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ABSTRACT

Low power signal processing is a very important
technology for many tactical applications. The success
of this technology depends on a well-orchastrated
collaborative research effort in the area of sensor,
processor and algorithm designs. This paper reports
the results of a robust algorithm design for detection
and rate estimation of heartbeats from acoustic sensor
data, with the objective to demonstrate the feasibility of
wearable medical sensor technology. The algorithm has
the desirable property that it can be executed efficiently
in the ultra-low power processor architecture reported
(elsewhere?) with a consistent performance sustaining
over a wide range of energy/power-saving operational
conditions. These results were obtained using
simulated processor functions and experimental
acoustic data collected at ARL

INTRODUCTION

Low power signal processing is a very important
technology for many battlefield applications. When
integrated with a properly designed sensing device, this
technology can be used to support a light-weight
versatile information/intelligent system. A good
example concerns the exploitation of compact acoustic
sensors for two diverse applications. First, compact
acoustic semsors can be deployed at hard-to-access
remote sites by means of ballistic projectile to monitor
battlefield activities, such as movements of ground
vehicles and airborne helicopters, and locations of
artilleries. Second, compact acoustic sensors can be
carried or worn by combat personnel to monitor
individual’s health condition. This latter aspect is
particularly invaluable in support of a vital combat

casualty care, as has been elucidated in a report earlier
(scanlon).

The success of a compact acoustic sensor technology
dwells on four critical components: acoustic sensor, low
power signal processor, power supply, and processing
algorithm. A collaborative research effort has been
orchestrated by the participating members to address key
technical issues, with (a) ARL focusing on sensor
design, and implementation and application-related
issues, (b) MIT focusing on processor architecture
design and innovative power supply concept, and (c)
Sanders focusing on algorithmic design. This paper
concerns primarily the results of an enabling algorithm
design as it applies to medical monitoring.

One power saving strategy is to make the processing
load power/energy scalable so that when the available
power is low the system can still perform a simple but
crucial function whereas when the available power is
high it can perform multiple tasks or complex functions
to acquire more detailed information. This strategy is
particularly applicable when designing a wearable
acoustic sensor. In an early study we have shown that
the acoustic sensor can be used to acquire three types of
signals regarding the person’s condition. These are
heartbeat, breath, and voice. Both heartbeat and breath
signals provide not only the vital sign but also an
indication of physical stress of the individual. The
voice signal can provide an indication of the stress
condition or can be used directly as a communication
medium to provide accurate and detailed information.
However, these three types of signals require different
amounts of processing power, with heartbeat the least
and voice the most. In this regard, it is desirable to
design a power/energy scalable processing system such
that at minimum it provides a reliable heart rate



measurement, with the potential to extend to speech
processing when more power/energy sources become
available. In this paper we will discuss an algorithm
design for heartbeat rate estimation with consideration
to this energy/power scalability aspect.

ALGORITHM DESIGN

Primary Design Considerations

The task of algorithm design faces three major
challenges. The first one is to achieve a reliable
estimate of heartbeat rate in the presence of strong
background noise and clutter. The acoustic energy of
heartbeat signal is spectrally concentrated below 100
Hz. Although the signal-to-noise ratio (SNR) can be
improved in principle by means of a low-pass filter,
many common acoustic sources with energy in this
region do exist. They include those originating from the
wearer, such as breaths, vocal utterances, footsteps, and
contacts of equipments, and those originating from the
environment, such as wind and most motorized
mechanical objects in the field. It is not unusual that the
SNR of heartbeat signal as acquired in the field is below
0 dB. Therefore, the algorithm is required to achieve a
high SNR gain.

The second challenge is to minimize the processing cost
while meeting the processing performance objective.
Specifically, the algorithm is required to find the most
efficient way of processing under the specific processor
hardware environment. The ultra-low power processor
design currently developed at MIT (raj) imposes several
constraints if an optimal power efficiency is to be
maintained.

e Arithmetic and logic operations are limited to
multiplications, additions, comparisons, and bit
shifting.

e The operands and the results of all operations are
limited to integers of fixed bitwidth, whose
maximum size including the sign bit is 12 bits.

e The arithmetic unit has an internal maximum
dynamical range of 24 bits.

e The bitwidth window at the arithmetic output is
limited to four positions on the 24-bit range.

Because of these constraints, many recently advanced
high-performance  signal  processing algorithms,
specially those requiring floating-point operations or

involving nonlinear functions, are not good candidates
for the design model. Algorithms based on convolution
appear to be most suitable.

The third challenge is to achieve a high degree of
robustness as the processing power is scaled down from
maximum to minimum. As discussed in a separate
paper (raj), the energy/power consumption of the
processor can be reduced in two way: (1) by reducing
the bitwidth of operands and (2) by reducing the data
rate through decimation. Accordingly the algorithm is
required to provide a reliable heartbeat measurement
over a sufficient range of changes regarding both
bitwidth and data rate.

Baseline Processing Algorithm

The algorithm is divided into four processing stages
(Fig. 1). The first stage performs a correlation of the
sampled signal sequence with a template to enhance
SNR gain. The template is constructed from the average
waveform of individual’s heartbeat signal over a
duration normally less than 100 ms. Optimization of
heartbeat detection can be obtained through a careful
tuning of the template waveform.

The second processing stage performs a weighted
averaging of the output magnitude of the first stage with
the purpose to mark the location of the power centroid
of each heartbeat. This is done by means of convolution
with a bell-shaped window function. We have found
that the result is not particularly sensitive to the exact
shape of the window function. A Hanning window with
a length of 64 ms has been used in this work..
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Figure 1. Flow Diagram of Heartbeat Detection and Rate
Estimation

The third stage of processing performs detection and
localization of heartbeats. This is done by finding the
maximum amplitude in the output of the second stage



within a preset time interval (60-300 ms). To minimize
the problem of false heartbeat detection, an adaptive
threshold is used to screen the peaks. The threshold is
set at a value proportional to the mean value of the data
points within an interval averaged about 2 s. To void
the use of division, the sample mean is obtained by first
summing the magnitudes of 2" data points and then
performing a right shift of n bits on the sum. The larger
the bitwidth is, the less sensitive the performance is to
the proportional constant. The constant is set to 1'/, for
bitwidth greater than 5 bits and '/, elsewhere. Once a
heartbeat peak is detected, its location is saved in
memory.

The final stage of processing determines the intervals
between consecutive peaks and then estimate the
average of heartbeat period from a sample of
consecutive intervals. In the actual implementation, we
used the median value instead of the mean value as an
estimate of the heartbeat period. This has the advantage
of making the measurement less sensitive to the
influence of misses and false detections and at the same
time avoiding the operation of division. The heartbeat
period can be converted to the conventional heartbeat
rate by multiplying its inverse with a constant.

It is important to point out that more than 99% of the
processing load is consumed in the first two stages,
which involves two convolution-type processes. The
effect of decimation on the processing load can be
approximated by the expression.

No. of Operations = 2(M;+M;)ND™ -4ND™'+C

where M, and M, represent the sizes of the correlation
template and the Hanning window, N the length of input
data, all prior to decimation, D the decimation factor,
and C is a constant representing overhead cost. The
number of operations decreases by two orders of
magnitude if the decimation factor increases eight fold.

EXPERIMENTAL DESCRIPTION

The acoustic data of heartbeats under various stress
conditions were collected in a typical indoor laboratory
environment without anechoic surrounding. The stress
condition was created by asking a test subject to walk on
a stationary treadmill at various speeds. Two male

volunteers (simply referred as subjects A and B) of
different ages and physical builds participated in the
experiment. Each participant went through a speeding
up period and a cooling off period. During each session,
the data were recorded simultaneously from two
acoustic sensors worn on the neck of the participant.
Other sensors were also used to establish the ground
truth and to monitor the background noise and
interference. They include a blood pulse oximeter for
timing the heartbeats, an ambient mike for recording the
sound of footfalls, and an accelerometer for measuring
the vibration level of the walker. We also recorded the
voice of each participant during walk with the objective
of exploiting speech signal for acquiring additional
health information. However, this part of study has not
been completed and will not be discussed here.

The acoustic data collected in this experiment, although
free from major external noise sources, do not contain
clean heartbeat signals because of two problems. First,
the emplacement of acoustic sensors was not optimized
to enable a good transmission of heartbeat signal to the
sensors. The SNR in most part of recording was well
below 10 dB. Second, the sound level of footfalls
during the speeding up period frequently arose above the
heartbeat signal level.

Interference by footfalls has been a very difficult

obstacle to overcome in light of two considerations.

e Both the heartbeat and the footfall signals have
similar spectral and temporal characteristics.
Therefore, it is difficult to design a linear filter to
separate the two.

e The heartbeat and footfall signals may synchronize
at certain walking speed.

We have carefully analyzed the correlation between
heartbeats and footfalls in order to minimize the
likelihood of false detection. It was discovered that the
heartbeat signal of Subject B was completely masked by
his footfall signal during the speeding up period. For this
reason, this part of data was excluded from the
following analysis.

SUMMARY OF RESULTS

Baseline Performance

As a performance reference, we first present the result
of heartbeat measurements under the baseline condition.



The algorithm is executed in MATLAB using 64-bit
floating-point operations. ~ The acoustic data were
sampled at 2 kHz with a 1kHz-cutoff low-pass filter.
This bandwidth is a reasonable compromise between
meeting low power requirement and preserving the
vocal information.
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Figure 2. Heartbeat Rate of Subject A as Function of
Treadmill speed
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Figure 3. Change of Heartbeat Rate for Subject A during
Cooling-Off Period

Figure 2 shows that the heartbeat rate as function of
treadmill speed for Subject A. Figures 3 and 4 show the
changes of heartbeat rate of Subjects A and B during
their cooling-off period respectively.  These two
participants appeared to relax in very different patterns
as a reflection of their physiological difference. Figure 4
also shows the data of oximeter, which is in excellent

agreement with the acoustic sensor data. These results
confirm the suitability of the algorithm for heartbeat rate
monitoring.

200 B i.
I
1801 Deceleration 1 Stop Walking o Oximeter Data i
! * Sensor Data
o I
I
=1B0 ] =
E i
g -
o * 1 4
o TJDMO ° : .
H 1
it ¥ oo *0ka 0 O 4% |
2 o g™ 0 o o é“;&m
i #g ! *0 ginga, O
E 100 *#¥y oy ox o ﬁéﬁ*ﬁﬁc o b
i *p ¥ i ¥ w0 o W
= #0 1 'ﬁ% *
,_% aor * 1 fane
]
oo “E
BOf o o 1
=] 1
i
40F ! R
I I
1 1 L 1 1 1
o 10 20 30 40 50 ED

Time {sec)
Figure 4. Change of Heartbeat Rate for Subject B during
Cooling-Off Period

Effect of Power/Energy Saving on Performance

We next show how the processing algorithm performs
subject to the hardware constraints and under a wide
range of power saving conditions. More specifically, we
examine how replacing the floating-point operations
with fixed-point operations and how reductions in data
rate and bitwidth affect the performance. In this
analysis, we simulated the processor functions in a C-
coded program in which the bitwidths of the operands
and the output of every arithmetic operation are tailored
in accordance with the processor constraints mentioned
earlier. The results of this exercise are best presented by
plotting the following three performance indicators as
functions of decimation factor and bitwidth (Figures 5
through 7 ).

e The number of heartbeats missed from detection.

e Timing Error of individual beats

o Error in the heartbeat period estimation

The abscissa in the plots is the bitwidth pf operands and
each curve represents a result using decimation factor,
as marked directly on the curve.

A number of observations can be made from these

figures.

e The change from floating-point operations to fixed-
point operations has resulted in a noticeable



degradation in the performance factors. It is noted
that 12% of heartbeats have escaped detection.

e The performance appears to be relatively stable
over a wide range of bitwidth and decimation
factors. In particular, the error in the heartbeat
period estimation remains very low even the data
rate is reduced by eight fold and the bitwidth is
reduced to 6 bits.

e The performance begins to degrade rapidly as the
bitwidth is reduced below 6. Reductions in both
bitwidth and data rate have an additive effect in the
low bitwidth ( < 6 ) region.
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Figure 5. Number of Misses as Functions of Bitwidth for
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Figure 7. Error of Heartbeat Period Estimation as
Functions of Bitwidth for Various Decimation Factors

e The degradation pattern does not follow a
monotonic relationship with either bitwidth or
decimation factor. In particular, the best result is
not the one based on the largest bitwidth and data
rate as expected from a simple theoretical
consideration. This is attributed primarily to an
interplay between the restricted dynamic range in
the processor and three data-dependant factors. The
first factor concerns the relatively large size of the
kernel in the correlation process. The second factor
concerns the small size of the data set. The third
factor is due to a large fluctuation in the acoustic
power of individual heartbeats.

CONCLUSION

We have demonstrated a robust algorithm design for

detection and rate estimation of heartbeats in acoustic

signals with two desirable properties

e It can be implemented efficiently subject to low
power processor hardware constraints.

e Its performance remains reliable for a wide range of
data rates and bitwidths.

These properties make this algorithm design a viable

component in the development of wearable sensor

technology for heath monitoring applications. However,

this study is only the first step toward a demonstration of

its applicability. A more rigorous test of the algorithm

will be performed with the actual processor developed at

MIT when it becomes available.



