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Abstract

This thesis is concerned with the extension of the
theory and computational techniques of time-series linear
prediction to two-dimensional (2-D) random processes.
2-D random processes are encountered in image processing,
array processing, and generally wherever data is spatially
dependent. The fundamental problem of linear prediction is
to determine a causal and causally invertible (minimum-
phase), linear, shift-invariant whitening filter for a
given random process. In some cases, the exact power density
spectrum of the process is known (or is assumed to be known)
and finding the minimum-phase whitening filter is a deter-
ministic problem. In other cases, only a finite set of
samples from the random process is available, and the
minimum-phase whitening filter must be estimated. Some
potential applications of 2-D linear prediction are Wiener
filtering, the design of recursive digital filters, high-
resolution spectral estimation, and linear predictive coding
of images.

2-D linear prediction has been an active area of
research in recent years, but very little progress has been
made on the problem. The principal difficulty has been the
lack of computationally useful ways to represent 2-D
minimum-phase filters.

In this thesis research, a general theory of 2-D
linear prediction has been developed. The theory is based
on a particular definition for 2-D causality which totally
orders the points in the plane. By paying strict attention
to the ordering property, all of the major results of 1-D
linear prediction theory are extended to the 2-D case.

Among other things, a particular class of 2-D,
least-squares, linear, prediction error filters are shown
to be minimum-phase, a 2-D version of the Levinson algorithm



is derived, and a very simple interpretation for the failure
of Shanks' conjecture is obtained.

From a practical standpoint, the most important
result of this thesis is a new canonical representation for
2-D minimum-phase filters. The representation is an ex-
tension of the reflection coefficient (or partial correla-
tion coefficient) representation for 1-D minimum-phase filters
to the 2-D case. It is shown that associated with any 2-D
minimum-phase filter, analytic in some neighborhood of
the unit circles, is a generally infinite 2-D sequence of
numbers, called reflection coefficients, whose magnitudes
are less than one, and which decay exponentially to zero
away from the origin. Conversely, associated with any such
2-D reflection coefficient sequence is a unique 2-D
minimum-phase filter. The 2-D reflection coefficient repre-
sentation is the basis for a new approach to 2-D linear
prediction. An approximate whitening filter is designed
in the reflection coefficient domain, by representing it
in terms of a finite number of reflection coefficients.
The difficult minimum-phase requirement is automatically
satisfied if the reflection coefficient magnitudes are
constrained to be less than one.

A remaining question is how to choose the reflection
coefficients optimally; this question has only been partially
addressed. Attention was directed towards one convenient,
but generally suboptimal method in which the reflection
coefficients are chosen sequentially in a finite raster scan
fashion according to a least-squares prediction error
criterion. Numerical results are presented for this ap-
proach as applied to the spectral factorization problem.
The numerical results indicate that, while this suboptimal,
sequential algorithm may be useful in some cases, more
sophisticated algorithms for choosing the reflection co-
efficients must be developed if the full potential of the
2-D reflection coefficient representation is to be realized.

Thesis Supervisor: Arthur B. Baggeroer

Title: Associate Professor of Electrical
Engineering

Associate Professor of Ocean Engineering
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CHAPTER 1

INTRODUCT ION

1.1 One-dimensional Linear Prediction

An important tool in stationary time-series analysis

is linear prediction. The basic problem in linear predic-

tion is to determine a causal and causally invertible linear

shift-invariant filter that whitens a particular random

process. The term "linear prediction" is used because if

a causal and causally invertible whitening filter exists,

it can be shown to be proportional to the least-squares

linear prediction error filter for the present value

of the process given the infinite past.

Linear prediction is an essential aspect of a

number of different problems including the Wiener filter-

ing problem [1], the problem of designing a stable recursive

filter having a prescribed magnitude frequency response [2],

the autoregressive (or "maximum entropy") method of spectral

estimation [3], and the compression of speech by linear

predictive coding [4]. The theory of linear prediction

has been applied to the discrete-time Kalman filtering

problem (for the case of a stationary signal and noise)

to obtain a fast algorithm for solving for the time-

varying gain matrix [5]. Linear prediction is closely

related to the problem of solving the wave-equation in a

nonuniform transmission line [6], [7].



In general there are two classes of linear pre-

diction problems. In one case we are given the actual power

density spectrum of the process, and the problem is to

compute (or at least to find an approximation to) the

causal and causally invertible whitening filter. We

refer to this problem as the spectral factorization problem.

The classical method of time-series spectral factoriza-

tion (which is applicable whenever the spectrum is rational

and has no poles or zeroes on the unit circle) involves

first computing the poles and zeroes of the spectrum,

and then representing the whitening filter in terms of the

poles and zeroes located inside the unit circle [1].

In the second class of linear prediction problems

we are given a finite set of samples from the random

process, and we want to estimate the causal and causally

invertible whitening filter. A considerable amount of

research has been devoted to this problem for the special

case where the whitening filter is modeled as a finite-

duration impulse response (FIR) filter. We refer to this

problem as the autoregressive model fitting problem. In

the literature, this is sometimes called all-pole modeling.

(A more general problem is concerned with fitting a

rational whitening filter model to the data; this is called

autoregressive moving-average or pole-zero modeling.

Pole-zero modeling has received comparatively little

attention in the literature. This is apparently due to



the fact that there are no computational techniques for

pole-zero modeling which are as effective or as convenient

to use as the available methods of all-pole modeling.)

The two requirements in autoregressive model fitting are

that the FIR filter should closely represent the second-

order statistics of the data, and that it should have a

causal, stable inverse. (Equivalently, the zeroes of

the filter should be inside the unit circle.) The two

most popular methods of autoregressive model fitting are

the so-called autocorrelation method [3] and the Burg algo-

rithm [3]. Both algorithms are convenient to use, they

tend to give good whitening filter estimates, and under

certain conditions (which are nearly always attained in

practice) the whitening filter estimates are causally

invertible.

1.2 Two-dimensional Linear Prediction

Given the success of linear prediction in time-

series analysis, it would be desirable to extend it to

the analysis of multidimensional random processes, that is,

processes parameterized by more than one variable. Multi-

dimensional random processes (also called random fields)

occur in image processing as well as radar, sonar, geo-

physical signal processing, and in general, in any situation

where data is sampled spatially.



In this thesis we will be working with the class

of two-dimensional (2-D) wide-sense stationary, scalar-

valued random processes, denoted x(k,Z) where k and k

are integers. The basic 2-D linear prediction problem is

similar to the 1-D problem: for a particular 2-D process,

determine a causal and causally invertible linear shift-

invariant whitening filter.

While many results in 1-D random process theory are

easily extended to the 2-D case, the theory of 1-D linear

prediction has been extremely difficult, if not impossible,

to extend to the 2-D case. Despite the efforts of many

researchers, very little progress has been made towards

developing a useful theory of 2-D linear prediction. What

has been lacking is a computationally useful way to represent

2-D causal and causally invertible filters.

Our contribution in this thesis is to extend

virtually all of the known 1-D linear prediction theory

to the 2-D case. We succeed in this by paying strict

attention to the ordering properties of points in the plane.

From a practical standpoint, our most important

result is a new canonical representation for 2-D causal

and causally invertible linear, shift-invariant filters.

We use this representation as the basis for new algo-

rithms for 2-D spectral factorization and autoregressive

model fitting.



1.3 Two-dimensional Causal Filters

We define a 2-D causal, linear, shift-invariant

filter to be one whose unit sample response has the sup-

port illustrated in Fig. 1.1. (In the literature, such

filters have been called "one-sided filters" and "non-

symmetric half-plane filters," and the term "causal filter"

has usually been reserved for the less-general class of

quarter-plane filters. But there is no universally accepted

terminology, and throughout this thesis we use our own

carefully defined terminology.) The motivation for

this definition of 2-D causality is that it leads to sig-

nificant theoretical and practical results. We emphasize

that the usefulness of the definition is independent of

any physical properties of the 2-D random process under

consideration. This same statement also applies, although

to a lesser extent, to the 1-D notion of causality; often

a 1-D causal recursive digital filter is used, not because

its structure conforms to a physical notion of causality,

but because of the computational efficiency of the

recursive structure.

The intuitive idea of a causal filter is that

the output of the filter at any point should only depend

on the present and past values of the input. Equivalently

the unit sample response of the filter must vanish at all

points occurring in the past of the origin. Corresponding

to our definition of 2-D causality is the definition of



Fig. 1.1 Support for the unit sample response of a 2-D
causal filter.
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"past," "present," and "future" illustrated in Fig. 1.2

This definition of "past," "present," and "future" uniquely

orders the points in the 2-D plane, the ordering being

in the form of an infinite raster scan. It is this "total

ordering" property that makes our definition of 2-D

causality a useful one.

1.4 Two-dimensional Spectral Factorization and
Autoregressive Model Fitting

As in the 1-D case, the primary 2-D linear prediction

problems are 1) The determination (or approximation) of

the 2-D causal and causally invertible whitening filter

given the power density spectrum (spectral factorization);

and 2) The estimation of the 2-D causal and causally invertible

whitening filter given a finite set of samples from the

random process (for an FIR whitening filter estimate, the

autoregressive model fitting problem). Despite the

efforts of many researchers, most of the theory and computa-

tional techniques of 1-D linear prediction have not been

extended to the 2-D case.

Considering the spectral factorization problem,

the 1-D method of factoring a rational spectrum by com-

puting its poles and zeroes does not extend to the 2-D

case [8], [9]. Specifically, a rational 2-D spectrum

almost never has a rational factorization (though under

certain conditions it does have an infinite-order



Fig. 1.2 Associated with any point (s,t) is a unique
"past" and "future."
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factorization). The implication of this is that in most

cases we can only approximately factor a 2-D spectrum.

Shanks proposed an approximate method of 2-D

spectral factorization which involves computing a finite-

order least-squares linear prediction error filter [10].

Unfortunately, Shanks method, unlike an analogous 1-D

method, does not always produce a causally invertible

whitening filter approximation [11].

Probably the most successful method of 2-D spectral

factorization to be proposed,is the Hilbert transform method

(sometimes called the cepstral method or the homomorphic

transformation method [8], [12], [13], [14]). The method

relies on the fact that the phase and the log-magnitude of

a 2-D causal and causally invertible filter are 2-D Hilbert

transformpairs. While the method is theoretically exact,

it can only be implemented approximately, and it has some

practical difficulties.

Considering the autoregressive model fitting prob-

lem, neither the autocorrelation method nor the Burg algorithm

has been successfully extended to the 2-D case. The 2-D auto-

correlation method fails for the same reason that Shanks

method fails. The Burg algorithm is essentially a

stochastic version of the Levinson algorithm, which was

originally derived as a fast method of inverting a

Toeplitz covariance matrix [15]. Until now, no one has



discovered a 2-D version of the Levinson algorithm that

would enable a 2-D Burg algorithm to be devised.

1.5 New Results in 2-D Linear Prediction Theory

In this thesis we consider a special class of 2-D

causal, linear, shift-invariant filters that has not

previously been studied. The form of this class of filters

is llustrated in Fig. 1.3. It can be seen that these

filters are infinite-order in one variable, and finite-

order in the other variable. Of greater significance

is the fact that according to our definition of 2-D

causality, the support for the unit sample response of these

filters consists of the points (0,0) and (N,M), and all

points in the future of (0,0) and in the past of (N,M).

The basic theoretical result of this thesis is that by

working with 2-D filters of this type, we can extend

virtually all of the known 1-D linear prediction theory to

the 2-D case. Among other things we can prove the following:

1) Given a 2-D, rational power density spectrum, S(zl,z 2),

which is strictly positive and bounded on the unit circles,

we can find a causal whitening filter for the random

process which is a ratio of two filters, each of the form

illustrated in Fig. 1.3. Both the numerator and the

denominator polynomials of the whitening filter are analytic

in the neighborhood of the unit circles (so the filters



(N, M)

k

Fig. 1.3 A particular class of 2-D causal filters. The
support consists of the points (0,0), (N,M) ,
and all points in the future of (0,0) and in the
past of (N,M).
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are stable), and they have causal, analytic inverses (so

the inverse filters are stable).

2) Consider the 2-D prediction problem illustrated in

Fig. 1.4. The problem is to find the least-squares linear

estimate for the point x(s,t) given the points shown in

the shaded region. The solution of this problem involves

solving an infinite set of linear equations. This problem

is the same as that considered by Shanks, except that

Shanks was working with a finite-order prediction-error

filter, and here we are working with an infinite-order

prediction error filter of the form illustrated in Fig. 1.3.

Given certain conditions on the 2-D autocorrelation function

(a sufficient condition is that the power density spectrum

is analytic in the neighborhood of the unit circles, and

strictly positive on the unit circles), we can prove that

the prediction error filter is analytic in the neighbor-

hood of the unit circles (and therefore stable) and that

it has a causal and analytic (therefore stable) inverse.

3) From a practical standpoint, the most important theoretical

result that we obtain is a canonical representation for a

particular class of causal and causally invertible 2-D

filters. The representation is an extension of the

well-known 1-D reflection coefficient (or "partial correla-

tion coefficient") representation for FIR minimum-phase

filters [18] to the 2-D case.
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k

Fig. 1.4 The problem is to find the least-squares, linear
estimate for the point x(s,t) given the points
shown in the shaded region. Given certain con-
ditions on the 2-D autocorrelation function, the
prediction error filter is stable, and it has a
causal, stable inverse.

k



We consider the class of 2-D filters having the

support illustrated in Fig. 1.5(a). The filters them-

selves may be either finite-order or infinite-order. In

addition we require that a) the filters be analytic in some

neighborhood of the unit circles; b) the filters have

causal inverses, analytic in some neighborhood of the unit

circles; c) the filter coefficients at the origin be one.

Then associated with any such filter is a unique 2-D

sequence, called a reflection coefficient sequence, of the

form illustrated in Fig. 1.5(b). The reflection coefficient

sequence is obtainable from the filter by a recursive

formula. The elements of the reflection coefficient

sequence (called reflection coefficients) satisfy two

conditions: their magnitudes are less than one, and

they decay exponentially fast to zero as k goes to plus or

minus infinity. The relation between the class of filters

and the class of reflection coefficient sequences is

one-to-one.

In most cases, if the filter is finite-order, then

the reflection coefficient sequence is infinite order.

Fortunately, if the reflection coefficient sequence is

finite-order then the filter is finite-order as well.

The practical significance of the 2-D reflection

coefficient representation is that it provides a new

domain in which to design 2-D FIR filters. Our point is

that by formulating 2-D linear prediction problems (either
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Fig. 1.5 2-D Reflection Coefficient Representation;
a) Filter (analytic with a causal, analytic inverse),
b) Reflection coefficient sequence.

(N,M) (N,M)
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spectral factorization or autoregressive model fitting)

in the reflection coefficient domain, we can automatically

satisfy the previously intractable requirement that the

FIR filter be causally invertible. The idea is to

attempt to represent the whitening filter by means of an

FIR filter corresponding to a finite set of reflection

coefficients, and to optimize over the reflection coef-

ficients subject to the relatively simple constraint that

the reflection coefficient magnitudes are less than one.

As we prove later, if the power density spectrum is analytic

in the neighborhood of the unit circles, and positive on

the unit circles, then the whitening filter can be ap-

proximated arbitrarily closely in this manner (in a uniform

sense) by using a large enough reflection coefficient

sequence.

The remaining practical question concerns how to

choose the reflection coefficients in an "optimal" way.

For the spectral factorization problem, a convenient (but

generally suboptimal) method consists of sequentially

choosing the reflection coefficients subject to a least-

squares criterion (In the 1-D case this algorithm reduces

to the Levinson algorithm.) We present two numerical examples

of this algorithm. For the autoregressive model fitting

problem a similar suboptimal algorithm for sequentially

choosing the reflection coefficients can be derived which,

in the 1-D case, becomes the Burg algorithm.



It is believed that the full potential of the 2-D

reflection coefficient representation can only be realized

by using more sophisticated methods for choosing the

reflection coefficients.

1.6 Preview of Remaining Chapters

Chapter 2 is a survey of the theory and computa-

tional techniques of 1-D linear prediction. While it con-

tains no new results, it provides essential background

for our discussion of 2-D linear prediction.

We begin our discussion of 2-D linear prediction

in Chapter 3. We discuss the existing 2-D linear prediction

theory, including the classical "failures" of 1-D results

to extend to the 2-D case, and we review the available

computational techniques of 2-D linear prediction. We

introduce some terminology, and we prove some theorems

that we use in our subsequent theoretical work. We dis-

cuss some potential applications of 2-D linear prediction.

Chapter 4 contains most of our new theoretical

results. We state and prove 2-D versions of all of the 1-D

theorems stated in Chapter 2.

In Chapter 5 we apply the 2-D reflection coefficient

representation to the spectral factorization and auto-

regressive model fitting problems. We present numerical

results involving our sequential spectral factorization

algorithm.



CHAPTER 2

SURVEY OF ONE-DIMENSIONAL LINEAR PREDICTION

In this chapter we summarize some well-known 1-D

linear prediction results. The theory that we review con-

cerns the equivalence of three separate domains: the class

of positive-definite Toeplitz covariance matrices, the class

of minimum-phase FIR prediction error filters and positive

prediction error variances, and the class of finite dura-

tion reflection coefficient sequences and positive predic-

tion error variances. We illustrate the practical sig-

nificance of this theory by showing how it applies to

several methods of spectral factorization and autoregressive

model fitting.

2.1 1-D Linear Prediction Theory

Throughout this chapter we assume that we are

working with a real, discrete-time, zero-mean, wide-sense

stationary random process x(t), where t is an integer. We

denote the autocorrelation function by

r(T) = E{x(t+T)x(t)} , (2.1)

and the power density spectrum by

z=TS(z) = Z r(T)z . (2.2)
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We consider the problem of finding the minimum

mean-square error linear predictor for the point x(t)

given the N preceding points:

N
[A(t) x(t-1),x(t-2),...,x(t-N)] = E h(N;i)x(t-i) .

i=l
(2.3)

We determine the optimum predictor coefficients by apply-

ing the Orthogonality Principle, according to which the

least-squares linear prediction error is orthogonal to

each data point [16]:

N
E{[x(t) - E h(N;i)x(t-i)]x(t-s)}

i=l

N
= [r(s) - E h(N;i)r(s-i)] = 0 , 1<s<N . (2.4)

i=l

These equations are called the normal equations, or the

Yule-Walker equations. We denote the optimum mean-

square prediction error by

N 2
PN = E{[x(t) - E h(N;i)x(t-i)] }

i=l

N
= [r(0) - E h(N;i)r(-i)] . (2.5)

i=l

Writing the normal equations in matrix form we have



r(N)

r(N-1)

r(0)

r(0)

r(1)

r(N)

The matrix is a symmetric, non-negative definite Toeplitz

covariance matrix. The following theorem can be proved.

Theorem 2.1(a): Assume that the covariance matrix in

(2.6) is positive definite. Then

1) (2.6) has a unique solution for the filter coefficients,

{h(N;1),...,h(N;N)}, and the prediction error variance,

PN;

2) PN is positive;

3) The prediction error filter (PEF)

N
HN(Z) = [1 - E h(N;i)z ] (2.7)

i=l

is minimum-phase (that is, the magnitudes of its poles

and zeroes are less than one) [17], [18].

A converse to Theorem 2.1(a) can also be proved:

r(1)

r(0)

r(2)

r(1)

r(N-1) r(N-2)

-h (N; 1)

-h (N;N)

PN

0

0o
Lo(2.6)

-- L·

1
1
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Theorem 2.1(b): Given any positive PN, and any minimum-

phase HN(Z), where HN(Z) is of the form (2.7), there is

exactly one (N+l)x(N+1) positive-definite, Toeplitz covariance

matrix such that (2.6) is satisfied. The elements of the

covariance matrix are given by the formula

1 z (T-I)PNdzr(T) 1 z (l)N<N (2.8)2r() HN(z)HN(1/z) , T
Izll

[7], [3], [19]

The normal equations are a set of (N+l) simultaneous

linear equations. Using the Gaussian elimination technique

they can be solved with about N3/3 computations. Levinson

devised an algorithm for solving the normal equations,

taking advantage of the Toeplitz structure of the covariance

matrix, that requires only about N2 computations. The

algorithm operates by successively computing PEFs of in-

creasing order.

Theorem 2.2 (Levinson algorithm): Suppose that the co-

variance matrix in (2.6) is positive-definite; then (2.6)

can be solved by performing the following steps:

1) p(l) - r(l (2.9)r(O)

h(l;1) = p(l) , (2.10)

Pl1 = r(0)[1 - p2 (1)] ; (2.11)



p(n) - 1 E{[x(t) -
n-l

[x(t-n) -

(n-l)

i=l
- 1 [r(n) -

n-1

h(n;n) = p(n)

h(n;i) = [h(n-l;i) - p(n)h(n-l;n-i)]

l<i< (n-l)

h (n-1; i) r (n-i) I

2P = P [1 - p (n)]n n-1

2<n<N [15], [20]

The numbers p(n), given by (2.9) and (2.12), are called

"reflection coefficients," and their magnitudes are always

less than one. (The term "reflection coefficient" is used

because a physical interpretation for the Levinson algorithm

is that it solves for the structure of a 1-D layered medium

(i.e., the reflection coefficients) given the medium's

reflection response [6]. The reflection coefficients are

also called partial correlation coefficients, since they

are partial correlation coefficients between forward

and backward prediction errors.)

n-

i=

(

1)
h(n-l;i)x(t-i)]

1
n-l)

E h (n-; i) x(t-n+i)]}
i=l

, (2.12)

(2.13)

(2.14)

(2.15)



Equations (2.10), (2.13) , and (2.14) can be

written in the more convenient Z-transform notation as

follows:

H0 (z ) = 1, (2.16)

-nH n (z) = [H (z) - p(n)z H (1/z)]

l<n<N , (2.17)

n i
where H (z) = [1 - E h(n;i)z ], l<n<N . (2.18)

i=l

One interpretation of the Levinson algorithm is

that it solves for the PEF, HN(z), by representing the filter

in terms of the reflection coefficient sequence, {p(l),

p(2),...,p(N)}, and by sequentially choosing the reflection

coefficients in an optimum manner. This reflection coef-

ficient representation is a canonical representation for

FIR minimum-phase filters:

Theorem 2.3(a): Given any reflection coefficient sequence,

{p(l),p(2),...,p(N)}, where the reflection coefficient

magnitudes are less than one, there is a unique sequence

of minimum-phase filters, {HO(z),Hl(z),...,HN(z)}, of

the form (2.18), satisfying the following recursion:

H0 (z) = 1 , (2.19)



-nH (z) = [H (z) - p(n)z H (l/z)]n n-1 n-1

l<n<N . (2.20)

Theorem 2.3(b): Given any minimum-phase filter, HN(z),

of the form (2.18), there is a unique reflection coefficient

sequence, {p(l),p(2),...,p(N)}, where the reflection

coefficient magnitudes are less than one, and a unique

sequence of minimum-phase filters, {HO ( z ) ,H l (z ) ,...,

HN- 1 (z) }, of the form (2.18), satisfying the following

recursion:

p(n) = h(n;n) , (2.21)

1 -nHn-1(Z) = 2 (n)] [Hn ( z )  + p(n)z H n(1/z)] , (2.22)
[1-p (n)]

N>n>l . [18], [7], [3]

Theorems 2.1 and 2.3 are summarized in Fig. 2.1.

Finally, we want to discuss the behavior of the

sequence of PEFs, HN(z), as N goes to infinity. The basic

result is that by imposing some conditions on the power

density spectrum, the sequence HN(z) converges uniformly to

the causal and causally invertible whitening filter for

the random process.
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Theorem 2.4: If the power density spectrum, S(z), is analytic

in some neighborhood of the unit circle, and strictly posi-

tive on the unit circle, then

1) The sequence of minimum-phase PEFs, HN(z), converges

uniformly in some neighborhood of the unit circle to a

limit filter

lim HN(Z) = H (z) (2.23)

2) H (z) is analytic in someneighborhood of the unit circle,

it has a causal analytic inverse, and it is the unique (to

within a multiplicative constant) causal and causally

invertible whitening filter for the random process;

3) The reflection coefficient sequence decays exponentially

fast to zero as N goes to infinity

Ip(N)I < (l+) - N  , E>0 (2.24)

4) The sequence of prediction error variances converges

to a positive limit

lim P = PN N

1 -1= exp[2 z log S(z)dz] . (2.25)

2 z = 1

[21], [7]



2.2 1-D Spectral Factorization

As we stated in the introduction, the spectral

factorization problem is the following: given a spectrum

S(z), find a causal and causally invertible whitening

filter for the random process. Equivalently, the problem

is to write the spectrum in the form

1S(z) = G(z)G(l/z) (2.26)

where G(z) is causal and stable, and has a causal and

stable inverse. A sufficient condition for a spectrum

to be factorizable is that it is analytic in some neighbor-

hood of the unit circle, and positive on the unit circle.

In this section we discuss two approximate methods of

spectral factorization, the Hilbert transform method, and

the linear prediction method.

Considering first the Hilbert transform method,

if the spectrum is analytic in some neighobrhood of the

unit circle, and positive on the unit circle, it can be shown

that the complex logarithm of the spectrum is also analytic

in some neighborhood of the unit circle, and it therefore

has a Laurent expansion in that region [1]

-nlog S(z) = n c z , (2.27)
n=-oo
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where cn =c n = n log S(z)dz. (2.28)n -n 2 7T j
Izl=1

(The sequence cn is called the "real cepstrum.")

Or log S(z) = C(z) + C(l/z) (2.29)

o -n
where C(z) = ( + E c z ) . (2.30)

n=l

Therefore,

S(z) = (231)G(z)G(1/z) (2.31)

where G(z) = exp[-C(z)] . (2.32)

It is straightforward to prove that G(z) is causal and

analytic in the neighborhood of the unit circle, and that

it has a causal and analytic inverse.

While the Hilbert transform method is a theoretically

exact method, it can only be implemented approximately by

means of discrete Fourier transform (DFT) operations. The

basic difficulty is that the exact cepstrum is virtually

always infinite-order, and it can only be approximated by

a finite-order cepstrum. A finite cepstrum always produces

an infinite-order filter, according to (2.32), but again

this infinite-order filter is truncated in practice.

Consequently in using the Hilbert transform method, there

are always two separate truncations involved. Both trunca-

tions can distort the frequency response of the whitening



filter approximation, and the second truncation can even

product a nonminimum-phase filter. These difficulties

can always be overcome by performing the DFTs with a

sufficiently fine sample spacing, but one can never predict

in advance how fine this spacing should be. Particular

difficulties are encountered whenever the spectrum has

poles or zeroes close to the unit circle.

The basic idea of the linear prediction method

of spectral factorization is to approximate the causal

and causally invertible whitening filter by a finite-

order PEF, HN(Z), for some value of N. If the spectrum

is analytic and positive, then according to Theorem 2.1(a),

HN(z) is minimum-phase, and according to Theorem 2.4, this

approximation can be made as accurate as desired by making

N large enough. The principle difficulty is choosing N.

One possible criterion is to choose N large enough so that

the prediction error variance, PN' is sufficiently close

to its limit, PO (which can be precomputed by means of

the formula (2.25)).

2.3 1-D Autoregressive Model Fitting

We recall that the problem of autoregressive

model fitting is the following: given a finite set of

samples from the random process, estimate the causal and

causally invertible whitening filter. In contrast to

spectral factorization which is a deterministic problem,



the problem of autoregressive model fitting is one of

stochastic estimation. Two convenient and effective methods

of autoregressive model fitting are the autocorrelation method

[3] and the Burg alogrithm [3].

Given a finite segment of the random process,

{x(0),x(l),...,x(T)}, the autocorrelation method first uses

the data samples to estimate the autocorrelation function

to a finite lag. Then an N-th order PEF and prediction

error variance, HN (z) and PN' are computed for some

N < T by solving the normal equations associated with

the estimated autocorrelation sequence. The autocorrela-

tion estimate commonly used is

1 (T-ITj)(T) (T+-) E x(t+jTj)x(t) , ITI T.
t=0

(2.33)

If the true autocorrelation sequence is positive definite,

then r(T) is positive definite with probability one, and

according to Theorem 2.1(a), HN(z) is minimum-phase and

PN is positive. Furthermore, according to Theorem 2.1(b)

the autoregressive spectrum,

^ iP
S(z) = N(2.34)

(2.34)
HN (z)H N (l/z)

is consistent with the autocorrelation estimate, r(T),



for ITI < N. (The autoregressive spectrum is sometimes

called the maximum-entropy spectrum; it can be shown

that among all spectra consistent with r(T) for (IJ < N,

the N-th order autoregressive spectrum has the greatest

entropy, where the entropy is defined by the formula

1 -12Tj z log S(z)dz [31 . ) (2.35)

Izl=1

The Burg algorithm operates by successively fitting

higher order PEFs directly to the data. The basic idea

is to mimic the Levinson algorithm. The whitening filter

estimate, HN(z), is found by sequentially choosing its

reflection coefficients subject to a particular optimality

criterion. Given the random process segment, {x(O),x(l),

... ,x(T)}, the algorithm proceeds as follows:

1) ft(z) = 1 , (2.36)

^ 1 2P (T+) x (t) ; (2.37)t=0

2) At the beginning of the n-th stage we have Hnl(z)

and Pn-l' The only new parameter to estimate is the new

reflection coefficient, P(n). The PEF and the prediction

error variance are then updated by the formulas

H -nH
Hn() H (Z) - p(n)z (nl1/z) (2.38)



^2P = P [1-p (n)]n n-i (2.39)

The new reflection coefficient is chosen to minimize the

sum of the squares of the n-th order forward and backward

prediction errors,

T (+) 2 (-) (t-n)2S{ [ (t + [ (t-n)]
t=n

(+) n
S (t) = [x(t) - h(n;i)x(t-i)] ,

i=l

(2.40)

n<t<T ,

(2.41)

() n
E -)(t) = [x(t) - Z h(n;i)x(t+i)]

i=l

O<t< (T-n) (2.42)

The expression (2.40) is minimized by choosing p(n)

according to the formula

p(n) =

(+)( )2 [ +  (t)] [E (t-n)]n-1 n-1t=n

Z { [EM (t) ] + [ -) (t-n)]n- n-1
iL-=n1

(2.43)

It can be shown that the magnitude of p(n) is less than

one, and therefore Hn(z) is minimum-phase and Pn is positive.n n

and

where

and

# - I m

I , %"% •

.L
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The forward and backward prediction errors do not have

to be directly computed at each stage of the algorithm;

instead they can be recursively computed by the formulas

(+) (t) = [ (+ )  ( - )
E (t) n- (t) - p(n)E (t-n)]n n-l n-1

n<t< T , (2.44)

and E (t) = [E: (t) - p(n) • (t+n)]n n-l n-l

O<t<(T-n) . (2.45)

The Burg algorithm has been found experimentally

to give better resolution than the correlation method in

cases where the final order of the PEF is comparable

to the length of the data segment [22]. This is apparently

due to the bias of the autocorrelation estimate used

in the correlation method.

Regardless of which method is used, the most

difficult problem in autoregressive model fitting is

choosing the order of the model. While in special cases

we may know this in advance, that is not usually the case.

In practice, the order of the model is made large enough

so that PN appears to be approaching a lower limit. At

present there is no universally optimal way to make this

decision.



CHAPTER 3

TWO-DIMENSIONAL LINEAR PREDICTION - BACKGROUND

3.1 2-D Random Processes and Linear Prediction

For the remainder of this thesis we assume that

we are working with a 2-D, wide-sense stationary random

process, x(k,Z), where k and k are integers. x(k,k) is

further assumed to be zero-mean, real, and scalar-valued.

The autocorrelation function is denoted

r(s,t) = E{x(k+s,Z+t)x(k,Z)} , (3.1)

and the power density spectrum is denoted

-s -tS(zlz 2 ) = r(s,t)z 1  z 2  . (3.2)
s=- C- t=-cx

As stated in the introduction, the 2-D linear

prediction problem concerns the determination of a

causal, stable whitening filter for x(k,k) which has a

causal, stable inverse.

3.2 Two-dimensional Causality

As we mentioned in the introduction, our 2-D

linear prediction results are based on a particular

notion of 2-D causality. For any point (s,t) we define

the past to be the set of points

I (k ON IkI,= 0tct k<e -w,- e#I s ,) ' ;01 s ,



and the future to be the set of points

{ (k, ) Ik=s,S>t; k>s,-o<Q<o} .

This is illustrated in Fig. 1.2. It is straightforward

to verify two implications of this definition:

1) If (kl, 1 ) is in the past of (k2, 2), then (k2, 2)

is in the future of (kl' 1 ) ;

2) If (kl' 1) is in the past of (k2, 2) , and (k 2, 2 )
is in the past of (k33' ), then (kl, 1 ) is in the past of

(k3', 3 ).

In other words, our definition of causality totally orders

the points in the plane.

As a matter of notation, if (kl, 1 ) is in the

past of (k2, 2 ), we denote this by

(kl' 1 ) < (k2 ',2)

or equivalently

(k2' 2) >  (kl' 1)

Therefore we define a causal 2-D linear, shift-

invariant filter to be one whose unit sample response

vanishes at all points in the past of the origin. Equiva-

lently, a 2-D filter, A(zl,z 2 ), is causal if its Z-transform

can be written in the form



oO CO 0o

A(zlZ 2) = a(0,Z)z 2  + E Z a(k,Z)zl z 2

£=0 k=l Z=-o

-k -9=E a(k,)zl z 2  (3.3)
(k, P)> (0,0)

The geometry of a 2-D causal filter is illustrated in

Fig. 1.1.

3.3 The 2-D Minimum-phase Condition

We define a 2-D, stable, linear, shift-invariant

filter (either causal or non-causal) to be one whose unit

sample response is absolutely summable. Equivalently,

the Z-transform of a stable 2-D filter converges absolutely

on the unit circles (for zl = 1 = Iz2 1). It can be

shown that such a filter is stable in the bounded input,

bounded output sense; that is, if the input to the filter

is bounded, then the output is bounded as well [23].

We define a 2-D minimum-phase filter to be a 2-D

causal, stable, linear, shift-invariant filter which has

a causal, stable inverse. If a filter is minimum-phase

then it is easy to show that its inverse is unique.

Throughout this thesis we will be mainly con-

cerned with a special class of 2-D minimum-phase filters

that we call analytic minimum-phase filters. We define

a 2-D filter to be an analytic minimum-phase filter if

1) the filter is minimum-phase, 2) the filter is analytic

in some neighborhood of the unit circles (that is for
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some (1-6)<jz ll,z 2 1<(l+c)), and 3) the inverse filter is

analytic in some neighborhood of the unit circles. (The

third condition is redundant, since any function which is

analytic and non-zero in a region has an analytic inverse

in the same region.) Not every 2-D minimum-phase filter

is analytic. Consider for example the filter

1 -1 1 -9 9A(zl,z 2 ) = {1 + 10 z [ (z2  +z 2 )]} . (3.4)

Recalling the identity

1 21 nZ - 6 (3.5)2 6Z=l k

we see that A(Zl,z 2) is causal and stable. But (3.4)

diverges whenever z2 is off the unit circle, so the filter

is not analytic. Nevertheless, it does have a causal,

stable inverse. Using a formal geometric series, we have

-1 (-1) 1 -R R k -kA (zl,z 2) k  [ (z +(z2  )] } (3.6)
k=0 10 9£=1

where the series converges uniformly for 1z2 1 = 1.

From a practical standpoint, 2-D minimum-phase

filters which are not analytic are of no importance. In

practice, rational 2-D minimum-phase filters are the only

type of 2-D minimum-phase filters that would ever be

implemented, and these filters are analytic.
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The 2-D minimum-phase condition is considerably

more complicated than the 1-D minimum-phase condition.

This is primarily due to the fact that 2-D filters are

characterized by an uncountably infinite number of poles

and zeroes. There is a great amount of literature devoted

to various algebraic minimum-phase tests for 2-D FIR

one-quadrant filters [10], [24], [25], [26]. This author

has shown how to extend these tests to the more general

class of causal 2-D FIR filters whose support occupies

more than one quadrant [27]. Another approach to testing

the 2-D minimum-phase condition is a numerical one based

on the cepstral representation for mininum-phase filters

[14]. However, we do not discuss any of the above tests,

since at no point in this thesis do we actually need to

test the minimum-phase condition for a particular filter.

What we do need is a theoretical tool that will enable us

to prove inductively the condition for a particular class

of filters. To that end we now state and prove a theorem

which is a 2-D extension of a well-known 1-D theorem [22].

Theorem 3.1: If A(zl,z 2 ) is an analytic minimum-phase

filter, and 6(zl,z 2 ) is a causal filter, analytic in some

neighborhood of the unit circles, whose magnitude is less

than the magnitude of A(zl,z 2 ) when z1 and z2 are on

the unit circles,



16(z21z 2) < IA(zl,z 2)I , IZ11 = Iz21 = 1
(3.7)

then the sum of the two filters is an analytic minimum-

phase filter. (Note that 6(zl,z 2) does not have to be

minimum-phase.)

Proof: The sum of the two filters is analytic in some

neighborhood of the unit circles. Since the sum is non-

zero on the unit circles, continuity implies that the sum

is non-zero in some neighborhood of the unit circles.

Therefore the inverse filter is analytic in some neighbor-

hood of the unit circles. To prove that the inverse filter

is causal we proceed as follows:

[A(zl,z 2 ) + 6(zl,z 2 ) -1

= A 1 (zlz 2 )[1 + A 1 (z1,z 2 )6(z21, 2)]-1

= A (Zlz2) (-l)n [A-I (zl,z 2 )6(zl,z 2) ] n

n=0

(3.8)

where the series converges uniformly in some neighborhood

of the unit circles. It is easy to prove that a product

of 2-D causal filters is also causal. Therefore each

term in the series is causal, so the uniform limit is

causal.



3.4 Properties of 2-D Minimum-phase Whitening
Filters

In this section we assume that a particular 2-D

random process has a minimum-phase whitening filter

(ignoring for the present the question of existence) and

we state and prove some properties of this whitening filter.

We denote the minimum-phase whitening filter by A(z l , z 2 ),

and we denote its inverse by B(zl,z 2 ). We then have

w(k, ) = EE a(s,t)x(k-s, 9-t) , (3.9)
(s,t)>(0,0)

and x(k, k) = E b (s,t)w (k-s, Y-t) , (3.10)
(s,t)>(0,0)

where w(k, ) is a white-noise process with variance a 2

E{w(k+s,Z+t)w(k,R)} = a2 6 t . (3.11)

(The generally infinite sums in (3.9) and (3.10) are

interpreted in the mean-square sense.) We can show the

following:

1) The minimum-phase whitening filter is related to the

power spectrum by the formula

2S (z1'z 2) =a (3.12)A(z 1 ,z 2 )A(l/zl,1 /z 2 )

2) A(zlz 2 ) is unique to within a multiplicative constant;



3) A(ZlZ 2 ) is proportional to the least-squares linear

prediction error filter for x(k,2,) given the infinite

past.

To prove (1) we substitute (3.9) into (3.11) and we

obtain

2a66 =st

(3.13)

Taking the z-transform of both sides of the equation,

we have

a2 = S(zl,z 2 )A(zl,z 2 )A(l/z,1 i/z 2 ) (3.14)

which reduces to (3.12).

To prove (2) we assume the existence of some other

minimum-phase whitening filter, A'(zl,z 2 ). We have

S(zlz 2) = A(zl,z 2 )A(l/zl,l/z 2 ) - A'(zl,z 2 )A'(l/zl, 1 /z 2 )

(3.15)

A' (z 1 ,z 2 ) 2 y
A(zlz 2 )

A (1/Z, I/z 2 )a' 2
A'(l/zl , l/z2)
A'(1/2,1/z22

a(kl' 1 ) a (k2' 2 )
(ki ,1 )>(0,0) (k2, 2)>(0,0)

Sr (s-kl+k2 , t - I + 9 2 )

m

Or (3.16)
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The left-hand side of (3.16) is a causal filter, and the

right-hand side is an anti-causal filter. Clearly (3.16)

can be true only if each side of the equation equals a

constant. Therefore,

A'(zl,z 2 ) = cA(zl,z 2 ) (3.17)

where c is a constant.

To prove (3) we first normalize the whitening

filter as follows:

H(l'Z2) a(0,0) A(Zlz 2)

= [1 - ZZ h(k,Z)zl z 2  ] . (3.18)
(k,Z)> (0,0)

We then have

PS(zl,z 2) H(zl,z 2)H(l/z ,l/z , (3.19)

2
where P = 2 (3.20)

a (0,0)

Our claim is that H(zl,z 2 ) is the least-squares linear

prediction error filter for x(k,Z) given the infinite

past, and that P is the prediction error variance. We

have



PH(Zlz 2 )S(z 1 ,z 2 ) = H(l/z,l/z) (3.21)

Taking the inverse Z-transform of both sides of (3.21),

and using the fact that the right-hand side is an anti-

causal filter, we have

[r(s,t) - ZZ h(k,k)r(s-k,t-Z)] = P6 6
(k,Z)>(0,0) st

(s,t)>(0,0) , (3.22)

or

E{[x(u,v) - ZE h(k,k)x(u-k,v-0)]x(u-s,v-t)}
(k,Z)>(0,0)

= P6s 6 , (s,t)>(0,0) . (3.23)

According to (3.23), H(zl,z 2 ) operates on the random

process x(k,9) to produce a white-noise process that is

uncorrelated with all past values of x(k,k). Therefore

the Orthogonality Principle is satisfied, so H(zl,z 2)

has the linear prediction interpretation that we claim

for it. (Using (3.23) it is easy to prove that first,

no other PEF can perform better than H(zl,z 2 ), and second,

that any PEF which performs as well as H(zl,z 2 ) must be

equal to H(zl,z 2 ).)

3.5 2-D Spectral Factorization

We recall that the problem of 2-D spectral factoriza-

tion is the following: given a 2-D spectrum, find the



minimum-phase whitening filter. We begin by discussing

the 2-D Hilbert transform method of spectral factoriza-

tion. This is justifiably considered to be one of the

most significant results in 2-D systems theory. (The

ironic fact is that it was first reported in 1954 [8].

Apparently it was then forgotten until it was rediscovered

in recent years by several other researchers [12], [13],

[14].)

As a theoretical tool, the 2-D Hilbert transform

method is the means of proving sufficient conditions for

a 2-D spectrum to be factorizable, and as a computational

tool it is an approximate method of 2-D spectral factoriza-

tion which has some practical difficulties. The method

is applicable if the spectrum is analytic in some neighbor-

hood of the unit circles, and strictly positive on the unit

circles. We call any spectrum which satsifies these

conditions a positive analytic spectrum.

The 2-D Hilbert transform method is precisely

analogous to the 1-D Hilbert transform method. Given

a positive analytic spectrum, it can be shown that the

complex logarithm of the spectrum is analytic in some

neighborhood of the unit circles, and it therefore has a

Laurent series expansion in that region [14]:

loo oo
log S(z l z 2) = C zkZ- k -  (324)k=-O =- k 1 z2 (3.24)



where

C-k,-t = c k , k

1
(2Tvj) 2

zi =1

log S(zl,z 2 )

k-i £-1zk-l z2z 1 z 2
Iz2=1

"0,0 + C(zl1 z 2 )

log S(z l ,z 2 )dzdz l d z 2

(3.25)

+ C(1/z,11 /z 2 )

where C(zl,z 2 )
(k, k)> (0,0)

(3.26)

(3.27)-k -,Ck, £z z 2

Therefore

S(zl,Z 2 )

where H(zl,z 2 )

H(z, z 2 ) H(l/z, l/z 2 )

= exp[-C(z1 ,z2)

1
n=0

[-C(zl,z 2) ]n

(k, )> (0,0)
(k,Z)>(0,0)

-k -9h(k,,)zl z 2 P

P = exp[c ,00,0

= exp[
(27j) 2

Iz =1

-1 -1zI z2

Sz21=1

log S(zl,z 2 )dzldz 2]

(3.28)

= [1 -

and

, (3.29)

(3.30)



Since C(zl z2 ) is analytic it follows that H(zl ,z2) is

analytic as well, and from the series expansion of the

exponential function in (3.29) we see that H(zl,z 2 ) is

causal, since each term of the uniformly converging

series is causal. The inverse of H(zl,z 2) is also analytic

and causal, since it can be written as

-i
H (z, 1 z 2 ) = exp[C(zl'z 2 )] . (3.31)

As an approximate computational method of 2-D

spectral factorization (implemented with 2-D discrete

Fourier transforms), the 2-D Hilbert transform method has

all of the drawbacks of the 1-D method. In particular

if the DFTs are performed with an insufficiently fine sample

spacing, the resulting filter may be an inaccurate approxi-

mation to the true whitening filter, and it may even be

nonminimum-phase.

As we mentioned in the introduction, the root

method of factoring a rational spectrum does not extend

to the 2-D case. Consider for example the rational

spectrum

-1 -1S(zlz 2 ) = (5 + zl + z1 + z 2 + z 2 ) . (3.32)

If the spectrum had a rational factorization, then it

could be written in the form

Q (t z. )7 = A z 1 )7 (I 1 1/z7 1 /17 ) 3 3
A, A, F \ i.J.l Z l Z l 2



N N N -k -
where X(z l , z 2) = 10'z 2 + Z Z k, z z2£=0 k=l 9=-N

(3.34)

for some finite N. But it can be shown that (3.33) cannot

be satisfied for any finite value of N; there are always

more constraints to satisfy than there are parameters to

choose [9]. This is by no means an isolated example; if

one chooses a rational 2-D spectrum "at random" then there

is virtually no chance of it having a rational factorization.

However considering (3.32), if z2 is held con-

stant with its magnitude equal to one, then we have a 1-D

rational spectrum in zl. This suggests that we can find

a factorization which is finite-order in zl. Considering

in general a positive 2-D spectrum of the form

N M
S(zlz 2 ) = Z r(k,,)zl z 2  (3.35)

k=-N £=-M

we have the infinite-order factorization

S(zl'Z 2) = X(zl,z 2 )A(1/zl'l/z2 ), (3.36)

-k -.where X(zl,z 2) = Xk,.Zl z 2  . (3.37)
(k, ,)> (0,0)

Or X(zl,Z 2) = -l (/zl,l/z 2 )S(zl,z 2 ) . (3.38)



Denoting X-1(zlz2) as follows:
Denoting A (z l ,z 2 ) as follows:

-1A (zl,z 2 ) = -k -Z
(ki) kk, Z1 22(k, )> (0,0)

=-k -zkz 2
(k, ,)<(0,0) k

N M -k -Z
S[ E r(k,k)zl z 2k=-N £=-M

-k -£
= [ 7 •_kZl z2 ](k,t)<(0,0)

* [
-k -]

EE r(k,Z)zl z2 -
(-N,-M)<(k, 9)<(N,M)

Therefore, A(zl,z 2 ) must be of the form

A(z , z 2 ) = -k -.
k, £z1 2

(0,0) < (k, ) < (N,M)

S(zl,z 2) and X(zl,z 2 ) are illustrated in Fig. 3.1.

We conclude this section by discussing Shanks

method of 2-D spectral factorization. Until now there

has been no simple explanation as to why this method

fails. The basic idea of Shanks method is to approximate

the minimum-phase whitening filter by computing an FIR

least-squares,linear prediction error filter [10]. For

example, consider the linear predictor,

we have

(3.39)

S(zl, 2)

(3.40)

(3.41)
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(a)

Fig. 3.1

(b)

The positive spectrum S(zl,z 2 ) shown in (a) has the
S(zl,z 2 ) = X(zl,z 2 )X(1/z 1 ,1/Z 2 ), where X(zl,z 2 ) is
minimum-phase filter shown in (b).

factorization,
an analytic

(- 4)
,'J



[Ei(k,R) Ix(k,R-l),x(k-1,R),x(k-1,£-l)]

= [h(0,1)x(k,Z-l) + h(l,0)x(k-l,k) + h(l,l)x(k-1,Z-l)]

(3.42)

The geometry of the PEF,

-1 -1 -1 -1
H(zl,z 2 ) = [1 - h(0,1)z 2 - h(1,0)z 1 - h(l,l)z 1 z2 2

(3.43)

is illustrated in Fig. 3.2(a). Applying the Orthogonality

Principle, we obtain the set of linear equations that the

filter coefficients and prediction error variance must

satisfy:

r(0,0) r(0,1) r(1,0) r(l,l)

r(0,1) r(0,0) r(l,-1) r(l,0)

r(1,0) r(l,-l) r(0,0) r(0,1)

r(l,l) r(1,0) r(0,1) r(0,0)

1 P

-h(0,1) 0

-h(l,0) 0

-h (1,1) 0

(3.44)

If the covariance matrix is positive-definite then there

is a unique solution for the filter coefficients and P,

and P is positive. But the PEF, H(zl,z 2 ), is not always

minimum-phase [11]. Moreover, even if the PEF is minimum-

phase it can be shown that the transformation between the

covariance matrix, and the filter coefficients and P is

not invertible. Specifically, an infinite number of

.
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(a) The FIR PEF is not always minimum-phase;
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different positive-definite covariance matrices can

generate the same PEF and prediction error variance. This

is easy to see; referring to (3.44), the covariance matrix

contains five different parameters, while the PEF and P

together consist of only four parameters. (The five

parameters of the covariance matrix are not completely in-

dependent since the matrix is required to be positive

definite.) We can summarize the failure of Shanks method

by saying that Theorem 2.1 fails to extend to 2-D FIR

PEFs.

If we examine Shanks method explicitly in terms of

our definition of 2-D causality, we can obtain a very

simple interpretation for the failure of the method.

Essentially we can show that 2-D FIR PEFs are the 2-D

analogs to a class of 1-D FIR PEFs which are not guaranteed

to be minimum-phase. The predictor (3.42) utilizes three

points in the past of x(k,Z), {x(k,9-l),x(k-l,Z),

x(k-l,9-1)}, and the points are ordered as follows:

(k-1,9-l) < (k-1,t) < (k,t-l) < (k,9) . (3.45)

The predictor does not use the infinite number of points

lying between x(k,Z-l) and x(k-1, Z):

{x(s,t) ;(k-1,Z)<(s,t)<(k,9-l)}

Therefore the data sequence in this prediction problem is

"discontinuous." The analogous 1-D situation occurs in



the case of the "discontinuous" predictor,

[-(t) x(t-1),x(t-3) ,x(t-4)]

= [h(1)x(t-l) + h(3)x(t-3) + h(4)x(t-4)]

(3.46)

where the PEF,

H(z) = [1 - h(l)z-1 - h(3)z-3 - h(4)z -4] , (3.47)

is not guaranteed to be minimum-phase.

Our point is that in view of the ordering of points

in the plane, 2-D FIR PEFs are not the "natural" 2-D analogs

to 1-D FIR PEFs, so we should not be surprised that

Theorem 2.1 fails to extend to 2-D FIR PEFs. As we prove

in Chapter 4, the PEF,

H(zlz 2) = [1 - ZE h(k,k)zl z 2 X
(0,0) <(k, Z) <(1,1)

(3.48)

illustrated in Fig. 3.2(b), is minimum-phase if the auto-

correlation function satisfies certain conditions. The

distinguishing feature of this PEF is that it uses the

"continuous" data sequence, {x(s,t); (k-1,k-l)<(s,t)

<(k,Z)} to predict x(k,4).



3.6 Applications of 2-D Linear Prediction

In this final section we briefly describe some

potential applications of 2-D linear prediction. We

discuss the problem of 2-D recursive filter design and the

2-D Wiener filtering problem which are applications of

spectral factorization, and we discuss 2-D autoregressive

spectral estimation and linear predictive coding of images

which are applications of autoregressive model fitting.

1. 2-D Recursive Filter Design: We have a specified

magnitude-squared frequency response, SD(zl,z 2 ) and the prob-

lem is to design a stable, recursive filter with approxi-

mately the same magnitude-squared frequency response.

2-D recursive filters are of considerable interest in both

image processing and array processing. Denoting the filter

input by yi(k,k), and the filter output by y0 (k,Z), we have

YO(k,') = E h(s,t)y 0 (k-s,k-t) + P' Yi(k,Z),
st

(3.49)

-s -twhere H(zl,z 2) = [1 - E E h(s,t)zl z 2 ] (3.50)
st

is a minimum-phase, FIR filter. (Given appropriate boundary

conditions, the difference equation, (3.49), can be

recursively solved [13].) The transfer function of the

recursive filter is



y 0 (zz 2 ) (3.51)
Yi(Zl'Z2) H(ZlZ2)

Therefore the design problem is a spectral factorization

problem:

SD(Zlz 2) H(Z ,z2)H(i/zl,/z . (3.52)

2. The 2-D Wiener Filtering Problem: We observe

a signal, x(k,Z), which is the sum of a message, a(k,2),

and noise, n(k,9). We model the message and the noise as

wide-sense stationary random processes, and we assume that

the power density spectra are known. The problem is to

design a filter, G(z 1 ,z 2 ), which will give the optimum

least-squares linear estimate for the message. The problem

is illustrated in Fig. 3.3(a). 2-D Wiener filtering

is of interest in image processing as well as array

processing.

The classical solution to the problem involves

first finding the minimum-phase whitening filter for the

observed signal by solving the corresponding spectral

factorization problem:

Sx(lZ 2)  H(ZZZ2)H(/zl,/z2 . (3.53)

The idea is that the optimum filter, G(zl,z 2 ), can be

represented as the product of the whitening filter and



n (k, k)

(a)

(b)

Fig. 3.3 a) the 2-D Wiener filtering problem;
b) the classical whitening filter solution;
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some other filter, G'(zl,z2 ). This is illustrated in

Fig. 3.3(b). Since the minimum-phase whitening filter

is causally invertible, no loss in information is in-

curred by performing the whitening operation. The re-

maining problem is to design G'(zlz2); this is con-

siderably easier than the original problem, since we are

now working with a white-noise process.

In some cases G(zlz 2 ) is required to be causal,

and in other cases G(zl,z2 ) can be non-causal. If we

further assume that the message and noise are uncorrelated,

and that the noise is white with variance N0 , then we can

find G(zl,z 2 ) explicitly in terms of the whitening filter.

In the case where G(zl,z 2) is causal (the filtering

problem), we have

G(zl,Z2) = [1 - p H(zl,z2)] . (3.54)

In the case where G(zl,z2 ) is allowed to be non-causal

(the smoothing problem), we have

G(zl,z2) = [1 - - H(Z1 ,z2 )H(l/zl,1/z2 )] . (3.55)

3. Autoregressive Spectral Estimation: We are

given a finite set of samples from a random process,

x(k,$1), and the idea is to estimate the power density

spectrum by modeling the minimum-phase whitening filter

as an FIR minimum-phase filter. 2-D autoregressive spectral
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estimation would be especially useful in many array

processing problems where we wish to find a high-resolution

frequency-wavenumber spectral estimate. Equivalently

the problem is to fit the following autoregressive model

to the data,

x(k,9) = E E h(s,t)x(k-s,i-t) + w(k,J) , (3.56)
st

where H(z,z 2) = [1 - E E h(s,t)z 1 z2 ] (3.57)
st

is an FIR minimum-phase filter, and where w(k,£) is

modelled as a white-noise process with variance P.

Having obtained the model parameters, the autoregressive

spectral estimate is given by the formula

PS(z 1 ,z 2 ) = . (3.58)
H(z l , z 2 ) H(l/zl rl/z2

4. Linear Predictive Coding of Images: We have

a sampled image, x(k,Z), and the idea is to obtain auto-

regressive models for the image over relatively small

regions of the plane. Each piece of the image is then passed

through its approximate whitening filter, the whitened

image is then transmitted over a communciations channel,

and the original image is reconstructed at the other side

of the channel. The motivation for using a whitening

filter for source encoding is that it removes linear

redundancy. The scheme is illustrated in Fig. 3.4.



0

Fig. 3.4 Linear predictive coding of images.



CHAPTER 4

NEW RESULTS IN 2-D LINEAR PREDICTION THEORY

In this chapter we discuss the new 2-D linear

prediction theory that has been developed in this thesis

research. We extend all of the theorems of Chapter 2 to

the 2-D case.

We begin by proving that a particular class of 2-D

PEFs is always minimum-phase if the power spectrum is posi-

tive analytic. Unfortunately, these filters are infinite-

order in z2 so they cannot be implemented in practice.

Nevertheless, we show that any such PEF can be approximated

arbitrarily closely by an FIR minimum-phase filter which,

in turn, can be represented in terms of a finite set of

numbers that we refer to as reflection coefficients.

The practical implication of these theoretical

results is that approximate 2-D minimum-phase whitening

filters can be designed in the 2-D reflection coefficient

domain. We show that if the reflection coefficient

magnitudes are less than one, the difficult minimum-phase

requirement is automatically satisfied.

4.1 The Correspondence between 2-D Positive-
Definite Analytic Autocorrelation Sequences
and 2-D Analytic Minimum-phase PEFs

We begin by considering the following least-

squares linear prediction problem



, (N,M)>(0,0)EZ h(N,M;s,t)x(k-s,) -t)
0<(s,t)<(N,M)

(4.1)

The geometry of the problem is illustrated in Fig. 1.4.

We denote the prediction error variance by PN,M' and we

denote the PEF by

HN,M (z1,z2 ) [1 -
-k -Z

EE h(N,M;k,Z)zl z 2 i
(0,0)<(k, ) < (N,M)

(4.2)

The PEF is illustrated in Fig. 1.3.

We apply the Orthogonality Principle to obtain the

normal equations that the filter coefficients and PNM

must satisfy:

[r(s,t) - ZZ h(N,M;k,Z)r(s-k,t-k)] = PNM 6 6
(0,0) < (k, )<(N,M)N,M t

(0,0)<(s,t)<(N,M)

(4.3)

The normal equations are an infinite set of linear equa-

tions, and unless we impose certain conditions on the

autocorrelation sequence, there is no guarantee that there

is a stable solution. To obtain our results we require

that the 2-D autocorrelation sequence be positive-definite

[x(k,)) I{x(s,t); (k-N,£-M)<(s,t)<(k, )}]



and analytic. We say that the autocorrelation sequence,

{r(k,,); (0,0)<(k,k)<(N,M)}, is positive-definite and

analytic if

1) r(k,Z) decays at least exponentially fast to zero as

k goes to plus or minus infinity;

2) the following Toeplitz matrix is strictly positive-

definite for 1z2 1 = 1:

R1 (1/z 2 )

R0 (z2 )

RN-2 (z 2 )

R2 (1/z 2 )

R1 (l/z2 )

RN- 3 (z 2 )

.. RRN-l(l/z2)

... RN- 2 (l/z 2 )

. . R0 (z 2)

(4.4)

where Rk(z 2 ) = -2E r(k,9)z
9=-00

3) the prediction error variance associated with any FIR

PEF having the same support as HNM (zl,z 2 ) has a positive

lower bound.

We note that the first condition implies that the Rk(z 2)
are analytic in the neighborhood of the unit circle. For

1z2 1 = 1, the Toeplitz matrix (4.4) is Hermitian. Finally

we observe that a sufficient (but not necessary) condition

R0 (z 2 )

R1 (z 2 )

RN-1 (z 2 )

(4.5)



for the autocorrelation sequence to be positive-definite

and analytic is that the power density spectrum of the

random process is positive analytic.

We can now state the following theorem.

Theorem 4.1(a): Given a positive-definite analytic auto-

correlation sequence, {r(k,9); (0,O)<(k,£)<(N,M)}, then:

1) the normal equations (4.3) have a unique solution for

HN,M(zl,z 2 ) and PNM;

2) PNM is positive;

3) HNM(ZlZ 2 ) is analytic and minimum-phase.

Outline of Proof: The fact that PNM is positive follows

trivially from the assumption that the autocorrelation

sequence is positive-definite and analytic. The uniqueness

part of the theorem is easy to prove; the existence of

more than one solution to the normal equations would imply

the existence of a PEF with zero prediction error.

The difficult parts of the proof are the existence

proof, and the proof that the PEF is analytic minimum-

phase. The outline of the proofs is as follows (the

details are in Appendix Al):

1) We first prove that a solution for a lower-order PEF,

HN, -m(l,z 2 ) = HN-l,+m(zl'Z2) (4.6)



exists, and that the PEF is analytic minimum-phase. Due

to the simple structure of the filter, the solution can

be obtained by working with transforms in z2.

2) We constructively prove, for all sufficiently small

values of m (m+-co), that there is an analytic solution

for HN,m(zlz 2 ). The solution is a Neumann series solu-

tion involving the lower-order PEF, HN,- (Zl,z 2).

3) As part of the Neumann series solution, we prove

that the sequence of PEFs, HN, (Zl,2), converges uniformly,

in the neighborhood of the unit circles, to the limit

filter, HN, 00(z1 ,z2 ), as m goes to minus infinity:

lim HN,m(ZlZ 2 ) = HN,- (Zlz 2 ) . (4.7)

Applying Theorem 3.1 we can then prove that for all suf-

ficiently small values of m, HN,m(zl'Z 2 ) is analytic

minimum-phase.

4) Finally, using a 2-D version of the Levinson algorithm,

we precursively obtain a solution for HN, (zl,z2) for all

m<M. Using Theorem 3.1 in conjunction with the 2-D Levinson

algorithm, we inductively prove that the HN,m(zl'z 2 )

are analytic minimum-phase.

Theorem 4.1(a) has a converse.



Theorem 4.1(b): Given any positive PN,M' and any analytic

mimimum-phase filter, HNM(z ,z2 ), for a particular (N,M)

where

HN,M (z1 z2 ) = [1 - -k -SZE h(N,M;k,.)zl z2 i
(0,0) <(k,r) <(N,M)

(4.8)

there is a unique positive-definite analytic autocorrelation

sequence, {r(k,Z); (O,0)<(k,j)<(N,M) , such that the

normal euqations (4.3) are satisfied. The autocorrelation

sequence is given by the formula

1r(k,k) = ( 2r(2 3j)
j zk-1 2 -lzI  z2

Izll1 Iz21=1

PN Mdzldz2
HN, M (z I z 2 ) HN,M (/zl , /z 2

(0,0) <(k, k)<(N,M)

Outline of Proof: The existence part of the proof

(4.9)

trivial; the quantity

N ,M
HN,M (Zlz2)HN,M(l/zl ,l/z 2 ) (4.10)

is a positive analytic spectrum which is already in factored

form. Therefore HN,M(zl,z 2) is the minimum-phase whitening

filter for a random process having the spectrum (4.10).

.,,,



Recalling the linear prediction interpretation for the

minimum-phase whitening filter it is clear that (4.9)

is satisfied.

The uniqueness part of Theorem 4.1(b) is comparatively

difficult to prove, and it is discussed in Appendix Al.

An interesting interpretation of Theorem 4.1 is

that it specifies a method of extrapolating a particular

class of 2-D autocorrelation sequences. We begin with the

positive-definite analytic autocorrelation sequence,

{r(k,Z); (0,0)<(k,)<(N,M)}, and we compute HNM(Zl,z 2 )

and P by solving the normal equations. We then form

the spectrum (4.10). The inverse Z-transform of this

spectrum is an autocorrelation function, r(k,k), which

is equal to the original autocorrelation sequence for

(0,O)<(k,9)<(N,M), and which is an extrapolation of the

autocorrelation sequence for (k,k)>(N,M). The extrapolation

is the maximum-entropy extrapolation; it can be shown that

of all spectra which agree with the original autocorrela-

tion sequence, the spectrum (4.10) has the greatest

entropy, where the entropy is given by the formula

1 -1 -1 z
2  1 z2  log S(zlz 2)dz dz2(2z7j) |z=1i- Iz2=1-

(4.11)



As we mentioned earlier, an important step in the

proof of Theorem 4.1 depends on a 2-D version of the

Levinson algorithm.

Theorem 4.2 (2-D Levinson algorithm): Suppose that we

have a positive-definite analytic autocorrelation sequence,

{r(k,k); (0,0)<(k,Z)<(N,M)}. We further assume that we

have the solution to the normal equations for Hn,m-l(zl,2)

and Pn,m-1 for some (n,m-l) where (0,0)<(n,m-1)<(N,M),n, m-i1

and that Hnm-l(zl,z2 ) is stable.

Hn,m(z ,z 2 ) and Pn,m

Then the solution for

is given by the formulas

Hnm(zl,z2) = [Hn,m-l(zl,z2)Hn,m ( 2 n,m-l 1 z2)

- p(n,m)z I z 2 n,m-1(1/zl 1 /z 2 )]

(4.12)

and P
n,m [1 - p (n,m) ]n,m-1

where

1p(n,m) = p E{[x(k,Z) -
n,m-1

* [x(k-n,Z-m) -

(0 h(n,m-l;s,t)x(k-s,)-t)]
(0,0) < (s,t) < (n,m-l)

ZE h(n,m-l;s,t)
,0)<(s,t)<(n,m-l)

* x(k-n+s, k-m+t) ] }

(4.13)



1
S np [r(n,m) -

n,m-1
) E h(n,m-l;s,t)r(n-s,m-t)]

(0,0) < (s,t) < (n,m-l)

Furthermore, if Hn,m-1(zlz 2 ) is analytic minimum-phase,

then Hn,m(zlZ 2 ) is also analytic minimum-phase.

Proof: Equation (4.12) can be written algebraically as

follows:

h(n,m;n,m) = p(n,m) (4.15)

h(n,m;k,Z) = [h(n,m-l; k,,) - p(n,m)h(n,m-l;n-k,m-2)]

(0,0) < (k, ) < (n,m-l)

(4.16)

The key idea of the 2-D Levinson algorithm is that the

"new" PEF, Hn,m (zl,z 2 ), is equal to a linear combination

of the "old" forward PEF, Hn,m-1(Z 1 ,Z 2 ), and the "old"

delayed backward PEF, z 2 nmlH (1/zl,/z 2 ). The

geometry of the recursion is illustrated in Fig. 4.1.

Given that Hn,m-1(zlz 2 ) and Pn,m-1 satisfy the

"old" normal equations,

[r(s,t) - EE h(n,m-l;k,Z)r(s-k,t-Z)]
(0,0) <(k, ) < (n,m-l)

(0,0) <(s,t) <(n,m-l)n,m- s t

(4.14)

S (4.17)
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Fig. 4.1

(b)

Geometry of
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2-D Levinson algorithm;

a) H n,_l(z , z2);

c) Hn, m ( z l , z 2 )

,1/z2) ] ;1 b)2 n,m-1 1



it is a matter of straightforward substitution to show

that the solution given by (4.12), (4.13), and (4.14)

satisfies the "new" normal equations,

[r(s,t) - EE h(n,m;k,,) r(s-k,t-k)] = P 6 6
(0,0)<(k,£9)<(n,m)

(0,0)<(s,t)<(n,m) . (4.18)

The number p(n,m) is called a "reflection coefficient,"

and its magnitude is always less than one; this can be

seen from (4.13) and the fact that P and P are
n,m-l n,m

positive. (Alternatively, we see from (4.14) that p(n,m)

is a partial correlation coefficient.)

Considering (4.12) we see that for all values of

z1 and z2 on the unit circles,

-n -mn

Hn,m- l ( z l z 2 ) j>jp(n,m)z 1 z 2 H n,m-(1/z l1/z2)

(4.19)

Therefore if Hn,m-1(zlz 2) is analytic minimum-phase, then

Theorem 3.1 implies that Hn,m(zlz 2 ) is also analytic

minimum-phase.

As we pointed out in section 2.1, the 1-D Levinson

algorithm has a physical interpretation related to the

propagation of a wave in a layered medium. Unfortunately

there is no such physical interpretation for the 2-D



Levinson algorithm. While it should be possible to find

a formal scattering theory interpretation for the 2-D

Levinson algorithm, it would not correspond to any physical

scattering mechanism because the propagation would follow

an infinite raster scan.

4.2 A Canonical Representation for 2-D
Analytic Minimum-phase Filters

Recalling the 2-D Levinson algorithm, and in

particular equation (4.12), we expect to find a reflection

coefficient representation for 2-D analytic minimum-phase

filters. The basic idea of the representation is that

associated with every analytic minimum-phase filter,

HN,M(zl'Z 2 ), is a unique 2-D reflection coefficient se-

quence, {p(k,Z); (0,O)<(k,9)<(N,M)}, where the reflection

coefficient magnitudes are less than one, and the reflection

coefficients decay exponentially fast to zero as k goes

to plus or minus infinity. Conversely, given any such

reflection coefficient sequence, there is a unique analytic

minimum-phase filter. The geometry of the filter and

the reflection coefficient sequence is illustrated in

Fig. 1.3 and Fig. 1.4.

The importance of the 2-D reflection coefficient

representation cannot be overemphasized. As we demonstrate

later, it is a computationally useful representation for

2-D minimum-phase filters.
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Theorem 4.3(a): Given any 2-D reflection coefficient

sequence, {p(k,k );

Ip(k, ) I

such that

< (1+ ) I E>0

there is a unique 2-D sequence of 2-D analytic minimum-

phase filters, {Hn,m(z1 ,z2 );

of the form

(0,0) < (n,m) < (N,M) }

H n ( ,z 2 )n,m 1 2 = [1 EE h(n,m;k,
(0,0)<(k,9)< (n,m)

-k -9)z z 2 ]

such that:

U,0U l

H n,m(z ,z2 ) [Hn,m-1(zl 2)

- p(n,m) zI z 2 H nm-l (/zl'

(0,0)<(n,m)<(N,M)

l/z 2 ) ]

(4.23)

H n,- (z 2 ) = Hn- 1 , +(z ,z 2 ) , l<n<N ; (4.24)

lim H (z
n,mm÷++ n,+m( zlz 2)

(the convergence is uniform in some neighborhood of the

unit circles);

(4.20)

(4.21)

(4.22)

0<n<N-1

(4.25)

(0,0)<(k,R)<(N,M) },

H (z ,,z )



5) lim Hnm (Zz) = H (z ,z ) ,  <n<N ; (4.26)n,m z  2  =n,-o 1

(the convergence is uniform in some neighborhood of the

unit circles).

Theorem 4.3(b): Given any analytic minimum-phase filter,

HN,M(zlz 2 ), of the form (4.21), there is a unique reflection

coefficient sequence, {p(k,k); (0,0)<(k,Z)<(N,M)}, and a

unique 2-D sequence of 2-D analytic minimum-phase filters,

{Hn,m(zl,z 2 ); (0,0)<(n,m)<(N,M-l)}, such that equations

(4.20) - (4.26) are satisfied.

Given the reflection coefficient sequence, we can

compute the filter sequence, Hn,m(zl'z 2 ), recursively (at

least conceptually); the order in which the filters are

computed follows an infinite master scan. We first

recursively compute the HOm(Zl'z2 
) beginning with

H O 0 (z1 ,z2 ) = 1, and ending with HO,+ (z1 ,z2 ), using

(4.23). We then recursively compute the H ,m(zl, 2 )

beginning with the initial condition, H1 ,-(zz ) =

HO,+O(zl'Z2 ), and ending with Hl,+c. (z1l z2 ). The remainder

of the recursion follows in exactly the same manner.

A particularly interesting situation occurs when

the reflection coefficient sequence is finite-order. In

that case, the recursion follows a finite raster scan,

all of the Hn,m(zl,z 2 ) are finite-order, and the entire



recursion can be performed with a finite number of

computations.

Given the filter, HN,M(z ,z 2 ), the reflection

coefficient sequence and the filter sequence, {Hn ,m(zlz2);

(0,0)<(n,m)<(N,M)}, can be recovered by running (4.23)

"backwards." It is straightforward to show that

p(n,m) = h(n,m;n,m) , (0,0)<(n,m)<(N,M) ,

(4.27)

and 1H n,m- ,z) = 2 [H (z l ,z 2 + p(n,m)
[1-p (n,m)] nm

1 2 n,m 2

(4.28)

Using (4.27) and (4.28), Hn,m(zlZ 2 ) and p(n,m) can be

recursively computed. Again, the recursion follows an

infinite raster scan. In this case, however, the recursion

begins with (n,m)=(N,M), and it propagates backwards

towards the origin.

We pointed out that if the reflection coefficient

sequence is finite-order then HN,M(zl,z2 ) is also finite

order. Unfortunately, the converse is not true: if

HN,M(zl,z 2 ) is finite-order, then the reflection coefficient

sequence is almost always infinite-order.
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Before we outline the proofs of these theorems

it is instructive to consider two numerical examples.

Example 4.1: This example illustrates the important

property of the 2-D reflection coefficient representation that if

the reflection coefficient sequence is finite-order then

the corresponding minimum-phase filter is finite-order,

and it can be obtained from the reflection coefficients

by a finite number of computations. We begin with the

following reflection coefficient sequence:

p(k,) =

1/2

-1/4

1/3

(k,k) = (0,1)

(k,k) = (i,-1)

(k,r ) = (1,0)

elsewhere .

According to Theorem 4.3(a) we generate a 2-D sequence

of 2-D minimum-phase filters as follows:

H,0 (z11 z2 ) = 1 ; (4.29)

H0,(z 1 ,z 2 ) = HO 0 (z I z 2) -1- p(0,l)z 2 H0 0 (i/z I l1/z 2 )

1 -1= (1 - z2 )f~ Z2

H n,m(z 1 z 2 ) = H0 ,1 ( z 1 2 )
1 -1

= (1 - z2 )

(0,2)<(n,m)<(l,-2)

(4.30)

; (4.31)



H1 ,-(z 1I z2 ) = H1,-2(z 1 z2

-1- p(1,-1)z I Z2Hl,-2(i/zl,1/z 2 )

1 -1= (i- -
f 2

1 -1 2 1 -1
8 1 Z2 4 1 2

(4.32)

H1 , 0 (z1 l z2 ) = H ,-1(zlz 2)

-1
- P(I,0)z H1 (1/zl/z 2 )

7 -1 1 -2= 1 2z2 + 2 212 2 24 2

5 -1 1 -1
12 1 2 3 Z1

1 -1 2
8 1 Z2

(4.33)

The reflection

illustrated in

coefficient sequence and Hi, 0 (zlz 2) are

Fig. 4.2.

Example 4.2: The following example illustrates the fact

that the reflection coefficient sequence associated with

a 2-D FIR minimum-phase filter is almost always infinite-

order. We begin with the minimum-phase filter

1 -1 1 -1H 0 (Z1 ,z2 ) = (1 + z ) . (4.34)10 24 2 4 1

According to Theorem 4.3(b), there is a unique reflection

coefficient sequence associated with this filter. We
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Fig. 4.2 The finite-order reflection coefficient sequence (a)
generates the minimum-phase filter (b).
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obtain the reflection coefficient sequence by means of

(4.27) and (4.28). Applying these formulas to the filter

(4.34) we have

1p(1,0) = h(1,0;1,0) = - 4 (4.35)

HI,- 1 (z lZ 2 )
1

2 [H1 ,0(z1 z2 )
[1-p (1,0)]

-1 1 1+ p(1,0)z H ( , ) ]
1 1,0 z 2 z

4 -1
= (1 + 1 2

1 -1
15 Z1 z2 )

p(l,-l) = h(l,-l;l,-l) = 15 ;

HI,-2(z l1 z2 )
1

2 [H1,_- (zlz2)[1-p (1i,-1)]

-1 1+ p(1,-l)z z2H i ,
1 21,-1 zl 1

15 -1 1 -1 2= (1 + z + z z 2 )56 2 5612

1p(1,-2) = 56 ;

4) We can show that for all m<-2,

p(l,m) =
2p (1,m+l)

p(l,m+2) [i-p (l,m+l)]

(4.36)

(4.37)

1- )]
z 2

(4.38)

(4.39)

(4.40)
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so clearly p(l,m) is non-zero for all finite values of m

less than or equal to zero.

5) In the course of deriving (4.40) we can show that

-1 -1 -m
Hl,m(zlz2) = [1 - h(l,m;0,1)z 2 - h(1l,m;l,m)zl z 2 i

m<0 . (4.41)

Therefore p(0,Z) = 0 , £>2 . (4.42)

6) Finally, employing the constructive argument that we

use to prove the existence part of Theorem 4.3(b), we can

show that

p(0,1) = (3/T - 2) . (4.43)

The filter, and its reflection coefficient sequence are

illustrated in Fig. 4.3.

Outline of Proof of Theorem 4.3(a):

Given the reflection coefficient sequence,

{p(k,k); (0,0)<(k,S)<(N,M)}, the key idea of the proof

is to work with a "truncated" reflection coefficient

sequence,

{p(L) (k.,); (0,0)<(k,R)<(N,M)} , L>IMI , (4.44)

where
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p (k, Y) , I I<L

0 , elsewhere (4.45)

The geometry of the truncated reflection coefficient se-

quence is illustrated in Fig. 4.4. Associated with the

reflection coefficient sequence (4.44) is a 2-D sequence

(L)of FIR minimum-phase filters, {H (L)(z ,z); (0,O)<(n,m)n,m 1 2

<(N,M)}, which, as in Example 4.1, can be obtained by a

finite number of computations. We can prove that as L

goes to infinity, the sequence of filters, H( L ) (zzn,m 1'z2

converges uniformly in the neighborhood of the unit

circles to a limit sequence, Hn,m(z1lz 2 ) . Specifically

we prove that for any 6>0 there is a number L such that

for all L1 >L, L2>L, and for all (1-C) <jzlj,1z 2I<(l+c)
where e is a number independent of 6,

(L 1 ) (L2)
Hnm (zl,z) - Hn (2 z,2)i<6 . (4.46)

The details of the proof, and the proof for the uniqueness

part of the theorem are in Appendix A2.

Outline of Proof of Theorem 4.3(b): The existence part of

Theorem 4.3(b) is almost a direct consequence of

Theorem 4.1. Given an analytic minimum-phase filter,

HN,M(zlz 2 ), we can choose some arbitrary positive PNM'

According to Theorem 4.1(b), there is a unique positive-

definite analytic autocorrelation sequence associated with
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k

Fig. 4.4 Any analytic minimum-phase filter, HN M(Zl,Z2),
can be approximated arbitrarily closely by an FIR
mininum-phase filter generated by the truncated
reflection coefficient sequence shown here.
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PN,M and HNM(zl,z 2 ). Solving the lower-order normal

equations associated with this autocorrelation sequence,

we obtain a 2-D sequence of 2-D analytic minimum-phase

filters, Hn,m(Zl'Z2 
) and a 2-D reflection coefficient

sequence related by the 2-D Levinson algorithm. The

remaining details of the proof, and the uniqueness part

of the proof are in Appendix A2.

To summarize the results of this section: we have

shown that there ia a one-to-one relation between a

class of 2-D analytic minimum-phase filters and a class

of 2-D reflection coefficient sequences. If the filter is

finite-order, then the reflection coefficient sequence

is almost always infinite-order. Fortunately if the

reflection coefficient sequence is finite-order then the

filter is also finite-order. In cases where the reflection

coefficient sequence of a particular filter is infinite-

order, the filter can be uniformly approximated by a

minimum-phase FIR filter corresponding to a finite-order

reflection coefficient sequence.

The practical significance of the 2-D reflection

coefficient representation is that it provides a new domain

in which to design 2-D minimum-phase FIR filters. By

designing 2-D FIR filters in the reflection coefficient

domain, the difficult minimum-phase requirement is



automatically satisfied merely by constraining the reflec-

tion coefficient magnitudes to be less than one.

4.3 The Behavior of the PEF H M(Zl, )
for Large Values of N

So far in this chapter, we have established, for

finite values of N, the equivalence of three separate

domains: the class of positive-definite analytic auto-

correlation sequences, {r(k,Z); (0,0)<(k,Z)<(N,M)},

the class of analytic minimum-phase filters and positive

prediction error variances, {PNM; HN,M(zlz 2 )}, and the

class of positive prediction error variances and reflec-

tion coefficient sequences, {PNM; p(k,9),(0,0)<(k,j)

<(N,M)}. The relations among the three domains are

illustrated in Fig. 4.5. Now we want to investigate

there results for large values of N.

Suppose that we have a positive analytic power

density spectrum, S(zl,z 2 ). As we saw in section 3.5,

the spectrum has the following factorization:

S(z z2 ) = (4.47)(Z 2  H H(zl,z 2 )H(l/zl,/z 2)

where H(z1,z2) is the analytic minimum-phase PEF for the

present value of the random process given the infinite

past, and P is the prediction error variance. We in-

tuitively expect that the sequence of analytic minimum-

phase PEFs, HN,M(zl,z 2 ), converges to H(zl,z 2 ) as N goes to

infinity.
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p(k, ),

< (k, ) < (N, M) }

Fig. 4.5 The correspondence among 2-D positive-definite analytic autocorrela-
tion sequences, 2-D analytic minimum-phase filters, and 2-D reflection
coefficient sequences.
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Theorem 4.4: If S(zl,z 2) is a positive analytic spectrum,

then

1) The sequence of analytic minimum-phase PEFs, HN,M(zlz 2) ,

converges uniformly in the neighborhood of the unit circles

to the analytic minimum-phase limit filter, H(zl,z 2 )

lim H (zlz 2 ) = H(z1 ,z2 ) ; (4.48)

2) The reflection coefficient sequence, p(N,M), decays

exponentially fast to zero as N goes to infinity

jp(N,M)j < (l+E)-INI (1+, )-Ml , E> ; (4.49)

3) The sequence of prediction error variances converges

to the positive limit

lim P = P (4.50)
N÷ N,M

Since we do not require this theorem for any of our sub-

sequent work, we do not present a proof for it in this

thesis. A complete proof can be found in [28].

What we do want to prove is that if a 2-D random proc-

ess has a positive analytic spectrum, then its minimum-

phase whitening filter can be uniformly approximated by an

FIR minimum-phase filter corresponding to a finite number

of reflection coefficients. While this can be argued by

means of Theorem 4.4, there is a much more direct way to

show this.



If the minimum-phase whitening filter, H(zlz 2 ) '

is truncated to obtain the following filter, for a particular

(N,M) :

-k -Z[1 - ZE h(k,Z)zl z 2  ] , (4.51)
(0,0)<(k,Z)<(N,M)

this truncated filter converges uniformly to H(zl,z 2)

in some neighborhood of the unit circles as N goes to

plus infinity. Moreover, Theorem 3.1 implies that the

truncated filter is minimum-phase for all sufficiently large

values of N, so it can be uniformly approximated by a minimum-

phase FIR filter corresponding to a finite number of

reflection coefficients.

Consequently, any 2-D analytic minimum-phase

whitening filter can be uniformly approximated by an FIR

minimum-phase filter corresponding to a finite number of

reflection coefficients. Therefore we have established that

the 2-D reflection coefficient representation is a potentially

useful tool in 2-D linear prediction problems.



APPENDIX Al

PROOF OF THEOREM 4.1

Proof of Theorem 4.1(a) for H ,,_ _(z,,z,)

Given the positive-definite analytic autocorrelation

sequence, {r(k,Z); (0,0)<(k, )<(N-1,+oo) , we want to prove

the existence of an analytic minimum-phase PEF,

In this section we derive a constructive procedure for ob-

taining the PEF.

We begin by solving a related (but different)

prediction problem:

l<s< (N-1) ,-c<t<o} ]

N-1
= f(N-; s,t) x (k-s,t -t)
s=l t=-W

(Al.1)

The filter coefficients, f(N-l;s,t), are chosen to satisfy

the following orthogonality conditions:

E{ [x(k,5 )
N-1

- Z f(N-l;s,t)x(k-s,Z-t)]x(k-u,Z-v)}
s=l t=-w

l<u<N-1,-c<v<oo . (A1.2)

We claim that we can then solve the original prediction

problem as follows:

EZ h(N-l,+m;s,t)x(k-s,Q-t)
(0,0)<(s,t)<(N-l,+o)

Al.1

= 0

-1\ - WI

HN-1,+m (z ,z2 ).

[x(k,) {x(k-s,k-t);

[x(k, )j {x(k-s,9-t); (0,0) < (s,t) < (N-1,+o) }]



N-1 i
= Z f(N-l;s,t)x(k-s, k-t)

s=l t=-W

Co

+ 9 g(N-l;T) [x(k,9 -T)
T=1

N-1 i
- f(N-l;s,t)x(k-s,Z-T-t)] . (Al.3)

s=l t=-W

Because of (Al.2) the orthogonality conditions,

E{[x(k,k) - EZ h(N-l,+w;s,t)x(k-s,t-t)]x(k-u, -v)
(0,0) <(s,t) <(N-l ,+oo)

= 0 , (0,0)<(u,v)<(N-I,+c) , (Al.4)

are automatically satisfied for {l<u<N-l,-mc<v<}). The

remaining orthogonality conditions for {u=0,v>0} are

satisfied by choosing the g(N-1;T) appropriately. If

we can find a stable solution for the f(N-l;s,t) and the

g(N-l;T), then we will have found the unique, stable solu-

tion for HNl,+ (zl,Z2 ).

Our method of solving for HN-l,+m(zlz2) is motivated

by a fundamental result from linear estimation theory.

Suppose that we are given two zero-mean random variables,

Y1 and Y2 , and that we wish to find the least-squares,

linear estimate for another random variable, x:

[x[ylY 2] = a 1y1 + o2Y2



al and a2 can be found by choosing them to satisfy the

orthogonality conditions:

E{(x-alY1-a 222)y1 } = 0

and E{ (x-alY1 -a2Y2)Y 2 } = 0 .

A different method of solving the same problem

begins by finding the least-squares, linear estimates for

x and y2 given y l :

[ily1] = B 1y,

and [y2Yly] = ý2YI

where B1 and 82 are chosen to satisfy the following

orthogonality conditions:

E{(x-~ 1 Y1 )y 1 } = 0

and E{ (y2 -2Yl)Yl } = 0 .

It can then be shown that

[ilylY 2 ] = [xjy 1] + [x1 (y2 -[21y 1])]

= By 1 + 3 (Y2- 2y) ,

where 83 is chosen such that

E{[x-Blyl-B 3 (y 2- 2 yl) ](y 2 -2 2 yl)} = 0



or equivalently

E{[x-,Y1 -B 3(Y2-2 Yl) ]2} = 0

Referring to the error expression, (y2 21Yl ] ) , as the

innovation of y2 with respect to yl, we have that the least-

squares linear estimate for x given yl and y2 is equal to

the sum of the least-squares, linear estimate for x given

Y1' and the least-squares, linear estimate for x given

the innovation of y2 with respect to yl. Although we have

only stated this result for random variables, it can easily

be extended to random vectors and random processes.

Therefore, reconsidering (Al.3) in light of the

above discussion, we formally have that the least-squares,

linear estimate for x(k,k) given {x(k-s,,-t); (0,0)<(s,t)

<(N-l,+c)} is equal to the sum of the least-squares, linear

estimate for x(k,k) given {x(k-s,Z-t); l<s<N-l,-w<t<o},

and the least-squares, linear estimate for x(k,Z) given

the innovation of the 1-D sequence, {x(k,Z-T); T>1}, with

respect to {x(k-s,k-t); l<s<N-l,-co<t<cO}.

In Z-transform notation, (Al.3) becomes

HN-1,+0(ZlZ 2) = GN-1(z 2)FN-l(zl,z 2 ) (Al.5)

oo -R
where GN_(z 2 ) = 1 - g(N-1;z)z2  (Al.6)N£=



N-I -kk=l-k
k=1

N-1
= 1 - Z

oo
-k -E f(N-l;k,k)z1 z2

K= I X=-w

(Al. 7)

We claim that both GN-1(z 2 ) and FN_-1(Zl, 2 ) are analytic

minimum-phase, and therefore that HN-l , + m(z l z 2 ) is analytic

minimum-phase.

We first show how to solve (Al.2). We have

N-1 0
[r(u,v) - E E f(N-1;s,t)r(u-s,v-t)]

s=L t=-O

= q(N-l;v)6 ,

where

q(N-l;v) = E{[x(k,k+v)

O<u< (N-1) ,-0<v< ,

N-l CO
E f(N-l;s,t)x(k-s,.Z+v-t)]

s=l t=-O

[x (k, ) -

= E{[x(k,k+v) - E

N-l
E E f(N-I;s,t)x(k-s,=-t)]}

s=l t=-m

N-1 CO

s=l t=-w

* x(k-s,k+v-t)]x(k,k)} (Al.9)

Taking the transform of both sides of (Al.8) we have

and
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(Al. 8)

-

E f(N-l;s,t)



N-I
[Ru(Z2) - Z F (z )R (z)]s=l N-1; s 2 u-s 2

= Qn-l (z2 6 0<u<N-1

where QN- ( z 2 ) = -(E q (N-l; k) z2

Writing (Al.10) in matrix form we have

R -1(1/z2)

" N-2 (1/z2)

1

-F (zN-1;1 (z2)

-FN-1;N-1 (z 2)

We recall that the above Toeplitz matrix is Hermitian

positive-definite for all z 2 on the unit circle, and

that the Rk(z 2 ) are analytic functions. Consequently

the determinant of the matrix is an analytic function of

z2 . Since the determinant is non-zero for z2 on the unit

circle, it must be non-zero for z2 in some neighborhood of

the unit circle. Therefore the matrix is invertible for

all z2 in the neighborhood of the unit circle, so there

is a unique solution for FNl(zl,z 2) and QN-l(z 2 ), and

FN-l(ZlZ 2 ) and QN-l(z 2 ) are analytic. Since the matrix

(Al.10)

(A1.11)

R (z 2 )

R (z 2

R1 (1/z 2)

RO(z 2 )

QN-1(z2)

(Al. 12)

R-1(z2) P-2(Z2) .."'. RO(z2)
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is Hermitian positive-definite for all z2 on the unit

circle it follows that QN-l(z 2) is strictly positive on

the unit circle.

To prove that FN l (zl,z 2 ) is minimum-phase we

solve (Al.10) by a recursive procedure analogous to the

1-D Levinson algorithm. The recursion is as follows:

1) F 0 (z l z 2 ) = 1 ; (A1.13)

Q0 (z 2 ) = R0 (z 2 ) ; (Al.14)

2) Fn (zz 2) = Fn-l(ZlZ2 ) -Pn(z2)zl n-(1/zl/z2)

(A1.15)

Qn(z 2 ) = Qn-l(Z 2 )[1 - Pn(z 2 )Pn(I/z 2 )] , (Al.16)

l<n<N-1

The "reflection coefficient function," pn(z2), can be

shown to be an analytic function. Since Qn-l(z 2 ) and

Qn(z 2) are both positive for all z 2 on the unit circle,

the magnitude of pn(z 2 ) must be less than one for all z2
on the unit circle. Therefore considering (Al.15) we can

use Theorem 3.1 to argue inductively that FN-l(l,z 2 )
is minimum-phase.

To find GN-1(z 2 ) we impose the orthogonality con-

ditions (Al.4) for {u=0,v>0}. Considering (A1.3) we have
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[q(N-l;v) - Z g(N-l;T)]q(N-l;v-T)]
T=1

= PN-1,+ 6v v>0 . (Al.17)

But solving (Al.17) is equivalent to performing the

following 1-D spectral factorization:

N-1,+c
QN-1 (z2) = (Al.18)N-1 GN-1( 2 )GN- l (l/z 2 )

Since Q N-(z2) is a positive analytic spectrum, we know

that the factorization can always be performed, and that

GN-1(Z 2) is analytic minimum-phase, and PN-1,+o is positive.

A1.2 Proof of Theorem 4.1(a) for H (z , )NM--1 2-
Given the positive-definite analytic autocorrelation

sequence, {r(k,R); (0,0)<(k,Q)I<(N,M)}, we want to prove

the existence of the analytic minimum-phase PEF, HN,M(zl,z2).

A key part of the proof involves showing that for suf-

ficiently small values of m (m+-c)) we can find a solution

for HN,m(zl,z 2) of the form

HN,m(zl,z 2 ) = AN,m(Z 2 )HN-1,+,(Zlz 2 )

- BN m ( /z 2 )z z2mHN_.l,+ (/zl,1/2 /z 2 )

(Al.19)
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where AN,m(z2) and BN,m(Z2) are analytic functions.

Furthermore we can show that

lim AN m (z 2 ) = 1 , (Al.20)

and lim BNm (z2) = 0 (Al.21)

(The convergence of both sequences of functions is uniform

in some neighborhood of the unit circle.) Therefore

HN,m (zz 2 ) converges uniformly in some neighborhood of

the unit circles to the limit filter, HN,o (lz 2 )

= HN-1,+c(l, 2 ) . But since HN-l,+o (Zl, 2 ) is minimum-

phase, we can apply Theorem 3.1 to argue that for all

sufficiently small values of m, HN,m(ZlZ 2 ) is minimum-

phase. Finally applying the 2-D Levinson algorithm we can

prove inductively that a solution for HNM(zl,z 2 ) exists

and is analytic minimum-phase.

In order to obtain (Al.19), we first try a solution

for HNLm(zl,z 2 ) of the form

HN,m(ZlZ 2) = [,m(Z 2 )FN-l(zlz 2)

B' -N -m
N,m 2 )z 1 z 2 FN l(/zl,/z 2)]

(Al. 22)



1h 00 -£where A m(Z2) = [ - E a' (N,m;k)z 2]
'=l

and B' (z) = E b' (N,m;£)z .2N,m =02Z=O

(FN- 1 (zl,z 2 ) is defined by (Al.7)) Equivalently, we

[X(k,Z) I{x(k-s,t-t); (0,0)<(s,t)<(N,m)}]

= EE h(N,m;s,t)x(k-s,k -t)
(0,0)<(s,t)<(N,m)

(Al. 23)

(Al. 24)

have

N-1 0
= 7 7

s=l t=-O

00

+ 7 a'
T=1

N-I
(N,m; T) [x(k,Z-T) -

s=l

00

t=-00

f(N-l;s,t)

* x(k-s,Z-T-t)]

oo

+ E b'
T=0

(N,m;T) [x(k-N,Z -m+T)

(N-1) 00
s=E Et
s=l t=-m

f (N-I; s,t)x(k-N+s, 9-m+T+t)]

(Al. 25)

Recalling (Al.2), we see that the normal equations,

E{[x(k,Z) - EE h(N,m;s,t)x(k-s,k-t)]x(k-u,k-v)}
(0,0)<(s,t)<(N,m)

= 0 , (0,0)<(u,v)<(N,m)
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f(N-1; s,t) x (k-s, -t)

(Al. 26)
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are automatically satisfied for {l<u<N-l,-*<v<w} if the

prediction problem is formulated in the form (Al.25).

The sequences a'(N,m;T) and b'(N,m;T) need only to be

chosen to satisfy (Al.26) for {u=O,v>l} and {u=N,v<m}.

If stable solutions for a'(N,m;T) and b'(N,m;T) can be

found, then we will have found the unique, stable solution

for HN,m(Zl,z2)

The innovations interpretation for (Al.25) is that

the least-squares, linear estimate for x(k,Q) given

{x(k-s,Z-t); (0,0)<(s,t)<(N,m)} is equal to the sum of the

least-squares, linear estimate for x(k,k) given {x(k-s,9-t);

l<s<N-l,-m<t<c}, and the least-squares linear estimate for

x(k,Q) given the innovations of the two sequences,

{x(k,k-T); T>l} and {x(k-N,Q-m+T); T>0}, with respect to

{x(k-s,Z-t); l<s<N-l,-o<t<o}.

Recalling (Al.5),

HN-1,+m(Z,Z 2 ) = GN_l(z 2 )F N l(zl,z 2) , (Al.27)

we see that (Al.22) reduces to (Al.19) where

AN,m(Z2 ) = Nm(Z2)GNl(2) = [1 - Z a(N,m;k)zl2 kM 2 N-

(A1.28)

and

-i -ZBN,m(Z2) = BNm(z 2)GN-(z) = b(N,m;£)z 2  (Al.29)Z=O
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Using (Al.19) with (Al.28) and (Al.29) we can write the

prediction error resulting from HN,m(z,Z 2 ) operating on

x(k,Z) in the form:

(+)(N,m;k,,) = (+)(N-l,+o;k,)

- a(N,m;T)x (+ ) (N-1,+o;k, -T)
T=1

- b(N,m;T) ( - ) (N-l,+oo; k-N, Z-m+T)
T=0

(Al.30)

where, for all (0,0)<(n,m)<(N,M)

+x (n,m;k, ) = [x(k,) - EE h (n,m;s,t)x(k-s,)-t)]
(0,0) < (s,t) < (n,m)

(Al. 31)

- (n,m;k,R) = [x(k,£) - EE h(n,m;s,t)
(0,0) < (s,t)<(n,m)

* x(k+s,£+t)] (A1.32)

The advantage of considering the prediction problem in

the form (Al.30) is that for fixed values of k, the 1-D

stationary random processes, { (+) (N-1,+w; k,Z) ,-Cm<£<m},

and {(-) (N-1,+m; k-N,Z) ,-O<L<m} are both individually

white (though they are correlated with each other).

Specifically, using (Al.4), it is easy to show that

and
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E{ (+ ) (N-l,+o;k, )x(+) (N-l,+o;k, 2 )} = P , 61 2 N-l,+ 9 1- '1 2

(Al. 33)

and

E{x( - ) (N-1,+m;k-N,£ x(-) (N-l,+o;k-N,£ 2 )} = PN-1+o 6

(Al. 34)

We denote the normalized cross-correlation between the two

processes by X(N;T):

(N;T) = P 1 E{ ( + ) (N-1,+c;k,+T)K ( - ) (N-1,+o;k-N, 9)}
N-1,+cx

1 1

PN-I,+m (27j)

0 [

1z1i=l 1z21=1

N-1 T--l 2
z1 z 2 HN-1 ,+(Zl,Z 2

Z Z r(s,t)z_ z2 ]dz dz
(-N,-m)<(s, t)<(N,m) 1 2

(Al. 35)

Since X(N;T) is the inverse Z-transform of a function in

z2 , analytic in the neighborhood of the unit circle, it

follows that X(N;T) decays exponentially fast to zero as

T goes to minus infinity. Applying Schwartz's inequality

we see that the magnitude of X(N;T) is less than one.

Therefore we have the bound

ST<m, >0 .
0

(Al. 36)I (N;T)I < (1+co )
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To obtain the optimum values for a(N,m;T) and

b(N,m;T) we apply the following orthogonality conditions:

E{ ( + ) (N,m;k,9)i (+ ) (N-l,+w;k, k-vl)} = 0 , v >1 ,

(Al. 37)

and

E{k (N,m;k,k)x (- ) (N-1,+o;k-N,Z-m+v2 ) = 0 , v2 >0 .
2-

(Al. 38)

Choosing a(N,m;T) and b(N,m;T) to satisfy (Al.37) and

(Al.38) is equivalent to choosing them to minimize the

variance of the right-hand side of (Al.30). But since

there is a one-to-one relation between ANm(z2) and ANm(Z 2)

and between BN,m(Z 2 ) and B m' (z2) it follows that this is

equivalent to optimizing AN,m(Z2) and BN,m(Z2).

Using (Al.30), (Al.33), (Al,34), and (A1.35) we

have

0 = [-a(N,m;v I ) - b(N,m;T)X(N;m-v -T) ]
T=0

v >1 ,1

(Al. 39)

and

0 = [X(N;m-v2) - Z a(N,m;T)X(N;m-v2-T) - b(N,m;v 2 )

v2 >0 . (Al.40)
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Substituting (Al.39) into (Al.40) we have

oo oo00

b(N,m;v) = [X(N;m-v) + E E b(N,m;T-)
T =0 T =11 2

A(N;m-v-T 2 ) (N;m-T 1 -T 2 )] , v>0 (A . 41)

We solve this equation iteratively; the procedure leads to

a so-called Neumann series solution. (The same technique

is used in the theory of Fredholm integral equations.)

We obtain the following formal solution:

b(N,m;v) = Z w (N,m;v) , v>0
q=l q

where w (N,m;v) satisfies the recursion:q

(Al.42)

wl (N,m;v) = X(N;m-v) , v>0 ,

w (N,m;v) =q

00 00

0E E w (N,m;T l ) (N ; m- v - T 2 ) (N ; m - T - T2 )I= T2= q- '

v>0,q>2 . (Al. 44)

We need to show that the series (Al.42) converges absolutely

and uniformly. Applying the bound (Al.36) to (Al.43) and

(Al.44), and assuming that m<0 (which involves no loss in

generality since we will need to let m approach minus

infinity) we have

and

(Al. 43)
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wl (N,m;v) I < (l+E 0 ) m-v , v>0 , (A. 45)

and

wq(N,m;v) I< E E IWq-1(N, m;) I (1+ 0 ) 1(2m-v--2T2)

' -2l '(2m-v- (1+E 0) -2
= 1 w q-. 1 (nm;t 1) 1 (1+ ) 1 -2

TI=0 [1-(l+ 0 )  ]

q>2,v>0 . (A1.46)

It can be verified by successive substitution that

lw (N,m;v) I <

2(q-1)
(1+ (m-v)

q>l,v>0 . (A1.47)

Inspecting the bracketed quantity in (Al.47) we see that

the bound can be made exponentially decaying in q by making

m small enough. Specifically there is a negative integer,

mo, such that for all m<m ,

m-1
(1+- )

< 1 (Al.48)-21-(l+: 0 )

Therefore, for all m<m 0 , the Weierstrass M-test can be

applied to show that the series solution (A1.42) converges

absolutely and uniformly.
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Applying the bound (Al.47) to (Al.42), we have

00

Ib(N,m;v)l <I Iw (N,m;v)
q=1

( m-v
(1+E )0

, m<m ,v 0 . (A1.49)

0

Applying the above bound to (Al.39) we have

la(N,m;v)l < Ib(N,m;Ts) l(N;m-v-) I

(+0) (2m-v)

(Al.50)

Consequently, for all m<m0, AN,m(Z2) and BN,m(Z2) (defined

by (Al.28) and (Al.29)) are analytic in the neighborhood

at the unit circle (in fact, in the region Iz 22>(1+£ 0 ) -l)
Moreover, (Al.49) and (Al.50) imply that as m goes to

minus infinity, ANm(Z2) converges uniformly to one and

BN,m(Z2 ) converges uniformly to zero in the neighborhood

of the unit circle.

Therefore in this section we have proved that

there is some number m0 such that for all m<m 0 we can find

1ý

OI'



111

a solution for the PEF, HN ,m (z l ,z 2 ), analytic in the

neighborhood of the unit circles. HN,m(ZlZ 2 ) converges

uniformly to the analytic minimum-phase filter,

HN,-m(Zl'Z 2) = N-l,+o(zlz 2 ), as m goes to minus infinity.

The remainder of the proof of Theorem 4.1(a) has already

been discussed.

Al.3 Proof of Theorem 4.1(b) for H _I,+0(z,z 2 )

Given an analytic minimum-phase filter

-k -£H N-,+m(zlZ2) = [1 - EE h(N-l,+o;k,Z)z1 z2 ,
(0,0) <(k, k) < (N-l,+oo)

(Al. 51)

and a positive number PN-1,+o' we want to prove that there

is a unique positive-definite analytic autocorrelation

sequence, {r(k,Z); (0,0)<(k,£)<(N-1,+o)}, such that the

normal equations (Al.4) are satisfied. The existence part

of the proof was discussed in section 4.1.

To prove the uniqueness part of the theorem we

assume the existence of two positive-definite and analytic

autocorrelation sequences, {r(k,Z); (0,0)<(k,Z)<(N-l,+c)}

and {r'(k,£); (0,0)<(k,2)<(N-l,+o)}, both of which generate

HN-l,+o(ZlZ2) and PN-1,+m via the normal equations. In

each case the normal equations can be solved by means of

the constructive procedure derived in section Al.1.

Therefore working with {r(k,k)} we first solve (A1.10) to
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obtain FN-l(zlz 2 ) and QN-1(z 2 ). We then perform the 1-D

spectral factorization (Al.18) to obtain PN-1,+c and

GN-1(z 2 ). The PEF is then given by the formula

HIN-l,+0(z 1 'Z 2 ) = GN-1(Z 2 )FN-l(zl'z 2 ) • (Al. 52)

Likewise, working with {r' (k,£)} we solve (Al.10) to

obtain FN_ (zl,z2) and QN-(z), and we solve (Al.18)

to obtain PN-1,+m and G-1(z2 ). We obtain the PEF by the

formula

HN-1,+ (z , z 2 ) = GN-1(z2 2-l(zl2)

Comparing (Al.52) and (Al.53) we have

GN-1(z 2)FN-l(zlI' 2 ) = GN-l(z2 FN-I(zlz 2)

or

N-1 -kGN-l(z 2 ) [1 - E FN-1;k(z2)-Zi
k=l

N-1

(Al.53)

(A1.54)

(Al.55)-k= GN-(z 2)[1 - I FN-;k(z2)K ]
k=l

Comparing similar coefficients of Z1 in (Al.55) we see that

GN-1 ( z 2 ) = G_-1(z 2 )

and FN-1(zlz 2 ) = F_-l(z l z 2 )

(Al.56)

(Al. 57)

Considering (Al.18) we have



N-1 (z 2 ) =
N-1, +00

GN-1 (z 2 )GN-1 (l/z 2 )

and Q' (z ) =N-1 2 (Al. 59)

Using (Al.56) we see that

QN-1 (z 2 ) = QN- 1(z 2) (Al. 60)

Therefore we see that {r(k,•)} and {r'(k,•)} both generate

the same FN-l(zl,z 2 ) and QN-1(z2) via (Al.10). Writing

(Al.10) for both cases we have

N-I
[Ru (z 2) - FN- (z2 )R ( 2 )] = QN-(Z2)6u

s=l

O<u< (N-1)

and
N-I

[R'(z 2 ) - I FN- (z 2 )R' (z 2 )] = QNl(z2)6u
s=l

0<u< (N-1)

, (A1.61)

(A1.62)

But as we observed in section A1.1, for all values of z

on the unit circle, the (AI.10) are merely the normal

equations for a 1-D predictor. Therefore since FNl(zl,z2)

is a 1-D minimum-phase filter in zl for all fixed z2
on the unit circle, and since QN-l(z 2 ) is strictly positive

for all z2 on the unit circle, the complex version of

113

(A . 58)
-- q

P N-1 , +
GN-1(z 2 )GN-l (/z2



114

Theorem 2.1(b) implies that

Rk(z 2 ) = R (z 2 ) , O<k<(N-1) , z 2 1=l .

(Al. 63)

Taking the inverse Z-transform of both sides of (Al.63)

(with the integration contour on the unit circle) we have

that

r(k,k) = r' (k,2) , (0,0)<(k,P)<(N-l ,+oo) . (Al.64)

Al.4 Proof of Theorem 4.1(b) for H ,M(l,z2)

Given an analytic minimum-phase filter,

-k -2HNM(z ,z2 ) = [1 - EE h(N,M;k,)z 1 z2 ] , (Al.65)
(0,0)<(k, )<(N,M)

and a positive number PNM' we want to prove that there

is a unique positive-definite analytic autocorrelation

sequence, {r(k,2); (0,O)<(k,£)<(N,M)}, such that the

normal equations, (4.3), are satisfied. We concentrate

here only on the uniqueness part of the proof, since the

existence part was discussed in section 4.1.

We assume the existence of two positive-definite

analytic autocorrelation sequences, {r(k,£); (0,0)<(k,£)

<(N,M)} and {r' (k, k); (0,0)<(k,R,)<(N,M) both of which

generate HN,M(zlZ 2 ) and PNM via the normal equations.

In both cases the normal equations can be solved by the
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method derived in sections Al.1 and Al.2. Therefore working

with {r(k,Y)} we generate a sequence of analytic minimum-

phase PEFs {HN,m(zl,z 2 ) ; -m<m<M} and positive prediction

error variances, {PN, m -m<m<M}, related by the 2-D Levinson

recursion:

-NZ -~km(/z'/

HN,m(ZlZ2) = [HN,m-l(zl z2) - p(N,m)z 1 z 2 mHN,m-1(1/zl,/z 2 ]

m<M , (Al.66)

and P P N,m[1 - p (N,m)] , m<M . (Al.67)

Likewise working with {r' (k,£)} we generate a sequence at

analytic minimum-phase PEFs {HNm(Zl,z2 ); m<M} and positive

prediction error variances {P m<M}, related by the 2-D

Levinson algorithm:

-N -mhfm p(N/mlzl/flH .
HN,m(z'Z2) = [HN,m-l(l2) p (N,m)z 1 z2 mHNm-l(/zl,/z 2

m<M , (Al.68)

and P'm P' [1 - p'(N,m)] , m<M , (A1.69)

where

N,M(zl,Z 2 ) = HN,M(zl,Z 2 ) , (Al.70)

and

P = PN . (Al.71)N,M N,M

Using (Al.70) we have that
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p' (N,M) = h' (N,M;N,M)

= h(N,M;N,M) = p(N,M) (Al. 72)

Therefore using (Al.69), (Al.71), and (Al.72) we see that

PN,M-1 N,M-1 (Al. 73)

Since the reflection coefficient magnitudes are less than

one, the recursions (Al.66) and (A1.68) can be "run back-

wards" as follows:

1HN m-l(ZlZ 2 ) - 2 [H (Z ,z2)
[l-p (N,m)] ,m

+ p(N-,m)z1Nz2mHN (l/z 1 i/z 2 )] , m<M ,

(Al. 74)

and

1Nm-l(zlZ2 =  [Hm(z l'z
[1-p (N,m) ];

-N 2mH+ p'(N,m) z H' (l/z ,1/z)]12N,m 1 2 , m<M .

(Al. 75)

Using (Al.70), (Al.72), (Al.74), and (Al.75) we see that

N,M-l(zlz 2 ) = HN,M-l(zl'z 2)
(Al. 76)

Therefore we can argue inductively that
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HN m(zl z 2 )

P' = PNN,m N,m

= HN,m(ZlZ 2 ) , m<M

m<M

Taking the limit as m goes to minus infinity,

(Al.77)

(Al. 78)

we have

HN_l,+m(zl,z 2 ) = HN-1,+m(Zl,Z 2 )

PN-l,+= N-l, + *

But as we proved in the previous section, this implies

that

r' (k,Z) = r(k,Z)

(Al. 81)

To obtain the remainder of the proof we write the

normal equations for HNM(z,z 2 ):

[r(s,t) E h(N,M;k, )r(s-kt-k)(
(0,0)<(k,Z)<(N,M)

= P 6s 6tN,M t

(0,0) <(s,t) < (N,M)

ZZ h(N,M;k,k)r' (s-k,t-R) ]
(0,0)<(k, Z) <(N,M)

= P NM66 tN,M s t

(0,0) < (s,t) < (N,M)

and

that

and

(Al. 79)

(Al. 80)

and

[r' (s,t)

(Al. 82)

, (0,0) < (k, Z)<(N-1,+O)

(A1.83)
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Subtracting the two equations, and using (Al.81) we have

for s = N:

[Ar(N,t) - Z h(N,M;0,Z)Ar(N,t-Z)] = 0
r£=

where Ar(N,t) = r(N,t) - r'(N,t) .

t<M ,

(Al. 84)

(Al. 85)

We claim that the filter,

[1 - 7 h(N,M;O,J)z 2 ]
n2 = HN,M(Zl,z 2 )

1=00

is minimum-phase. This is easily seen since we have

HN,M(zlz 2 )
Z =00

-1
* HN,M(z'Z 2 ) I

z =00

Considering (Al.84), if we interpret the sequence Ar(N,t)
oo

as the input to the filter, [1 - E h(N,M;0,9)z 2 ]
£= 2

then the output of the filter is zero for all t<M. But

since the filter is minimum-phase, this can only mean that

Ar(N,t) = 0 t<M , (Al. 88)

which completes the proof.

(Al. 86)

= 1 (Al. 87)
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APPENDIX A2

PROOF OF THEOREM 4.3

A2.1 Proof of Existence Part of Theorem 4.3(a)

We are given a 2-D reflection coefficient sequence,

{p(k,i); (0,0)<(k,)< (N,M) }, where

Ip(k,k)1 < (1+:0)-I l (A2.1)

and 0 is some positive constant, and we want to prove the

existence of a 2-D sequence of 2-D analytic minimum-phase

filters, {Hn,m(zl z 2 ) ; (0,0)<(n,m)<(N,M)}, satisfying

equations (4.21)-(4.26). As we indicated in section 4.2,

this is trivial to prove if the reflection coefficient

sequence is finite-order. To prove the existence part

of the theorem for the general case where the reflection

coefficient sequence is infinite-order, we work with a

finite-order truncated reflection coefficient sequence,

(L){( (k,k); (0,0)<(k,k)<(N,M)}, wherep (L)(k,) = I

0 , I I>L

Associated with this truncated reflection coefficient

sequence is a 2-D sequence of 2-D FIR minimum-phase

filters, {H(L)(z ,z ); (0,0)<(n,m)<(N,M)}. We then proven,m 1 2
that as L goes to infinity, the sequence of filters
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{Hn(L) (zz 2 )} converges uniformly, in the Cauchy sense,

to a limit sequence of analytic minimum-phase filters,

{Hn,m(zlz 2 )}.

We first write the equations needed to obtain the

filter sequence, {Hn( L ) m(zz 2 )}. The filter sequence is

computed recursively, the ordering of the recursion being

a finite raster scan. The recursion begins as follows

(we assume that L>jMI):

(L,0 (zl)z) = 1 (A2.2)0 , 0  i' 2 '

H(L) (z ) = (L) - p(m)-m (L) (/z /z
HOm lz 2 ) =H~mO(m- z1(zlz 2 ) - p(0,m)z 2mHOLml/z 1 l/z 2  '0,m i' 2 02 ,m-i i

l<m<L . (A2.3)

The next column of the recursion begins as follows:

H(L) (L)H (L+) (z ,z2) = H ,L (z,z) (A2.4)

For the remainder of the column we have:

H (L ),m (zz 2 ) = H( L )m-(zz2) - p(lm)z1 z mH (L) (i/z i/z )m 2 ,IM i 2 ' 1 z2 l,m- 1

-L<m<L . (A2.5)

In general, within each column of the recursion we have

(L) z ) = (L) -n -m (L)
n,m(Z n,m-l(zlz2) - P(N'm)zl z2 n,m-1 1

{l<n<N-1,-L<m<L},{n=N,-L<m<M} . (A2.6)
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The equation for the transition between adjacent columns

of the recursion is

(L) (L)Hn,-(L+1) = H (zz 2  l<n<N . (A2.7)Hn,-(L+I) ( Z2) n-l,L '

Finally, for Iml>L we have

Hkm(L) (z ) = Hn,L (z,z 2) , (n,L)<(k,m)<(n+l,-L) , O<n<N-1k,m i'z2 n,= L 2

(A2.8)

Theorem 3.1 can be applied to (A2.3) and (A2.6) to prove

inductively that all of the filters are minimum-phase.

We now prove that as L goes to infinity, the filter
(L)sequence {Hn m(z ,z 2 ) } is uniformly bounded in some neighbor-

hood of the unit circles, and for all {(0,0<(n,m)<(N,M)}.

We confine z l and z 2 to a particular neighborhood of the

unit circles, {(1+cl) -l<1zl 1l , z 2 1<(l+E1 ) }, and we denote

the least upper bound for the magnitude of the filter

Hnm( L ) (zI z2) by IIH( L ) II where

IIH ( L ) II IH (L) (z I z2 ), (l+ 1)- z1 I  21<(l
n,m n,m ' lz 21<(+

(A2.9)

Considering (A2.3) we have



H(L) 1 <  IIH(L) IIH0,m - 0,m-l

< [IH ( L )  I
0,m-1i

[1 + I p(0,m) (l+E

[1 +1+ 0 -ml
1+6 1)

Using successive substitution,

I[ (L) I
0,m

m
< H

£=1

Im i

1, l<m<L. (A2. 10)

it can be verified that

[ 1+E \-
[1 + 1 j I

\1+Eli

L /1+ 0 -
< H [1 + += \1+1

1, l<m<L (A2. 11)

Considering (A2.8) for n=0, we have that

IIH(L)I L<
n,m

+ 0+

1+c1) , (0,0)<(n,m)<(1,-L-1)

(A2.12)

Similarly, using (A2.6) for n=l, it can be shown that

II(L) im
R=-L

[1 + (1+F- )I 1+

jIH(L)1,- (L+l)

(A2.12) and (A2.13) we have that
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IIH(L)H lm1,m

L
Il H [1 + (1+E )

£=-L
1+ E}

-L<m<L (A2.13)

-- ! i

Combining
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IIH(L)II < { ( [ 1 +n,m £=1 1+60

L 1+60 -Ikl
* {H· [1 + (1+ E )1 1

£=-L

(0,0)<(n,m)<(1,L) . (A2.14)

Using the same type of arguments, it can be shown in-

ductively that

S (LT) II 1+6 •
n,m 1+eZ=l 1)

N-1 L 1+ 0S{l H [1 + (l+ •1  1+
k=1 k=-L 1

M N 1+E60 -IR
*{ H [1+(1+s- )N 11

(0,0)<(n,m)<(N,M) . (A2.15)

If we now choose E so that

0<e1<E0 , (A2.16)

we claim that the right-hand side of (A2.15) is bounded

as L goes to infinity. We need only to show that the

infinite products converge. We demonstrate this for the

first term. We have



C 1+0 +-0R
log H [1 + ]+

£=l 1+

m 1+E6 -IRIo0 _ -Iz< E + 1k=1 1+(

- 1+ 0Z log[l + 1+Z=l 1)

< 00 ,

where we have used the fact that for nonnegative x,

log(l+x)<x. Therefore we have the following uniform bound:

IH ( ) JI < K0  < mn,m 0 (0,0)<(n,m)<(N,M)

where K0 is a constant independent of L, n, and m.

We now want to prove that the filter sequence,

{Hnm(L) ,2)}, converges uniformly in the Cauchy sense to a

limit filter sequence. We consider the filter sequence

for two values of L, L1 and L2, where L1>L2 . We denote

(L1) (L2)the least upper bound for IHn(L  (zl z )-H LM (z 1 z )jn,m i 2 n,m ' 2

in the neighborhood {(l+ l)-l <zl I , z 2 1<(1+E 1 )} by

IIH (L ) -H (L 2 )  , wheren,m n,m

H(L )  (L2 ) (L2) (L2)
n,m (zlZ 2)-Hn,m (z 1 ,z 2) Hn, m -Hn,m

(1+z 1 - lzl' 1, z2 1 <(+1+ L) (A2.19)

We want to prove that the least upper bound (A2.19) con-

verges uniformly to zero, for all (0,0)<(n,m)<(N,M),

as L1 and L2 go to infinity (with L1>L2) . To prove this,
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(A2.17)

(A2.18)



we need to consider the propagation of (LI )
iH n,m

(L 2 )
-H

n,m
in two regions: for rml<L 2 , and for L2 +1<_jmr<LI.

First considering

(L1)IIH 00,m
(L 2 )

-H 0
0,m

(A2.2) and (A2.3) we have that

= 0 , 0<m<L 22

Next, using (A2.6) we have that

(L 1 )
= [H 1 (zz ) -n,m-1 2

-p (n,m) z -n2 m1 2
(L1 )

[H 1
n,m-1 (l/zi,1/z2 )

(L 2 )
-H (1/n,m-1 z1 1 1/z2 )

{I<n<N-1,-L 2 <m<L 2 ),2- 2

(L 2 )
-H 2

n,m

(L1 )
11 < IIH , 1

{n=N,-L 2<m<M}2- (

n 1+C 0(L 2 )
-Hn

n, m-i1

{ l<n<N-1,-L 2 <m<L 2 }, {n=N,-L 2 <m<M} (A2.22)

By successive substitution, we have that

(LI )

n, (L 2 +1)

m
* H [1+ (+6 I

£=-L,

(L2)
n,- (L 2+1) I

n +OF-01+E 0
-Ik,

{l<n<N-1,-L <_m<L 22- 2
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(L 1 )
[H
n,m

(A2.20)

(Z ,z 2 ) (L 2 )
- Hm

n,m (2,z , 2 )] (L2)H
n,m-1 (z I z 2 )]

Or

(L1 )
n,m

A2.21)

-Iml

(L )H 1
n,m

(L 2)-H n,m

(A2.23)}, {n=N,-L <m< M}
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Finally using the worst-case values for n, m, and L2
in (A2.23), we have that

(L
1) ( L2 ) (L 1 ) (L2)in,m n,m < K1  H-Hn,m n,m -H n,-(L 2+1) n,-(L2+1)

{l<n<N-1,-L 2 <m< L 2} , {n=N,-L <m< M}2.ý 2 (A2.24)

where K1 is a constant independent of n, m, L1 , and L2:

K = TI [ 1 +( 1 +E .)N i+0=-00 i1 ~ g ]< o (A2. 25)

(L1 ) (L 2We now consider the propagation of IIH -H I(
n,m n,m

in the region (L2+l)<Ijm<L1. Considering (A2.3) and

(A2.6), we have that

(L1 )
n, (L2+1) (z1 ,2)

(L 1 ) -(L 2 +1)
Hn,L2(Zlz 2 ) - p(n,L 2 +l)z nz2

(L1
n,L2 (i/z 1 i/z 2 ) ' 0<n<(N-1)

(A2.26)

and

(L1 ) (L1 ) -n - (L2+2)
n,(L 2 +2)(ZlZ 2 ) Hn, (L 2 +l) (z1z2) - '(nL2+2)z1 2

(L1 )
n, (L2 +1) (/z l ' I /z 2 ) S 0O<n<(N-l)

(A2.27)
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Adding the two equations, we have that

(L1 ) (L1 )
Hn,(L +2) (2122) = Hn,L (zl,z 2 ) -

2 L2 (zl,

(L2 +2)

£= (L2 +1)
p (n,k)

-n -H (L1 )
z 2 Hn, (-1)(i/z ,1/z2 )
1 Zl n, (k-i) ' 2

, 0<n<(N-I).

(A2.28)

It can be shown inductively that

(L1 ) (L 1 )
Hn m (Z, 2 ) = Hn,L 2 (Z 1 ,Z 2 ) -

m
= (L2 +

9=(L2+1)
-n -2p(n,Z)z 221 2

(L1 )
SHn, (-)(i/z /z2)n, (Z-i) 1

, (L2 +1)<m<L 1

Similarly, it can be shown that

(L1 ) (L1 )
n+l,m(Z 2  n+l,- (L +1 ) ('2)(L1 ) n~l,-(L1 +l (z, 2

m
E p(n+l, )

£=-L 1

-(n+l) -z (L1 )
1 n 2 n+l,£-l l 2

0<n<(N-1), (L <m<-(L +1)
1 2

Using (A2.8) we have that

O<n< (N-1) (A2.29)

(A2.30)



(L2)(2zlZ 2 ) = H L22 n,L2

O<n< (N-1),

(L2 )
n+l,m (Z z2 )

O<n< (N-I) ,

(L2+1)<m<L 1

(L2 )= H (z
n+1,-(L1+1) 1

-L <m<- (L2 +1)

Using (A2.29) and (A2.31), we have

(L1) (L2)II < n,L 2 n,L 2 I

m
+ K0  E

£=(L2+1)
(1+El)n 1+e 0 j1• 1

(L 1 ) (L 2)
< HLH -Hn,

n,L 2 n,L 2
+K

L1
+ K0  E

= (L2+2

0<n<(N-l),

(1+El)N(1+)

(L2 +1)<m<L 1 (A2.33)

Using (A2.30) and (A2.32), we have

(L1 ) (L2 )II Hn+l 1 ,m-Hn+l1 ,m i
(L 1< IIHn+n+1, (L2)-(L+1) +1-H -(L+)

S( (n+l) 0o)- J.+ K0  (1+E 1 )
=-L1 1

(L2)Hnn,m (z ,z 2 )1 z2)
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and

(A2.31)

,z 2 )

(L )IH 1n,m

(A2.32)

(L2 )
n-H
n,m



(L 1 )
Hn+ 1 ,-(L +1)

- (L 2 +1)

+ K0  (1+
£=-L 1

O<n< (N-l) ,

(L 2-H n+l,-(L1+1) II

)( 1+60 -IkI
1+

-L <m<-(L2+1)1- 2+1

Using (A2.8), we have that

(L1 )II = IIHn (L 2 )
-H

n L.

(n, L )<(k,m) < (n+1,-L 1 -1),

Combining (A2.33),

(L1 )llHk,m (L2 )-Hk,m

(A2.34),

O<n< (N-l)

and (A2.35) we have

(L 1 ) (L 2)
< IIH -Hn,L 2 n,L 2

+ 2K 0  E
£= (L 2 +1)

N(1+e -1k(1+E 1 )N

(n,L 2 ) < (k,m)<(n+l,-L 2 )

(L I )The behavior of IH
n,m

described by (A2.20),

(A2.20) with (A2.36),

(A2.24),

(L2 )
-H
n,m

(A2.36)

II is completely
and (A2.36). Combining

for n=O, we have
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(L 1 )IHkmk,m

(A2.34)

(L2 )
-k,m

k,m

(A2.35)

0<n<N-1,

I fI
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= ( 1+ELP,=(L 2+1) 1
(L1 ) (L2k

IIHk, m -Hk, m j/ <
2K 0 (1+E1 ) N

(0,0) <(k,m) < (l,-L 2 ) (A2.37)

Combining (A2.37) with (A2.24) for n=l, we have

(L1 ) (L 2 )IHk -H 2 <k,m k,m K1 [2K 0 (1+E1 )
1 1+80

C ]= +Ek=L2E+1 + 1)
(0,0) <(k,m)<(l,L 2 ) (A2.38)

Successively using (A2.24) and (A2.36), it can b shown

that

(L 1 ) (L 2 )IIH -H II <n,m n,m
N NE Ks)2K 0 (1+6 l )N

s=l
=L2+ 1

Y,=L 2+1 ý1\l}

(0,0)<(n,m)<(N,M), L1 >L2 >fMI . (A2.39)

The bound goes to zero as L1 and L2 go to infinity, so we

have proved the uniform Cauchy convergence of the filter

sequence, {H(L) (z ,z )}.n,m 1 2

All that remains to be proved is that Hn,m(zlz 2 )

converges uniformly to limit filters as m goes to plus

and minus infinity, and that Hnm(ZlZ2) is minimum-phase.

To prove that Hn,m(Zl,z 2 ) converges uniformly to

Hn,+(zl,'z 2 ) as m goes to plus infinity we proceed as follows:
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lHn,+o-H n,m

< IIH H H(L) I + IIH -H IIn- ,+'o n,+m n,m n,+m

< IIHn,+ H(L)+ + 11H -H(L)II
-- H ,+ - n,+ i I n,m n,m

+ II H(L) -H(L)lI
n,+m n,m 0<n<N-1 (A2.40)

Using (A2.3), (A2.6) and (A2.8) we can show that, for all

L greater than m,

H(L) (z I z2 ) H(L)
n,+Co 2 n,L 1z 2

= H(L)
n,m (z 2

L
Sp (n,Z)

£=m+l

-n -H (L)Sz z 2 Hn,-l1/z /z 2 )

Substituting (A2.41) into (A2.40) we have

I n+o-HnrlI Hn,+~-Hn,mi[

< IIH -H(L) II + IH -H (L) In,+o- n,+m n,m n,m

L /1+Es0 - II+ E (1+E " II H(L) , IIk=m+1 1+1 n,l-1

(A2.41)

I L>m

(A2.42)

Letting L go to infinity, we have
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00 1+6 0IIHn -H n I< K0 (1+E) E •i+ n1m 1 =m+l \1+E 1

(A2.43)

Therefore,

lim IIH -H l = 0, 0<n<N-1
n,+0- n,mmcOo

(A2.44)

In precisely the same way we can prove that

H nm(zz 2 ) converges uniformly to Hn, (1' 2 as m goes

to minus infinity, for l<n<N.

We now prove that the H nm(zl,z2 ) are minimum-

phase. Although Hn,m(Zl,Z 2 ) is the uniform limit of a

sequence of analytic minimum-phase filters we cannot

directly infer from this that Hn,m(zlz 2 ) is minimum-phase

(though we can infer that Hn,m(Zlz 2 ) is analytic). We

first prove that Hn,m(zz 2 ) is non-zero on the unit

circles. In the same way that H(L) (z z2 ) was upper-n,m 12
bounded, it can be shown that:

L N-1 L
LH (L) (zl,2) > ( 1 [1- p(0,')R )( I I 1 [l-lp(k,Z)I])

nm Z=l k=l Z=-L

M
S ( H [1-1p(N, ) I ]) ,

k=-L

(0,0)<(n,m)<(N, M), jz ll= z 2 l=l . (A2.45)
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We claim that as L goes to infinity, the right-hand side

of (A2.45) converges to a positive number. We need to show

that the infinite products are non-zero. We demonstrate

this for the first term. We have

log HI [1-lp(Of) I] = X 1og[1- p(O,4) I]

=l (i-I p( , )j)

O jp(Or,)J
> - 7 . (A2.46)

Z=l (1-Ip(O0,)I)

The denominator of the series is lower-bounded, and the

numerator is exponentially decaying; therefore

log H [1-jp(0,£)I] > -0 . (A2.47)
£=i

Therefore Hn,m(zl,z 2) is non-zero on the unit circles,

and because of continuity it must be non-zero in some
-1neighborhood of the unit circles. Consequently, Hnm(zl,Z 2

exists and is analytic in some neighborhood of the unit

circles.

-1All that remains to be shown is that H nm(z ,z2 )n,m 1 2

is causal. We do this by showing that on the unit circles,
(L) z 2 --[Hnm (z,z )]-1 converges uniformly to H 1 (z ,z )n,m 2 n, 2

We have
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-1 (L)- 1[H (zl z )-H (L)- ( zI zn,m 2 nm 2)Hn

= [H(L)(z z )-H (z z )]nm n,m 2n,m 1 2 (A2.8)
(L) . (A2.48)

Hn,m (Z 2) Hn,m(Z Z2

The denominator of (A2.48) is lower-bounded, and the

numerator converges uniformly to zero, for all zl and z2
on the unit circles, as L goes to infinity. Therefore,

(L)-1 -1Hn, m  (zl,z 2 ) converges uniformly to Hnm(z ,z 2 ) on the

unit circles. Since H(L)-l (zz ) is causal, we thereforen,'m  i 2
-1have that H, (ZlZ2) is causal.n,m 1 2

A2.2 Proof of Uniqueness Part of Theorem 4.3(a)

Given a 2-D reflection coefficient sequence,

{p(k,£); (0,0)<(k,k)<(N,M) }, where

Ip(k, ) I < (1+g0 )-I l C0>0 , (A2.49)

we want to prove that there is at most one 2-D sequence

of 2-D analytic minimum-phase filters, {Hn,m(zliz2) ;

(0,O)<(n,m)<(N,M)}, satisfying equations (4.21)-(4.26).

(The existence of such a filter sequence was proved in

the previous section.) Therefore we assume the existence

of two such filter sequences, {Hn,m (zlz 2 )} and

{H' ,m(Zl,z)}, and we want to show that H n,m(zlz )

= Hnm(z z,2 ) Beginning with n=0, it is trivial to

prove that



HO,m (zlz 2 ) = HO,m(z ,z2 ) , O<m<00

For n=l, we have

[Hl,m(zl'Z2)-Hl,m(Zl'Z2] = [Hl,m-l(zl'Z2)-HI,m-l(ZlZ2)]

-1 -m-p(lm)z z 2 [Hl(m l ( 1/ z , 1/ z 2 ) - H ' m l (1/ z l , / z 2 ) ]

-m<m<0 . (A2.51)

Denoting the least upper bound for Hlm (Z z2 ) -HI ,m (z1 1z2)I,
in some neighborhood of the unit circles, by

we can show (using A2.51)

JIH m-H'mI

that for all £<m:

I mI Hlm ,m I

H [1+ p (1 t) 1 (1+c

- ,
t=£+l

m

t=- 0

ItI
1' l

[1+ (1++( )

The infinite product in

Furthermore we recall that H lm(zlz 2)
1, 1 2

(A2.52) is upper-bounded for all m.

and Hm (Z ,z2)1,m 1 2
converge uniformly to the same limit function as m goes

to minus infinity. Consequently, IHl1 , -HI, lI
zero as Z goes to minus infinity. Letting k go to minus

infinity, (A2.52) becomes
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(A2.50)

-Itl

(A2.52)

goes to

< IIH I, -H I, I

) (1-C )

IHI  -H ' I1,£ HI,£
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(A2.53)H -H'lH I 1< 0Therefore,m

Therefore,

Hlm (z1 z 2 ) = Him(zz 2 ) -Cx<m<CO (A2.54)

Using similar arguments we can inductively prove

that

H n,(z 1,z2) = H'm (z ,z2)Hn,m(Zl'2) =n,m 1 2 , (0,0)<(n,m)<(N,M)

(A2.55)

Proof of Existence Part of Theorem 4.3(b)

We are given a 2-D analytic minimum-phase filter,

HNM(ZlZ 2 ) = [1 - -k -REZ h(N,M;k,9)z z k
(0,0)<(k,Z)<(N,M)

and we want to prove the existence of a 2-D reflection

coefficient sequence, {p(k,Z); (0,0)<(k,9)<(N,M)}, where

Ip(k,.)I < (1+c)I I I, >0 ,

and a 2-D sequence of 2-D analytic minimum-phase filters,

{Hn ,m(z ,z ); (0,0)<(n,m)<(N,M)}, such that equations

(4.21).-(4.26) are satisfied.

Our proof uses Theorem 4.1. Arbitrarily letting

P equal 1, we define a 2-D positive-definite analytic

autocorrelation sequence by the formula:

A2. 3

(A2.56)

(A2.57)
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r(k'k) 1 1 dz dzldz 2
(2Trj) 2  HN,M(Z' z2)HN,M (1/zl'1/z 2)Iz =1 1 Iz21=1

(0,0)<(k, £)<(N,M) . (A2.58)

According to Theorem 4.1(a) we can generate a 2-D sequence

of 2-D analytic minimum-phase filters, {Hn ,m(z ,z2);

(0,0)<(n,m)<(N,M)}, by solving the appropriate sets of

normal equations, using the autocorrelation sequence

(A2.58). (Theorem 4.1(b) guarantees that the original

filter, HN,M(zlz 2 ), can be recovered from the auto-

correlation sequence.) According to Theorem 4.2, the

filters are related by the formula

Hnm(2 ,z 2 ) = H nm (Z ,Z 2 ) - p(n,m)z z2 mH l(1/zl,1/z 2 ) ,Hn,m 2 H( 1zn, 2 1 2 n,m-1 ( 1 2)

(0,0)<(n,m)<(N,M) , (A2.59)

where Ip(n,m)J < 1 . (A2.60)

Consequently, the only remaining non-trivial part of the

proof is to show that the reflection coefficient sequence

p(n,m), decays exponentially fast to zero as m goes to

plus or minus infinity.

As m goes to minus infinity, we can show this

directly, using our Neumann series solution for H nm(z ,z2)

Using (Al.19) and (Al.49) we have:
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p(n,m) = h(n,m;n,m)

= b(n,m; 0)

(1+ 0 )m
Ib(n,m;0) I

l<n<N , (A2.61)

E >00 l<n<N.

(A2.62)

To prove the exponential decay of p(n,m) as m goes

to plus infinity, we use an argument similar to one used

by Grenander and Szego for the 1-D case [21]. We observe

that

P = E{[x(k,k)n,m

< E{[x(k,Z)

= E{([x(k,k)

EZ h(n,m;s,t)x(k-s, -t)] 2
(0,0) < (s,t) <(n,m)

k-t)]2(E h (n,+m; s,t)x(k-s,
(0,0)<(s,t)<(n,m)

(, h(n,+o;s,t)x(k-s,k-t)]
(0,0) < (s,t) < (n,+m)

2+ [ c h(n,+m;n,t)x(k-n,k--t)]) }
t=m+l

= P + E{[n,+"
2Z h(n,+c;n,t)x(k-n,Z-t)] }

t=m+1

and

(A2.63)

A
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Therefore

[Pnm -P +] < E{[ E h(n,+m;n,t)x(k-n,k-t)]2}
t=m+l

(A2.64)

But since Hn,+c(z 1 z 2 ) is analytic, it follows that

h(n,+co;n,t) decays exponentially to zero as t goes to

plus infinity. Therefore we have

[Pn -P n,+ < c(l+E) - m (A2.65)

where c and 1 are positive constants. Recalling that

P = P [1-p 2 (n,m+l) ]n,m+l n,m (A2.66)

we have that

1 1
P Pn,m+l n,m

1
Pn,m

1
[1-p 2 (n,m+l)]

2+ p (n,m+l)
P
n,m+l

P
n,m

+ p2 (n,m+l)
1-p (n,m+l)

(A2.67)

Using (A2.67) it is easy to show that

1 1 +
P Pn,S n,m

R 2p (n,t)
Pt=m+l n,t

Since (A2.65) implies that Pn,m converges to Pn,+, wen,m n,~o

can let k go to plus infinity in (A2.68):

R>m. (A2.68)



1 1
p -=- +n
n,+m n,m

0o 2
p (n,t)

t=m+l n,t

Substituting (A2.69) into (A2.65) we have

[P -P ] = Pn,m n,+o n,m
1

Pn
n,m

CO 2
p (n,t)

Pt=m+1 n,t

00 2
P (n,t)

Pt=m+l nt

t=m+1

1
pn,m

2p (n,t)
P
n,t

1
n, +c

-m< c(1+E1 )
1

(A2.70)

2 -mp (n,t) c(1+ 1 ) -

n,t -p p
n,m n,+O

(A2.71)

Using the fact that Pn,t is non-increasing for increasing

values of t, we have

(A2.72)
t=m

2 c -mE p (n,t) < c (1+E)
+1 nn+0
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(A2.69)

t=m+
t=m+1
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Therefore

c -m/2
jp(n,m+l) < p (1+ ) . (A2.73)

n,+m

In the process of proving Theorem 4.1(a) we proved

that Hn,m(zl,z 2 ) converges uniformly to Hn,_,(z ,z 2)

as m goes to minus infinity. It is trivial to prove that

Hn,m(zlz 2 ) converges uniformly to Hn,+m(zlz 2 ) as m goes

to plus infinity. We have

Hn,m(z ,z22 ) = Hn,0(Zl,Z2)

-n -H
- p(n,')z 1 z2 Hn,i-l(/zll/z 2 ) , m>0

k=1

(A2.74)

Using the fact that the Hn,£(zlZ 2 ) are uniformly bounded,

and that the reflection coefficients are exponentially

decaying, we can apply the Weierstrass M-test to show that

Hn,m (zlz 2 ) converges uniformly to Hn,+m(zl,Z 2 ) in some

neighborhood of the unit circles

A2.4 Proof of Uniqueness Part of Theorem 4.3(b)

We are given a 2-D analytic minimum-phase filter,

HN,M(zlZ 2 ). In section A2.3, we proved the existence of

a 2-D reflection coefficient sequence, {p(k,k); (0,0)

<(k,9)<(N,M)}, where
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Ip(kt) I < (1+ )- i , >0 ,>O (A2.75)

and a 2-D sequence of 2-D analytic minimum-phase filters,

{Hn,m(zl,z 2 ); (0,0)<(n,m)<(N,M)}, satisfying equations

(4.21)-(4.26). In this section we prove that the reflection

coefficient sequence and the filter sequence are unique.

Therefore we assume the existence of some other

reflection coefficient sequence, {p'(k,k); (0,O)<(k,k)

<(N,M)}, where

lp'(k,P) <  (1+c') -  , I '>0, (A2.76)

and some other 2-D sequence of 2-D analytic minimum-phase

filters, {H' (,z 2 ); (0,0)<(n,m)<(N,M)}, such that equa-

tions (4.21)-(4.26) are satisfied. (We assume that

{Hn,m(z l ,z 2 )} and {p(n,m)} are obtained as in section

A2.3.) For n=N we have

-N -HNm(z 1 , z2 ) = HNm l (z l z 2 ) - p(N,m)zlNz 2 mHNml(1/zl,1/z 2 )

m<M , (A2.77)

and

H' (z1 z 2 ) = H'm (zz 2 ) - p' (N,m)zlNz 2zmHAm (/z 1,l/z 2 )

m<M , (A2.78)

where HNM(zl,z 2 ) = HNM(zl,z 2 ) (A2.79)

As in section Al.4 we can argue that the recursions (A2.77)
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and (A2.78) can be "run backwards," thereby proving that

HN,m (Zz 2 ) = H' m( ZlZ) , m<M (A.280)

and p(N,m) = p' (N,m) , m<M . (A2.81)

Next, we consider the filter sequence H _l m (zl 'z2 )'

-W<m<W. We intend to prove that this filter sequence can

be generated, via the normal equations, from the same auto-

correlation sequence used to generate the sequence

HN-l,m(ZlZ 2 ). Using Theorem 4.1(a) we will then be able

to argue that H' lm(ZlZ 2 ) = H Nl,m(ZlZ 2 ) and p'(N,m)

= p(N,m).

According to (A2.80) we have

H' (z ,z ) = H (z z ) (A2.82)HN-1,+z 1 2 = HN-1,+ 1 2) (A2.82)

We define the sequence, P ,lm' by the recursion

PN-=,m P' [-lm-i1-p'2 (N-l,m)] , -0<m<O , (A2.83)

where P'-11+• = PN-,+w (A2.84)

According to Theorem 4.1, associated with each {HNI(,m(Z ,z2 )

P1_l,m} is a unique positive-definite analytic autocorrela-

tion sequence which we denote {r'(N-l,m;k,9); (0,0)

<(k,)_<(N-1,m)}. The autocorrelation sequence is given by

the formula



r' (N-l,m;k,k) 1
(2Trj)

1z1 =1 jz21=1

k-1 -1l_,zI z2 PN dZ dz2

(0,0)<(k,Q)<(N-1,m)

We claim that

r' (N-l,m;k,k) = r' (N-l,m+l;k,Z) I (0,0)<(k,k)<(N-l,m)

(A2.86)

To see this we write the normal equations

[r' (N-l,m+l;s,t) EE(k,
(k j, Z

= -l,m+l 5 t

for H' m+l ( z z 2 ) :

h' (N-l,m+l;k,94r'(N-l,m+l;s-k,t-Z)]

(0,0) <(s,t)<(N-l,m+l)

(A2.87)

Recalling that

HN-l,m+l (zlz 2) = HN-,m(z ,z2) p(N-l,m+l)z(N-1)z 2  1)1 22
SH1,m(l/zl, l/z2 )

we have that
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(A2.85)

(A2.88)

HN-_, m (z z 2 ) HN_-1, m (1/z ,1 /z 2
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[r' (N-l,m+l;s,t) - ZE
(k,I)

- p(N-l,m+l) [r' (N-l,m+l;s-N+1,t-m-1)

- ~E h' (N-1,m;k,Q)r' (N-1,m+1;s-N+l+k,t-m-l+4)]
(k,I)

=N -l,m+1 S t (0,0)<(s,t)<(N-l,m+l)

Making the substitution

s' = N-1-s , t' = m+l-t

we have

[r' (N-1,m+1;s'-NIL~t'-m-1) ZZ h' (N- , m; k,94)
(k,9.)

r' (N-1,m+l;s'-N+l+k,t'-m-l+£)]

- p(N-l,m+l)[r'(N-l,m+l;s',t')

(k,Z)
h' (N-1,m k, Z)r' (N-1,n+1;s'-k,t'-SL)]

= P-1,m+1 N-1-s' m+l-t'

(A2.91)

Comparing (A2.89)

[r' (N-1,m+l; s, t)

and (A2.91) it can be shown that

- E• h' (N-l,m;k,) r' (N-l,m+l;s-k,t-k)]
(k,k)

, (0,0)<(s,t)<(N-1,m)= Pl,m' st

(A2.89)

(A2.90)

h'(N-l,m;k, )r'(N-l,m+l;s-k,t-R)]

S (0,0)<(s' t' ) < (N-l,m-l)

S (A2.92)
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Given (A2.92), Theorem 4.1(b) implies that (A2.86) is

satisfied.

Using (A2.86) we can argue inductively that

r'(N-l,m;k,Z) = r'(N-l,v;k,9)

(0,0) <(k, £) <(N-l,m) , v>m . (A2.93)

Substituting (A2.85) into the right-hand side of (A2.93)

we have that

r'(N-l,m;k,Z)

k-l -l_
z1 P' dzdz
1  2 N-l,v 1 2

HN-1,v (Zl z2) HN-1,v(i/zl' /z2)
1

(2Trj) 2

IzlI= Iz21=1

(0,0) <(k, Z) <(N-l,m) P, v>m . (A2.94)

Letting v go to plus infinity (which we are permitted to

do since H;-l , v (z ,z2) converges uniformly to HN-l,+m(zl,z 2)
and PN-1,v converges to PN-1,+ ) we have

r' (N-l,m;k, )

1
(2Trj) 2

k-1 R-1z z 1 P dz dzl1 z2 N-l,+c Z 1 2
HN-1,+m (zl , z 2 ) HN-1 , + (1/z l , 1/ 2

= r(k, k) , (0,0)<(k, k)<(N-1,m)

Therefore H-_l,m(zl,z2) and PN-I,m can be obtained from

(A2.95)

IzIil Iz21=1
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the same autocorrelation sequence used to generate

HN-l,m(Z1,Z 2 ) and PN-1,m', so HN-I,m(zl'z 2) = HIN-1,m(zliZ 2)'

P 1,m = PN-,m, and p' (N-l,m) = p(N,m).

At this point it is clear that the remainder of the

proof can be obtained inductively using the same type of

arguments.
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CHAPTER 5

THE DESIGN OF 2-D MINIMUM-PHASE WHITENING

FILTERS IN THE REFLECTION COEFFICIENT DOMAIN

In this chapter we use the 2-D reflection coefficient

representation as a tool for designing 2-D minimum-phase

whitening filters. By designing 2-D filters in the reflec-

tion coefficient domain, we automatically satisfy the

minimum-phase condition merely by restricting the reflection

coefficient magnitudes to be less than one.

We consider the two general classes of 2-D linear

prediction problems: spectral factorization and auto-

regressive model fitting. We recall that the spectral

factorization problem is a deterministic problem; we are

given the exact autocorrelation function of the random

process (or an autocorrelation function assumed to be exact),

and we wish to find a minimum-phase approximation to the

minimum-phase whitening filter. In contrast, the auto-

regressive model fitting problem is a stochastic estima-

tion problem; we have a finite set of samples from the

random process itself, and we wish to estimate the minimum-

phase whitening filter by modeling it as an FIR, minimum-

phase filter. Because of its stochastic nature, auto-

regressive model fitting is inherently more difficult than

spectral factorization.
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Our approach to both problems is to represent the

approximate whitening filter in terms of a finite number of

reflection coefficients, and to optimize over the reflec-

tion coefficients subject to the constraint that their

magnitudes are less than one. Clearly the utility of the

2-D reflection coefficient representation as a practical

tool depends on our finding effective and computationally

tractable algorithms for choosing the reflection

coefficients.

The problem of optimally choosing the reflection

coefficients has not been exhaustively studied in this

thesis research. Instaed we have developed two convenient,

but generally suboptimal methods of spectral factorization

and autoregressive model fitting. In both algorithms, the

reflection coefficients are chosen sequentially (in a

finite raster scan fashion), each new reflection coefficient

being chosen according to a least-squares criterion. For

the 1-D case, the spectral factorization algorithm reduces

to the 1-D Levinson algorithm, and the autoregressive model

fitting algorithm reduces to the Burg algorithm. A

computer program was written to implement the spectral

factorization algorithm, and numerical results are presented

for two examples.
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5.1 Equations Relating the Filter to the
Reflection Coefficients

As indicated earlier, our approach to designing

2-D minimum-phase filters is based on representing the

filter in terms of a finite-order 2-D reflection coefficient

sequence. A convenient geometry for the reflection coeffi-

cient sequence is the rectangular geometry illustrated

in Fig. 5.1(a). (The rectangular geometry is used merely

for the sake of convenience. There is no reason why some

other geometry could not be used.) We denote the reflec-

tion coefficient sequence by {O(n,m); (n=0,l<m<M),(l<n<N,

-M<m<N)}, where N and M are positive integers. As we saw

in the previous chapter, we can obtain an FIR filter from

the reflection coefficients, denoted HNM(zl,z 2) , by

recursively computing a 2-D finite-order sequence of FIR

filters, {Hn,m(zl,z2); (n=0,O<m<M), (1<n<N,-M<m<M)}. The

order in which the in,m(zl,z 2 ) are computed follows a finite

raster scan.

The recursion proceeds as follows (the equations

are nearly identical to equations (A2.2)-(A2.8)): We begin

with

HH0 (zz 2 ) = 1 ; (5.1)

we then recursively compute H0,m(zlz2) as follows:

H0 ,m(Zl'Z 2) = H0Om-l(Zlz 2 ) - P(0,m)z 2LmH 0 ,m-l(1/z,1i/z 2)

1<m<M . (5.2)
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Fig. 5.1 The 2-D reflection coefficient sequence (a) generates the filter (b).
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z
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The next column of the recursion begins with the boundary

condition,

H1,-(M+l) (z 1 ,z 2) = H0 ,M(Z'z 2 ) ; (5.3)

the remainder of the column is recursively computed by the

formula:

Hl,m(zlz 2) = Hl,m-1(zl,z 2 ) - (l,m) zlz 2 ,m (1/zl/z

-M<m<M . (5.4)

In general, within each column of the recursion we have

fl -n -m(Hnm(zz) = H (Z z) - p (n m ) z z  H  (I/z /z) ,
nm 2 n,m-11 2 1 2 nm- 1 2

{n=0,1<m<M}, {l<n<N,-M<m<M} (5.5)

The transition between adjacent columns of the recursion

is

Hn,-(M+l) (Zl 2 n-,M2) , l<n<N . (5.6)

One possibly serious disadvantage of the reflection

coefficient representation is that the filter HN,M(zl,z 2)

has a considerably greater number of non-zero coefficients

than its reflection coefficient sequence has. It can be

shown that Hn,m(zl,z 2) is of the form
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(2nM+m) ^ _H n,m ( z ,z 2 ) = 1 - h(n,m;0,Z)z£=i

n [2(n-k)M+m] -k -k
- h(n,m;k,Z)zl z 2k=l Z=-2kM

{n=0,0O<m<M}, {l<n<N,-M<m<M} . (5.7)

The support for HNM(z l z 2 ) is illustrated in Fig. 5.1(b).

Equation (5.7) can be verified by direct substitu-

tion. It is more easily understood by studying Figures 5.2,

5.3, and 5.4. Fig. 5.2 illustrates the geometry of the

recursion for (n,m) = (1,-M), Fig. 5.3 illustrates the

geometry for fl<n<N,m=M}, and Fig. 5.4 illustrates the

geometry for {l<n<N,1-M<m<M}.

The fact that the filter, HNM(zl,Z 2) , has more coeffi-

cients than the reflection coefficient sequence is an un-

avoidable property of the 2-D reflection coefficient

representation. This effect occurs even if some other

geometry is used for the reflection coefficient sequence.

In some cases, the "tails" of the filter may be small enough

to truncate; Theorem 3.1 implies that if the tails are small

enough, the truncated filter will still be minimum-phase.

The reflection coefficient sequence contains ap-

proximately 2NM parameters, HN,M(zl,Z 2 ) consists of ap-

proximately 2N 2M coefficients, and approximately N3 M2

additions and multiplications are needed to go from the

reflection coefficients to the filter.
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5.2 A 2-D Spectral Factorization Algorithm

Given a 2-D power density spectrum, the problem

is to choose the reflection coefficient sequence,

{p(n,m); (n=0,1<n<M), (l<n<N,-M<m<M)}, for some (N,M), so

that the filter HNM(Zlz 2) is a good approximation to a

minimum-phase whitening filter, subject to the constraint

that the reflection coefficient magnitudes are less than

one. An obvious way to choose the reflection coefficients

is to choose them sequentially in a finite raster scan

fashion, each new reflection coefficient being chosen to

minimize the mean-square prediction error of the new

filter, Hn,m(ZlZ 2 ). The motivation for this particular

approach is based on two observations: 1) in the 1-D case

(N=O) the algorithm is simply the 1-D Levinson algorithm;

and 2) if the true reflection coefficient sequence, p(n,m),

is equal to zero for {Jml>M,0<n<N-l} and for {n=N,m<-M},

then the procedure will yield the optimal values for the

reflection coefficients (optimal in the sense that

iN,M(zl,z2) will equal HNM(zlz 2 ), or equivalently that

HN,M(Zlz 2 ) will satisfy the normal equations.) In other

words, this algorithm is simply the 2-D Levinson algorithm,

used under the assumption that the true reflection coeffi-

cient sequence, p(n,m), vanishes for {Iml>M,0<n<N-l}

and {n=N,m<-M}. Of course this situation will never occur

in practice. Nevertheless, if the reflection coefficients

that have been "skipped over" are approximately equal to
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zero, we intuitively expect that the procedure will yield

nearly optimal values for the reflection coefficients.

Considering the algorithm itself, at the beginning

of a particular stage of the procedure we have H n,m- (zz 2)
and Pm-1, (n=0,0<m<M) or (l<n<N,-M<m<M), where

A ^ 2P n,m- = E{[x(k,) - EEh(n,m-l;s,t)x(k-s,-t)] } . (5.8)

We then choose the new reflection coefficient, p(n,m),

to minimize the mean-square prediction error associated with

the new filter, Hn,m(z ,z2). We have

nm = E{[x(k,Z) - CZ h(n,m;s,t)x(k-s,k-t) ]2
(s,t)

= E{([x(k,k) - Rfi(n,m-l;s,t)x(k-s,,-t)]
(s,t)

- p(n,m)[x(k-n,Z-m) - Z fi(n,m-l;s,t)
(s,t)

* x(k-n+s,9-m+t)])2}

^2= P [l+p (n,m)] - 2p(n,m)E{[x(k,9)n, m-l

- ZE h(n,m-l;s,t)x(k-s,t-t)][x(k-n,9-m)
(s,t)

- ZZ h(n,m-l;s,t)x(k-n+s,k-m+t)]} (5.9)
(s,t)

Taking the derivative of (5.9) with respect to p(n,m),

and setting it equal to zero, we have that
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p(n,m) = 1 E{[x(k,k) - 7Z h(n,m-l;s,t)x(k-s, 9-t)]
P nm(s,t)

* [x(k-n,,-m) - 7Z h(n,m-l;s,t)x(k-n+s,Z-m+t)]}
(s,t)

1 1 n-l m-l 2
m2 z: 1 Z 2 Hn,(m- 1 (Zl' z 2)P (2 7j ) jz z=1 z21-=1

* S(zlz 2 )dzldz 2

1 ^1 [r(n,m) - 2 ZE h(n,m-1;s,t)r(n-s,m-t)
nm (s,t)n,m-1

+ EE EE h(n,m-l;slt 1 )h(n,m-l;s 2,t 2 )
(sl't l1 ) (s 2 't 2)

* r(n-sl-s 2 ,m-tl-t 2 )] . (5.10)

Using Schwartz's inequality, we have that the magnitude of

p(n,m) is less than one. Substituting (5.10) into (5.9),

we have that

^2P = P [1 -p (n,m] (5.11)n,m n,m- 1

We note that since the filter Hn,m-l(ZlZ 2 ) does

not generally satisfy the normal equations, the expression

(5.10) does not simplify any further. But computing p(n,m)

directly according to this formula requires an excessive

number of computations. A much faster way to compute

the reflection coefficient is to compute recursively the
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autoconvolution, H n,ml (zz2 ), updating it at each stage

of the algorithm, and then to compute p(n,m) by computing

the inner product between znZTZ2H,m-1(zl'Z2 ) and S(zlZ2 )

In order to recursively compute the filter autoconvolution,

we must also recursively compute the filter autocorrelation.

We have

Hnm(z1 'z 2 ) = Hn (m-(2,z2 ) - (nm)zlnz 2m n , m -Hl(1/zl,1/z 2 )

(5.12)

It is easy to show that

^2 ^2 ^2 -2n -2mH n,m (z,z ) = Hm(Zl 2 ) + p (n,m)z 2

2 -n -m
* Hn (1/zlil/z 2 ) - 2p(n,m)z1 z2

H Hn,m- 1 (z,'Z 2 )Hn,m-l(1/zl'1/z 2 ) , (5.13)

and

H n,(z ,z )Hn ,m ( 1 ,/z 2 ) = [1+ P(n,m) ]Hnm-l(z z2 )

-nz -mi2  (/zi/z2* H (1/z I,/z ) - p(nm)z z H m-i 1n,m-1 1' 1 2n,1 1 2

(5.14)

Collecting the various formulas, the entire spectral

factorization algorithm can be summarized as follows (the

algorithm is expressed here in Z-transform notation, but

nm 2H- p(n,m)zlz2Hn m-l(zl,z 2 )
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it is implemented algebraically):

1) Initially,

H0, 0 (1,z 2 ) = 1 ,

P ,0 = r(0,0)

^2H0, 0 (zlz 2 ) = 1

H,0 (zl,z 2 )H,00 (/zl'1 /z 2 )

(5.15)

(5.16)

(5.17)

(5.18)= 1

2) At the beginning of the (n,m)th

(n=0,1<m<M) or (l<n<N,-M<m<M) , we have

a) Hn,m- 1 (Z ' 2 )

b) Pn, m- 1

^2c) H 2 (zz2)
n,m-1 (Z 1 Z 2)

-zI z I-, i / '

stage of the algorithm,

a) 1 _ ,Z )i l/ , z /Z )
n, 2LL-- L L I, LmL- 1 L

We first compute the new reflection coefficient:

1 *2p(n,m) = [r(n,m) - ZZ h (n,m-1;k,k)r(n-k,m-) ]
P n,(k, )nrm-i

(5.19)

(here we have used the notation:



162

^2 *2 -k -kHnm-1(zz2) = [1 - E h (n,m-l;k,.)zl z2nm-i 2 (k,k) 1
(5.20));

We then have the following update equations:

n,ml, 2 ) = Hn,m-l(l,2) - (n,m) z 2 n,ml(/,1/z 2 )
(5.21)

Pn,m
)2

n, [1-p (n,m)]n,m-1 (5.22)

^2 (z ^2 -2n -2mH nm nm-l(Zl'Z2) + p (n,m) z1  z 2

^2 -n -m
SHn,m-l(1/z l , / z 2 - 2p(n,m)zl z 2n'M-1 P 1 m

n,m-1 (z Z2 )H n,m-(1/z 1 1 /z 2 ) (5.23)

^2H (zl,Z2)H (/zl ,l/z2) [+p (n,m)]H (z z2)n,m 1z2 n,m 1 2 m) Hn,m-i 2

* H (1/zl1/z2 ) - p(n,m)zl nzmH2 m 1 (1/z1 /z 2)n,m-i 1 2) ' 2 n,m-i /Z1.'/2

^ n mH-2-p(n,m)zlz 2 H nm-l(zlz 2 ) (5.24)

3) For the transition between adjacent columns of the

recursion, we have (trivially), for l<n<N:

Hn,-M-1(zl z2 ) = Hn-1,M(zlz 2 )

n,-M-1 n-1,M '

-2 2
n,-M-11(zl,2) Hn-1,M(zlz2)

(5.25)

(5.26)

(5.27)
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Hn,-M-1 (Zl z2) Hn,-M-1 (1/zl1/z2)

=Hn-1,M(ZlIZ 2 )Hn-1,M(1/zl,1/z 2 ) . (5.28)

The entire algorithm requires approximately 20N3 M2

additions and multiplications. All of the computations can

be performed "in place" (i.e., separate storage is not re-

quired for the "old" and the "new" parameters.)

We now illustrate this algorithm with a simple

example.

Example 5.1: We have a power density spectrum,

-1 -1S(zlz 2 ) = (5+z1 +z1 +Z2 +z 2 )

or 5 , (k,k) = (0,0) ;

r(k,k) = 1 , (k,S) =

, otherwise

We implement our spectral factorization algorithm for

N=M=1. The algorithm proceeds as follows:

1) Using (5.15)-(5.18) we have

H0, 0 (lz 2 ) = 1

= 50,0

^2H0 , 0 (zl,z 2 ) = 1 ,
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H0 O, (z l' z 2)H 0 O ( 1/z l ' /z 2 ) = 1

2) Using (5.19)-(5.24), for (n,m)=(0,1), we have

1
5

HH0 , 1 (z1 'Z 2 ) =

S _ 24
0 ,1  5

(^2
H (z z ) =,i i' 2

1 -1
*ý: Z2

2 -1 1 -2(1 5- 2  )
5 2 25 2

26H0 1 (z z 2 )HOl(1/z 1 /z2 ) = (25

3) Combining (5.25)-(5.28) for n=l, with

1 -1 1
5 z2 - - z2)

(5.19)-(5.24)

for (n,m)=(l,-l), we have

p(1,-1) = 0

H1  (z1 ,z 2 )1 -- 1 1 2
1 -1

(1- 1z )5 2

24
'

1, -1 5

^2H1,-l(z l , z 2 ) = 2 - 1  1 -2
5 z2 25 z2

^ ^ 26H1 ,-l(zlZ 2 )H1 ,- 1 (1/zl'1 /z 2 ) = (25 1 -1 1
5 Z2 - 5 Z2)

4) Using (5.19)-(5.23) for (n,m)=(1,0), (we do not update

the filter autocorrelation in this case, because it is not

needed for the remaining computations) we have:



p(1,0) =24' ( 24

H1, 0 (Zl'Z 2 )

S _ 551
1,0 120

H1,0 (Zl 2 )

1 -1 1 -1 5 -1= (1- z 2 + 2-4 z1 z 2 - Z )

2 -1 1 -2= [(1 - z 2  + z 2 )5 2 25 2
5 26 1 -1 1 -1
12 25 5 -2 5 2) 1

5 2 1 2 -2+ 2-4 (1 z 2 z2 ) ]Z
24 5 2 2521

5) Using (5.19)-(5.22) for (n,m)=(1,1), we have:

-50
p(1,1) = 551 1

^ 7237 -1 25 -2H ,(ZZ 2 ) = [1 - ( )z + (6  )z2

2995 -1 50 -1 -1
- (1 3 2 2 4 )z + (- • )zl ]

1 -1+ (1-)z1 2

'

- 301101
1,1 66120

The next two numerical examples were implemented on

a computer, using double-precision arithmetic.

Example 5.2: We begin with the spectrum

1 -1 1 -1 1 1S( 1 ,z 2 ) = (1 + z - z )(1 + z + z2 ) .
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It can be seen that the spectrum is already factored; the

minimum-phase whitening filter is

H(zl,z 2 ) = (1 + z- + z

(k+Z)! (k+£) -k -£!E E (-1/4) z z2
k=0 £=0

and P = 1. The spectral factorization algorithm was

implemented for N=M=3. As can be seen from Fig. 5.1, the

algorithm produces a parallelogram-shaped minimum-phase

filter, H3, 3 (zlz 2 ), 22 points in height and 4 points in

width. A portion of the unit sample response of the filter

is shown in Fig. 5.5. (The region enclosed by the dotted

line indicates the support for the reflection coefficient

sequence.) We note that for I£I<3, the filter coefficients
1 -1

closely match the unit sample response of (1 + 1 z1

1 -1 -1+ z2 ) . The filter coefficients for Ik >3(which we

call the "tails" of the filter) decay very rapidly to zero.

The mean-square prediction error associated with H3,3(zlz2)

is

P3,3 = 1.00007

(compared with P=1 for the exact whitening filter).

Therefore, we have that

^ 1 -1 1 -1 -1H3 ,3 ( ,z 2 )  (1 + z z ) .4
3,31 24 1 4 2
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If another spectrum is formed, H3 3(zl,z 2 H3,3(1/zl,1/z2)'

and if this new spectrum is approximately factored, we

should obtain a filter, denoted H3,3(zl,z 2), approximately
1 -1 1 -1equal to (1 + 1 zI + 1 z2 ). This spectrum was factored

by means of our algorithm for N=M=3, to produce a filter

H3,3(Zlz2). The filter is illustrated in Fig. 5.6. It
1 -1can be seen that the filter closely matches (1 + 1 z 1

1 -1+ ~z ).2

In the previous example, the spectrum to be factored

was very smooth, and under these nearly optimum conditions,

our spectral factorization algorithm performed satisfactorily.

The following example demonstrates some serious difficulties

associated with this sequential method of choosing the

reflection coefficients.

Example 5.3: We wish to design a recursive 2-D fan filter.

The desired magnitude-squared frequency response is

j 1 J 2 1  ' Ij2<<l
S(e ,e ) =

.02 , otherwise

The desired frequency response is illustrated in Fig. 5.7.

(Fan filters are used in array processing to discriminate

against signals arriving from certain directions.) The

autocorrelation function is
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.51 , (k,9)=(O,O)

1.96r(k,.) = 2 2 (k+£) odd

0 , otherwise

Given the slow rate of decay of the autocorrelation function,

we anticipate that this is a difficult spectrum to factor.

In fact, since the spectrum is discontinuous, no sequence

of approximate whitening filters can converge uniformly

to a limit whitening filter; a Gibbs-type phenomenon occurs

in the neighborhood of the discontinuities of the spectrum.

Our spectral factorization algorithm was implemented

for N=M=4. A projection plot of the frequency response

of the recursive filter is shown in Fig. 5.8. A contour

plot of the frequency response is shown in Fig. 5.9. It

can be seen that there are very large ripples in the transi-

tion region and in the passband. For most purposes, this

could be an unacceptable design.

Another problem with this design is that the tails

of the filter decay very slowly; only for IQI>15 are the

magnitudes of the tails less than 10- 3 .

The rather poor performance of the spectral

factorization algorithm in the above example is to be ex-

pected, since the conditions under which the algorithm

would yield optimal values for the reflection coefficients

are not met.
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One possible approach to improving the design would

be to window the autocorrelation function (equivalently,

to smooth the spectrum) prior to applying the spectral

factorization algorithm. Given a relatively smooth spectrum

instead of the original discontinuous spectrum, the

algorithm would probably yield more optimal values for the

reflection coefficients.

It is apparent that, in general, the full potential

of the 2-D reflection coefficient representation can only

be realized by the development of an algorithm that would

simultaneously choose the reflection coefficients to

maximize some index of performance.

5.3 A 2-D Autoregressive Model Fitting Algorithm

We are given a finite set of samples from a 2-D

random process, and the object is to estimate the minimum-

phase whitening filter by modeling it as an FIR minimum-

phase filter, HNM(zl,z 2 ). Our approach to this problem

is to represent fN (zl'z ) in terms of a finite number

of reflection coefficients, {p(n,m); (n=0,l<m<M),

(l<n<N,-M<m<M)}, and to choose the reflection coefficients

to obtain a good fit between the whitening filter model and

the data.

One approach to choosing the reflection coefficients

is analogous to the 1-D autocorrelation method: the

available data is used to estimate the 2-D autocorrelation
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function to a finite lag, and then the estimated auto-

correlation function is used in the spectral factorization

algorithm of the previous section to compute the whitening

filter estimate, HNM(zlz 2 )

Another approach to choosing the reflection co-

efficients is analogous to the Burg algorithm. Instead of

first forming an autocorrelation estimate, the filter is

obtained directly from the data. The reflection coefficients

are chosen sequentially, each new reflection coefficient,

p(n,m), being chosen to achieve the best fit between the

data and the new filter, Hn,m (zl,z 2 )

At the beginning of the (n,m) t h stage of the

algorithm, for {n=0,1<m<M}, or {n=N,-M<m<M}, we have

Hn,m-_l(Zl, 2 ). The new reflection coefficient, p(n,m) is

chosen to minimize the sum of the squares of the new forward

and backward prediction errors:

ZZ {[ (+ ) (n,m;k,) ]2 + [E (n,m;k-n,,-m)]2} , (5.29)
(k, 9)

where ( + ) (n,m;k,Z) is a forward prediction error,

+)(n,m;k,k) = [x(k,k) - EE h(n,m;s,t)x(k-s,Z-t)]
(s,t)

(5.30)

and (- ) (n,m;k,Z) is a backward prediction error,
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S( - ) (n,m;k,Z) = [x(k,£) - ZE h(n,m;s,t)x(k+s,Z+t)]
(s,t)

(5.31)

The indices of the summation in (5.29) depend on both the

extent of the data, and on the extent of the filter. In

general, (k,£) should cover as many points as possible

without running the filter off the data anywhere, since

that would tend to prejudice the estimate for the reflection

coefficient. This can be shown to imply that the support

for the data should be at least as great as the support

for the final filter, HNM(zlz 2 ) However, in some cases,

the tails of the filter may be so insignificant that they

can be run off the edge of the data without adversely affect-

ing the reflection coefficient estimate.

Using (5.21) it can be shown that

(+) (n,m;k,) = [(+) (n,m-l;k,k) - p(n,m)E (n,m-l;k-n,Z-m)],

(5.32)

and

(+) m-A ) (+)
(- (n,m;k,) = [ ( (n,m-l;k,,) - p(n,m)E (n,m-l;k+n, +m)].

(5.33)

Substituting (5.32) and (5.33) into (5.29) we want to choose

p(n,m) to minimize the following expression:



177

ZZ {[l+^2(n,m)] ([E+) (n,m-1;k,Z) ]2+[•E (n,m-1;k-n,9-m) ]2
(k,k)

- 4p(n,m)[ ( + ) (n,m-l;k,9.)e ( (n,m-l;k-n,P-m)]} .

(5.34)

Taking the derivative of (5.34) with respect to p(n,m),

setting the derivative equal to zero, and solving for

p(n,m), we have

2 Z {[E (n,m-l;k,)][(-) (n,m-l;k-n,£-m)]}
2 7(k, 9)p(n,m) = (+) 2 ((nm) [E + ) (n,m-l;k,) )]2 + [(-) (n,m-l;k-n,£-m)]2}
(k,9)

(5.35)

Using Schwartz's inequality, it can be shown that

the magnitude of the reflection coefficient is less than

one. The forward and backward prediction errors do not

have to be directly computed; instead, they can be re-

cursively updated at each stage of the algorithm. The

complete algorithm is as follows:

1) H0, 0 (zl'z 2 ) = 1 , (5.36)

2P0 = const 7Z x (k,R) , (5.37)
(k,,)

E (+)0,0;k ) = x(k, ) , (5.38)

(-)(0,0;k,k) = x(k,£) ; (5.39)



2) At the beginning of the (n,m)th stage

for {n=0,1<m<M} or {l<n<N,-M<m<M}, we ha
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of the algorithm,

ve

Hn,m-1 (z1 z2)

n, m- I

S( + ) (n,m-l;k,+)

S(- ) (n,m-l;k,k)

We first compute the reflection coefficient estimate:

2 ,Z
(k,k)

S[ (+) nm-)][ ( - ) (nm- ;k-n,-m)]}{ [E (n, m-l; k, )[

EZ { [s (n,m-l;k, ) ] 2

(k,k)
[ ( - ) (n,m-l;k-n,k-m]2

(5.44)

we then perform the following

SHn ,m-1 (Z1 'Z 2 )

updates:

-n -2m- p(nm)z 1 z Hn,m-1(i/zlI /z 2)

n,m-1

(5.45)

(5.46)^2[1-p (n,m)]

(n,m;k,P) = e (+) (n,m-l;k, ) - p(n,m)E (n,m-l;k-n,9-m)

(5.47)

E (n,m;k, ) = (- ) (n,m-l;k,k) - p(n,m)E (n,m-1;k+n, Z+m)

(5.48)

(5.40)

(5.41)

(5.42)

(5.43)

p (n,m)

Hn,m(ZlZ2 )

P
n,m

S(+)
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3) For the transition between adjacent columns of the

recursion, for l<n<N, we have

Hn,-(M+l)(Z1lZ2) = Hn-1,M(Zl'z2 )  (5.49)

Pn,-(M+l) = n-1,M ' (5.50)

S(+)(n,-M-l;k,I) = e (n-1,M;k,9) , (5.51)

(-) (n,-M-l;k,-.) = ( - ) (n-1,M;k,Z) (5.52)

The expression for the reflection coefficient in

this 2-D Burg algorithm, (5.44), is very similar to the

expression for the reflection coefficient in the spectral

factorization algorithm of the previous section, (5.10).

If the extent of the data is much greater than the extent

of the filter, Hn,m(zlZ 2 ), then we expect the two ex-

pressions to give nearly the same values for the reflection

coefficient.

Although our 2-D Burg algorithm has not been im-

plemented for any examples, we can anticipate some of the

difficulties that would be encountered in using it. As

in the case of our spectral factorization algorithm, the

sequential choosing of the reflection coefficients generally

is suboptimal, and the extent of the tails of the filters

may be unacceptable.

Once again, the only way to take full advantage of

the reflection coefficient representation would be to develop
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an algorithm for simultaneously optimizing the reflection

coefficients. It is interesting to note that a 1-D algorithm

of this type has been proposed as an alternative to the 1-D

Burg algorithm [29].
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

It has been shown that by adopting a particular

notion of 2-D causality, virtually all of the major results

from 1-D linear prediction theory can be extended to the

2-D case. Having obtained these results, we can claim to

understand the theoretical aspects of 2-D linear prediction.

From a practical point of view, the most important

result in this thesis is the reflection coefficient repre-

sentation for 2-D minimum-phase filters. The significance

of this representation is that by designing 2-D filters

in the reflection coefficient domain, the minimum-phase

constraint is made an integral part of the design procedure.

Future research efforts need to be directed towards the

development of effective algorithms for choosing the

reflection coefficients. The sequential least-squares

approaches to choosing the reflection coefficients, that

were discussed in this thesis, may be useful in some cases,

but they do not generally realize the full potential of

the reflection coefficient representation.

Regarding theoretical extensions of the new

results in this thesis, it should be possible to find

similar results for

1) complex-valued 2-D random processes (the equations should

be the same except for complex-conjugate symbols at various

places);
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2) higher-dimensional random processes; and

3) vector valued multi-dimensional random processes.
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