equivalent to minimizing the
energy of C(ejω) in the pass-band [−γ,γ] of the interpolation
filter H(ejω). If c[n] has no frequency components for |ω| <
γ, while meeting the constraint c[0] = −x[0], it results in
perfect compensation with zero error. There are an unlimited

number of signals that meet this criteria. A particularly simple

solution is,

cideal[n] = −x[0](−1)n (33)

in which case Cideal(ejω) is an impulse at ω = π. In theory,
this solution only requires that R = 1+ ε, where ε is non-zero
but otherwise arbitrarily small. More broadly, it can be shown

in a straightforward manner that any high-pass signal c[n],
that meets the constraint 1

2π

∫ π
−π C(ejω)dω = −x[0], with no

frequency components for |ω| < γ is a solution.
For a fixed amount of oversampling, perfect compensation

can be extended to multiple erasures. The problem is nomi-

nally more difficult because there are multiple constraints to

satisfy. For example, with two erasures at indices i and j,
perfect compensation can be of the form,

c[n] = α1c1[n − i] + α2c2[n − j] (34)

Where c1[n] and c2[n] are perfect compensation sequences for
the erasures at i and j, respectively. Imposing the constraints
c[i] = −x[i] and c[j] = −x[j], we define a 2 × 2 system of

linear equations that can be solved for the scale factors, α1

and α2,

α1c1[0] + α2c2[i − j] = −x[i] (35)

α1c1[j − i] + α2c2[0] = −x[j] (36)

For a guard-band of size ε > 0, we can always choose c1[n]
and c2[n] such that these linear equations are non-singular. In
fact, we can always choose sinusoids of different frequencies

such that the resulting linear equations have a unique solution.

For example, in the 2×2 case, we can choose c1[n] = cos[πn]
and c2[n] = cos[(π − ε

2 )n]. Thus, in the case of an ideal LPF
with a guardband, compensating N erasures requires solving

an N ×N system of linear equations for the scale factors. The

error remains zero because the sum of band-limited signals is

also band-limited, i.e. the space of finite-energy band-limited

signals is closed. This reasoning can also be used to extend

the perfect solutions for the general case, where h(t) is not
bandlimited, to compensate for multiple erasures.

V. OPTIMAL FINITE APPROXIMATION

While the solutions of Section 3 and 4 are optimal and some

even result in zero error, they typically have infinite length. In

addition, computation of the filter inverse generally requires

additional complex calculations in the form of spectral factor-

ization. Consequently, optimal compensation is impractical to

implement.

In this section, to mitigate these problems, we design c[n]
with the constraint of finite length. The solution we develop

is general and applicable when h(t) is an arbitrary LTI filter.
We impose the constraint that

x̂[n] = x[n], n "= N (37)

where N is the finite set of points to be adjusted. This is

equivalent to restricting the compensation signal, c[n], to be
non-zero only for n ∈ N . In general, the set N may be

non-sequential, but for simplicity, we focus on symmetric

sequential compensation where N= [−N−1
2 , N−1

2 ]. However,
the derivation below is valid for any set N with |N | = N .
Following a derivation analogous to that in Section 2, we

use Lagrange optimization with the additional finite length

constraint. The minimization produces N +1 linear equations,
∑

n∈N
c[n]φhh((k − n)T ) = 0, k "= 0 (38)

∑

n∈N
c[n]φhh(−nT ) +

λ

2
= 0, k = 0 (39)

c[0] + x[0] = 0 (40)

As shown in Section 3, the second-derivatives are all

positive, thus equations (38), (39), (40) have a unique solution

corresponding to the optimal compensation signal for the given

value of N . We express these equations in block matrix form,
[

φhh
1
2δ

δT 0

] [
cn

λ

]
=

[
0

−x[0]

]
(41)

where λ is the Lagrange multiplier, δ is a vector with all zero
entries except for a 1 as the center element, and cn is a vector

representation of c[n]. φhh is a Toeplitz, symmetric matrix

containing N samples of φhh(τ), the autocorrelation of h(t).

φhh(i, j) = φhh((i − j)T ), |i − j| ∈ N (42)

For certain degenerate interpolation filters, φhh may be

singular. We do not consider such cases. Assuming φhh

is invertible, the block matrix (41) can be solved for the

Lagrange multiplier and optimal finite-length compensation

signal, cofax[n].

λ =
2x[0]

κ
(43)

cofax[n] = −x[0]
κ

φ−1
hhδ (44)

where κ = δTφ−1
hhδ. We refer to the algorithm represented

by (46) as Optimal Finite Approximation (OFAX). There

are efficient numerical techniques for computing cofax[n] that
exploit the Toeplitz, symmetric structure of φhh. In any case,

the computation only needs to be done once, since once c[n] is
determined it can be stored and retrieved when the algorithm
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needs to be applied. This is the case with all of the finite-length

approximations explored, OFAX, DPAX, and IA.

The development above is general for any form of the

interpolation filter h(t). In the remaining part of this section,
we focus our analysis on the case that h(t) is an oversampled,
sinc-interpolating filter and the time-axis is normalized such

that T = 1. As shown in Section 4, the problem can be posed

directly in DT when h(t) is band-limited. In this case, h[n]
is a DT sinc-interpolating filter with cutoff γ. We denote its
autocorrelation matrix usingΘγ , reserving φhh for the general

case. Using frequency domain arguments, it is straightforward

to show that,

Θγ(i, j) = sinc(γ(i − j)) (45)

From [2] we know Θγ is invertible. In this case, the OFAX

solution is,

cofax[n] = −x[0]
κ

Θ−1
γ δ (46)

where κ = δTΘ−1
γ δ.

The OFAX algorithm was implemented for oversampled,

sinc-interpolating filters in MATLAB and examples of cofax[n]
were computed in which x[0] = −1. Figure 1(a) illustrates
cofax[n] and |Cofax(ejω)|, the magnitude of a 2048-point zero-
padded discrete Fourier transform (DFT), for various values

of N and γ = 0.9π. Figure 1(b) illustrates the same for
γ = 0.7π. As expected, cofax[n] is high-pass with the main-
lobe of the DFT centered at ω = π, and smaller energy
side-lobes at lower frequencies. As N increases, the energy

in the pass-band [−γ, γ] decreases, thus decreasing the error,
E2. Furthermore, for the same N , the solution for γ = 0.7π
performs better than that for γ = 0.9π because there is a larger
guard-band. Intuitively, the system is more oversampled, and

there is greater redundancy, so a better solution can be found

using fewer points.

Figure 2(a) illustrates E2 as a function of N . The graph
shows that E2 decreases approximately exponentially in N .
Since the OFAX algorithm generates the optimal solution,

the error curves shown in Figure 2(a) serve as a baseline for

performance of other finite-length choices for c[n].
In this case, where h(t) is an ideal, sinc-interpolating filter,

the solution becomes numerically unstable to the precision of

MATLAB, beyond E2 = 10−9 . In practical systems, though

the interpolation filter is never ideal. In general, non-ideal

h(t) impose looser restrictions, making the OFAX solution

better conditioned and computable to lower error values. Also,

in either case, the error can be made arbitrarily low by

performing the computation on a computer with arbitrarily

high precision. E2 = 10−9 is thus a worst-case bound on

minimum achievable error. Even then, in most contexts, an

error of 10−9 = −180dB, compared to the signal, is more
than sufficient.

As in Section 3, generalization to multiple erasures requires

constrained minimization with multiple constraints. The devel-

opment is analogous to that above, except there are multiple

Lagrange multiplier terms, one for each erasure. In addition,

N will likely be non-sequential, with a group of points around

each erasure. Though rigorous, globally minimizing the OFAX

solution using every erasure is unnecessary in most cases. If

!! !" # " !
!#$%

#

#$%

&

!'
#
$(
"
)*
+
'
,

-
./01

234

!& !#$% # #$% &
#$#&

#$#"

#$#5

#$#!

#$#%

67
./01

89
:#
;6*8"#!<*=>?;

!% # %
!#$%

#

#$%

&

!'
#
$(
"
)*
+
'
&
&

!& !#$% # #$% &
#

#$#%

#$&

!&# !% # % &#
!&

!#$%

#

#$%

&

!'
#
$(
"
)*
+
'
"
&

3

!& !#$% # #$% &
#

#$&

#$"

#$5

#$!

#@*"

(a) γ = 0.9π

!! !" # " !
!&

!#$%

#

#$%

&

!'
#
$,
"
)*
+
'
,

-
./01

234

!& !#$% # #$% &
#

#$#%

#$&

#$&%

#$"

67
./01

89
:#
;6*8"#!<*=>?;

!% # %
!&

!#$%

#

#$%

&

!'
#
$,
"
)*
+
'
&
&

!& !#$% # #$% &
#

#$#%

#$&

#$&%

#$"

!&# !% # % &#
!&

!#$%

#

#$%

&

!'
#
$,
"
)*
+
'
"
&

3

!& !#$% # #$% &
#

#$#%

#$&

#$&%

#$"

#@*"

(b) γ = 0.7π

Fig. 1. Optimal finite-length compensation sequences, cofax[n], for over-
sampled, sinc-interpolating filters computed using OFAX. The plots for two
different cutoffs, γ = 0.7π and 0.9π, and N =7, 11, 21 are on the left. The
2048-point zero-padded Fourier Transform of each of these sequences is on
the right. The transforms are linearly interpolated for display.

erasures are widely spaced, a reasonable result can be achieved

by superimposing single-erasure OFAX solutions.

VI. DISCRETE PROLATE APPROXIMATION

In this section, we develop another finite-length solution that

is an approximation to the optimal, finite-length solution for

oversampled, sinc-interpolating filters. With OFAX, we con-

struct a finite-length compensation signal directly from the im-

posed constraints. Alternatively, for the case of oversampled,

sinc-interpolating filters, we can start with the unconstrained

solution, cideal[n] = −x[0](−1)n, and truncate it through

appropriate windowing. In this case, we apply a finite-length
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window, w[n], such that

c[n] = w[n]cideal[n] (47)

has minimum energy in the frequency band |ω| < γ. As in
Section 4, we restrict c[n] to the set N = [−N−1

2 , N−1
2 ].

Note that since cideal[n] = −x[0](−1)n, C(ejω) is the Fourier
transform of the window centered around π. Consequently,
as per (31) our goal is to design w[n] that has finite-support
[−N−1

2 , N−1
2 ], meets the constraint w[0] = 1, and maximizes

the energy in the band |ω| < π − γ.
Slepian, Landau, and Pollak solved this problem in [2]

through the development of discrete prolate spheroidal se-

quences (DPSS). Using variational methods it is shown in

[2] that, normalized by total energy, the signal w[n] that
maximizes the energy in the band ω < Ω is an eigenvector of

an N × N symmetric, positive-definite, Toeplitz matrix, ΘΩ,

with elements

ΘΩ[n,m] = sinc(Ω(m − n)) (48)

m,n = −N − 1
2

, ... − 1, 0, 1, ....
N − 1

2

By the spectral theorem, the eigenvectors, vΩ
i [n], are real

and orthogonal with associated real, positive eigenvalues, λΩ
i .

In addition, these particular eigenvalues are always distinct.

The eigenvectors, vΩ
i [n], are the discrete prolate spheroidal

sequences (DPSS) for the bandwidth Ω and length N . They
form a finite orthonormal basis for the space of finite-energy

signals time-limited to [−N−1
2 , N−1

2 ], [2].
The eigenvalues represent the proportion of total energy

in the band ω < Ω, [2]. Consequently, the first eigenvector,
vΩ
1 [n], is the solution to the maximum energy problem. In

our particular case, Ω = π − γ, and after scaling to meet the
constraint w[0] = 1, the optimal window is

w[n] =
1

vπ−γ
1 [0]

vπ−γ
1 [n] (49)

Multiplying the window with cideal[n] results in a potential
compensation signal

cdpax[n] = − x[0]
vπ−γ
1 [0]

(−1)nvπ−γ
1 [n] (50)

As stated in [2], every DPSS has a dual symmetric partner. In

particular,

vΩ
N+1−i[n] = (−1)nvπ−Ω

i [n] (51)

The eigenvalues are related,

λΩ
N+1−i = λπ−Ω

i (52)

In addition, it is straightforward to infer from [2] that the

eigenvalues of the same band-width are related,

λΩ
i = 1 − λΩ

N+1−i (53)

Duality implies that the compensation signal, cdpax[n] in
(50), can be equivalently expressed as,

cdpax[n] = − x[0]
vγ

N [0]
vγ

N [n] (54)
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Fig. 2. Error performance of OFAX and DPAX as a function of N. Upper plot
illustrates the squared-error of optimal OFAX compensation for oversampled,
sinc-interpolating filters with cutoffs γ = 0.1π, 0.3π, 0.5π, 0.7π, 0.9π.
Lower plot illustrates the increase in error due to using DPAX, rather than the
optimal OFAX solution, in the case of oversampled, sinc-interpolating with
cutoffs γ = 0.1π, 0.3π, 0.5π, 0.7π, 0.8π, 0.9π.

Where vγ
N [n] is the last eigenvector of the matrix Θγ .

Independent of which DPSS is used to express it, we denote

this solution as the Discrete Prolate Approximation (DPAX).

For asymmetric compensation not centered around the erasure,

the solution is the same, except that the scaling is relative to

the erasure, vγ
N [k], for k "= 0.

It should be clear that cdpax[n] is not equivalent to the ideal
low-pass OFAX solution, cofax[n]. The window formulation

starts with a finite-energy signal, optimizes for that energy,

and then scales to meet the c[0] = −x[0] constraint. OFAX
does not begin with an energy constraint; therefore it finds the

optimal solution. The exact relationship between cdpax[n] and
cofax[n] can be found by decomposing cofax[n] in the DPSS
basis, {vγ

i [n]}. The DPSS form the orthonormal eigenvector
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basis that diagonalizes Θγ ,

Θγ = VΛVT (55)

where the columns of V are the DPSS vγ
i [n], and Λ is a

diagonal matrix of the eigenvalues λγ
i . It follows from [2] that

Θγ is invertible and that cofax[n] exists. Furthermore, cofax[n]
can thus be expressed as

cofax[n] = −x[0]
κ

(
1
λγ

1

β1v
γ
1 [n] + · · · + 1

λγ
N

βNvγ
N [n]

)
(56)

where βi = vγ
i [0], κ = δTΘ−1

γ δ =
∑N

i=1
1

λγ
i
(vγ

i [0])2, and the
eigenvalues are distributed between 0 and 1. The expression

for the optimal solution depends on the reciprocals 1/λγ
i ,

so the eigenvector with the smallest eigenvalue, vγ
N [n], will

dominate. Since scaling this vector produces cdpax[n], DPAX
can be interpreted as a first-order approximation to cofax[n].
Figure 2(b) shows the comparative error ratio, E2

dpax/E2
ofax,

due to DPAX. The increase in error becomes negligible as N
increases and γ decreases. Additionally, DPAX does not suffer
from the same ill-conditioning problems as the ideal low-pass

OFAX solution, so, by increasing N , it can achieve values of
E2 near 10−20 in MATLAB, i.e. about ten orders of magnitude

smaller than that using OFAX.

The near-optimal performance of the DPAX solution is ex-

plained by the eigenvalue distribution of Θγ . As N increases

and γ decreases, the reciprocal of the smallest eigenvalue,

1/λN , increasingly dominates the reciprocals of the other

eigenvalues. In (56), vγ
N [n] dominates the other terms, making

cdpax[n] a tighter approximation.
The DPAX solution can be computed directly as the last

eigenvector of Θγ or the first eigenvector of Θπ−γ . This

computation is often degenerate because the eigenvalues ofΘγ

are clustered around 0 or 1. Fortunately, there exist standard

techniques around this problem that involve replacingΘγ with

a symmetric, tri-diagonal matrix which has eigenvalues that

are well spread, [2], [3].

The DPAX algorithm was implemented in MATLAB and

examples of cdpax[n] were computed in which x[0] = −1. The
DPSS were found using the dpss function in the Signal Pro-

cessing Toolbox. Figure 3(a) shows cdpax[n] and |Cdpax(ejω)|,
the magnitude of a 2048-point zero-padded DFT, for various

values of N and γ = 0.9π. Figure 3(b) shows the same for
γ = 0.7π. cdpax[n] looks similar to cofax[n], except for the
outlying zeroth sample in cofax[n]. Also, like cofax[n], cdpax[n]
performs better when γ is smaller and there is a larger guard-
band.

DPAX can be extended to multiple erasures by superimpos-

ing single-erasure DPAX solutions. DPAX is a purely local

strategy, i.e. cdpax[n] is completely specified by the erasure,
x[i], and the length N of the compensation. In contrast, OFAX

is a global strategy, so we can potentially do better than

simple superposition if we choose to do the minimization using

multiple constraints.

In any case, DPAX is a powerful alternative algorithm

to OFAX. It is simpler to implement and it decouples the

design of c[n] from the exact form of the interpolation filter.

Furthermore, as long as h(t) is sufficiently low-pass, DPAX
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(a) γ = 0.9π
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(b) γ = 0.7π

Fig. 3. DPAX solution, cdpax[n], for two different cutoffs, γ = 0.7π and
0.9π, and N =7, 11, 21 are on the left. The 2048-point zero-padded Fourier
Transform of each of these sequences is on the right. The transforms are
linearly interpolated for display.

should perform reasonably well for the the entire class of filters

that have cutoff at approximately γ.

VII. ITERATIVE APPROXIMATION

In this section, as an alternative to the two closed-form

algorithms for finite length approximation, we develop an

iterative solution in the class of projection-onto-convex sets

(POCS). As with DPAX, the algorithm developed is specific

to the the case of oversampled, sinc-interpolating filters.

Figure 4(a) is a block diagram of the algorithm, denoted

Iterative Approximation (IA). We constrain the initial input

w(0) to be in -2, the class of finite-energy DT signals. Each
iteration then consists of three sequential projections, PB

onto the subspace of -2 band-limited to π − γ, PN onto the



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, XX 2005 8

......

P
N

w(i) w(i+1)
1

1

0

PB

w[0]=x[0]

P0

2

1N

2

1N

(a) POCS Iteration

......

D

x[0] [n]

0

v

T

w(i) w(i+1)
B

......

1

0
2

1N

2

1N

1

(b) Affine Iteration

Fig. 4. Block diagrams for IA algorithm. (a) illustrates POCS implementation
with three iterated projections PB , PN , and P0. (b) illustrates equivalent
affine implementation with linear operators B = PB and D which are
combined into the composite linear operator T . The initial input, w(0), is
constrained to #2.

subspace of -2 time-limited to [−N−1
2 , N−1

2 ], and P0 onto

the hyper-plane defined by the constraint c[0] = −x[0]. Note
that in Figure 4 we have changed to a vector notation for the

signals. In particular, w(i) represents the signal w[n] at the
i-th iteration.

The iteration can be proved to converge uniquely to

(−1)ncofax[n]. To facilitate certain proofs, we represent the
projections in Figure 4(a) in terms of the affine transformation

of Figure 4(b). The two representations are isomorphic, i.e.

they result in the same solution after each iteration. In the

affine representation, there are three steps in each iteration.

The first step is B = PB , a band-limiting operator, i.e. an

ideal low-pass filter with cut-off π − γ. The second step is
D, a truncation operator that time-limits to [−N−1

2 , N−1
2 ] and

additionally removes the value at index n = 0. B and D can

be combined into one linear operator T . The last step in the
iteration is the addition of an impulse, denoted in the vector

notation as v = x[0]δ[n].
We begin by proving the existence of a fixed point. We

do this directly, by substituting (−1)ncofax[n] into the POCS
iteration. In Figure 4(a), PB and PN define a time-limited

convolution. It is straightforward to show that this operation

can be expressed in matrix form as Θπ−γ , the Toeplitz matrix

in equation (48) with Ω = π − γ. Using the decomposition of
cofax[n], as per (56),

P0PBPN {(−1)ncofax[n]} =

P0

{
−x[0]

κ
Θπ−γ

(
β1

λγ
1

(−1)nvγ
1 [n] + · · ·

+
βN

λγ
N

(−1)nvγ
N [n]

)}
(57)

Applying the dual symmetry of the DPSS and substituting (51)

into (57),

P0PBPN {(−1)ncofax[n]} =

P0

{
−x[0]

κ

(
β1

λγ
1

Θπ−γvπ−γ
N [n] + · · ·

+
βN

λγ
N

Θπ−γvπ−γ
1 [n]

)}
(58)

Applying the eigenvector identity and substituting λπ−γ
i =

1 − λγ
N+1−i as per (52) and (53),

P0PBPN {(−1)ncofax[n]}

= P0

{
−x[0]

κ

(
β1(1 − λγ

1)
λγ

1

vπ−γ
1 [n] + · · ·

+
βN (1 − λγ

N )
λγ

N

vπ−γ
N [n]

)}
(59)

Reapplying the dual symmetry of the DPSS and substituting

(51) into (59), the equation can be manipulated into two terms,

one that is (−1)ncofax[n] and the other, which is composed of
residual terms without factors of λγ

i .

P0PBPN {(−1)ncofax[n]} =

P0

{
(−1)ncofax[n] − −x[0]

κ
(−1)n (β1v

γ
1 [n] + · · ·

+βNvγ
N [n])

}
(60)

Recalling that βi = vγ
i [0], we observe that the residual terms

form the decomposition of a scaled impulse in the orthonormal

DPSS basis {vγ
i [n]},

β1v
γ
1 [n] + · · · + βNvγ

N [n] =
〈vγ

1 [n], δ[n]〉
︸ ︷︷ ︸

vγ
1 [0]

vγ
1 [n] + · · · + 〈vγ

N [n], δ[n]〉
︸ ︷︷ ︸

vγ
N [0]

vγ
N [n]

= δ[n] (61)

Projection with P0 removes the scaled impulse and returns

(−1)ncofax[n].

P0PBPN {(−1)ncofax[n]} =

P0

{
(−1)ncofax[n] − −x[0]

κ
δ[n]

}

= (−1)ncofax[n] (62)

This proves the existence of a fixed point. We next show

convergence using the affine representation of Figure 4(b).
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Assuming that w(0) is in -2, the iteration defines a sequence
in -2,

w(n+1) = Tw(n) + v (63)

We define the error signal after each iteration, e(i) = w(i)−
w∗. Applying T to both sides, adding v, and rearranging the
expression we conclude that,

e(i+1) = Te(i) (64)

Convergence implies that the energy of e(i), denoted in

norm-notation as ‖e(i)‖2, approaches zero as i goes to infinity.
Thus, a sufficient condition for convergence is that T is a

strictly non-expansive operator, i.e. for w1 "= w2, ‖T (w1 −
w2)‖2 < ‖w1 − w2‖2. In our case, T has two components:

band-limiting, B, and truncation, D. The input to B, w(i), is a

signal time-limited to [−N−1
2 , N−1

2 ] that has w[0] > 0. Aside
from the zero-signal, the set of band-limited signals and set of

time-limited signals are disjoint. w(i) is not the zero-signal,

so by Parseval’s theorem B strictly reduces the energy in the

input w(i). The output, Bw(i), is band-limited. Invoking the

fact that the set of band-limited and time-limited signals are

disjoint again, we can assert that D strictly reduces the energy

of Bw(i) and thus,

‖Tw(i)‖2 < ‖w(i)‖2 (65)

This inequality fails only when w = 0. In other words,
‖T (w1 −w2)‖2 < ‖(w1 −w2)‖2 unless w1 = w2. Thus, T
is a strictly-non-expansive operator and IA converges strongly

to some set of fixed points.

In fact, a strictly non-expansive T implies that IA converges

strongly to a unique fixed-point. This follows by contradiction.

Suppose that there are two fixed-points, w∗
1 and w∗

2, that are

linearly independent such that w∗
2 "= βw∗

1, for any β ∈ *.
Since they are both fixed-points,

Tw∗
1 + v = w∗

1 (66)

Tw∗
2 + v = w∗

2 (67)

Subtracting the two expressions and using the linearity of T ,
implies

T (w∗
1 − w∗

2) = w∗
1 − w∗

2 (68)

Since we know that T is a strictly non-expansive operator,

this implies that w∗
1 = w∗

2, a contradiction. Thus w∗ =
(−1)ncofax[n] is the unique fixed-point.
Although IA converges to the optimal solution, numerical

simulation shows that, as N increases and γ decreases, the

convergence rate slows to the point of making IA impractical

compared to OFAX. Figure 5 illustrates the convergence

curves for various N and γ. Slow convergence is caused by

the fact that the eigenvalues of Θπ−γ are clustered near 1,
so there is minimal change between iterations. Though not

studied in this treatment, POCS relaxation techniques could

potentially be used to speed up the convergence rate.

Extending IA for multiple erasures requires us to replace

multiple samples in the P0 step, rather than just one. For

this more general case, we conjecture that the iteration will

converge to the multiple erasure OFAX solution found using

minimization with multiple constraints.

# &### "### 5### !### %### A### ,### <###
#

&

"

5

!

%

A

6-
8C
;*
!
*-
D 6
"

+'A
+'&#
+'"#
+'5#

# &# "# 5# !# %# A# ,# <# (# &##
#

&

"

5

!

%

A

E>9F0>C.3?

6-
8C
;*
!
*-
D 6
"

(a) Convergence curves for γ = 0.7π
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(b) Convergence curves for N = 20

Fig. 5. Convergence of IA algorithm for oversampled, sinc-interpolating
filters. (a) illustrates the squared-distance of w(i) from the fixed point, w∗,
for γ = 0.7π and N = 6, 10, 20, 30. The initial input is w(0) = 0. The
upper plot shows the result out to 8000 iterations. The lower plot shows
an inset, out to 100 iterations. (b) illustrates the same for N = 20 and
γ = 0.1π, 0.3π, 0.5π, 0.7π, 0.9π.

VIII. POTENTIAL APPLICATION: COMPENSATING

DISPLAYS WITH MISSING PIXELS

In flat-panel displays some picture elements (pixels) can

become defective with the result that they are permanently

black. This represents an example of the type of erasure

considered in this paper. Some solutions to compensating for

faulty pixels in these displays have been proposed previously

[4], [5]. The patents are based on brightening neighboring

pixels in order to compensate for the permanently dark pixels.

The one-dimensional solutions presented in this paper can

potentially be applied to the two-dimensional displays on a

row-by-row and column-by-column basis. In future work, the

theoretical framework developed in this paper can also be
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extended to multiple dimensions although those extensions do

not appear to be straight forward. As an informal and very

preliminary illustration, we applied a two-dimensional version

of the OFAX algorithm to the image in Figure 6(a), with

the result shown in Figure 6(b). Because of the informality

of the example, this should be viewed simply as a visual

illustration of how the compensation works, rather than a

practical validation of the theory.

In this example, 5% of the pixels have been randomly

chosen as defective, i.e. permanently set to black. The upper

image represents a display with defective pixel elements. The

lower plot shows the result when OFAX along the lines of

Section 4 has been used to adjust values of a 5 × 5 region of
neighboring pixels, centered on the missing pixel. Thus, for

each missing pixel, N = 24 surrounding pixels are adjusted.
The compensation is done independently for each defective

pixel.

We use a 2-D version of the OFAX equations, m is along

the y-axis, and M = [−2, 2] and n is along the x-axis with

N = [−2, 2]. The full set of equations are of the form,
∑

m∈M

∑

n∈N
c[m,n]φhh(k1 − m, k2 − n) = 0, (69)

k1 "= or k2 "= 0
∑

m∈M

∑

n∈N
c[m,n]φhh(−m,−n) +

λ

2
= 0, (70)

k1 = 0 and k2 = 0
c[0, 0] + x[0, 0] = 0 (71)

We assume that the spatial frequency response of the eye for

each color, red, green, blue, is modeled as a radially symmetric

decaying exponential [6],

Heye(ω1,ω2) = e−α
√

ω2
1+ω2

2 (72)

where α is a constant that defines the amount of blurring

dependent on the distance we view picture from. In our

example, we set α according to [6] such that the viewing

distance is 5 feet (1.524 meters). After computation, the

sequence c[n,m] was scaled and added to the image for each
color, red, green, blue, at the different defective pixel locations.

We do not address the amplitude-limited nature of the display

and allow the compensation to clip. Empirically, it seems that

clipping occurs rarely for this particular image. Though the

compensation is informal, there appears to be a significant

improvement in perceived image quality.
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Fig. 6. Simulated video display with defective pixels. Upper image illustrates uncorrected image. Lower image illustrates the same image with a 5× 5 grid
of pixels (N = 24) around each missing pixel modified using the OFAX algorithm with the interpolation filter (72). A viewing distance of 5 feet (1.524
meters) is recommended
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