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Abstract

A new detection statistic is developed for a class of multichannel detection problems which
have the requirement that in the presence of an emitter, a narrowband signal must exist in
all channels in addition to wideband noise. When an emitter is absent, the received data may
contain narrowband noise components in some, but not all of the channels, as well as wideband
noise. A detector which tests each channel separately for the existence of the narrowband
component does not perform as well as the detectors which use all channels collectively.

To collectively use the data from different channels, average has been previously used as
a detection statistic. However, because the average tests only the total energy, its detection
performance noticeably degrades when a narrowband component exists in many channels. As
an alternative detection statistic, the semblance, which measures the coherence between the
channels, is considered. The receiver operating characteristic curves show that the average
performs better than the semblance if more than half of the channels contain only wideband
noise when the emitter is absent, while the semblance performs better than the average if
more than half of the channels contain narrowband components when the emitter is absent.
Therefore, the detection performance of both the average and the semblance can be improved.

An improved detection statistic is developed by combining the average and the semblance. A
combining function is determined by satisfying a set of constraints which ensure that the average
and the semblance contribute equally to the detection statistic. Before they are combined, the
average is transformed to make its probability density function match the probability density
function of the semblance. The receiver operating characteristic curves show that the combined
statistic performs better than other statistics including the average and the semblance.

This new detection statistic is applied to the gravitational wave signal detection problem.
A new algorithm which computes the Fourier transform magnitudes at the exact frequencies
using the chirp z-transform is developed. Examples of the gravitational wave signal detection are
presented to demonstrate that the new algorithm performs better than the existing algorithm.
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Title: Professor, Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Problem Statement

Multichannel signal detection using a receiver array arises in a variety of contexts such as

the gravitational wave signal detection problem. Although a gravitational wave is a steady-

state signal, it is measured in short bursts because of constraints imposed by the receiver

hardware and local noise. The measurement is interpreted as multichannel data by treating

each burst of measurement as the output of a channel of a multichannel receiver. When a

gravitational wave is measured on earth, the received signal is frequency modulated due to the

relative motion between the emitter and the receiver and is contaminated by local disturbances,

some of which are narrowband noises. Local narrowband noises exist intermittently or have

a constant frequency. If a gravitational wave emitter is present, the gravitational wave signal

should exist in all channels of the receiver and the frequency of the signal should be modulated

according to the emitter location and frequency. Therefore, the detector must use the existence

of the signal with varying frequency in each channel to distinguish the gravitational wave signal

from the false alarms caused by local narrowband noise sources.

The frequency variation of the signal over the channels is dependent on the particular

detection problem. However, the requirement that the signal exists in all channels in order to

decide that an emitter is present is common in many multichannel narrowband signal detection

problems. Therefore, the detection problem is formulated as the following hypothesis testing

9
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problem:

S1 + WL

H 1 (emitter is present): R=

SL + WL

Ho (emitter is absent): R i
sL + WL

where R denotes the received data, A is the sinusoidal signal vector A cos(wln + 0b) for n =

0, 1, .. , N- in the Ith channel, and w is the noise vector in the Ith channel for I = 1, 2, * , L.

The amplitude of the sinusoidal signal, A, is the same for all channels and the frequency

and the phase vary over the channels. For the Ho hypothesis, the received data can also

contain the narrowband component in some channels because of intermittent narrowband noise.

Unfortunately, the exact number and identity of the channels which contain the narrowband

component are unknown, therefore, the conventional likelihood ratio detector cannot be used.

This composite binary hypothesis testing problem can be formulated as a series of single

channel binary hypothesis tests. However, because all channels are not considered collectively,

the existence of a consistent signal in the channels is not explicitly checked. Thus, one purpose

of this thesis is to develop improved algorithms for this detection problem and apply them to

the gravitational wave signal detection problem.

1.2 Overview of the Thesis

If the received data under the Ho hypothesis contain only wideband noise, the likelihood

ratio detection statistic for the hypothesis testing problem is the average of the maximum value

of the Fourier transform magnitude in each channel. However, when the received data contain

narrowband noise, the average performs poorly even though it uses all channels collectively.

Therefore, the semblance will be considered as the detection statistic to correct this shortcoming.

Semblance is the ratio of the power of the sum of the spectra and the sum of the powers

of the individual spectra and is related to the normalized cross-correlation. It is sensitive

to the existence of the signal and is, therefore, well matched to the requirement that the

signal must exist in all channels for the H 1 hypothesis. Because the semblance measures the

10
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coherence of the signals, it employs fundamentally different criterion than the detectors which

employ averaging. Unfortunately, noise alone can produce a high semblance value because the

semblance is insensitive to the power of the signal. To take advantage of the sensitivity of the

semblance to the correlation between channels and of the sensitivity of the average to the signal

power, new detection statistics will be developed by combining the semblance and the average.

The combined statistic will be applied to the measured gravitational wave data to demonstrate

its effectiveness. 

The gravity wave signal detection problem is representative of a large class of multichannel

detection problems which have a strict requirement that all channels must contain the signal

in order to correctly decide that an emitter is present. While this thesis focuses on the gravita-

tional wave signal detection problem, the results on detection statistics are applicable to other

multichannel signal detection problems.

The goal of the gravitational wave signal processing is to accurately and efficiently detect

frequency-modulated, periodic gravitational wave signals with unknown emitter location and

frequency. Because the emitter parameters are unknown, the gravitational wave detection al-

gorithms first hypothesize a location and frequency, then detect the hypothesized emitter. The

algorithm must test for all directions and all frequencies and is, therefore, computationally

intensive. Fortunately, however, an algorithm can be developed which tests all possible fre-

quencies simultaneously once the emitter location is selected. Because selecting the emitter

location and frequency uniquely specifies the instantaneous frequency of the received signal,

the periodic gravitational wave detection algorithm is implemented in two parts. First, the

signal component of the hypothesized emitter in each channel is computed where the signal

component is taken to be the Fourier transform magnitude at the frequencies predicted by the

emitter location. Second, the magnitudes are used to compute the detection statistic which is

a combination of the average and the semblance.

Contributions of the Thesis

First, the multichannel detection problem is formulated as a series of single channel binary

hypothesis tests. The generalized likelihood ratio detector for each binary hypothesis test is

efficiently implemented by the FFT. Because only the arithmetic computational error of the

11
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FFT has been analyzed previously, a deterministic analysis of the FFT coefficient quantization

effect on the FFT detector is developed.

Second, the average and the semblance are separately used as a multichannel detection

statistic because they use data from all channels collectively. The semblance has been previously

used as a detection statistic but its probability density function was unknown. A closed form

expression of the probability density function of the semblance is developed for a simple case

and a very accurate approximation is developed for the general case.

Third, a new detection statistic with improved detection performance is formed by combin-

ing the average and the semblance. A general method of combining two statistics which have

different detection characteristics is developed. This method combines the statistics by satisfy-

ing a set of functional constraints. Improved detection probability of the combined statistic is

demonstrated by comparing it with the average and the semblance.

Fourth, the new statistic, formed by combing the average and the semblance, is applied to

the gravitational wave signal detection problem. Before the detection statistic can be applied,

the Fourier transform magnitudes must be computed. A more accurate algorithm which uses

the chirp z-transform to compute the Fourier transform magnitudes at the exact frequency

locations is developed. This new algorithm and the combined statistic are used to process the

measured gravitational wave data.

Outline of the Thesis

Chapter 2 begins with a formal statement of the multichannel signal detection problem.

By enumerating all possible hypotheses, a detector based on a series of single channel binary

hypothesis tests is developed. A solution to the binary hypothesis testing problem is reviewed.

It is shown that the FFT provides an efficient implementation of the solution. The effect of

quantized FFT coefficients on detection is examined using a deterministic error analysis of the

quantized FFT coefficients. Chapter 2 ends with a discussion of the deficiencies of the detection

based on a series of binary hypothesis tests.

Chapter 3 includes a discussion of the average and the semblance as detection statistics. The

average is the likelihood ratio test solution to the multichannel hypothesis testing problem with

the received data containing only wideband noise for the Ho hypothesis. The receiver operating

12
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characteristic computation is reviewed. Next, the semblance is introduced and its properties are

reviewed. The probability density function of the semblance is analytically derived for a simple

case and is approximated using the modified beta probability density function for the general

case. To evaluate the effectiveness of the average and the semblance as detection statistics, their

receiver operating characteristics are estimated using the Monte Carlo detection computation.

A comparison of the average and the semblance as the detection statistics of the multichannel

hypothesis testing problem is provided. Chapter 3 ends with a new multiple hypothesis testing

formulation of the detection problem which suggests a detection statistic that is a combination

of the average and the semblance.

Chapter 4 develops different methods of combining the average and the semblance because

the detection performance of individual statistics can be improved. The statistics are combined

by satisfying a set of intuitive functional constraints. The likelihood ratio combination can be

derived for a simple case and is used to evaluate the previous method of combining statistics. For

the general case, a combination using the discriminant function method is developed. Chapter 4

ends with a comparison of the detection statistics.

Chapter 5 provides a detailed discussion of gravitational wave signal processing. A descrip-

tion of the received signal and the existing detection algorithm are reviewed. A new algorithm

which does not have the shortcomings of the existing algorithm is developed and is applied to

the gravitational wave data. Chapter 5 ends with a comparison of the previous algorithm to

the new algorithm to show that the new algorithm performs better.

Chapter 6 concludes the thesis by presenting a summary and suggestions for future research.

13
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Chapter 2

Multichannel Detection Problem

In this chapter, a particular type of multichannel detection problem is discussed. Because

a simple model of the received data when an emitter is absent is not available for the detection

problem, a detector based on a series of single channel binary hypothesis tests is proposed. A

single channel binary hypothesis test is efficiently implemented using the FFT. Because of the

crucial role played by the FFT, the effect of inaccuracies in the FFT coefficients on the detector

performance is analyzed. Lastly, the receiver operating characteristic of the detector based on a

series of binary hypothesis tests is determined and the deficiencies of the detector are discussed.

2.1 Problem Statement

Many multichannel detection problems require that the signal must exist in all channels

to declare that an emitter is present. The H 1 hypothesis denotes that an emitter is present.

The gravitational wave signal detection problem is an important problem of this type and will

be discussed in Chapter 5. In such hypothesis testing problems, the received data under the

Ho hypothesis, which corresponds to the case in which the emitter is absent, can contain the

narrowband component in some of the channels. Therefore, an appropriate hypothesis testing

problem to determine the presence or absence of the emitter is formulated with the hypotheses:

H1i narrowband component exists in all channels (i.e. emitter is present)

H Ho: narrowband component does not exist in all channels (i.e. emitter is absent).

(2.1)
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Let L be the total number of channels. Under the Ho hypothesis, the received data can have

the narrowband component in 0, 1,... , or L - 1 channels. If the number and the identity of

the channels containing the narrowband component are known, the detection algorithm would

use only the channels which contain different data under the two hypotheses. Consequently,

the problem simplifies to the familiar multichannel, signal-in-noise versus noise-only hypothesis

testing problem[72]. Since the number and the identity of the channels which contain the

narrowband component are assumed to be unknowfi, algorithms which make use of all channels

must be developed. The next section includes a discussion of a detection procedure based on a

series of single channel binary hypothesis tests.

2.2 Detection Based on a Series of Binary Hypothesis Tests

The hypothesis testing problem (2.1) is reformulated as a multiple hypothesis testing prob-

lem. In order to simplify the notation but to retain the pertinent properties of this method,

the total number of channels, L, is set to 3. For this case, the multiple hypothesis testing

formulation of the above problem has 8 hypotheses:

rl S + Wl

H1 r2 = S2 + 2

E3 ff + 3

Hi Wj

H 2 : r2 = 2 + w2

13 S3 + W3

rl S + l

H3 '2 = "2

L3 S3 + 3

rl S + 1

H4 2 = s8 + 2
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H5 : r 2 - w

H6 'r 2 = s2 + W2

trl S1 + W1

H7 : r2 = W2H7 : E2 W2

H8 r 2 = w2

where w is the 1th channel noise vector and s is the Ith channel narrowband component vector

with nth sample s(n) = Acos(wln + l1) for n = 0,1,..., N - 1 and I = 1,2,3. The vector g

denotes N samples (rl(0), ri(1),. , rl(N - 1))T and rl(n) denotes the nth received sample in the

Ith channel. The parameters, A, wl, and 1I, are unknown and the additive noise, wl(n), is white

Gaussian noise as a function of channel, I, and sample, n, with zero mean and 2 variance. The

hypotheses H2, H3, -* -, Hg collectively are equivalent to the Ho hypothesis of (2.1).

The above multiple hypothesis testing problem is solved by minimizing the Bayesian risk R

which is defined as
8 8

R = Pjci prob(decide Hi Hj is true)
i=l j=l

where Pj is the a priori probability of the jth hypothesis H i being true and cij is the cost

of deciding Hi given Hj is true. When the risk R is minimized with the cost assignment

cij = 0 = the multiple hypothesis testing problem is solved by a series of binary tests
1 i j,

of the form[72]

Hi PRIHi(R|H) or 
Hi or xjj

16
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for i = 1,2,-- ,8 and j = i + 1 ,- ,8 where R denotes the received data such that R =

(rl, r2,-r3)T and PRIH (RI Hi) is the conditional probability density of the received data R given

that Hi is true and ij denotes all hypotheses except Hi and Hi. There are 28 binary tests to

be performed to determine the minimum risk hypothesis for the L = 3 case.

In general, there are 2 L hypotheses and (22) = 2 L-1(2 L - 1) binary tests which need

to be performed for L channels. Even for a modest number of channels, the total number

of binary tests which must be implemented becomes prohibitively large. Additionally, this

multiple hypothesis testing method also has the following disadvantage. For many problems,

the a priori probabilities are unknown. Unfortunately, the Neyman-Pearson test[721, which

resolves this difficulty in binary hypothesis testing problems, must be extended because the

concept of false alarm is not clearly defined for the multiple hypothesis testing problem.

If only the decision H 1 (i.e. narrowband component exists in all channels) versus not H1

(i.e. narrowband component does not exist in all channels) is desired, then only the tests

PRIHI(RHj) -Pj H PRIHI(RIH1) P1
H1 or 3lj

for j = 2, , 8 need to be performed. In general, the required number of binary hypothesis

tests is reduced to 2L - 1.

In the following, the structures of the above hypotheses are exploited to further reduce the

required number of binary hypothesis tests. When the hypothesis H 1 versus the hypothesis

H2 is tested, only the data from the first channel is used because the data in the second and

third channels are identical for both H 1 and H 2. Therefore, the hypothesis testing H 1 versus

H2 reduces to testing the hypotheses:

H1 : Acos(win + d1) + wi(n)

H 2 : wul(n).

Similarly, only the data from the first channel are used for testing the hypothesis H3 versus H 5,

H4 versus H 6, and H 7 versus H8. Therefore, either (H 1, H3, H4, H 7} or {H 2, Hs, H 6, Hs) can

be eliminated by testing the data from the first channel.

The above reasoning also applies to testing the data from the second channel and the third

channel. The data from the second channel is tested for the existence of the narrowband com-

ponent, Acos(w 2n + 2), to eliminate either {H 1, H 2, H 4, H 6} or {H 3, Hs, H 7, H)}. Similarly,

17
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the data from the third channel is tested for the existence of the narrowband component,

Acos(w3 n + 3), to eliminate either {H1, H, H3 , H5} or {H 4, H 6, H 7, Hs). These three tests

are sufficient to determine the minimum risk hypothesis because L binary tests can distinguish

2 L possibilities and there are exactly 2L hypotheses from which to choose. For the general L

channel case, each channel is separately tested for the existence of A cos(wln + 'P), then the H1

hypothesis is decided only if all channels contain the narrowband component. In Section 2.5,

this solution will be shown to be inadequate. Next, the binary hypothesis testing method is

discussed because it forms the basis of the multiple hypothesis testing detection solution.

2.3 Binary Hypothesis Testing

By minimizing the Bayesian risk, a solution to the simple binary hypothesis testing problem

with the hypotheses Ha and Hb is given by the likelihood ratio test(LRT) A(R)[72,22]

_PRIH(RjHa) H4 Pb Cab - Cbb )A(R) = _______ P b - Cbb 

PRIHb(RIHb) Pa Cba - Caa

where R denotes the received data. Because the costs, c,,,c,b, Cb,, and Cbb, and the prior

probabilities, Pa and Pb, are unknown, the Neyman-Pearson test is used. The Neyman-Pearson

test[38,76,72] maximizes the detection probability for a given false alarm probability and its

solution is also the LRT. However, the threshold, tr, is set by satisfying a specified probability

of false alarm.

When the probability density functions(PDFs) contain unknown parameters, the above LRT

is not applicable. This is, therefore, a composite hypothesis testing problem and two possible

solutions exist. First, if the unknown parameter, denoted a, under the hypothesis Ha is random

and its PDF, PajIH(aIHa), is known, the LRT is modified to obtain the minimum risk solution

as

A(R) = fPRIHa,(RIH c)PalH,(acIHa)dca H

PRIH, (RIHb) Hb

If the conditional PDF is unknown then the minimum risk solution is unknown. Second,

a reasonable solution is given by the generalized likelihood ratio test(GLRT), however, it is

suboptimal because the risk is not minimized. The GLRT solution is obtained by treating the

18
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unknown a as a constant and replacing it by the maximum likelihood(ML) estimate as

max PRIHata(RHa, ) Ha (2.2)
AAq(R) ~:: 17. (2.2)

PRIHb(RiHb) Hb

For the multichannel detection problem to be considered here, unknown parameters A, wl, and

sb are fixed, hence the GLRT method is used.

2.3.1 Detection Statistic

The binary hypothesis testing problems, resulting from the multiple hypothesis testing

formulation described in Section 2.2, have the form

H, r(n) = Acos(win + 1) + wi(n) (2.3)

Hb: rl(n) = w(n)

for some fixed I where rl(n) is the received data. The sample number is n = 0, 1, N - 1

and A, w, and 4l are unknown parameters. The wl(n)'s are assumed to be white Gaussian

noise(WGN) as a function of 1 and n with zero mean and a 2 variance. The hypothesis Ha

denotes that the received data contain a sinusoid in additive noise and the hypothesis Hb

denotes that the received data contain only noise. Because the parameters, A, wl, and 01, are

unknown constants, they are replaced by the ML estimates and the detector is given by (2.2).

The ML estimates of A and the ML estimate of 41 are determined next. Because wl(n) is

WGN, the probability density function of the received data under the Ho hypothesis is given

by

1 N-2

Ptl H,,A,l,,w,(l Ha, A,, W) = (2 2) 2 exp(- 22E Irl(n) - Acos(win + -l) 2 )

where n = (rI(0), rl(1),..., rl(N - 1))T is the received data. The ML estimates are computed by

assuming that the Ha hypothesis is true and then maximizing the log of the above probability

density function with respect to A and 4 as

1 N-a9 logpr4 H.,Ag1 w,(nI Ha, A, 0,wI) 1 1 - AN
A 2( E rl(n) cos(wIn + 1) -- )aA

a log PrIlH,A,0,w (r4Ha, A, g, cl) A N-1
ai ;2 E r (n) sin(win + L).
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Setting the above two equations to zero and solving for A and 4t results in the following ML

estimates

2 N-1
A N1 E rj(n)ejw'nj

n=O
N-1

= arg{ E rl(n)e-jjj,
n=O

and the GLRT becomes

Ag () - Pt Ha,,w, ( I HaA, I A, wt)
Pr H,,(rtHb)
1 N-1

exp(2a2 E 2A cos(wln + 0L)rL(n) - A2 cos2(wn + ))
n=O

Using the intermediate result A = (n) cos(wln+1) and the fact that Nl cos2 (wn+

i) = N, the above GLRT simplifies to

Ag(r) = exp( 12 N A2).

Finally, by taking the logarithm of the above expression, the threshold test becomes

N-1 N-1

(E r(n) coswin)2 ( r(n) sinwln) 2 0,. (2.4)
n=O n=O Hb

In the above equation, the parameter wL is unknown, therefore, it is typically replaced by the

ML estimate &L. The ML estimate of the frequency is determined by matched filtering[70,711

using all possible frequencies which is equivalent to computing the periodogram[50,27] and is

efficiently implemented by the FFT. The ML estimate of the unknown frequency is determined

by finding the location of the peak of the periodogram[51,57,33]. Therefore, the GLRT solution

of the binary hypothesis testing problem (2.3) computes the periodogram and then compares

its maximum value against a threshold.

2.3.2 Receiver Operating Characteristic

The PDF of the periodogram of the signal r(n) is determined by computing the PDF

of the magnitude of the discrete Fourier transform(DFT) and then transforming the PDF to
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accommodate the squaring operation. If rl(n) contains WGN only, the DFT of the received

data is
N-1 N-1

Xlj(k)= rl(n)e-jNkn = (n)ej N
n=O n=O

and its mean is determined as

N-1

E(XI(k)) = E(wl(n))e-j)kn = 0.
n=O

The covariance is computed as

N-1 N-1

E(XI(k)X[(m))= Z E(wl(nl)w(n 2 ))e-j2 knle-mn2 = N 26(k- m)
nl =0 n2=0

where 6(.) denotes the delta function. The DFT of WGN with zero mean and a2 variance is

WGN with zero mean and Na2 variance and its magnitude is Rayleigh distributed[52].

For the sinusoidal signal in additive WGN case, the mean of the DFT is determined as

N-1 AN

E(XI(k)) = Z E(A coswin + wl(n))e - k = -AN 6(k - ko)
n=O

where wt = ko. The covariance is computed as

E((Xi(k) - E(Xi(k)))(Xl(m) - E (Xl(m))))
N-1 N-1

= > E((Acoswlnl + wl(nl))(Acoswin 2.+ wl(n 2))*)e- kn ej -mn2
ni=0 n2 =0

-E(X (k))E(X(m))

= N26 (k - m).

The DFT has zero mean for all DFT bins except at the k0 th bin where the mean is -N, and

the variance is Na 2. The PDF of the magnitude of the k0 th bin is Rician[56]. Therefore, if

the DFT of r(n) = Acos(win + ~l) + wl(n) evaluated at ko, where wl(n) is WGN with zero

mean and a 2 variance and wl = 2nko, is Xl(ko)= AN + XR - jXl, then E(XR) = E(Xi) = 0,

E(IXRI2) = E(IXJI2) = N2, and E(XR XI) = 0. The random variables, XR and XJ, are

uncorrelated Gaussian densities with zero mean and N'2 variance.
2

1
PXR,X (XR, XI) .N 2 22 e 
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and let y = IXI(k)l, then its PDF is

"
= 2-le-N,2 U(yI) if k Z ko (Rayleigh)

2Y Io(y A)e T N.2 u(yt) if k = ko (Rician)

where Io(.) is the modified Bessel function of first kind, zeroth order and u(.) is the unit step

function. The periodogram, which is denoted by vI, is the square of the magnitude, hence its

PDF is given by pvj (v2) = P. The PDF of the periodogram at the k0th bin is

'(vl) = N1 2Io(AN2 u(vl) (2.5)

and the PDF for bins other than the k0 th bin is

1 e-Li
P° (VI)- Na 2 oeu(v) (2.6)

which is an exponential PDF.

The density functions, (2.5) and (2.6), become increasingly dissimilar as N increases and

the probability of detection improves. The probability of false alarm is

PF = N1 - e Ndvt N 2
. (2.7)

For a constant false alarm rate, the threshold value is set to = -2Na 2 ln(PF). The probability

of detection is
1 AI n

PD = N 2 Io( )e- N-' dv. (2.8)

The above expression can be represented using Marcum's Q-function[40,72] as

A,,2

PD = 2 e 2 Io(A )dt = QM(A - -2 ln(PF)) (2.9)

Since the DFT effectively operates as a bank of matched filters in which the data length corre-

sponds to the integration time, the probability of detection of the sinusoid increases with the

transform length. In other words, when PF is fixed, PD increases as N increases. The FFT

is used to efficiently compute the DFT. When the FFT is implemented with finite precision

arithmetic, the above detection probability may degrade. In the next section, the effect of the

finite precision FFT coefficients on the probability of detection is examined.

'Marcum's Q-function is defined as QM(a,b) = fo te- 2 . Io(at)dt = fs' o e-t+Io(aVi)dt.
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2.4 FFT Coefficient Quantization Effects on Detection

In computing the FFT, errors due to arithmetic roundoff and coefficient quantization in-

crease with increasing FFT length and degrade the detection performance. The effect of arith-

metic roundoff on the FFT output has been analyzed and is well documented[74,50. In the

sinusoidal signal detection problem, the arithmetic roundoff can be modeled as additive white

noise in the FFT output. On the other hand, the effect of the coefficient quantization on

detection is less straightforward to analyze. A deterministic bound for the error of the FFT

computed with the quantized coefficients is presented here. This bound is used in conjunction

with the experimental measurements to obtain an empirical formula for the FFT output error.

Finally, the degradation in the probability of detection due to the coefficient quantization is

computed using the empirical formula[31].

2.4.1 Coefficient Quantization

The effects of coefficient quantization on the FFT output have been analyzed previously[37,

26,69,23,241, however, a close, analytical bound of the FFT output error has not been derived

previously. In the following, the error bound of the decimation-in-time, radix-2 FFT algorithm

is considered. The required FFT coefficients, em, for m = 0,1,-,2 - 1, can be either

precomputed and stored in a table, or recursively computed at each stage of the FFT compu-

tation. In the recursive implementation, only log2 N complex values must be stored to be used

as the initial values of the recursion. For large N, this results in significant savings in storage.

However, as will be shown, using a table of N precomputed coefficients is more accurate than

using the recursively computed coefficients.

In computing the FFT, the coefficients W n of the DFT

N-i N-i

X(k)= : x(n)e2Iakn = z(n)Wkn (2.10)
n=O n=O

are realized through combinations of coefficients associated with shorter FFT length. Specifi-

cally, in the decimation-in-time FFT algorithm, (2.10) is effectively replaced by

N-i 2 kb12M

X(k):= (n)W onWb 2-"2- ... (2.11)
n=O
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where M = log 2 N, n bo,= + bl,2 + bM-_l,n2M - and bi,, = O or 1 for i = 0, 1, . , M - 1.

Thus, (bM-l,nbM-2,n* bl,nbo,n) is the binary representation of n . When the coefficients are

quantized, (2.11) becomes

N-1

X(k) = E (n)(W n + O,) (WbM-n 2 M-' + M-,) (2.12)
n=O

where the difference between the true and the quantized coefficients is denoted by ci,k. Because

there is no quantization error in representing 1 or -1, M-1,k = 0

In analyzing the error, it is convenient to use matrix notation. The transformation (2.10) is

expressed as X = Fz where x = (x(O),z(l), ... ,x(N- 1))T, X = (X(O),X(1),,X(N- 1)) T

and F is the N x N matrix of coefficients with knth element Fkn = WNn. Correspondingly,

(2.12) is written as = Fx where F is formed by the quantized coefficients and the error vector

is defined as e = X - X = ( - F)x. The maximum FFT output error over all frequency bins

is used in determining the degradation in the probability of detection of a sinusoid. Therefore,

the error measure is the infinity norm of e

l1eli = max le(k)l (2.13)

where e(k) = X(k) - X(k). To derive an error measure which is independent of the input x,

the following inequality[19,49] is used.

ljAvJloo < l11Alloolvlloo

where A is a matrix, v is a vector, and the matrix norm is defined as IAlIoo = maxk ENo lakn i.

Using the inequality,

max le(k)l <I iI - Flloollzlloo

with the (k, n)th element of the difference matrix (F - F)kr, as

(FP - F)kn = (2.14)
(Wkbo)n ) M-l (2M 1 + .. onWkb n2 W kbM-l,n 2 M -

(Two df+ N',k) (W + oM-iek) - W · .

Two different methods of coefficient quantization are considered next.
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Precomputed Coefficient

An error bound of the FFT output where the coefficients are computed using a table of i

precomputed coefficients is derived. Each coefficient WN is quantized such that IEi,kl < vA

where A is of the quantization step size. Assume that i,kl is small enough such that second

and higher order error terms in (2.14) can be ignored. The error in the coefficient matrix (2.14)

becomes

(P- F)kn ~ bo,nEO,k(Wb l, 2Wkb2 ... WkbMl_, 2-" N '' '"NN N N)

. kbo nt/kb2.n4 kbm-j.n2 M - '
+ b ,,,(w; ' N N.. ) 

b 1 ... WkbM- 2 . 2 M-2
+biM InM-,k(WNb ... WN ) (2.15)

Applying the triangle inequality to the above equation and using the fact that lfi,kl < VA

and M-1,k = 0, an upper bound is obtained as

I(F - F)knl < V2A(bo,. + b,. + - -+ bM-2,n).

Consequently, the matrix norm is

N-i N-1

IIF - Fl = max (FP - F)knl < / A bo,,n + -* + bM 2,.
n=O n=O

As n ranges from 0 to N - 1, bi, for each i will be one for one half of the terms and zero for

the remaining half of the terms. Consequently, since M = log 2 N,

N
IIP - Floo < VA (log 2 N - 1).2

Therefore, the maximum magnitude output error (2.13) of the quantized-coefficient FFT using

a table of N values is bounded by

max Ie(k)l < v (log 2 N - 1)1jjxj._ (2.16)
k 2

Recursively Computed Coefficient

An error bound of the FFT output where the coefficients are computed recursively using

log 2 N stored initial values is derived. At the ith stage, the initial value WM- is used to

generate all the required coefficients for that stage. However, because W2 -M is quantized,
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recursive computation results in the FFT output error. Assume that the quantization error for

the initial value W2M-' is lEill _< vGA. As the recursion is used to compute the next coefficient,

the coefficient quantization error increases linearly. For example, assuming that 21 < 1 and

using the triangular inequality, the error in computing WP is

I(WN + ep)(WN + Ep) - WNWN I 12EpWNI < 2 .

If L terms of quantized coefficients are multiplied, the error is bounded approximately by

LVi/A because the quantization step size is assumed to be small enough to ignore non-linear

error terms. Again, applying the triangular inequality to (2.15),

N-i

IF - Foo < max E bo,nlo,k I + + bM-l1,nIM-l,lI
n=O

The error ei,kl reaches its maximum when k N - 1 such that e 0, Nl < 2 A( N

1), E1 - < /A( - 1), etc. Because bi,n 1 for only N terms and log 2 N - 1 terms

are summed,
NN N

IF - Fl!1o < G/A (( - + + 1) - M).2 2 4

Therefore, the maximum magnitude output error (2.13) of the quantized-coefficient FFT using

a recursion is bounded by

N
max e(k)l-< G/2 -(N - 1 - 1og 2 N)IzIloo. (2.17)

k 2

When the table of coefficients is used, the error of the FFT output is proportional to N log 2 N,

as shown by (2.16). However, when the recursion is used, the error of the FFT output is

proportional to N 2, as shown by (2.17). Therefore, although more storage is required, using

the precomputed table of coefficients proves to be more accurate.

To verify and measure the closeness of the above bounds to the exact FFT output error,

(2.16) is checked by computing the error e explicitly for a sinusoidal input

=: (1, ej w" , ... ei"(N-1))T

The results of the simulations employing an 8 bit uniform quantizer is shown in Table 2.1. The

values in the measured column are obtained by explicitly searching for the maximum error.

The upper bounds predicted by (2.16) are listed in the bound column. These values indicate
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log 2 N measured bound predicted
1 '.0 .0 .086
2 .011 .011 .091
3 .022 .044 .107
4 .071 .132 .147
5 .201 .353 .249
6 .536 .883 .494
7 1.228 2.122 1.064
8 2.603 4.949 2.368
9 5.567 11.313 5.301
10 11.360 25.455 11.818
11 26.284 56.568 26.158
12 58.228 124.450 57.443

Table 2.1: The maximum magnitude error of the FFT output which is computed
using a table of precomputed coefficients. The coefficients are quantized by the 8
bit uniform quantizer. The measured error is listed under the measured column.
The analytical bound is listed under the bound column. The error predicted by
the empirical formula is listed under the predicted column.

that the calculated bounds are approximately twice the measured values. This suggests that

the bound can be scaled to predict the FFT output error. The functional form of the bound

and the measured errors are used to derive an empirical formula for the FFT output error. A

linear model of the form a A 2 (log 2 N - 1) + / is fit to measured data by choosing a and to

minimize the squared error. Thus

N
a A (log 2 N - 1) + 3 e measured ije{~ (2.18)

2

with least squares solution a = 0.65 and / = 0.08. The values in the predicted column on

Table 2.1 are computed using the above equation. There is an excellent agreement between

the predicted and the measured values. To check the bound for very large N, the error for a

216 length FFT is computed. Because the FFT length is rather large, the search for wo was

limited to a small frequency range. The search for the maximum resulted in lelao = 1356.65.

The upper bound given by (2.16) is 2715.3 and j[leloo is predicted to be 1251.45 by (2.18).

Figure 2.1 plots the measured llelt , the predicted (2.18), and the bound (2.16) for an 8 bit

uniform quantizer. The figure demonstrates that the bound is reasonable and the empirical

formula accurately predicts the error.
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Figure 2.1: The maximum magnitude error of the FFT output which is com-
puted using a table of precomputed coefficients. The coefficients are quantized
by the 8 bit uniform quantizer. The measured error, denoted by 'x', the analyt-
ical bound, and the empirical formula are plotted.

28



2.4.2 Probability of Detection using Quantized Coefficients

The FFT output error due to coefficient quantization degrades the probability of detection.

The probability of detection at the correct FFT bin is given by (2.9). Because the FFT imple-

ments a bank of matched filters, the definitions of both the probability of detection, denoted

PD, and the probability of false alarm, denoted PF, are modified. The detection over all FFT

bins is defined as a decision that a signal exists at the correct bin, k = ko. The false alarm over

all FFT bins is defined as a decision that a signal exists at an incorrect bin, k ko, where the

frequency of the signal is wo = ko0.

The quantized-coefficient FFT for input Aew'l"n + w(n) is given by

N-1 _ N-1

(k)-= Ae7WOnWk + Z w(n)Wkn
n=O n=O

where WIkn denotes the quantized coefficients shown in (2.12). If the coefficients have no

quantization error then ,N-o AeJw'.nWkn = ANS(k- ko). For k 7 ko,

N-l

-| AeUnWo n I < Allelioo.
n=O

The equality is assumed for a conservative D estimation. Therefore, the probability density

function of i, where'i = I(k)i, becomes

p(i)= 2 Io(N 2 Ailejoo)exp(_- +A 2 _ll)u()Yo Noa2 ''2Na 2

hence the probability of false alarm over all FFT bins is

PF i 2 A2=o Iello Q( o 7P Na2Io( 2Alleloo) exp(- Z )d. = Q( e' (2.19)
Na2 2No2 vW-o ' !

For k = ko,
N-1

I - AeJwnWJnl > A(N- Iello)
n=O

Again the equality is assumed for a conservative estimate of PD. Therefore, the probability

density function of 2 becomes

___N2 It ;2(- ll)) 2 + A 2 (N - Ilel )2
P(M = N aIo( A(N - Ilelloo)) exp(- -))

Na~_02 -g0 2Na2
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hence the probability of detection over all FFT bins is

D j =f2Io( N 2 A(N - lell))expA( - e )2

= Q(A(N - ell) 7) (2.20)

The empirical formula (2.18) is used for [lello in (2.19) and (2.20). Figure 2.2 shows PD as a

function of FFT length. It is generated assuming that the amplitude of the sinusoid is 0.1 and

the variance of the WGN is 1. The threshold is determined by satisfying the constant false alarm

rate of PF = 0.01. Even though the error, jleioo, increases as the data length increases, PD also

improves. The simulation shows that 8 bit quantization only slightly degrades the probability

of detection while 4 bit quantization noticeably degrades the probability of detection. This

analysis indicates that it is important to quantize the coefficients using more than 4 bits. In

this thesis, the FFTs are computed with coefficients that are quantized using 8 bits or more,

so that the degradation in the probability of detection due to the inaccurate coefficients can be

ignored.

2.5 Deficiency of Detection Based on a Series of Binary Hy-

pothesis Tests

The receiver operating characteristic of the detector based on a series of single channel

binary hypothesis tests as proposed in Section 2.2 is discussed in this section. Assume that

the received data have the narrowband component in K of L channels. In this case, the

correct output of the detector is the decision that the emitter is absent or, equivalently, that

the narrowband component does not exist in all L channels. If the detector decides that the

narrowband component exists in all channels, it is a false alarm. Because the proposed detector

tests L channels separately, the probability of false alarm is determined by the product of K

probabilities of correctly deciding that the channel contains the narrowband component when it

does and L - K probabilities of incorrectly deciding that the channel contains the narrowband

component when it does not. Therefore, the probability of false alarm, denoted PF,m, is given

by

PFm = PF -K X PK
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Figure 2.2: The probability of detection(PD) of the FFT which is computed with
the precomputed table of quantized coefficients. The sinusoidal amplitude(A)
is 0.1 and the variance of the WGN(o 2 ) is 1. The false alarm is set to 0.01.
PD for the ideal FFT coefficients, 8 bit uniformly-quantized coefficients, and
4 bit uniformly-quantized coefficients are plotted as a function of the data
length(log 2 N).
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where PF and PD are the probability of false alarm (2.7) and the probability of detection (2.8)

of the single channel detection, respectively.

The probability of detection, denoted PD,m, is given by

PD,m = PDL.

Because PF < PD, PF,m increases as K increases and the detection performance degrades

because PD,m is constant for all K. For the example, let L = 20, PD = 0.95 and PF = 0.5,

then the probability of detection PD,m is 0.35 and the probability of false alarm is 1.8 x 10-6

for K = 1, 5.8 x 10 - 4 for K = 10, and 0.19 for K = 19. This confirms that there is a significant

loss in the probability of detection as K increases.

The amplitude of the narrowband component can vary substantially without affecting the

detection performance of the detector based on a series of binary hypothesis tests. Thus, this

method is insensitive to the amplitude variation of the narrowband component and it cannot

enforce the requirement that the amplitude A of A cos(wn + *1) for = 1, 2,- * , L must be

the same. Additionally, this detector requires many tests and the simple Neyman-Pearson

threshold cannot be used. To remedy these problems, all channels are used simultaneously to

derive detection statistics in the next chapter.

2.6 Summary

In this chapter, the multichannel detection problem was formulated as a series of single

channel binary hypothesis testing problems. Each single channel binary hypothesis testing

problem is solved by threshold testing the Fourier transform magnitude or, equivalently, the

periodogram of the data. The periodograms are computed using the FFT and it was shown

that the quantization of the FFT coefficients has a minimal effect on detection if 8 bits or more

are used for the quantization. The receiver operating characteristic of the single channel binary

hypothesis test was derived and was used to determine the performance of the detector based on

a series of binary hypothesis tests. It was shown that the performance of the detector degrades

noticeably when many channels contain the narrowband component under the Ho hypothesis.
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Chapter 3

Multichannel Detection Statistics

The performance of the detector based on a series of single channel binary hypothesis tests

discussed in Chapter 2 can be improved upon because it does not use data from all channels

collectively. In this chapter, both average and semblance, which use data from all channels

collectively, are discussed as detection statistics for the multichannel detection problem. As is

well known, the average is the generalized likelihood ratio test(GLRT) detection statistic for a

particular multichannel detection problem. It will be shown that the average performs well if

the received data fit the model of the detection problem. Deviations from the model result in

degradation in detection performance. To accommodate the received data for which the average

performs poorly, the semblance is introduced and its detection performance is analyzed. It will

be shown that the semblance does not perform as well as the average in some important cases.

Therefore, to maintain good performance over a wide range of received data, the average and

the semblance can be combined to produce a new detection statistic. Combining the average

and the semblance is discussed in Chapter 4. This chapter separately analyzes the average and

the semblance.

3.1 Average

A multichannel hypothesis testing problem for which the average is the GLRT detection

statistic is discussed in this section. Testing the average is identical to testing the sum because

any monotonic transformation of a test statistic does not affect the ROC. For convenience, the
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probability density function of the average is discussed using the sum in this section and the

detection performance of the average will be examined in Section 3.4.

3.1.1 Multichannel Binary Hypothesis Testing Problem

In Section 2.2 the multichannel detection problem was analyzed as a multiple hypothesis

testing problem. In this section, a special case of the multichannel detection problem for which

the average is the likelihood ratio detection statistic is examined. The multichannel detection

problem (2.1) is analyzed by assuming that all channels contain only wideband noise under the

Ho hypothesis and all channels contain the narrowband component in additive noise under the

H 1 hypothesis. The received data model for the composite hypothesis testing, then, becomes

rl S1 + Wl

r L S + WL (31)
(3.1)

Ho: R= I = I

where R denotes the received data, L is the number of channels, and N is the number of

samples. As in Section 2.2, the nth sample of the th channel narrowband component vector,

s, is s(n) = A cos(wLn + 01) where A, w, and 01 are unknown parameters. The nth sample of

the Ith channel noise vector, w, is wl(n) and the wl(n)'s are assumed to be white Gaussian

noise as a function of I and n with zero mean and a2 variance. The above received data model

for the Ho hypothesis does not contain the narrowband component, therefore, it is simpler than

the model employed in Section 2.2.

The multichannel detection problem (3.1) with unknown parameters is solved using the

GLRT by replacing the unknowns with the ML estimates. The GLRT solution for this detection

problem is given by a vector form of (2.2) as

maxAO w PRIH, ,A, , (RJ H1 , A, m, o) H,
Ag(R) = PIHo(RIH )o 0 (3.2)pIH(RIHo ) HO

where the received data is R = (1r,r2,- ,rL) T with r = (ri(O),ri(1l), .. ,rl(N - 1))T, w =

(4W,w2, ,WL)T, and = (l, )T2,' , qL}T . The threshold value r7o is set to match a specified
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constant false alarm rate. The ML estimates of the unknowns are computed by assuming that

H1 is correct and by maximizing the likelihood over the desired parameters.

The probability density function of the received data under the H1 hypothesis is
L N-11 N11

PRIH1 ,A W R(IHI, A, ') = (2Xe) 2 exp(-. 2j E E r(n) - s(n)2).
1=1 n=O

To maximize log PRIH,,A,,W (RH 1 , A, ,) with respect to A and , the following equations

are solved for A and dr.
2 L N-1

LN , r L(n) cos(win + z1)
1=1 n=O

L N-I

o = E E rl (n) sin(n(wL)l 1 )
1=1 n=O

The ML estimates are

2 L N-1
A = LE K r(n)e-ill

1=1 n=0

N-1

i = arg{ E r(n)e-jiwn},
n=O

and the GLRT (3.2) becomes

L N-1

Ag(R) = exp( 32 E E 2Acos(win + Il)r(n) - A2 cos 2(wln + $,))
= 1 n=O

1 LN2
= exp(2o 2 )

because A = 1 r(n) cos(wn + ) and 2 (wn + b) = n. Finally, the

threshold test, (3.2), simplifies to

L N-1

EI rj(n)e"w'nI I? '1
1=1 n=O Ho

for some constant 1 where the squaring operation is removed without affecting the detection

performance. The above test is a generalization of the single channel test (2.4). In the above

equation, as in Section 2.3.1, the wl's are typically replaced by the ML estimates determined

by the location of the peak of the periodogramsl51,57,333. Therefore, the GLRT solution of

the multichannel detection problem is a summation of the peak values of the Fourier transform

magnitudes which are compared against a threshold. Of course, the average can be used instead

of the sum because they are related by a monotonic transformation.
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3.1.2 Approximation of Probability Density Functions

In the previous section, it was shown that when the received data under the Ho hypothesis

contain only wideband noise, the GLRT statistic is the average of the peak values of the Fourier

transform magnitudes. In this section, the performance of the average as a detection statistic

is discussed. The PDF of the magnitude of the Fourier transform, denoted yl, was derived in
Section 2.3.2 and is repeated here for convenience:

{Pv(m) Na2 N u(yl) if WGN only (Ho)

aIo(yl A)e- N,2 u(yl) if narrowband component+WGN (H 1 ).

The PDF of the sum M = 1 yj is derived. The PDF of the average, denoted pa(a), is simply

related to the PDF of the sum, denoted pM(M), by pa(a) = LpM(La).

The sum of the Rayleigh densities, which corresponds to the WGN only case, is discussed

first. When L = 2, the sum is M = yl + 2 and because Yl and 2 are independent Rayleigh

densities,

pM(MHo) = M p, (t)pV2(M - t)dt

M _ 2
= e N2 (- + ( - 1) erf(M -))Nr( j 2 2No-2 N 2 Nr 2

t
2

where erf(x) = foZ e- 2 dt. For L > 2 case, the PDF of M involves the convolution of the

above expression with the Rayleigh density, hence a closed form expression is not known.

Alternatively, a closed form expression of the PDF of M can be attempted using the charac-

teristic function of yl. Because the y's are statistically independent, the characteristic function

of M is determined by the product of the individual characteristic functions. However, the

characteristic function of y also involves erf(.) function[40] because the characteristic function
of the normalized Rayleigh PDF p(z) = z exp(-2)u(x) is given by 1-ji/ wexp(_2) ef(

Therefore, a closed form is unobtainable and the PDF must be approximated.

For the H1 hypothesis, the PDF computation of M involves the Rician densities and
PMIH1(MIH 1 ) also cannot be expressed in a closed form. An approximation method based
on the Gram-Charlier series is presented next.

The Gram-Charlier series uses the Gaussian density to expand the desired PDF p(x) as[40,

36



22,10]

P(X) = c,~k(._.T )
k=O

where Z is the mean and a 2 is the variance of the random variable . The basis functions are
- dk with 2 =

()= with to(z)= b(x) 4= e 2 . Therefore,

(z) = e 2 H()

where Hk() is the Hermite function[15. For example, the first few terms are Ho(z) = 1,

Hi() = x, H(z) = 2- 1, and H 3 (z) = 3 - 3x.

The coefficients are computed as

(-1) k

ck - k! I p(x)Hk( )d~-oo a

and the first few terms are co = 1, cl = 0, c2 = 0, and C3 = -m3 with the moment

mk = f_°°oo(x - ±)kp(x)dx. A rough approximation of the PDF is obtained by the following

truncated Gram-Charlier series.

p(X) -- 1:-exp(- 2))(1 + ((z- )3 -3(x- )))

The Gram-Charlier series of the sum of the Rayleigh densities is obtained using[52]

Mo = LE(lIHo)= Lv/' ; T

o = L E((y - E(y))I Ho) = L(2- ) 2

because M = =l yl and the yl's are independent. The PDF is approximated using the first

K terms as
1 Z M -- MO)

PMIH,,(M{HO) 1 E Ck(M Mo
k=O Oo

and the probability of false alarm is approximated as

00PF . = A ,K-1

PF = PMIH,,(MIHo)dM = 1 ,k
GO·i

'k( M O- )dM.

The Gram-Charlier series of the sum of the Rician densities is obtained using[56]

L A 2N A2 N A 2N
M1 = L E(yl{Hj) = 2- exp(- 8 2 )((1+ -i2 ) o(82 )+

2 Y,))2 A 2 N 2 Mr =o L E((ya - E())iH) = L( + N' 2 _ (MI)2).

A 2N A2 N))
WOT(8-~)
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The PDF is approximated using the first K terms as

PMIHi(MIH1) = E Clkk( M-M 1
1 k= O l

and the probability of detection is approximated as

l=0 1 ~K-1
PD = PMIlu (Mil)dM 1 - k( )dM.

Ik=O 

To obtain an accurate approximation, a large number of terms are often required. Therefore, in

Section 3.3, the ROCs are computed using the more general method of Monte Carlo simulations.

However, before the ROC of the average is examined, the semblance as an alternative detection

statistic is discussed.

3.2 Semblance

The approach which leads to the average assumes that conditional PDFs under each hy-

pothesis, PRIH,(RIH1 ) and pRIH,,(RIH), are available. However, for many problems, neither

the exact PDFs nor functional forms of the PDFs are known. In such cases, the unknown den-

sities can be approximated by proposing a functional form and then estimating its parameters

using the measurements. Unfortunately, the detection statistic obtained using approximated

PDFs often performs poorly.

Nonparametric or distribution free statistics are derived without assuming a specific PDF

for the received data. These statistics are insensitive to the errors caused by the inaccuracies

of the approximated PDFs or the model used for the received data[5,35,18]. Of course, the

cost of the nonparametric statistics' relatively good performance over a broad range of data is

that the parametric statistics perform better than the nonparametric statistics when the data

model is accurate. Any function of the measurements can be used as a detection statistic and

any detection statistic devised without assuming the PDFs can be viewed as a nonparametric

statistic. A particular nonparametric statistic must be selected by comparing the ROCs of all

candidate statistics, however, the selection is frequently made based upon the ease of the ROC

computation.

In this section, the semblance is introduced. Instead of computing the average of the Fourier

transform magnitudes, the semblance of the Fourier transform magnitudes is computed as the
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detection statistic. The semblance can be viewed as a nonparametric statistic for the detection

problem.

3.2.1 Background

In reflection seismology, multiple seismic traces are averaged, or "stacked" in geophysical

parlance, to improve the signal to noise ratio[43,471. Because the traces are made with varying

source-receiver configurations, they must be aligned before performing the averaging opera-

tion. The alignment, called the moveout correction, is dependent on the earth's structure and

propagation characteristics. A simple and frequently used model is the horizontally layered

medium model which is completely specified by the thickness of the layers and the wave prop-

agation velocity of the layers. For a given source-receiver separation distance and arrival time

of the seismic reflections, the alignment function is described by a hyperbolic equation called

the moveout equation[59]. The parameters of the hyperbolic equation are the normal incident

time and the velocity, called the stacking velocity. The goal is to estimate the velocity for

each incident time which is then used to align the traces for averaging. For a selected incident

time, the stacking velocity is estimated by computing some measure of coherence between the

seismic traces for a range of possible values and then selecting the velocity value which has

the maximum coherence. The semblance was introduced to be used as a coherence measure in

the stacking velocity estimation problem[48,65]. It has been used in other geophysical signal

processing problems[361 because it is a coherence measure with useful properties.

3.2.2 Properties

Semblance, which is denoted by s, is defined as148,65]

L -M Bl (n)2Y2 L=.-_M(zf xj(n)2 (3.3)

where L is the number of channels, 2M+ 1 is the semblance gate length and xz(n) denotes the nth

sample of Ith channel data. Important characteristics of the semblance are its insensitivity to the

overall gain and its sensitivity to the amplitude variation between the channels. This sensitivity

to the amplitude variation suggests that the semblance might be an effective statistic for the

multichannel detection problem since the narrowband component with the same amplitude must
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exist in all channels in order to decide that an emitter is present. Before using the semblance

for the detection problem (2.1), pertinent properties of the semblance are listed in this section.

The proofs of these properties are presented in Appendix 3.A.

Property 3.2.1 0 < s < 1.

Property 3.2.2 If zi(n) > O for I = 1, , L and n = -M, - - -, M then s > .

Property 3.2.3 If the semblance of ({z(n) : I = 1, .. ,L;n = -M,...,M} is s then the

semblance of {czl(n) : I = 1, -- , L; n = -M, , M} for some constant c is also sz.

Property 3.2.4 If xz(n) = z(n) for I = 1,..., L then s = 1.

Property 3.2.5 Let zx(n) = cy(n) for I = 1, **, L and n = -M, ***,M where c's are con-

stants. The semblance is maximized and has the value of 1 if and only if c = c for all .

Property 3.2.6 If zl(n) = s(n) + w(n) where s(n) is the signal and wi(n) is zero mean noise,

then as the number of channels increases s - signal power/(signal power + noise power).

Property 3.2.5 states that the semblance is sensitive to the channel to channel amplitude vari-

ation and it is, therefore, utilized for the detection problem.

3.2.3 Derivation of Probability Density Functions

A closed form expression of the PDF of the semblance for arbitrary L and M is not known.

The PDF has been approximated by the F-statistic[11l by assuming that the individual xz(n)s

have a Gaussian distribution. The xr(n)'s considered in this thesis violate this assumption.

They have either Rayleigh or Rician distribution because xL(n) is the magnitude of the Fourier

transform. In this section, the PDF of the semblance for a simple case is derived. The simple

case to be considered uses L = 2 and M = 0, hence the semblance (3.3) simplifies to

(z 1(0) + X2(0))2
2(z1 (0)2 + X2(0)2)

To simplify the notation, xz(0) and x2 (0) are denoted by z1 and 2, respectively. The PDF of s

can be derived by first computing the cumulative distribution function, which is determined by
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integrating the joint PDF Pz,z 2 (Xl, z2) over appropriate regions, then differentiating it. This

method is conceptually straightforward but implementationally tedious. A simpler derivation

uses the polar form of xi and z2 so that the semblance, (3.4), becomes

s= 1 + I sin(28) (3.5)
2 2

where = tan-l(!Z) because z = rcose and x2 = rsin6. To find the PDF of , which is

denoted p(8), the joint PDF, p,,a(r, 8), is computed first, then the unwanted variable, r, is

integrated out. Because the Jacobian of the polar transformation is , the joint PDF is

pr,e(r, ) = r p, I,z(r cos , r sin 0).

The random variables, zl and x2, are independent and identically distributed. Because the

PDF of zl is Rayleigh density pz (i) = -j exp(- 22.) for some constant a and xl > 0,

r3 ,2
Pr (r, j) = 4 sin(28)e 2

for r > 0 and 0 < 0 < because rcos0 > 0 and rsin0 > 0. The PDF of is obtained by

computing the marginal density

pe() = pj p,0(r, )dr = sin(28).
=0

To compute the PDF of s, given by (3.5), the PDF of 4 = 28 is computed first by

1 P ) sin4
2 2 2

for 0 < < 7r. The PDF of = sin X is determined as 52, p. 99

1 s
pa(s) =- (pO(sin -l ( 9)) + p(7r - sin-'(9))) = mp

for 0 < s < 1. Finally, the PDF of s = + is

2s- 1
p,(s) = 2p(2s - 1) = s-1 (3.6)

for < s < 1. Figure 3.1 shows the analytically derived PDF (3.6) compared with the histogram

which is known to provide an unbiased and consistent estimate of the PDF[66,53,44,17,12]. The

histogram is made using 1000 samples and 20 bins. The length of the data is 1024 samples

and the variance of WGN is 2. As expected, the analytically derived PDF fits the histogram

closely. The figure also shows the modified beta PDF approximation, which will be described

in the next section.
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Probability Density Function

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.9e

Semblance

Figure 3.1: The plot of the analytically derived PDF of the semblance, a his-

togram made using 1000 samples and 20 bins, and the modified beta PDF fit
to the samples. There are 2 channels(L) of 1024 samples(N) and both channels

contain only WGN with variance(a 2) 2.
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3.2.4 Approximation of Probability Density Functions using the Beta Prob-

ability Density

The PDF of the semblance cannot be derived analytically for the general case. However,

it can be accurately approximated by the beta probability density function as will be shown

in this section. The approximation using the beta PDF is motivated by the fact that the beta

PDF can match the finite range of the semblance exactly and its parameters can be adjusted

to provide a close fit.

In statistics, the beta PDF has been frequently used to approximate PDFs with a finite

range because many different finite distributions can be obtained by adjusting the parameters.

The beta PDF is related to X2 density[29], gamma density[13,4,76, F-density[4,76], student's t-

density [4,761, and order statistics[6,63,291. In addition, when the samples have the unit Gaussian

distribution, Murthy[46] states that the semblance has the beta distribution.

The standard beta PDF is defined for 0 < s < 1 as[29,45,8,76]

= r( b) -

]F(a)F(b)

where the gamma function is r(x) = fo t_le-tdt and a and b are free parameters. For the case

where xz(n) > 0 for = 1,. -., L and n = -M, , M, the lower bound of the semblance is 1/L

by Property 3.2.2. Therefore, in this thesis, the beta random variable will be transformed to

match this range exactly. Let z be the beta random variable and define a new random variable

y such that y = L1 x + . Because 0 < z < 1, the new random variable has the desired range

1 < < 1. The PDF of y, which will be referred to as the modified beta PDF, is defined as

r(a+b) ( L ) a+b - )a-I(1 - y)b-1 I < < 1
P1(Y) b= L- L L-(3.7)

0 otherwise.

Next, the parameters a and b will be determined by the ML estimation method using N

independent samples. Given N independent samples of semblance, S = (sl,s 2,.. ,SN)T, the

ML estimates of a and b are obtained by solving the likelihood equations:

log(sa, b) = and logp (Sl a, b) =
ca a a=a ab 6=
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where

L
log(pp(Sa, b)) = Nlog -1 + N(log(r(a + b)) - log(r(a)) - log(r(b)))

+( - 1) log Lyi1+ (b- ) log L (1- ypi).
'=l -1 i=1

Therefore, the likelihood equations become two coupled nonlinear equations which cannot be

directly solved. The ML estimates are determined iteratively using the fact that the ML esti-

mate maximizes the log likelihood function log(pp(Sja, b)). In this section, this multidimensional

nonlinear optimization problem is solved by an iterative method called the downhill simplex

method[55] because the derivatives of the log likelihood function are unavailable. The downhill

simplex method performs well for this optimization problem because good initial estimates of a

and b are obtained using the moments. The mean and the variance of the modified beta density

(3.7) are

L-1 a 1
mean(y) = = a + -L a+b L

var(y) =v= = L ) ab
vry L (a - b)2(a + b + 1)'

These equations are used to express a and b in terms of the mean and the variance which are

used as the initial values

(1- m')((1- m')m' - v')

1- m'

where m' = - (m, - ) and ' = (4T)2 v,. In the following, the mean, m, and the variance,

v>, will be replaced by the sample estimates and the iteration converges in a few steps.

Figure 3.2 shows the histogram of the semblance and the modified beta PDF approximation

for a particular set of experiments. The histogram is made using 1000 semblance values and 20

bins. The semblances are generated using 8 channels of 1024 length data and a gate size of 5

samples. The amplitude of the narrowband component is 3.5. Figure 3.2(a) is computed using

the semblance values generated with WGN variance of 2000 and the narrowband component

in 4 out of 8 channels. Figure 3.2(b) is computed using the semblance values generated with

WGN variance of 4000 and the narrowband component in all 8 channels. Figure 3.2(c) is
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computed using the semblance values generated with WGN variance of 2000 and the narrowband

component in all 8 channels. This figure strongly suggests that the modified beta PDF provides

an excellent fit to the semblance PDF.

The previous discussion assumes that the modified beta density is an acceptable choice and

Fig. 3.2 indicates that it is indeed a reasonable assumption. This assumption is tested by a

goodness-of-fit test of the composite hypotheses:{ H 0 : PDF of s isp(sa, b)

H 1 : PDF of s is not p(sa&, b).

An often used test statistic is[8,5]

T = E (Nk - k)2 (3.8)E= 1 nkk=l1

where N is the total number of samples, K is the number of bins, Nk is the number of samples

in the kth bin, and nk is the expected number of samples in the kth bin which is defined as

= N kth bin

The number of bins and the sizes of the bins are determined arbitrarily. However, K should be

large and the bin sizes should be determined to have all nis approximately the same. For this

problem, K is specified to be 2 for some constant c and the bins are determined such that

ni sZI k ,, p(x)dxJK .in
for all i = 1,2, .. , K and where s,a and smin denote the maximum and the minimum sample

values, respectively. The cumulative distribution function of the modified beta PDF is

B() = r(a)r(b) (L - )1dy

By using the change of variables t = L (y - ), the above expression becomes

Bp(z) = J L-L) r(a + b) ta( - t)bldt = 
r()r(b) -t(

where the incomplete beta function, I(a, b), is defined as

I:(a, b) = r(a + b)t(1 - t)bldt.r(a)r(b)
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Probability Density Function
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Semblance

Figure 3.2: A histogram of the samples plotted in the dashed line and the mod-

ified beta PDF with the ML estimate parameters plotted in the solid line. The
histogram is made with 1000 samples and 20 bins. The semblances are gener-
ated using 8 channels(L) of 1024 length data(N) and a gate size of 5 samples.
The amplitude(A) of the narrowband component is 3.5; (a) curves are computed
using the semblance values which are generated with WGN variance(o 2) of 2000
and the narrowband component in 4 out of 8 channels; (b) curveq are computed
using the semblance values which are generated with WGN variance(o 2 ) of 4000
and the narrowband component in all 8 channels; (c) curves are computed using
the semblance values which are generated with WGN variance(o 2 ) of 2000 and
the narrowband component in all 8 channels.
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Therefore, ni w (Be(sma) -B(smin)). Using {sl, s2,, N}) samples, K bins are determined

recursively as follows. First, xl is determined to satisfy

B$() (B(sma) + Bp(Smn))

2

In this section, the above nonlinear equation will be solved by finding the root of the equation

9(x) = BO(z) - (B6(maz) + Be(Smin))
2

by the bisection method using smin < zl < sma,,. After x1 is determined, 2 and x3 are

determined, separately, to satisfy

B(z2) = (Bo(zi) + B(s,,=z)) and B(X3) = (BO(Smin) + Bo(z1 ))
2 2

This process continues until all x's are determined, then the boundary locations of the bins are

specified by the x's.

A reason for the popularity of the T statistic (3.8) is that under the Ho hypothesis, T has

X2 distribution with K - 3 degrees of freedom, denoted Px2 (z), when N is reasonably large.

If the probability of incorrectly rejecting the "modified beta PDF is correct" hypothesis, i.e.

prob(declareH1IHo is true), is specified to some value a, the threshold, y, is determined by

a= PX2-3 (z)d.

The hypothesis that the samples are beta distributed is accepted if T < 'Y. For K = 16, a = 0.1

requires I = 19.81 and ca = 0.01 requires y = 27.69. Table 3.1 shows the mean and the standard

deviation of the test statistic, T, obtained using 100 trials with 1000 semblance samples(N),

and 16 bins(K), for the X2 fit. The semblance values are generated by setting the gate size to

5 samples and varying the number of channels and the signal to WGN ratio. The values in the

table confirm that the modified beta density provides an acceptable fit to the semblance values.

3.3 Numerical Evaluation of Detection Statistics

The probability of detection, denoted PD, and the probability of false alarm, denoted PF,

are computed by

PD = PIH1(zIH1)dz and PF= pIH,1 ,(ZiHo)dZ
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T
channels SNR mean std. dev.

4 0.1 13.87 4.84
4 12.5 16.36 5.87
8 0.1 14.12 5.54
8 12.5 13.37 5.63

Table 3.1: The mean and standard deviation of T of the modified beta PDF fit
using 100 trials with N = 1000 and K = 16. If the probability of declaring that
"the PDF of the semblance is not modified beta PDF" given that the PDF is
truly beta PDF is set to 0.1 then the hypothesis that the samples are from the
beta PDF is accepted when T < 19.81. If the probability is set to 0.01, then the
hypothesis is accepted when T < 27.69.

where z denotes any detection statistic and tr is the threshold. The ROC is specified by the

(PF, PD) pairs. However, the analytical evaluation of the probability of detection and the prob-

ability of false alarm is often intractable because the conditional PDFs of the detection statistic,

PRIHI(RIH1) and PRIH,(RIHO), are usually too complicated or are unknown. There are three

ways of handling this difficulty. In the first method, the unknown PDFs can be approximated

using the histogram, for example, then the approximate PDFs are integrated numerically. In

the second method, the integrals involved in computing PD and PF are estimated using the

Monte Carlo integration. In the third method, the probability of detection and the probability

of false alarm are computed using Monte Carlo detection computations. When a large num-

ber of random samples are used, the second and the third methods become approximately the

same. In computing the ROC of the average and the semblance, the Monte Carlo detection

computation method is used. Because they are closely related, the Monte Carlo integration

and the Monte Carlo detection computation methods are discussed next.

3.3.1 Monte Carlo Integration for Receiver Operating Characteristic

To compute PF or PD, an integral of the form

a = jd p(z)dz (3.9)

must be computed. For the probability of detection, pz(z) = PzIHi (zI H), and for the probability

of false alarm, pz(z) = pzIH0 (zIHo). The above integral will be approximated using the Monte
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Carlo simulations as(21,20,621

= M (3.10)

where M,7 is the number of samples from the PDF pz(z) whose value is greater than or equal

to r7 and M is the total number of samples used.

To compute the bias and the variance of the above estimate, (3.10) is interpreted in the

following way. The integral (3.9) can be written as

,= g(z)pz(z)dz (3.11)
-oo

1 if z > r/
with g(z) = z > Using M independent samples {z 1,Z 2, ,zM} from the PDF,

0 if z < 17.
pz(z), the Monte Carlo estimate of (3.11) is given by

1 M
& =. Z (zi) = M (3.12)

$=l

which is (3.10). The bias is defined to be a - E{&} and from (3.12)

E{} = M EE{g(zi)} = E{g(z)} = g(z)p(z)dz = (3.13)
i=1 J 00

where E{.} denotes expectation operation. Therefore, the Monte Carlo estimate is unbiased.

Using the independence of the samples, the variance of the estimate is computed as

Va{&} = arg(z) = (3.14)M

Therefore, the Monte Carlo estimate is consistent and the standard deviation of the estimate

decreases as _M.1 The convergence rate can be approximated using the Chebychev inequality

or the central limit theorem[32].

The Monte Carlo estimation, given by (3.10), is the ML estimate given M observations.

Specifically, it will be shown next that given M observations, the a estimated by (3.10) is the

ML estimate of the true ct defined in (3.9). Given that PF = a, the probability that M, of M

samples are greater or equal to t is determined to be

prob(M,7 of M zi > 7IPF = a) = (M)QM (1 - )M- M .

'There are several techniques of reducing the variance of the Monte Carlo estimate[60,31. However, they
require closed form expressions of the PDFs, hence they are not applicable.
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To compute the ML estimate of a, the derivative of the log of the above expression with respect

to a is taken to obtain

M (M- Me) = 0.

Therefore, the ML estimate of a is M. The mean (3.13) and the variance (3.14) are easily

verified using the moments of the binomial distribution as

M k
E{&} = M )k(i -a)Mk =a

k=0

Var{&} = ( - )(M)k(1 - a)Mk = ( a)
k=o

3.3.2 Monte Carlo Detection Computation

The previously described Monte Carlo integration method estimates the ROCs by approxi-

mating the integrals of the conditional densities (3.9) for each threshold value, . This method

computes the threshold, rl', for a probability of false alarm, then a sample, z', is hypoth-

esis tested by z' ' r'. In this section, an alternative method which is referred to as the
H4,

Monte Carlo detection computation method is discussed. A reference set containing M sam-

ples, {( 1, z 2 , , ZM}, which are consistent with the Ho hypothesis is computed. When a sample,

z', is to be hypothesis tested, a new set {zl, z 2 , ZM, Z') is formed by appending the test sam-

ple to the reference set. Using a specified false alarm probability, which is denoted by PF,O, a

cutoff sample number is computed as

K=M x PF,0. (3.15)

The hypothesis testing becomes

declare H1 if z' is among K largest of the new set

declare Ho: if z' is not among K largest of the new set.

This Monte Carlo detection computation is Barnard's Monte Carlo test[58,2,42,25,28] special-

ized for the ROC computation. This method and the method described in the previous section

become identical as the number of samples increases. Because the size of the required number of

random samples has not been analyzed non-asymptotically, an analysis of the required number

of random samples is presented next.
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The false alarm probability obtained by the above Monte Carlo detector, denoted PF,MC,

is determined using results from order statistics[6,34,76].

PF,MC = prob{O sample from {z 1, Z2, , ZM} has value > z'}

±prob{l sample from {zl, z2 , , ZM} has value > z'}

+ - * * + prob{K - 1 samples from {z1, Z2, , ZM} has value > z'}
K-1

= (,)f ( -)
r=O

where f = f, pzlHo(zlHo)dz. The above equation is concisely expressed as

PF,MC = 1- If(K,M - K + 1)

using the incomplete beta function[l] 2

M
If(K,M-K + 1) (M)fr(l-f)M-,.

r=K

Unfortunately, the true false alarm probability, f, cannot be computed for a given z' because

the conditional density, PztHl(z Ho), is unknown. However, the above false alarm probability,

PF,MC, can be set to a desired probability of false alarm, PF,O, and the corresponding true

probability of false alarm can, then, be computed by solving

PF,O = 1 - I(M PF,O, M(1- PF,O) + 1)

for f using different values of M. Table 3.2 shows the true probability of false alarm, f,

as a function of the number of samples, M, when the probability of false alarm for this Monte

Carlo detector, PF,MC, is set to the desired value. As expected, a smaller PF,MC requires more

samples to make the value of the true probability of false alarm closer to the desired probability

of false alarm. For PF,MC = 0.01, 1000 samples of the Monte Carlo simulation provide an

adequate estimate.

3.4 Examples of Receiver Operating Characteristic

The PDFs of the average and the semblance have been approximated. Because numeri-

cal evaluation of the required integrals is difficult, the ROCs of the statistics are evaluated

2The incomplete beta function is defined as ,(a, b) = fo r+ t-'(1 - t)b-ldt.ria~r(b!
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PF,MC = 0.1 PF,MC -= 0.01 PF,MC = 0.001
M f. M f Mf

100 0.1383 100 0.0450 100 0.0329
200 0.1272 200 0.0327 200 0.0202
500 0.1172 500 0.0230 500 0.0107

1000 0.1122 1000 0.0186 1000 0.0068
2000 0.1086 2000 0.0158 2000 0.0046
5000 0.1054 5000 0.0135 5000 0.0029

10000 0.1038 10000 0.0124 10000 0.0018

Table 3.2: The true probability of false alarm(f) as a function of the number of
samples(M) when the Monte Carlo detector's probability of false alarm(PF,Mc)
is set to the desired value(PF,o).

numerically using the Monte Carlo detection computation in this section.

The ROCs of the average and the semblance used as the detection statistics for various

hypothesis testing problems are computed using the method described in Section 3.3.2. The

ROCs are computed using 1000 random samples of H 1 data and 1000 samples of Ho data.

To estimate the probability of detection at some probability of false alarm value PF, a cutoff

sample number K of (3.15) is chosen to be PF x 1000. Each sample of the H 1 data set is checked

to determine if it is larger than the Kth largest sample from the Ho data set. Let M denote

the number of samples of the H1 data set which are larger than the Kth largest sample of the

Ho data set, then the estimated value of the probability of detection is M/1000. This process

is repeated for different values of PF to estimate the ROC curve.

Figure 3.3 shows the ROCs for the detection problem where the narrowband component

exists in all channels under the H1 hypothesis and the narrowband component exists in only

some of the channels under the Ho hypothesis. For this example, the received data contain a

total of 8 channels and the length of the received data, N, is 1024 samples. The amplitude

of the narrowband component, A, is 3.5 and the variance of WGN, 2, is 2000. Data for

the H 1 hypothesis are generated by computing the magnitude of the complex Gaussian random

variable. The real part of the random variable has AN mean and N 2 variance and the imaginary

part of the random variable has zero mean and N 2 variance. Data for the Ho hypothesis are

generated by computing the magnitude of a complex Gaussian random variable with zero mean

and N2 variance for both the real and the imaginary part.

The ROCs of the average are marked by 'al', 'a2', ., 'a7' where the integer indicates
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r Operating Characteristics
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Figure 3.3: The ROCs of the average are plotted in the dashed line and the

ROCs of the semblance are plotted in the solid line. The ROCs are computed

by the Monte Carlo detection computation using 1000 samples. The length of

data(N) is 1024 samples. The number of channels(L) is 8. The amplitude(A) of

the narrowband component is 3.5. The variance of WGN(a 2 ) is 2000. Under the

H1 hypothesis, the narrowband component exists in all channels. The curves

marked by 'al', 'a2', -., 'a7' indicate the average ROC curves. For example,

'a7' indicates the ROC of the average for the case where 7 of 8 channels have the

narrowband component under the Ho hypothesis. Similarly, the curves marked
by 'sl', 's2', -., 's7' indicate the average ROC curves. The gate length of the
semblance is 1.
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the number of channels containing the narrowband component under the Ho hypothesis. For

example, the ROC curve marked by 'a7' corresponds to the case where the received data

contain the narrowband component in 7 of 8 channels under the Ho hypothesis. The detection

probability is high when the Ho hypothesis data contain the narrowband component in less

than half of the total number of channels. The curves marked by 'al', 'a2', and 'a3' display

this characteristic of the average. On the other hand, the curves marked by 'a5', 'a6', and

'a7' indicate that the detection performance of the average degrades noticeably when the Ho

hypothesis data contain the narrowband component in most of the channels.

The ROCs of the semblance are marked by 's1', 's2', -.., 's7' where the integer indicates

the number of channels containing the narrowband component under the Ho hypothesis. As

was the case for the average, the probability of detection degrades as the number of channels

containing the narrowband component increases. However, compared to the average, the sem-

blance has a significantly improved probability of detection when many of the channels contain

the narrowband component under the Ho hypothesis as indicated by the 's5', 's6', and 's7'

curves. In general, when more than half of the channels contain the narrowband component

under the Ho hypothesis, the semblance is the preferred detection statistic. Alternatively, when

less than half of the channels contain the narrowband component, the average is the preferred

detection statistic.

3.5 Alternate Multiple Hypothesis Testing Formulation

In the previous section, it was shown that the average and the semblance have different

detection performance characteristics and the preference between the two statistics depends

on the structure of the Ho hypothesis data. In this section, a new multiple hypothesis test-

ing formulation, which ensures that the narrowband components have the same amplitude, is

developed for the detection problem.

The received data model (3.1) is modified to explicitly indicate the existence of the narrow-
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band component with equal amplitude as

rl bls- + w,

- '(3.16)

rL bLSL + WL

where, as before, p is the narrowband component vector and w is WGN vector with zero mean

and a2 variance. The scalar, bl's, are either 0 or 1 to indicate the absence or presence of the

narrowband component. To simplify the discussion, the frequency domain model of (3.16) is

used in the following. Let p = (pl, P2, PL) T with pi r(n)e therefore, Pi is the

Fourier transform evaluated at the frequency, wl. The above model is transformed to

P1 (bl- eAi l + W 1

PL bLANe J L + WL

where W1 denotes the Fourier transform of WGN at w = wi. Because E(pi) = AN and Re{pi}

and Im{pl} are uncorrelated Gaussian densities with variance 2, the joint PDF becomes

1 1 AN AN

PPIeA,(eplA, ) = (N 2 ) exp(- - ANu) (p_ AN U))(7rNO,)L No,--2(- 2-

where (.)H denotes the conjugate transpose and u = (bled~ ' , b2ej2,. , bLej4 L)T. The unknown

parameters A, 41, 02, *- , and OL are replaced by the ML estimates which are computed by

max 1og PlA,O(pjA, ) = max l- (P _ ANu ( _ AN u)]- Llog(ir N 2).
A,, ...,0- A,0l,.. , N2 2

The above maximization with respect to A and bl's results[33] in the estimates

= arg{pl} and A = Hi=2 bP
N fl f N EL lb,

This multiple hypothesis detector computes the log-likelihood of all possible hypotheses and

then selects the hypothesis having the maximum value. Therefore, the selection is made by

max ( )H ( pP A ) - L log(irNa2 ) + ', (3.17)
k Na 2 -jiL)2 2

where k indicates all hypotheses and 'yk's are the constants set to obtain the desired probability

of false alarm. As with all multiple hypothesis testing methods, when the a priori probabilities
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are unknown, 7k's must be set experimentally which often makes multiple hypothesis testing

methods difficult to implement.

Replacing the unknowns by the ML estimates in (3.17), the log-likelihood becomes

k - ( N-)( - ) - Llog(2rN 2) + Y

1 (pH)2
N Hp ( - ( )H,) - L log(rN,) + 7A.

By removing the common terms which appear in all k's, the above log-likelihood further

simplifies to

Lk = - (1_ -( ) + (3.18)
(pH )(_ fi)

The first component of the above expression is pHp = L=i1 pl2 which is the previously dis-

cussed average scaled by L. The second component is written as 1 - S with

s (H_)2 (Ei=1 blplI)2

(pHp)( ) (l-1= b)(E-,l II 2)

which can be interpreted as a generalization of the semblance defined by (3.3) for multiple

hypotheses. Because bl's indicate the existence of the narrowband component, if the narrowband

component exists in all L channels, S = e which is (3.3) with M = .

The multiple hypothesis log-likelihood (3.18) is a function of the average and the general-

ized semblance S. In general, measurements of a hypothesis testing problem are completely

summarized by the sufficient statistic. If the average and S are viewed as the "generalized suf-

ficient statistics" of the detection problem, then all relevant quantities of the received data are

summarized by the average and S. The detection statistic should, therefore, be a function of

the average and S only. Therefore, the log-likelihood (3.18) suggests that a combination of the

average and the semblance might be an effective detection statistic. The semblance rather than

the generalized semblance S is used because a binary hypothesis test is desired. In Chapter 4,

the combination of the average and the semblance are examined.

To conclude this discussion of the multiple hypothesis testing, an implementation of (3.18)

is briefly discussed. As mentioned earlier, selecting the constants, 's, of (3.18) is difficult but

inherent in any multiple hypothesis testing method. A simple way of selecting the constants is

discussed. For the L channel case, 2L log-likelihoods must be to calculated. However, because
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only the number, not the identity, of the channels containing the narrowband component is

relevant, only L log-likelihoods need to be computed. Given L magnitudes of the Fourier

transforms, which are denoted IPl IP, IP21,, IPLI, they are sorted in ascending order and labeled

pl such that 1P1i > IP21 >- > ILI. To check all Lk's which correspond to the hypotheses that

any J of L channels contain the narrowband component, only the J largest IMl's need to be

used. Therefore, selecting the maximum of the log-likelihood (3.18) simplifies to

O<!J< J

The constants; -J'-s, are set to remove the contribution due to WGN. When the received data

contain only WGN,

1 02 jNa 2

E('j) = (JN 2 + J(J -1) ) = N 2(- +1- )
J 4 4 4

because E(pjll2 ) = No 2 and E(IIjPkI) = N 2 from the fact that AIt has a Rayleigh density.4

Therefore, to remove this bias, '7 = -aJNa 2 , where a is an adjustable parameter. Finally,

this multiple hypothesis testing detector computes

1 J
max (L IJpII)2 - oeJNa2 (3.19)

1=1

and decides that an emitter exists if J = L. This detector will be compared to the combined

statistic in Chapter 4.

3.6 Summary

In this chapter, detection using the average or the semblance was discussed because both

utilize data from all channels collectively. The PDFs of the statistics, which are necessary to

compute the ROC, were approximated. However, they are numerically difficult to evaluate,

hence it was necessary to compute the ROCs using the Monte Carlo simulations. The Monte

Carlo detection computation was used to compute the ROCs. A conclusion made from the

ROCs of the average and the semblance, as shown in Figures 3.3, is that the average performs

better when less than four channels contain the narrowband component while the semblance

performs better when more than four channels contain the narrowband component under the

Ho hypothesis. Neither statistic performs well for a wide range of the received data model.
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In general, the average performs better than the semblance when more than half of the

channels contain only wideband noise under the Ho hypothesis. The semblance performs better

than the average when more than half of the channels contain the narrowband component

under the Ho hypothesis. A new multiple hypothesis testing formulation of the detection

problem was discussed to motivate the combined use of the average and the semblance which

are interpreted as the "generalized sufficient statistics" of the detection problem. To maintain a

good detection probability over a wide range of received data, a new class of detection statistics

will be developed by combining the average and the semblance in Chapter 4.
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Appendix 3.A

Semblance Properties

The semblance properties summarized in Section 3.2.2 are proved.

Property 3.2.1 0 < s < 1.

This follows from Cauchy's inequality: (=l albi)2 < If=l at l=x b2. Let a = xl(n) and

b, = 1 for I = , ,L. Then the inequality simplifies to (L 1 X(n))2 < tLEL =1 (n)2 .

Using the above inequality in the definition of the semblance

n=-M (Et1 xi(n)) n2 F (L EL 1 xil(n)2)
s= < 1.

En=-M EL=1 xl(n) L EM (n)2

The inequality s > 0 follows from the fact that the semblance is a ratio of two positive

quantities. O

Property 3.2.2 If xzl(n)> O for I = 1, * , L and n = -M, * , M then s > Ž.

The semblance is written as

= - M(F

1 2 En=- M =l k+lz(n)k(n) > 1

+ L pM -M L -- - L ~En=M L == 1 2x(n)2 

because the second term is always greater than or equal to zero. 

Property 3.2.3 If the semblance of {xl(n): I = 1,.---,L;n = -M,.- ,M} is s then the

semblance of {cxl(n): l= 1, , L; n = -M,* ., M} for some constant c is also s,.

This follows directly from the definition. C

Property 3.2.4 If z(n) = z(n) for = 1,- ... , L then s = 1.

This follows directly from the definition. 

Property 3.2.5 Let xz(n) = cly(n) for I = 1,.. .,L and n = -M,---,M where ci's are con-

stants. The semblance is maximized and has the value of 1 if and only if ct = c for all 1.
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If ct = c then the semblance is 1 from the above two properties. The maximizing choice of

ci's is shown next.

n= -M (L1 ciy(n)) a

Lf2=_-M C 1 c(L y(n)2 _

with a = (Yj= 1 cL)2 and E _ Y= l c2. The maximizing ct's are determined by solving a set

of equations given by Oc = 0 for I = 1, · , L.

as _ 1 L2 C= - 2aci 
- -0.aci L 2.

Therefore, c = 1 so they are independent of i and are equal. [

Property 3.2.6 If zi(n) = s(n) + w(n) where s(n) is the signal and wl(n) is zero mean noise,

then as the number of channels increases s ~- signal power/(signal power + noise power).

Using the definition of semblance and replacing zi(n) by s(n) + wl(n),

_ n=-M (L sn2 + 2Ls(n) l_ wl (n) + (L wl(n))2)

Ln=-M (Ls(n)2 + 2s(n) ln) = w()2)

but limL-oo ,L-=1 wl(n) 0 O. Therefore,

=-M S(n)2

S =-M s(n)2 L = (M )2

G
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Chapter 4

Combining Average and Semblance

In Chapter 3 it was shown that if the received data under the Ho hypothesis contain only

wideband noise, the generalized likelihood ratio test(GLRT) detection statistic for the hypothe-

sis testing problem is the average. When the received data contain the narrowband component

under the H0 hypothesis, the average performs poorly because it is sensitive only to the total

power. Thus, the average is an unsatisfactory statistic for the detection problem described by

(2.1) in which all channels must contain the narrowband component in order to decide that an

emitter is present. To improve the probability of detection for the cases in which the narrow-

band component exists under the H0 hypothesis, the semblance was considered as a detection

statistic. Because the semblance is sensitive to the existence of the narrowband component

in all channels, it is suitable for the detection problem described by (2.1). It was shown in

Section 3.4 that the semblance is particularly effective when the received data under the Ho

hypothesis have the narrowband component in more than half of the channels. Unfortunately,

however, wideband noise alone can produce a high semblance value because the semblance is

insensitive to the power of the signal. Therefore, in this chapter, a new detection statistic

is developed to take advantage of the sensitivity of the semblance to the correlation between

channels and the sensitivity of the average to the signal power. A new detection statistic will

be obtained by combining the semblance and the average as motivated by the log-likelihood of

Section 3.5. The log-likelihood function suggested a product of the average and the generalized

semblance, however, the semblance will be used to obtain a binary hypothesis test.

A statistic formed by combining the semblance and the average should have good detection
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performance over a wide range of received data under the Ho hypothesis. It should perform as

well as the average alone and the semblance alone for all possible received data. To determine

a combined statistic, the approach taken in this chapter is to treat the semblance and the

average as two random variables which are combined by a commutative operation. To weigh

the average and the semblance equally, their PDFs are matched before the combination. The

resultant combined statistic has superior performance as will be shown by its ROC.

An optimal detection statistic can be derived using the LRT by treating the average and the

semblance as the measurement to a hypothesis testing problem. Unfortunately, the derivation

yields a closed form solution only for a simple case. For this simple case, it will be shown

that the combined statistic using the PDF matching performs as well as the LRT statistic.

In addition, statistics are designed by treating the average and the semblance as two features

of a pattern recognition problem and are compared to the combined statistic. This chapter

concludes with a comparison of the ROCs of the different statistics.

4.1 Combining Average and Semblance Using Probability Den-

sity Function Matching

In this section, the average and the semblance are combined by requiring that both be used

with equal weighting. This requirement suggests that the combining function, f(a, s), should

satisfy the following properties:

1. f(a,s) should be symmetric, f(a,s) = f(s,a).

2. f(a, s) must change equally to equal changes in a or s, f(a + A, s) = f(a, s + A)

3. f(a, s) must increase monotonically as a or s increases.

where a denotes the average and s denotes the semblance. The first and the second proper-

ties suggest that the combining function should not distinguish between the average and the

semblance. The third property is required in order to use the threshold test for detection.

Before the above properties are used to determine f(a, s), a general comment about any

detection statistic which is determined by combining the average and the semblance is made.

The ROC of the detection statistic, z = f(a, s), is-completely specified by the functional form
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of f(a, s). If the PDF of the average and the semblance, conditioned by the H1 hypothesis or

the Ho hypothesis, are known, the conditional PDF of z is determined by

pZ(zH 1) dz = f Pa iH(as)dads

for i = 0 or 1 where R, is the region in a - s plane such that z < f(a, s) < z + dz. When the

combining function f(a, s) = a + s is used, the PDF of z is the convolution of the PDF of a and

the PDF of s assuming that the average and the semblance are independent. Using the fact

that the PDF of s has a much narrower width compared to that of a as discussed in Chapter 3,

the result of the convolution is approximately equal to the PDF of a. Therefore, the PDF of the

combined statistic will be mostly determined by the PDF of the average. To ensure that the

combined statistic will be equally determined by the average and the semblance, the PDF of the

average will be mapped to match the PDF of the semblance before the combining operation is

performed. The discussion on different mapping methods is deferred to Section 4.1.1 and 4.1.2.

In the remainder of this section, a mapping is assumed to have been performed such that the

PDF of the mapped average, , is approximately the same as the PDF of the semblance. Next,

a combining function using a and s is developed by satisfying the above functional constraints.

The first property which must be satisfied by the combining function is the symmetry,

f(a,s) = f(s, ). This is satisfied by a wide variety of functions; two particularly simple

functions are f(a,s) = gl(a + s) and f(a,s) = g2(a s) where gl(.) and 92(.) are arbitrary

functions. The third property requires that f(i, s) must increase monotonically as a or s

increases. Because both a + s and a. s monotonically increase as a or s increases, gl(.) and 92(.)

must be monotonically increasing functions. Because the detection statistic can be transformed

by any monotonic function without affecting the ROC, the functions gl(.) and 92(-) can be

removed. The combining functions which satisfy both the first and the third properties are

a + s and a · s.

The second property requires that a change in z due to a A increase in the mapped average

should be same as the change due to a A increase in the semblance. The probability of detection

and the probability of false alarm are affected equally by the A increase in either a or s. because

the effects of a and s are summarized completely by zo = f(ao + A, so) = f(do, so + A), where
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ao and so are some particular values, and

PDo= pzl(zlHl)dz and PF,o = PzloH (ZlHo)dz

Because a * (s + A) • (a + A) s, the combining function which satisfies all three properties is

f(a,s) = a+ .

Different methods of matching the PDFs will be discussed next.

4.1.1 Probability Density Function Matching by Transform Functions

In this section, transform functions which map the average to match the PDF of the sem-

blance will be developed. As discussed in Section 3.1.2, when the channels contain only wide-

band noise, the PDF of the average can be approximated by the truncated Gram-Charlier series

as
I (a - d)2 -1((a

pa(a) 2 exp(- )(1 + 6((a-a)- 3(a-))) (4.1)
,JZi2 22 6

for a > 0 where a= L rN2, a2 = (2- ) h2, and ms3 (2 ._ . L is the number of
2

channels, N is the data length, and a 2 is the variance of WGN. As developed in Section 3.2.4,

the PDF of the semblance is approximated by the modified beta density

(ca + b) L +Cb-

r(ca)r(cb) L L

for < s < 1 where Ca and cb are constants. A transfer function h(a) with the property

that the transformed variable a = h(a) has a PDF which is equal to the PDF of s is desired.

Unfortunately, a perfect transformation resulting in identical PDFs is difficult to determine.

Hence, transformations which map the range of the average to the range of the semblance are

examined to select the best transformation. Three possible transformations which map the

range 1[, o) to [ , 1 are:

1. arc-tangent transformation: a = ht(a) = 2 L-1 arctan(ata) + L

2. rational transformation: a = h,(a) = L-l1 + 

3. hyperbolic tangent transformation: = hh(a) = L tanh(caha) + 1
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where at, a, and ah are free parameters adjusted to obtain the best match. The transformed

PDF is determined by

Pa(a)= d P(a)

where a* denotes a expressed in terms of a. Using (4.1) in the above equation, the arc-tangent

transformation, ht(a), results in

Pa 7pa rL l-(1+ tan2(- La )) Pa(- tan( ))2 Iat 2 --1 crat 2 L-1

for < < a < 1. Similarly, the rational transformation, h,(a), results in

L-1 1 1 L - 1
L a,(1- a)2 , L(1 - a)

and the hyperbolic tangent transformation, hh(a), results in

L(L- 1)Qh 1 h' -
(L - 1)2 + (La- 1)2 Pa( tanh L

Unfortunately, they do not have the same functional form as the beta density (4.2). The free

parameters, at, a, and ah, will be selected to transform the mean of a, denoted ma, to the

mean of s, denoted m,. The parameter is determined to be

1 L 1
at =-tan( (m - ))

Ma 2L-1 L

for the arc-tangent transformation,

1 Lm,- 1
, mL(1 - m,)

for the rational transformation, and

ah = tanh-(L )= I og(L(1+ m,) - 2)
a , L - L(1 - m,

for the hyperbolic tangent transformation. This simple method of determining the free param-

eter does not imply that the mean of the transformed variable, a, matches the mean of the

semblance, s. Selecting a to satisfy E(a) = E(s) is an intractable non-linear problem. For-

tunately, however, this simple method of determining the free parameter is adequate for the

purpose of combining two detection statistics as the detection results will demonstrate.
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Transformation Error
E, p(n) - pa(n)l2A En p,(n) - pa(n)lA maxn jp,(n) -pa(n)

rational 4.580 0.935 10.232
arctan 3.021 0.802 8.252
tanh 0.234 0.228 1.935

Table 4.1: Errors of the probability density function mapping by different trans-
formations.

Figure 4.1 shows the histograms of the transformed averages. The figure shows that the

hyperbolic tangent transformation produces the closest match to the PDF of the semblance.

The transformations are compared numerically using three different error measures. The results

are shown in Table 4.1 which verify that the hyperbolic tangent transformation has the smallest

error for all three error measures. Therefore, in this thesis, the average will be mapped by the

hyperbolic tangent transform before it is combined with the semblance, hence the combined

statistic hh (a) s will be used as the detection statistic.

4.1.2 Probability Density Function Matching based on Cumulative Distri-

bution Function

In this section, an alternative mapping method is discussed. In this method, the PDFs are

mapped by matching the cumulative distribution functions(CDFs). The random variable a can

be mapped to obtain the desired PDF p,(s) by constructing a one-to-one mapping between the

CDF of a and the CDF of s. A unique mapping exists because the CDFs are monotonically

increasing functions. The CDF of the semblance, denoted Q,(s), is the incomplete beta function

as developed in Chapter 3. Because the closed form expression of the CDF of the average,

denoted Qa(a), is unavailable, it is approximated by integrating the histogram. The mapping

is determined by selecting a value for a, denoted ao, computing Qa(ao), then determining so

such that Q,(so) = Qa(ao). The (ao, so) pairs completely specify the mapping.

Figure 4.2 shows the histogram of the transformed average using CDF matching and the

histogram of the semblance. This method theoretically provides an exact match and even

when a finite number of samples is used, a good match is obtained. In general, this method

is more sensitive to the data than the transform method of the previous section because the

transform method uses only the mean of the data whereas the CDF matching method uses
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Histogram of the Transformed Average
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Figure 4.1: Histograms of the transformed averages using the arc-tangent trans-
formation, denoted by 'atan', the rational transformation, denoted by 'ratio-
nal', and the hyperbolic tangent transformation, denoted by 'htan', are plotted
against a histogram of the semblance in the dashed line. The histograms are
made using 2000 samples and 20 bins. The semblance and the average are com-
puted using the jointly Gaussian random variables with zero mean and variance
10.
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the histogram of the data. Because the transform method is more robust and the hyperbolic

tangent transformation performs as well as the CDF matching method, the hyperbolic tangent

transform method will used in the following.

4.2 Combining Average and Semblance Using Likelihood Ra-

tio

In the previous section, the average and the semblance were combined using a function

which satisfied a set of properties to achieve equal weighting of the statistics. In this section,

the average and the semblance are combined by applying the LRT to a hypothesis testing

problem which uses the average and the semblance as the measurements. Because the resulting

statistic is optimal in the Neyman-Pearson sense, it will be used to evaluate the previous method

for a simple case only because this optimal statistic is not known for the general case.

The detector which maximizes the probability of detection with a fixed probability of false

alarm is given by the likelihood ratio test[72]

A(a, s) = Pa,jH, (a, sHI) (4.3)
Pa,slHo(a, sjHo)

The joint PDF of the average and the semblance pa;(a, s) is derived from P1 ,...ZL(1, L)

where xi = (x(- M),z (- M + 1), ... ,(M))T is the data to be used in computing the average

and the semblance. For a simple case of L = 2 and M = 0, the average and the semblance

become

a - XI1(0) + X2 (0) (4.4)
2

s - (( 1(O) + z2(0))2

2(z1(0)2 + z2(0) 2)

For the remainder of this section zl(O) and 2 (0) are denoted by x1 and 2, respectively. The

random variables, z1 and 2, have either Rician or Rayleigh density depending on the existence

of the narrowband component and are independent. The joint PDF of the average and the

semblance is expressed in terms of the joint PDF of xl and z2 as

a,,s(a, ) = Pz (p-) + I"() (4.6)
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Histogram of the Transformed Average
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Figure 4.2: A histogram of the transformed average using the CDF matching
method is plotted in the solid line and a histogram of the semblance is plotted
in the dashed line. The histograms are made using 2000 samples and 20 bins.
The semblance and the average are computed using the jointly GausSian random
variables with zero mean and variance 10.
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where _z and 2 describe X1 and x2 in terms of a and s. The Jacobian for this transformation

is
aa aa2

J(X 1, X2)= XI a4z2 - ( 1 + X2 )(X21 (4.7)
a d 2( + 2)2(4.7)

azl 522

From the average defined by (4.4), 2 = 2a - x1 . It is used in the semblance defined by (4.5)

to obtain
a 2

_ z-2ax + 2a 2

Using the quadratic formula, the above equation is solved for z1 first, then 2 is determined.

21=a (1 - ti~) .nd a= +8 -"Therefore , ) and = a(1 +nd 

Therefore, zx - ( and xi = (A and from (4.7) the Jacobian
a(1 - / a(l1 +/L)

becomes

IJ(i)l = IJ(D)I = a 1-s
a s

The joint PDF under the Ho hypothesis is determined assuming that the narrowband com-

ponent exists in only one channel or none. From Chapter 3, for the case of wideband noise only

in both channels, the PDF of zl and X2 are

pzl(xl) = 2 exp(- XI) and p,(2)= 2 exp(-
f, 22 Nisthe 2

for x2 > O and x2 > O, where ac2 = N2, N is the length of the received data, and a 2 is the

variance of the noise. Using (4.6), the joint PDF is determined to be

2a 3 s 2s- a2

P(aalHo) = / -s exp(- 2 (4.8)

for a > O and < s < 1.

Because the narrowband component exists in both channels, the joint PDF under the H 1

hypothesis is determined using

x, z 2 +'a - z+y
Pz(zl)= XIo(3zl)exp(- 2 2 )

a n d P2(z2)= 2 IO(2)exp(- 2

where a 2 = N2 = and = (A)2. N is the length of the received data, A is the

amplitude of the narrowband component, and a 2 is' the variance of the noise. Again, using
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(4.6), the joint PDF is determined to be

3" V 1--S 53 a 2
Pa,(a, SIH1) = -4- sA-3 Io(r 1)Io(r 2)exp(--(- +')) (4.9)

for a > O and < s < 1 where rl = a(1 - i) and r2 = a(1 + /) 

If the narrowband component exists in only one channel under the Ho hypothesis, then the

joint PDF is determined to be

a 3 /s 2s-1 2a 2

pa (a, s l Ho) -S (Io(flri) + I + )) (4.10)l; -1 - 82 S3o(

for a > 0 and < s < 1.

If the received data have only wideband noise in both channels under the Ho hypothesis,

the likelihood ratio (4.3) is determined using (4.9) for the HI hypothesis and (4.8) for the Ho

hypothesis to be

A(a, s) o IO(,T)IO(,r2) .

If the received data have the narrowband component in one channel under the HO hypothesis,

the likelihood ratio (4.3) is determined, using (4.9) for the HI hypothesis and (4.10) for the Ho

hypothesis, to be

A(a, s) oc I(Or1 ) IO(1T2)
Io(B) +Io(072)

The likelihood ratio value increases as the average or the semblance increases.

The above statistic is simplified using the approximation

I,,+
1 o( 2)

because r2 > r1 > 0 and r2 > 1. For the detection statistic, Io(-)-can be removed because it is

monotonic. Finally, the detection statistic can be approximated by

.a I1- 1/g (4.11)

Unfortunately, the likelihood ratio detection statistic for the general case is unknown as dis-

cussed in Appendix 4.A. In Section 4.4, this approximate LRT statistic will be compared to the

combined statistic, hh(a) + s.
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4.3 Combining Average and Semblance Using Discriminant

Functions

In this section, classification algorithms of pattern recognition theory will be used to de-

termine the combining functions. The detection statistics will, then, be compared against the

PDF matching statistic in Section 4.4. To employ the classifications algorithms, the average

and the semblance are viewed as the features of a classification problem with two classes, Ho

and H1. Two different discriminant functions will be designed using the Gaussian quadratic

classifier method and the Fisher linear classifier method with quadratic features.

4.3.1 Gaussian Classifier

The Gaussian quadratic classifier is designed by assuming that the PDFs under the Ho

hypothesis and the H1 hypothesis are Gaussian with unknown mean and covariance. The

discriminant function is given by

A(f) = In (PlH (LIHIo)
[PfIHo (L Ho) )

(f - ) T K -l ( f - mo) - (f - ml)TK - l (f - ml) + In 
_ _ _ii0J~oi , _ _ rC) +i

where the feature vector is f = (a, s)T, mo and ml are the mean vector of the Ho hypothesis

and the H1 hypothesis data, respectively, and Ko and K 1 are the covariance matrix of the Ho

hypothesis and the H 1 hypothesis data, respectively. The above expression is rearranged to

obtain the quadratic discriminant function

dg (f) = fT Uf + Tf + w

with U = K-o - K - 1, v = 2(K1lml - Kolmo), and w = moKolm - nlKlmrl + In Ka
0 1 1 - -- -0 0 -'1'

The discriminant function describes a quadratic surface and its value increases as the average

and the semblance increase.

4.3.2 Quadratic Classifier

A general quadratic discriminant function has the form

df(a, s) = wls + w2 a + w3as + w4s2 + wsa = wTf ',
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where w = (, w 2, wW, w4 , w)T is the desired weighting vector. The weights are computed using

the Fisher linear discriminant analysis by defining a new feature vector, fI = (a, s, as, a2, s2)T.

The Fisher linear discriminant function is obtained by maximizing the normalized inter-class

distance[121, hence the cost function to be minimized is

Cf(w) wrSw=

where SB = ( - mi)(o - mi)T and Sw = EEHl(f, - rn)(L: - ml)T + :E ,,(

m0)(fl - mo) T . The desired weights are given by

w= SVl(ml - m0).

A different quadratic classifier can be obtained by minimizing a different cost function. One

possible alternate cost function is

all I'

where f denotes misclassified f'. This cost function leads to the perceptron method[12. The

solution of the minimization problem can be determined by the gradient method. Because

the resulting discriminant function is not significantly different from the Fisher discriminant

function, it is not discussed further. In fact, all three classifiers share the required characteristic

that the discriminant value increases as the average and the semblance increase. However, the

exact form of the detection statistic is rather sensitive to the training data. The effectiveness

of these as detection statistics will be examined in the next section by computing the ROCs.

4.4 Performance Comparison

The ROCs of the different statistics are determined in this section. To evaluate their effec-

tiveness for the simple case of L = 2 and M = 0, the average, the semblance, and the detection

statistic hh(a) + s are compared against the approximate optimal statistic (4.11). The ROCs

are computed using 1000 trials of the simulated data with the following parameters: 2 chan-

nels (L = 2), semblance gate length of 1 (M = 0), narrowband component amplitude of 3.5

(A = 3.5), data length of 1024 samples (N = 1024), and WGN variance of 2000 ( 2 = 2000).
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Fig. 4.3 shows the ROCs for the case where the narrowband component exists in 1 of 2 channels

under the Ho hypothesis. The figure shows that the statistic hh(a) + s performs as well as the

approximate optimal statistic. Next, more realistic cases are considered.

Figure 4.4 is computed using 5000 trials of the simulated data with the following parameters:

8 channels (L = 8), semblance gate length of 1 sample (M = 0), narrowband component

amplitude of 2.9 (A = 2.9), data length of 1024 samples (N = 1024), and WGN variance of

2000 ( a2 = 2000). It shows the ROCs for the case where the narrowband component exists

in 2 of 8 channels under the Ho hypothesis. Of course, the narrowband component exists in

all 8 channels for the H 1 hypothesis as described by the received data model (2.1). Because

the received data under the Ho hypothesis is close to the wideband noise only case for which

the average is the LRT statistic, the average performs well. As discussed in Chapter 3, the

semblance does not perform as well as the average for this case. The figure also shows that

the Fisher discriminant function statistic and the Gaussian quadratic discriminant function

statistic perform significantly better than the semblance. The combined statistic, hh(a) + s,

performs as well as the average for this case. For comparison, the multiple hypothesis detection

of Section 3.5 was also applied. By setting a = 0.1 in (3.19), the probability of detection

is estimated to be 0.63 when the probability of false alarm is 0.05 which indicates that this

detector does not perform as well as the other statistics plotted in Fig. 4.4.

Figure 4.5 is computed using 5000 trials of the simulated data with the following parameters:

8 channels (L = 8), semblance gate length of 1 sample (M = 0), narrowband component

amplitude of 3.2 (A = 3.2), data length of 1024 samples (N = 1024), and WGN variance of

2000 ( a 2 = 2000). It shows the ROCs for the case where the narrowband component exists

in 4 of 8 channels under the Ho hypothesis. The figure indicates that the Fisher discriminant

function statistic and the Gaussian quadratic discriminant function statistic perform better

than the average or the semblance alone. The combined statistic, hh(a) + s, performs better

than the other statistics. For comparison, the multiple hypothesis detection of Section 3.5 was

also applied. By setting a = 0.01 in (3.19), the probability of detection is estimated to be

0.72 when the probability of false alarm is 0.037. The combined statistic, hh(a) + s, performs

significantly better. For example, it has a probability of detection of 0.98 when the probability

of false alarm is 0.02.
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Figure 4.3: Comparison of ROCs of the statistics with the parameters: the num-
ber of channels(L) is 2; the semblance gate length is 1 (M = 0); the amplitude(A)
of the narrowband component is 3.5; the length of data(N) is 1024 samples; the
variance of WGN(a 2 ) is 2000. 1000 trials are used. The narrowband component
exists in 1 of 2 channels under the Ho hypothesis. 'h' denotes hh(a) + s, 'a' de-
notes average, 's' denotes semblance, and '' denotes the optimal statistic. The
abscissa, indicating the probability of false alarm ranges, from 0 to 0.5 and the
ordinate, indicating the probability of detection ranges, from 0.5 to 1.
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Receiver Operating Characteristic
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Figure 4.4: Comparison of ROCs of the statistics with the parameters: the num-

ber of channels(L) is 8; the semblance gate length is 1 (M = 0); the amplitude(A)

of the narrowband component is 2.9; the length of data(N) is 1024 samples; the

variance of WGN(a 2) is 2000. 5000 trials are used. The narrowband component

exists in 2 of 8 channels under the H0o hypothesis. 'h' denotes hh(a) + s, 'f'

denotes Fisher discriminant function, 'g' denotes Gaussian discriminant func-

tion, 'a' denotes average, and 's' denotes semblance. The abscissa, indicating

the probability of false alarm, ranges from 0 to 0.5 and the ordinate, indicating

the probability of detection, ranges from 0.9 to 1.

76

_ __ �_ __ __



Receiver Operating Characteristic
1

P 0.98
r
o
b 0.96
a
b
i 0.94
1
i
t 0.92
y

0 0.9f

D 0.88
e
t

e 0.86c
t
i

0.84
n

0.82

II I I I I

U* ..

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Probability of False Alarm

Figure 4.5: Comparison of ROCs of the statistics with the parameters: the num-

ber of channels(L) is 8; the semblance gate length is 1 (M = 0); the amplitude(A)

of the narrowband component is 3.2; the length of data(N) is 1024 samples; the
variance of WGN(a 2) is 2000. 5000 trials are used. The narrowband component

exists in 4 of 8 channels under the Ho hypothesis. 'h' denotes hh(a) + s, 'f'

denotes Fisher discriminant functioi, 'g' denotes Gaussian discriminant func-

tion, 'a' denotes average, and 's' denotes semblance. The abscissa, indicating

the probability of false alarm, ranges from 0 to 0.5 and the ordinate, indicating

the probability of detection, ranges from 0.8 to 1.
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Fig. 4.6 is computed using 5000 trials of the simulated data with the following parameters:

8 channels (L = 8), semblance gate length of 1 sample (M = 0), narrowband component

amplitude of 3.5 (A = 3.5), data length of 1024 samples (N = 1024), and WGN variance of

2000 ( 2 = 2000). It shows the ROCs for the case where the narrowband component exists

in 6 of 8 channels under the Ho hypothesis. The dashed line on the figure is the ROC curve

of the multiple hypothesis detection of Secticn 3.5 obtained by varying a of (3.19). It clearly

demonstrates the superiority of the combined statistic using the hyperbolic tangent transform,

hr(a) s.

These figures indicate that the combined statistic, hh(a) + s, performs well for a wide range

of the Ho hypothesis data and always as well as the average or the semblance alone. Therefore,

hh(a) -- s will be used as the detection statistic for the multichannel detection problem discussed

in the next chapter.

4.5 Summary

In this chapter, a new detection statistic was developed by combining the average and the

semblance. Transformations to match the PDF of the average to the PDF of the semblance were

analyzed. It was concluded that the hyperbolic tangent function provides an accurate transfor-

mation. An alternative method based on the CDF matching was also discussed, however, it is

more sensitive the samples used.

The combined statistic using the PDF matching by the hyperbolic tangent transformation

was compared with the LRT statistic for the simple case. It was shown that the combined

statistic performs as well as the optimal detection statistic. For more complicated cases, a

closed form solution of the LRT statistic is unknown. Therefore, comparisons were made using

the discriminant functions. The ROCs of the statistics were compared to demonstrate that the

hyperbolic tangent transformation combination has a superior performance over a wide range

of the Ho hypothesis data.
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Figure 4.6: Comparison of ROCs of the statistics with the parameters: the num-
ber of channels(L) is 8; the semblance gate length is 1 (M = 0); the amplitude(A)
of the narrowband component is 3.5; the length of data(N) is 1024 samples; the
variance of WGN(a 2 ) is 2000. 5000 trials are used. The narrowband component
exists in 6 of 8 channels under the Ho hypothesis. 'h' denotes hh(a) + s, 'f' de-
notes Fisher discriminant function, 'g' denotes Gaussian discriminant function,
'a' denotes average, and 's' denotes semblance. The dashed line is the multiple
hypothesis test detector of Section 3.5. The abscissa, indicating the probability
of false alarm, ranges from 0 to 0.5 and the ordinate, indicating the probability
of detection, ranges from 0.5 to 1.

79

1

0.95

0.9

0.85

0.8

0.75

0.7

P
r
o

b
a
b
i
1
i

y

o

f

D
e
t
e
c
t
i
0o

n

O. 65

0 .6

0.55

0.5
0.5

-·--------··------·---- -- -·--·-----·--·----·-- -- ·- ---- ··--···- ----- -- - ·-----,----- .-- . .---- ·--------

//



Appendix 4.A

Combining Average and Semblance using the Likelihood Ratio

Test: General Case

The likelihood ratio

A(a, s) = Pa,,sHI(a, sIH1)

Pa,s IH, (a, siHo)

for an arbitrary number of channels and an arbitrary length of semblance gate is discussed. In

Section 4.2, the simple case was examined. In this appendix, the general case is examined to

show that a closed, analytical expression of the LRT statistic is unobtainable. The average, a,

is defined as
1 L

1=1

and the semblance, s, is defined as

:n=-M (L=,- 1 (n))2
8= -

where L is the number of channels, 2M + 1 is the semblance gate size and zl(n) denotes

the nth sample of the Ith channel data. The joint PDF pa,,(a,s) is computed using px(X)

x(0))

where X = X2 (o) and X' is a vector containing all xl(n)s for I = 1,2,...,L and n =

-M, -M + 1, ... , M except x1(0) and 2 (0). The random variables, zl(n)s, are assumed to be

independent. A new random vector is defined as

Y1 a 91(X)

Y -= Y2 = s = 2(X) (4.A.1)

Y_' K' XI

Separating Y into two groups is useful because Y' represents unwanted random variables. The

PDF for the new random variables Y is determined by

P (Xi) Px(X) (4.A.2)
py(Y)= + (4.A.2)

li(X*1)1 li(X2*)
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where Xi and X* express X in terms of Y from (4.A.1). The Jacobian for the transformation

(4.A.1) is

J(X) =

1
L

1
7;

L
L

1
L

1
Z;

bl - b2xz bl - b2x 2 b - b2x3 bl - b2 z 4 bl - b2 z 5

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

... LI

·. - b2z2LM

0

0

1
/

where b = 2 n=-M L=l Z(n)
L FMM EL1 , In)E. =-I Z=, '"

b2 = 2 E -M(L l z.(n))2
(n=-M 1=i 21(n)2)2

Hence,

IJ(X)i = Il(o) - Z2(o)1.
L

Using the definition of the average,

X2 (O) = Ly, - (O) - Z1 (O)
1=3

and using the definition of the semblance

Y2 =

(4.A.3)

(4.A.4)

L y + Z,= _M(1=1 z(n))2
n#O

L(1(O0)2 + (Ly- - xi(O) - 3 1(0))2 + -l
n•O

The above equation is solved for x1 (0) using the quadratic formula, then X2(0) is determined

from (4.A.4).
L 1

Xl(0) = (Y1 + ) + (4.A.5)

L 3
x 2() = (Y1 - 3W) ; / (4.A.6)2 2 

L
V = Y -(

2Y2

L 2

4
L w2 1 M
2yjw -4 - -2 (n)2n=-M

nwtO

with

and

1
+ 2L 2y

M L

(ct(,,n))2
n=-M =1
nfO

M

w = E xM(n).

n•O
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Unfortunately, replacing (4.A.5) and (4.A.6) in (4.A.3) reveals that IJ(X;)I • IJ(X*)l. The

expression (4.A.2) cannot be simplified further and the desired joint PDF must be determined

by
0 px(X;) P(X)\ ,

pa, (a, s) = py(Y)dY' = | ( + I )t
- I oo I(_x;)) ix (x2)1

where the integration represents L(2M + 1) - 2 dimensional integral. This cannot be evaluated

analytically and, therefore, the likelihood ratio detection statistic for the general case cannot

be expressed in a closed form.
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Chapter 5

Gravitational Wave Signal

Detection

In the previous chapters, the multichannel detection problem, which has the requirement

that the narrowband component must exist in all channels in order to decide that an emitter

exists, was examined. A critical aspect of the problem is that the signal-like narrowband noise

can exist when an emitter is absent. In Chapter 4 an improved detection statistic was developed

by combining the transformed average and the semblance. In this chapter the combined statistic

will be applied to the gravitational wave(GW) signal detection problem.

This chapter begins with the background of the gravitational wave signal processing problem

in Section 5.1. The received periodic GW data can be viewed as a multichannel data and the

detection of a G W emitter becomes the multichannel detection problem discussed in Chapter 2.

The goal of GW signal processing is to accurately and efficiently detect frequency-modulated,

periodic gravitational wave signals with unknown emitter location and frequency. Because

the parameters of the emitter are unknown, GW signal detection algorithms first hypothesize

an emitter location and frequency, then pr6cess the received data to detect the hypothesized

emitter. The algorithm must test all directions and all frequencies which is a computation-

ally demanding task. In this chapter, an algorithm will be developed which tests all possible

frequencies simultaneously for a given emitter location.

As will be shown in Section 5.2, selecting the location and frequency of an emitter completely
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determines the instantaneous frequency of the received signal, and hence uniquely specifies the

narrowband component in each channel. Before the detection statistics can be applied, periodic

GW signal detection algorithms must estimate the narrowband component of the hypothetical

emitter in each channel. This entails computing the Fourier transform magnitude of the data

in each channel at the frequency predicted by the emitter location and is due to the inherent

structure of the data.

A formal description of the GW signal detection problem viewed as a multichannel detection

problem is presented in Section 5.3. The algorithm developed by Livas[39], which is described

in Section 5.4, resamples the received data and then uses the FFT to compute the magnitudes

at all frequencies for a given emitter location. The detection statistic employed by the Livas

algorithm is the average. In Section 5.5, the combined detection statistic developed in Chapter 4

is employed because the GW signal detection problem fits the multichannel detection problem

description. In addition, a more accurate algorithm which avoids the resampling operation of

the Livas algorithm is developed. This new algorithm uses the chirp z-transform to compute

the required Fourier transform magnitudes in each channel. In Section 5.6, the new algorithm

is used to process the GW data and compared against the Livas algorithm.

5.1 Background

When matter in the universe moves, the changes in its gravitational field are propagated

throughout space and give rise to gravitational waves[61,67]. Gravitational radiation or gravita-

tional waves are predicted to propagate at the speed of light by the general theory of relativity.

Recently, several attempts have been made to detect gravitational waves from astrophysical

emitters[68] because the detection of gravitational wave emissions will aid in understanding

astrophysical phenomena.

There are two types of gravitational wave receivers. The first type is a bar antenna which

uses a large homogeneous cylinder of material such as aluminum. The bar is acoustically isolated

to oscillate only by passing gravitational waves. The second type of GW receiver is a laser

interferometric antenna which uses a laser beam to measure changes in the separation distance

of free masses caused by passing gravitational waves. In addition to the current international

gravitational wave detection effort, an ambitious new system called the Laser Interferometer
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Gravitational Wave Observatory is proposed[73]. It consists of two physically separate sites to

provide redundant measurements and isolate local disturbances.' In addition, the receivers will

be much more sensitive than existing systems.

There are three types of gravitational waves: periodic, impulsive, and stochastic. Periodic

gravitational waves are generated by, for example, the orbiting motion of binary star systems

and are steady-state signals. Impulsive gravitational waves are generated by, for example, col-

lisions of a black hole with other objects or collapses of supernovae and are transient signals

which last only a few milliseconds. Stochastic gravitational waves are generated by the su-

perposition of many weak overlapping impulsive gravitational radiations and are background

radiation signals with no clear time or frequency domain structure. A search for impulsive

signals has been made by Dewey[9] using a search algorithm based on correlating the received

data with a set of templates. Because impulsive signals have only a short duration, continuous

on-line processing is required. A search for periodic signals has been made by Livas[39] using an

algorithm which is based on threshold testing the average of the Fourier transform magnitudes

of the received data.

In this chapter, the periodic GW signal detection problem is examined. Although the GW

signal exists for all time, it is measured in short bursts because of the constraints imposed by

hardware and local disturbances. For convenience, each burst of data is treated as the output

of a channel of a multichannel receiver. Due to the relative motion between the emitter and the

receiver, the received GW signal experiences frequency modulation. In addition, the received

data is contaminated by local noises, some of which are narrowband. Fortunately, however,

local narrowband noises exist intermittently or have a constant frequency over all channels.

The frequency variation of the GW signal over the channels and the existence of the GW signal

in all channels are the crucial features which are exploited to discard the false alarms caused

by the local narrowband noises. Thus, the critical requirements for detection are the existence

of the signal in all channels and the changes in the instantaneous frequency of the signal.

'In case of impulsive GW signals, multiple sites will provide emitter location information.
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5.2 Description of Received Gravitational Wave Signal

In this section2 a detailed derivation of the instantaneous frequency of the received GW

signal is presented. If a periodic GW signal emitter[7,61,68,67,73], such as a binary star system,

emits a periodic signal of frequency fo, the frequency of the received signal is

v
fr = fo0o(1 + - 0 (5.1)

where -yo is the relative velocity vector between the emitter and the receiver,

C is the speed of light, and is the unit vector from the receiver to the emitter. The relative

velocity vector, vi, is the sum of the rotational motion vector of the earth, the orbital motion

vector of the earth around the solar system barycenter, and the motion vector of the solar

system barycenter through the galaxy.3 If the velocity vector remains constant during the

measurement, its effect on the received signal is a simple shift in frequency. However, if the

velocity vector changes appreciably during the measurement, its effect on the received signal is

a more complicated form of frequency modulation. The solar system barycenter motion vector

does not change appreciably over the measurement period of the data used in this chapter.

Therefore, its contribution to the received signal is an overall frequency shift, and the solar

system barycenter motion is ignored. The relative velocity vector, 6, is

= -o + r (5.2)

where io is the orbital motion vector of the earth around the solar system barycenter and 6, is

the rotation motion vector of the earth. The total velocity is small compared to C because

V = iv+ + vIl < Iol + j1,.I t 3.01 x l06cm/sec.

Thus, 0 ( c) 1 and (5.1) becomes

fr = fo(l + 

Figure 5.1 shows the coordinate system used to determine and '. As shown in Fig. 5.la,

2This section is based on discussions with Dr. Jeffery Livas and on his thesis[39].
3Inter-galactic motion could be added to this list but the current gravitational wave receivers are not sensitive

enough for the signals emitted from other galaxies. Therefore, inter-galactic motion is ignored.
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Figure 5.1: (a) Solar system barycenter coordinate system for the earth's orbit

and the emitter. (b) Top view of the earth's axis for the earth's rotation. (c)

Top view of the plane of the ellipse for the earth's orbit.
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the earth's orbit is assumed to be circular in the plane of the ellipse. The earth's rotation

is assumed to be circular about the earth's spin axis which is the z-axis in the figure. From

Fig. 5.1b, v6 = Iv6,(- sin p, cosp, 0) where p is the rotational angle. Additionally, the receiver's

location on the earth must be included. Therefore, i, = ,'rl cos A (- sin p, cosp, 0) where A is

the latitude of the receiver location.

From Fig. 5.1c, the earth's orbital velocity vector in the plane of the ellipse, which is

denoted by v', is v'o = Iv'o(- sin , cos , 0). To determine the earth's orbital velocity in the

solar system barycenter coordinate (, y, z), the plane of the ellipse must be rotated about the

z axis. The angle of rotation is shown in Fig. 5.1a. This angle is formed by the plane of the

ellipse and the z - y plane, or. equivalently, the tilt angle of the earth's spin axis. Because the

rotation should move the plane of the ellipse onto the z - y plane, the rotation matrix is

1 0 0

RE = 0 cost sine 

O - sin cos 

Therefore, v = v', R, = tF (-sin 0, cos cos . cos sin ) and from (5.2) the total relative

velocity is

T= toI (-sinG, cos cose, cos sinE) + ivT cosA (- sin p, cos p, O). (5.3)

The unit vector from the receiver to the emitter is approximately equal to the unit vector from

the solar system barycenter to the emitter because the distance from the earth to the solar

system barycenter is negligible. From Fig. 5.1a, the distance vector is

F = (cos 6 cos f, cos 6 sin ,, sin 6)

which is used in (5.3) to obtain

t:- = I t 7(cos (cos cos 6 sin / + sin e sin ) - sin cos 6 cos B)

+ i cos A cos 6 (cos p sin f - sin p cos/ )

= toiG cos( + ) + ir I cos A cos 6 sin(/ - p) (5:4)

where

G = /(cos 6 cos/i)2 + (cos cos sin, + sin sin 6)2

88



speed of light C = 2.99792458 x 101cm/sec
earth's radius Re = 6.37103 x 0l8cm
earth's rotational angular speed a, = 7.292115855 x 10-5 radians/sec
earth's rotational velocity ( = R . w,) Ivr = 3.4326 x 104cm/sec

earth's rotational velocity at latitude A Iv,(A)l = cosA 3.4326 x 104cm/sec

earth's orbital radius Ro = 1.474204307 x 1013cm
earth's orbital angular speed w, = 1.99098659 x 10-7radians/sec
earth's orbital velocity (v16 = Ro w) 1'6v = 2.9816 x lO6cm/sec
earth's spin axis tilt e = 0.4080 radians
latitude of Cambridge, MA A = 0.739496 radians
right ascension of galactic center p = 4.63822 radians
declination of galactic center 6 = -0.5044 radians
initial phase of orbital velocity 80 = 4.416635728 radians
initial phase of rotational velocity Po = 3.159827708 radians

Table 5.1: Constants used in the gravitational wave signal detection

and
cos 6 cos B

tan 4 =
cos e cos 6 sin SO + sin e sin 6'

Finally, using (5.4) in (5.1) and showing the time dependence of f, due to the earth's motion,

the frequency of the received signal is

fr(t) = fo ( + I G cos(4 + Oo + wot)+ cos A cossin( - - wt)) (5.5)

where 80 is the initial phase of the orbital velocity, po is the initial phase of the rotational

velocity, w, is the earth's orbital angular speed, and w, is the earth's rotational angular speed.

The constants used in the calculations are collected in Table 5.1.

The above equation shows that the frequency of the received signal is completely specified

by the emitter frequency, fo, and the emitter location angles, 6 and B. By assuming the location

to be the galactic center and the frequency to be 1 KHz for a hypothesized emitter, an example

of the received signal frequency f,(t) - fo is plotted in Fig. 5.2.

5.3 Detection Using the Measured Data

The data used in this chapter were measured by J. Livas using the MIT 1.5 meter prototype

interferometric gravitational wave receiver[9,39,75]. The data were collected between 12PM

and 9AM on each night between June 3 - 10, 1985. The data span eight days but the actual
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Received GW Signal Frequency
I~~ . .

0 1 2 3 4 5 6

day

Figure 5.2: The difference between the instantaneous frequency of the received
signal and the frequency of the transmitted signal, f,(t) - fo, for a hypothesized
1 KHz emitter located at the galactic center.
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Data segment label Starting time
J4D 1:59:47.1 June 5, 1985
J4F 2:45:38.7 June 5, 1985
J7D 2:59:22.1 June 8, 1985
J8A 22:35:49.1 June 8, 1985
J8I 2:45:46.6 June 9, 1985
J8K 3:36:04.0 June 9, 1985
J8M 4:27:56.5 June 9, 1985
J9C 4:38:01.4 June 10, 1985

Table 5.2: The starting times of the gravitational wave data set.

measurements cover only a small portion of the total time because the measurements were made

continuously for approximately 15 minutes. The sampling rate was 20K samples/second and a

12 bit A/D converter was used. The data set used in this chapter consists of eight 15 minute

segments as shown on Table 5.2.

The data in the Ith segment span T < t < Tj + AT, where Tl is the starting time and AT is

the duration of the measurement. Because w, x 15min 0 and w, x 15min ~ 0, for AT = 15

minutes,

fr,(t)- fr(t + T)I < 1.

Therefore, the instantaneous frequency (5.5) of the narrowband component in the Ith segment

is approximated by a constant

f. (TI) = fo (+ G cos(+o + 4oT l) + cosAcos sin( - po - wT) (5.6)

The narrowband component contained in the Ith segment, which is viewed as the Ith channel

of a multichannel receiver, is

sl(n) = A cos(2 rf,(TI) n + 41).

Using this interpretation of the measured data, the GW signal detection problem becomes a

special case of the multichannel detection problem described in Chapter 2. A GW signal emitter

is present only if the narrowband component, st(n), exists for all channels = 1,2,- .. , L. One

inherent feature of the G W signal detection problem is that the unknown frequency of the signal

in each channel is not estimated, rather it is predicted by the emitter location and frequency.

However, because the emitter location and frequency are unknown, both are hypothesized.
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For each hypothesized emitter, the detection algorithm must compute the Fourier transform

magnitudes at the frequencies predicted by (5.6) in each channel, then compute a detection

statistic using the magnitudes. In the following sections, an existing algorithm is reviewed and

an improved algorithm is developed.

5.4 Previous Detection Algorithm

In this section, the periodic GW signal detection algorithm introduced by Livas[39] is

described. 4 In Section 5.6, it will be compared to the new algorithm which will be devel-

oped in the next section. This algorithm selects an emitter location, then the Fourier transform

magnitudes of a hypothesized emitter are computed at the frequencies specified by (5.6). The

detection statistic is computed by averaging the Fourier transform magnitudes. To reduce

computation, it tests all frequencies simultaneously for a given emitter location as described

next.

The phase of the received signal is given by

,(t) = 2r T f(r)dr + 4o = 2rfo go(T, , #,)dr + Oo
T. 1

where 0o is a constant and from (5.6)

g(t, 6, V) = 1 + G cos( + + w,t) + cos A cos 6 sin( - po - w,t).

A new variable t' is defined as

t' = g(Tr, ,8)dr.

Using the approximation (5.6), t' for the Ith channel becomes

t' = g(T1,, ) (t - T) (5.7)

for T t < T +- AT. If the signal is sampled uniformly in t', the frequency modulation will

be compensated for, hence, resulting in a sinusoid with a constant frequency. The algorithm

'Livas introduced two algorithms. The first algorithm, which is named all sky search, computes the FFT of
each channel data segment separately. The computed Fourier transform magnitudes are examined to select a
set of peaks which are sorted according to physically realizable doppler slope. These sorted peaks are used as
the discriminant in detection. Because the probability of detection of this algorithm is inferior to his second
algorithm, which is named single direction search, hence only the second algorithm is considered here.
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suggested by Livas implements the resampling in the following manner. The th channel data,

rl(t), which is uniformly sampled in t, is viewed as r(t'), which is sampled non-uniformly in

t'. The uniformly sampled values in t' are computed by interpolating the non-uniform samples.

Because the exact bandlimited interpolation requires an excessive number of computations,

Livas approximated it using a cubic spline interpolation[39]. The resampling normalizes the

frequencies for all fo's simultaneously. Hence, all possible emitter frequencies can be tested

by computing one FFT of the resampled data of each channel. The average of the Fourier

transform magnitudes is used as the detection statistic by Livas. To summarize, the Livas

algorithm chooses a hypothetical emitter location by specifying 6 and 6, and then resamples

the data in each channel using (5.7). The FFT of the resampled data is computed and the

magnitudes are averaged. Each bin of the averaged FFT magnitudes is hypothesis tested for

the existence of the GW emitter. However, as discussed in Chapter 4, the detection performance

of the average is often unsatisfactory for the multichannel detection problem if the requirement

for detection is that the narrowband component must be present in all channels. The probability

of detection can be improved if the combined statistic developed in Chapter 4 is used. Before

the detection statistics are compared, a new algorithm for computing the Fourier transform

magnitudes is developed next.

5.5 New Algorithm for Estimating the Narrowband Compo-

nent

In this section, a new GW signal detection algorithm is developed. This new algorithm

employs the multichannel detection statistic developed in Chapter 4 because the GW signal

detection problem fits the multichannel signal detection model as discussed in Section 5.3.

Specifically, hh(a) + s is used as a detection statistic where a is the average, s is the semblance,

and hh(a) is the hyperbolic tangent transformation function of Section 4.1.1. The detection

statistics are computed using the estimated narrowband component of each channel, therefore,

an improved estimation algorithm which uses the chirp z-transform is developed next, It com-

putes the exact frequency samples with approximately the same computational complexity as

the Livas algorithm.
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When the emitter is located at (5 l, ,1), the frequency of the th channel data is given by

(5.6) which was denoted as f,(t) = fo g(t, 61, B1). If a particular frequency, fl, is selected as the

frequency in the first channel, fl = f,(T1), then the emitter frequency, fo, is

fo =
g(T, 6 ,81)'

Thus the frequency in the Ith channel must be

g(T, 51, 1)f(T) = fog(TI, 61,l) = lg(TI, i 8)

Similarly, if fl + Af is selected as the frequency in the first channel, then the corresponding

emitter frequency is

fo0 f + /= fi + Af
g(T~, ) g(T, 1,6 1, 1) g(T1, 1, , 1)

and the frequency in the Ith channel must be

g(T, 1, /31) g(T, 61,l) 1)
(T) , 61,3 1) g(T, 61, )

Therefore, if the frequency is incremented by Af in the first channel, it is incremented by

g(TI, 61, 1)
g(Ti, 6 1, 1i)

in the Ith channel. This observation about the increase in the frequency. sampling step is used

to test all possible emitter frequencies simultaneously.

The N-length FFT of the first channel data is computed which assumes that Af = 2. The

required frequency sampling interval in the Ith channel must be

g(TI,6 , i1) _ g(T,6 1, b,61) 2Nr
g(T1, ,1) A g(TI, 6i, 1) N

Unfortunately, the frequency values of the above sampling interval cannot be computed by the

FFT. However, an efficient computation of the frequency samples is still possible by the chirp

z-transform[50] which computes the samples in the z-plane as

N-1

X(k) = ZE (n)A-"Wnk
n=O

for k = 0, 1, ... , M - 1. To compute the Ith channel frequency samples, let

A = 1 and W = exp(jg(TI_ ;' ,1) A f )

g(T, bi 81)
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X(r

1/h(n)

Figure 5.3: Computation of the Fourier transform magnitude using the chirp
z-transform where h(n) = W-n:/2 = exp(-jT g(T,6 bi,)n2).

Because only the Fourier transform magnitude values are required, the post-multiplication in

the chirp z-transform computation is unnecessary. Figure 5.3 shows the method based on the

chirp z-transform.

The number of multiplications required in the chirp z-transform based computation method

is approximated next. The N-length FFT of the first channel requires N2 log 2 N multiplications.

Additionally, there are L- 1 remaining channels each of which must be chirp z-transformed. This

requires (L - 1) x (N + N log2 (2N)) multiplications, hence the total number of multiplications

is
1

( + (L - 1))N log N + (L - 1)N c O(N og2 N ) .2

In comparison, the Livas method requires

LN
9 log2 N + 4(L - 1)N O(N log2 N)

because L FFTs are computed and each cubic spline requires 4N multiplications[55,64]. Thus

the chirp z-transform based algorithm requires approximately the same number of multiplica-

tions but computes the Fourier transform magnitudes at the exact frequency locations.

Because the frequency sampling interval of the 1th channel is scaled by g(TI, 81, l)/g(Tl, 681, ),

not all frequency samples can be used if the sampling theorem is to be satisfied. By assuming

g(TI, 6 1, /1)

g(TI, b, 1)

the largest FFT bin number of the first channel which can be used without violating the

sampling theorem is determined. Let the highest frequency used in the Ith channel be r. Its
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corresponding frequency in the first channel is k2- where k satisfies

k2r g(TI, 61, 1) _

N g(Ti, 61, 1)

Therefore, the highest allowed FFT bin in the first channel is

k- Ng(T,i,, 1)
2 g(T1, 61, 1 )

and only g(T6,',) of the total spectrum should be used to avoid aliasing.

When a new emitter location, which is specified by (2,382), is to be tested, the frequency

samples must be recomputed. However, if the frequency samples can be approximated with

the samples located within one half of the frequency sampling step size, a significant number

of computations can be eliminated. In the Ith channel, the emitter located at (61, B1) requires

a frequency sampling step size of plAf and the emitter located at (62, P2) requires a step size

of p2 A 'where

= (TI ,1 ,_ ) Ar and 2 = g(T, 2, 2) A.

Let k be the highest frequency sample number allowed by the sampling theorem. The same

frequency samples can be used for both emitter locations if

JkpljAf - kp 2Af < 2

is satisfied. Because k = V, the required condition on P1 and #2 becomes

2

P1p - "21 < .N

After the Fourier transform magnitudes at the frequency locations are estimated, the detection

statistic is computed by combining the transformed average and the semblance.

5.6 Comparison

The GW signal detection algorithms use the Fourier transform magnitudes to compute a

detection statistic which is, then, threshold tested to decide the existence of a GW emitter.

The Fourier transform magnitudes in each channel are estimated at the predicted frequencies

using the location of the hypothesized emitter. The Livas algorithm employs the average of
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the Fourier transform magnitudes computed using cubic spline approximation as the detection

statistic. The new algorithm employs hh(a) + s as the detection statistic where the average and

the semblance are computed using the Fourier transform magnitudes at the exact frequency

locations using the chirp z-transform algorithm. In this section, the new algorithm is compared

to the Livas algorithm. The accuracy of the magnitude estimates and the effectiveness of

the detection statistics are separately compared. The computation of the Fourier transform

magnitudes is analyzed first, then the use of different detection statistics is discussed.

The error in the computed Fourier transform magnitudes due to the cubic spline approxi-

mation is difficult to determine generally. However, because the GW signal is assumed to be a

sinusoid in each channel, the cubic spline approximation error can be experimentally determined

by processing a test signal cos(gofort) where t = nA for n = 0, 1,.-* ., N - 1, with the sampling

interval, A. The frequency, fo, denotes the emitter frequency and go denotes a particular value

of g(t, 6,13) obtained by specifying t to be some T1 and choosing emitter location angles, 60 and

o0. The Livas demodulation algorithm resamples the signal uniformly in t', which is defined to

be t' = go0 (t - TI), using the cubic spline algorithm with zero second derivative condition on

both boundaries[55]. After the data at t' = nA for n = 0, 1, ... , N - 1 are approximated, the

Fourier transform of this resampled data is computed. The magnitude value at the frequency,

fJo, is compared to the correct value of N/2.

Table 5.3 shows the computed Fourier transform. magnitudes normalized by the correct

value. These values are dependent on the frequency, fo, the data length, N, and go = g(t, 6, ).

However, this table represents a typical case in which the following parameters are used: fo =

0.5 where 1.0 is the highest frequency; N = 1024 or 4096; and go = 0.995,0.996,- .. ,1.005.

Table 5.3 also shows the Fourier transform magnitudes computed with the new algorithm based

on the chirpz-transform with W = exp(j go 2). As expected, the computed magnitude of both

algorithms is exact when go = 1. When g(t, 6, ) < 1, the cubic spline algorithm has significant

error while the chirp z-transform maintains its accuracy. In fact, the new chirp z-transform

based algorithm is always more accurate than the Livas algorithm in computing the required

Fourier transform magnitudes.

Next, the detection statistics used by the GW signal detection algorithms are compared.

The detection statistics of the Livas algorithm and the new algorithm are compared by assuming
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computed magnitude/correct magnitude
'N = 1024 N = 4096

g(t, 8, 8) cubic spline chirp z-tranf. cubic spline chirp z-tranf.
0.995 0.9925 1.0009 2.2348 1.0001
0.996 1.0069 1.0000 1.6248 1.0000
0.997 0.9768 1.0009 1.2401 1.0000
0.998 0.9857 1.0000 1.0523 1.0000
0.999 0.9860 1.0009 0.9908 1.0000
1.000 1.0000 1.0000 1.0000 1.0000
1.001 0.9857 1.0009 0.9857 1.0000
1.002 0.9857 1.0000 0.9856 1.0000
1.003 0.9856 1.0009 0.9855 1.0000
1.004 0.9855 1.0000 0.9853 1.0000
1.005 0.9854 1.0009 0.9852 1.0001

Table 5.3: Comparison of the Fourier transform magnitudes of a sinusoid com-
puted using the cubic spline algorithm and the chirp z-transform algorithm.
The normalized frequency of the sinusoid is 0.5 and the computed magnitude
normalized by the correct magnitude is shown.

that the computed Fourier transform magnitudes are accurate. However, because the magnitude

estimate of the Livas algorithm is not always accurate, the actual performance of the Livas

algorithm could be worse than the results indicated by the following discussion. The following

comparisons are made using the measured MIT data. Because the data apparently do not

contain a real GW signal, a synthetic GW signal is added to test the algorithms. The first

comparison is made by assuming that the location of the emitter is known. The detection

statistics are computed for all possible emitter frequencies. The second comparison is made

using the receiver operating characteristic curves. They will show that the new algorithm has

superior performance.

For the first comparison, the emitter location of the added synthetic signal is assumed to

be known for both the Livas algorithm and the new algorithm. Figures 5.4 and 5.5 show the

detection statistics of the Livas algorithm and the new algorithm, respectively. The detection

statistic value at each candidate emitter frequency is plotted. The emitter frequency of the

added signal is r/8 and the amplitude is 2.5. To generate the figures, 1024 samples of the data

from the channels J8A, J81, J8K, and J8M of Table 5.2 are used. The semblance is computed

with the gate length of 3 samples. The figures indicate that the added signal is more conspicuous

in the output of the new algorithm and, hence, is easier to detect. The Livas algorithm results
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Figure 5.4: The detection statistic of the Livas algorithm as a function of fre-

quency for a known emitter location. The frequency of the added signal is r/8
and the amplitude is 2.5. Input data length is 1024 samples and the data from
the channels J8A, J8I, J8K, and J8M are used.

in numerous strong peaks due to the low frequency noises.

The previous comparison was made by inspecting the detection statistics of the two algo-

rithms. The performance can be quantified by computing the ROCs. To compute the ROCs, a

synthetic signal with an arbitrarily selected emitter location and frequency is added to the mea-

sured data. The detection statistic computed using the correct emitter frequency and location

becomes a sample for the H1 hypothesis. The detection statistic computed using an incorrect

emitter location becomes a sample for the Ho hypothesis. To generate many samples of the 'Hi

hypothesis, the frequency of the added signal is varied. For Fig. 5.6, 1024 different frequencies
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Figure 5.5: The detection statistic of the new algorithm as a function of fre-
quency for a known emitter location. The frequency of the added signal is 7r/8
and the amplitude is 2.5. Input data length is 1024 samples; the semblance gate
length is 3; and the data from the channels J8A, J8I, J8K, and J8M are used.
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are used. The amplitude of the added sinusoidal signal is 0.5 and 2048 samples of the data

from the channels J8A, J8I, J8K, and J8M of Table 5.2 are used. The semblance is computed

with a gate length of 3 samples. To generate the Ho hypothesis data, 4 incorrect locations are

used. Figure 5.6 shows the ROCs which indicate that the new algorithm performs significantly

better than the Livas algorithm.

5.7 Summary

In this chapter, the periodic GW signal detection problem was discussed. A detailed de-

scription of the received GW signal was presented and the GW signal detection problem was

formulated as the multichannel detection problem of Chapter 2. The detection algorithms es-

timate the Fourier transform magnitudes at the frequency locations predicted by the emitter

location and frequency. The estimated Fourier transform magnitudes are used to compute a

detection statistic which is threshold tested to determine the presence of the GW signal emit-

ter. The algorithm developed by Livas was described. It resamples the data using cubic spline

approximation and then uses the FFT. The average of the magnitudes is used as the detection

statistic.

A new algorithm was developed which has improvements on both the Fourier transform

magnitude computation and the detection statistic. It computes the Fourier transform mag-

nitudes at the exact frequencies using the chirp-z transform. The detection statistic used by

the new algorithm is the combined average and semblance using the PDF matching method of

Chapter 4. Finally, these two algorithms were compared to show that the new algorithm has

improved performance.
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Figure 5.6: Receiver operating characteristic curves of the Livas algorithm and

the new algorithm. Input data length is 2048 samples; the amplitude of the

added sinusoid is 0.5; the semblance gate length is 3 samples; and the channels

J8A. J8I, J8K, and J8M are used. 1024 different emitter frequencies are used for

the H1 hypothesis data and 4 incorrect directions are used for the Ho hypothesis

data. The average statistic, used by Livas, is marked by 'a' and the combined

statistic using the hyperbolic tangent transformation hh(a) + s, used by the

new algorithm, is marked by 'h'. The abscissa, indicating the probability of

false alarm, ranges from 0 to 1 and the ordinate, indicating the probability of

detection, ranges from 0 to 1.
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Chapter 6

Summary and Future Research

6.1 Summary

A multichannel signal detection problem was analyzed in this thesis. The critical aspect of

the detection problem considered is that the narrowband component must exist in all channels to

decide that an emitter is present. Even when an emitter is not present, any number of channels,

but not all channels, can contain the narrowband component. In Chapter 2, this problem was

formulated as a series of single channel binary hypothesis tests which separately decide the

existence of the narrowband component in each channel. The single channel binary hypothesis

testing problem was examined in detail to derive a detection statistic and its ROC. Because

the solution of the single channel binary hypothesis testing problem is efficiently implemented

by the FFT, the effect of quantized FFT coefficients on detection was analyzed to show that

the probability of detection is not significantly affected if a reasonable number of quantization

bits are used.

Even though the detection based on a series of binary hypothesis tests is straightforward, it

is unsatisfactory because data from different channels are not used collectively. Therefore, this

detector is not sensitive to the requirement that all channels must contain a narrowband com-

ponent with the same amplitude. In order to collectively use the data from different channels,

two statistics were considered in Chapter 3. The first statistic analyzed was the average. It was

shown that the average is the likelihood ratio statistic for a special case of the multichannel

detection problem. The PDF of the average was approximated using the Gram-Charlier series.
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Because the detection performance of the average applied to the multichannel detection

problem can be improved, the semblance was analyzed as a detection statistic. The semblance

measures the coherence between the channels and thus it is well matched to the requirement

of the multichannel detection problem. The PDF of the semblance was analytically derived for

a simple case and was accurately approximated using the modified beta PDF for the general

case.

The effectiveness of the average and the semblance as the statistic for the multichannel

signal detection problem was measured by computing their respective ROCs using the Monte

Carlo detection method. The ROC curves indicated that the average performs better than the

semblance if most of the channels contain only wideband noise when the emitter is absent. On

the other hand, the semblance performed better than the average if most of the channels contain

the narrowband component when the emitter is absent. Thus, neither statistic performed well

for a wide range of received data.

To find a statistic which has an improved detection performance for a wider range of received

data, a new detection statistic based on combining the average and the semblance was developed

in Chapter 4. Before the average and the semblance are combined, the average is transformed in

order to weight the average and the semblance equally. The transformed average was combined

with the semblance using addition because it satisfied the functional constraints imposed on the

combining function. This new statistic was compared with the likelihood ratio statistic for the

simple case and with the discriminant function statistics for the general case. For the simple

case, the combined detection statistic performed as well as the optimal statistic. In all cases,

the combined statistic was shown to perform as well or better than the other statistics.

In Chapter 5, the combined detection statistic was applied to the gravitational wave(GW)

detection problem. A review of the received GW signal structure was given and the GW signal

detection problem was formulated as the multichannel detection problem. The GW signal

detectors estimate the Fourier transform magnitude at the frequencies which are specified by

the hypothesized emitter location. The estimated magnitudes are used to compute the dete'ction

statistic and then decide the presence of the GW emitter. The algorithm proposed by Livas

employed the average of the magnitudes estimated using the cubic-spline based approximate

resampling method as the detection statistic. A new algorithm was developed which employed
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the combined statistic developed in Chapter 4 as the detection statistic. The Fourier transform

magnitudes were computed at the exact frequencies using the chirp z-transform based algorithm.

Examples of the GW detection using the MIT data were presented to demonstrate that the

new algorithm performs better.

6.2 Suggestions for Future Research

The semblance was used for the multichannel signal detection problem because it measures

the coherence between channels. This property of the semblance might also be useful in a

different type of detection problem. In this new detection problem, the received data contain

only wideband noise when an emitter is absent. If an emitter is present, at least one channel

must contain the narrowband component in additive wideband noise. Therefore, the detection

problem is formulated as the following hypothesis testing problem:

H1 (emitter is present): ·R : j

Ho (emitter is absent): R= 

where R denotes the received data and wu is the th channel wideband noise vector. This type

of detection problem is encountered if an emitter fades in and out.

A straightforward solution to this detection problem is to test each channel for the existence

of the narrowband component. If any one channel contains the narrowband component, then

the hypothesis H1 is decided. This solution does not use the channels collectively and does

not explicitly require equal signal amplitude, hence its-detection performance can be improved

upon if the multichannel structure of the data is exploited. For example, if two channels are
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used collectively and the data fit the model

H 1 (emitter is present) R = s + )
S2 + W2

Ho (emitter is absent): R = - )
W2

where sa is the Ith channel narrowband component for I = 1, 2, then the probability of detection

using the above model is better than the probability of detection of the detector which tests

each channel separately. The probability of detection improves as the number of channels used

increases. Of course, the difficulty is in deciding which channels to use for the hypothesis test.

The semblance might be useful in deciding which channels to use. The semblance will be

used to screen the data to remove the channels containing wideband noise only and then the

detector will use the remaining channels. The screening of the channels might be accomplished

by computing the semblance of subsets of the channels and removing the channels which lower

the semblance value when included in the semblance computation. After the channels contain-

ing wideband noise are removed, the detection problem becomes a conventional signal-in-noise

versus noise-only detection problem for which the average is the likelihood ratio statistic. This

proposed use of semblance is speculative and requires further investigation to assess its effec-

tiveness.

Another future research area is the analysis of the combining operation. Two different

statistics were combined using a function which satisfied a list of intuitive functional constraints

in Section 4.1. The function a + s, where & denotes the transformed average and s denotes the

semblance, was used because it was simple yet effective. The most general forms of the function

which satisfy the first functional constraint, f(a, s) = f(s, &), of Section 4.1 are

gl(hl(a),hl(s)) + g(hl(s),hl(a)) and 92(h 2(a),h 2(s)) x 92(h2(s), h2())

for arbitrary functions gl('), 92(), h(.), and h2(.). However these functions are difficult to

manipulate to satisfy the other functional constraints of Section 4.1. Therefore, new combining

functions which result from optimizing some other criteria might be useful in evaluating the

detection statistic developed and used in this thesis.
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The likelihood ratio detection statistic was derived only for the simple case. Approximations

of the likelihood ratio detection statistic for the general case will be useful in further evaluation

of the combined detection statistic used in this thesis. In Section 4.2, the likelihood ratio

statistic was given by

Pa,.lHl-(a, slHo)A(a, s) =Pa,s1H((a, sIH )'

If the conditional PDFs, pa,,(a, sH1i) and p,,(a, slHo), are approximated, the likelihood ratio

detection statistic can be estimated using the approximated PDFs. The following are some of

the applicable approximation methods.

* Gram-Charlier series expansion[16,34,30]: This method uses the estimated moments to

approximate the unknown density1. The first term of the expansion is the two-dimensional

Gaussian density and the subsequent terms involve higher moments.

* Orthogonal basis function expansion[44,17]: A set of basis function is formed using

two sets of orthogonal bases. The basis functions are defined by {kl(a,s) = :1(a) x

2,1(s) for k,1 = 1, 2,. } where, for example, 01(a) is Laguerre function[15] and 12(s) is

Lagendre function[15] mapped to match the range of the semblance. The PDF is approx-

imated as pa,,(a, s) t Zk E1ckl Ckl(a, s) with ckl = N = ki(an, sn) where N is the

total number of samples and an and s, are nth average sample and semblance sample,

respectively.

* Generalized histogram[66,53,44,17]: The unknown density is approximated as pa,,(a, 8) s

1 EN = h( l(a, L )-(ann)lt ) where 11.11 denotes a distance measure, N is the total number

of samples, and an and sn are nth average sample and semblance sample, respectively. The

kernel h(-) and the weighting are general functions satisfying the following conditions

to obtain an asymptotically unbiased and consistent estimate. The requirements on h(.)

are: it has unit area; it is absolutely-integrable; its supremum of the absolute value is

finite; and limt-.O It h(t) = . The requirements on W, which is a function of the

number of samples, are lim..oo W(N) = 0 and limN-.OO N x W(N) = oo, where N is the

total number of samples.

'One dimensional case was discussed in Section 3.1.2.
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* Synthesis using marginal distribution functions[54,14,41,30J: The following observations

about the distribution functions of the marginal PDFs are used to approximate the dis-

tribution function of the unknown joint density.

P,.(a,s) < min(P,(a),P,(s))

P,.(a,s) > Pa(a)+P5 (s)-1

where Pa,,(a, s) is the distribution function of the unknown joint PDF of the average

and the semblance and Pa(a) and P,(s) are the distribution function of the average and

the semblance, respectively. The distribution function, P,,(a,s), is approximated as a

combination of Pa (a) and P,(s).. Two examples among many possibilities are

Pa,,(a, s) e A min(Pa(a), P,(s)) + (1 - A)(Pa(a) + P,(s) - 1) for 0 < A < 1

and

P,s(a, s) Pa(a)P,(s)(1 + a(1 - Pa(a))(1 - P,(s))) for some a.

This method might be useful because the marginal densities have been approximated in

Chapter 3.

These methods and perhaps others should be analyzed to determine the most accurate approx-

imation of the conditional PDFs. The detection statistic based on the approximated PDFs

should be compared to the combined statistic.

Finally, more extensive processing of the measured gravitational wave data is necessary.

The new algorithm was applied to the GW signal detection problem only to demonstrate its

usefulness. It was shown to be as efficient as the existing algorithm, however refinements are

required to achieve real-time or near real-time processing speed which is important for future

gravitational wave detection systems.
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