
Polynomial Decomposition Algorithms in Signal

Processing

by

Guolong Su

B.Eng., Electronic Engineering, Tsinghua University, China (2011)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2013

Certified by. .
A. V. Oppenheim

Ford Professor of Engineering

Thesis Supervisor

Accepted by .

Professor Leslie A. Kolodziejski
Chairman, Department Committee on Graduate Theses

2

Polynomial Decomposition Algorithms in Signal Processing

by

Guolong Su

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Polynomial decomposition has attracted considerable attention in computational math-
ematics. In general, the field identifies polynomials f(x) and g(x) such that their
composition f(g(x)) equals or approximates a given polynomial h(x). Despite po-
tentially promising applications, polynomial decomposition has not been significant-
ly utilized in signal processing. This thesis studies the sensitivities of polynomial
composition and decomposition to explore their robustness in potential signal pro-
cessing applications and develops effective polynomial decomposition algorithms to
be applied in a signal processing context. First, we state the problems of sensitivity,
exact decomposition, and approximate decomposition. After that, the sensitivities
of the composition and decomposition operations are theoretically derived from the
perspective of robustness. In particular, we present and validate an approach to de-
crease certain sensitivities by using equivalent compositions, and a practical rule for
parameter selection is proposed to get to a point that is near the minimum of these
sensitivities. Then, new algorithms are proposed for the exact decomposition prob-
lems, and simulations are performed to make comparison with existing approaches.
Finally, existing and new algorithms for the approximate decomposition problems are
presented and evaluated using numerical simulations.

Thesis Supervisor: A. V. Oppenheim
Title: Ford Professor of Engineering

3

4

Acknowledgments

I would like to first thank my research advisor Prof. Alan Oppenheim, whose re-

markable wisdom and guidance for this thesis are significant in many ways. I am

deeply impressed by Al’s unconventional creativity, and I am particularly thankful

for our research meetings that were not only academically invaluable but also emo-

tionally supportive. Al is a great source of sharp and insightful ideas and comments,

which make me always feel more energetic to explore more stimulating directions after

meeting with him. I am also sincerely grateful to Al, a great mentor, for patiently im-

proving my academic writing level and shaping me into a person with higher maturity.

In addition to his tremendous intellectual support, I really appreciate Al’s impressive

warmheartedness and caring efforts in helping me with a number of personal issues

to make my life comfortable at MIT and during the summer internship.

I would also like to thank Sefa Demirtas for his helpful contribution and our

friendly research collaboration during the last two years. The topic of this thesis

had been discovered by Al and Sefa before I joined MIT; Sefa has been a great

close collaborator with a significant role in the development of many results in this

thesis. In addition, I sincerely thank Sefa for carefully reviewing the thesis and

patiently helping me with other English documents. I am also grateful to Sefa for his

enthusiastic encouragement, guidance and support.

It has been an enjoyable and rewarding journey for me as a member of Digital

Signal Processing Group (DSPG). I would like to sincerely thank the past and present

DSPG members including: Tom Baran, Petros Boufounos, Sefa Demirtas, Dan Dud-

geon, Xue Feng, Yuantao Gu, Zahi Karam, Tarek Lahlou, Martin McCormick, Milutin

Pajovic, Charlie Rohrs, and Laura von Bosau. The collaborative research environ-

ment and the intriguing weekly brainstorming meetings make the group an enthu-

siastic, creative, and harmonious academic family. Especially, thanks to Laura for

her responsible efforts to make the group function efficiently and constant readiness

to help; thanks to Tarek for his enthusiastic conversation in the night when we both

heard for the first time of the problem of polynomial decomposition as well as his

5

helpful comments as a native speaker on my English documents; thanks to Zahi for

the helpful discussion on root-finding algorithms; thanks to Yuantao for the enthu-

siastic discussion on Vandermonde matrices as well as your valuable guidance and

friendly mentorship during my time in Tsinghua University. In addition to group

members, I would thank Yangqin for the helpful discussion on the Galois group.

I would also like to thank Davis Pan at Bose Corporation. Davis is a great and

easygoing manager, who is truly caring about his interns even beyond the scope of

the internship. The experience with Davis was really enjoyable both intellectually

and personally.

I feel really fortunate to have met and been accompanied by Shengxi. I thank her

for her companionship, kind heart, patience, as well as the love and happiness she

has brought me. Special thanks for her encouragement for going to the gym and her

correction of my English pronunciation.

I am deeply grateful to my parents for their unconditional love and unlimited

support. Through the years, I know that they are always available to talk to for

support and encouragement. Their guidance and wisdom in life have been essential

for the development of my personality. My love and appreciation for my parents is

beyond any words. Thanks also to my extended family for their love and support

when I am far away from home.

6

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Objective . 15

2 Background 17

2.1 Polynomial Composition Properties 17

2.2 Review of Existing Polynomial Decomposition Algorithms 19

3 Problem Definition 21

3.1 Sensitivity Analysis . 21

3.1.1 Sensitivities of the Coefficients 22

3.1.2 Sensitivities of the Roots . 23

3.2 Exact Decomposition . 25

3.3 Approximate Decomposition . 27

4 Sensitivities of Polynomial Composition and Decomposition 29

4.1 Derivation of the Sensitivities . 29

4.1.1 Sensitivities of the Coefficients 29

4.1.2 Sensitivities of the Roots . 33

4.2 Sensitivities of Equivalent Compositions with First-Degree Polynomials 38

4.3 Simulation Results . 43

4.3.1 Evaluation of the Sensitivities 43

4.3.2 Comparisons of the Sensitivities 48

7

4.3.3 Sensitivities of Equivalent Compositions 49

5 Exact Decomposition Algorithms 55

5.1 Problem 1: Exact Decomposition with Coefficients as Input 56

5.2 Problem 2: Exact Decomposition with Roots as Input 58

5.2.1 Properties of Roots of a Decomposable Polynomial 58

5.2.2 Root-Power-Summation Algorithm 59

5.2.3 Root-Grouping Algorithm . 60

5.3 Evaluation of the Exact Decomposition Algorithms 63

6 Approximate Decomposition Algorithms 69

6.1 Problem 3: Approximate Decomposition with Coefficients as Input . 69

6.1.1 Iterative Mean Square Approximation Algorithm 70

6.1.2 Algorithms Based on the Ruppert Matrix 71

6.2 Problem 4: Approximate Decomposition with Roots as Input 78

6.3 Evaluation of the Approximate Decomposition Algorithms 83

6.3.1 Iterative Mean Square Algorithm 84

6.3.2 RiSVD Heuristic and STLS Relaxation 85

6.3.3 Approximate Root-Grouping Algorithm 87

7 Conclusions and Future Work 89

A Minimum Phase Decomposition for a Minimum Phase Decompos-

able Polynomial 93

B Derivation of Upper Bound (4.13) 99

C Explanation of the Approximate Rules (4.39)-(4.41) for Parameter

Selection 101

8

List of Figures

1-1 Two Implementations of a Decomposable FIR Filter where H(z−1) =

(F ◦G)(z−1) . 16

4-1 Coefficient Sensitivity from f(x) to h(x). 44

4-2 Coefficient Sensitivity from h(x) to f(x). 44

4-3 Coefficient Sensitivity from g(x) to h(x). 45

4-4 Coefficient Sensitivity from h(x) to g(x). 45

4-5 Root Sensitivity from zf to zh. 46

4-6 Root Sensitivity from zh to zf . 46

4-7 Root Sensitivity from g(x) to zh. 47

4-8 Root Sensitivity from zh to g(x). 47

4-9 Comparison between Corresponding Coefficient Sensitivities and Root

Sensitivities. 49

4-10 The Condition Number cond(Ĝ) with Different q1 and qr, where qr =
q0
q1
. 50

4-11 The Sensitivities Sf̂→h and Sh→f̂ with Different q1 and qr. 51

4-12 The Sensitivities Sĝ→h and Sh→ĝ with Different qr. 53

4-13 The Sensitivities Sz
f̂
→zh and Szh→z

f̂
with Different qr. 53

4-14 The Sensitivities Sĝ→zh and Szh→ĝ with Different qr. 53

4-15 Comparison of the Condition Number of Ĝ among the Original Value,

the Minimum Value, and the Value Achieved with the Approximate

Rules (4.39)-(4.41). 54

5-1 Comparison between the three exact decomposition algorithms on the

Success Rates of (a) f(x), (b) g(x), and (c) h(x). 67

9

10

List of Tables

3.1 Definitions of the Sensitivities within the Coefficient Triplet (f, g, h) 24

3.2 Definitions of the Sensitivities within the Root Triplet (zf , g, zh) . . 25

6.1 Success Rate of the Iterative Mean Square Algorithm (%) 85

6.2 Success Rate of the Approximate Decomposition Methods that are

Based on Ruppert Matrix (%) . 86

6.3 Success Rate of the Root Grouping Algorithm for Approximate De-

composition (%) . 88

11

12

Chapter 1

Introduction

1.1 Motivation

Functional composition (α ◦ β)(x) is defined as (α ◦ β)(x) = α(β(x)), where α(x)

and β(x) are arbitrary functions. It can be interpreted as a form of cascading the

two functions β(·) and α(·). One application of functional composition in signal

processing is in time warping [1–3]. The basic idea of time warping is to replace the

time variable t with a warping function ψ(t), so the time-axis is stretched in some

parts and compressed in other parts. In this process, a signal s(t) is time-warped to

a new signal s(ψ(t)) in the form of functional composition. It is possible that the

original signal s(t) is non-bandlimited, while the composed signal s(ψ(t)) is band-

limited [1–3]. For example, the chirp signal s(t) = cos(at2) is non-bandlimited [4],

but it can be warped into the band-limited signal s(ψ(t)) = cos(at) by the warping

function ψ(t) =
√
|t|. For certain signals, if proper warping functions are chosen,

time warping may serve as an anti-aliasing technique in sampling. In addition to

its application in efficient sampling, time warping has also been employed to model

and compensate for certain nonlinear systems [5]. Moreover, time warping may be

utilized in speech recording to improve speech verification [6].

As a particular case of functional composition, polynomial composition may also

find potentially beneficial applications in signal processing. The precise definition of

polynomial composition is stated as follows with the symbols to be used throughout

13

this thesis. For polynomials

f(x) =

M∑

m=0

amx
m, g(x) =

N∑

n=0

bnx
n, (1.1)

their composition is defined as

h(x) = (f ◦ g)(x) = f(g(x)) =
M∑

m=0

am(g(x))
m =

MN∑

k=0

ckx
k. (1.2)

If a polynomial h(x) can be expressed in form (1.2), then it is decomposable; otherwise

it is indecomposable. For simplicity, we assume that all polynomials f(x), g(x), and

h(x) have real coefficients; however, most results of this thesis also apply for complex

polynomials.

The inverse process to polynomial composition is called polynomial decomposi-

tion, which generally means determining f(x) and g(x) given h(x). Polynomial de-

composition is potentially as useful as composition in signal processing applications.

For example, polynomial decomposition may be employed in efficient representation

of signals [7]. If a signal can be represented by a decomposable polynomial h(x),

then it can also be represented by its decomposition (f ◦ g)(x). Note that h(x) has

(MN + 1) degrees of freedom, while f(x) and g(x) together have degrees of freedom

(M +N). 1 Thus, the decomposition representation of the signal has a reduction of

(MN + 1 −M − N) degrees of freedom and thus can potentially be used for signal

compression. Another possible application of polynomial decomposition is an alter-

native implementation of decomposable FIR filters [7–9]. The z-transform [4] of an

FIR filter Q(z) =
∑K

n=0 q[n]z
−n is a polynomial in z−1. Figure 1-1 (a) shows the

direct form implementation [4] of a decomposable filter H(z−1); an alternative im-

plementation of this filter is presented in Fig. 1-1 (b) [7–9]. Comparing Fig. 1-1 (a)

and Fig. 1-1 (b) shows that the alternative implementation of H(z−1) substitutes the

FIR filter G(z−1) for each time delay in F (z−1).

1The degrees of freedom of f(x) and g(x) are fewer than the total number of their coefficients,
since the decomposition is not unique. Further discussion can be found in (4.31) in Section 4.2 and
in the paragraph immediately above Section 5.1.

14

Another related problem is approximate decomposition, which determines f(x)

and g(x) such that h(x) ≈ (f ◦ g)(x) for an indecomposable polynomial h(x). Ap-

proximate decomposition may have wider applications than exact decomposition,

since most real signals are unlikely to be exactly decomposable. The above argument

about reduction in degrees of freedom implies the low density of decomposable poly-

nomials in the polynomial space. In particular, givenM and N , all the decomposable

polynomials are located on a manifold of dimensions (M +N), while the whole space

has (MN + 1) dimensions. As the length (MN + 1) of the polynomial increases, the

reduction in degrees of freedom also grows, which makes decomposable polynomials

less and less dense in the polynomial space. Thus, it is unlikely that an arbitrarily

long signal will correspond to an exactly decomposable polynomial.

Indecomposable polynomials can possibly be represented by approximate decom-

position. For example, if a signal corresponds to an indecomposable polynomial h(x),

the approximate decomposition method might be employed in compressing the sig-

nal into the composition of f(x) and g(x), with a decrease in degrees of freedom by

(MN +1−M −N) and possibly without much loss in quality. However, since exact

decomposition can be thought of as a problem of identification while approximate

decomposition corresponds to modeling, approximate decomposition appears much

more challenging than exact decomposition.

1.2 Objective

Many of the applications of functional composition are currently being explored by

Sefa Demirtas [7]. The primary goals of this thesis are to theoretically evaluate the ro-

bustness of polynomial composition and decomposition as well as to develop effective

algorithms for the decomposition problems in both the exact and the approximate

cases. 2

Robustness is characterized by sensitivities of composition and decomposition,

2Many of the results in this thesis are included in [10, 11] by S. Demirtas, G. Su, and A. V.
Oppenheim.

15

z−1 z−1 z−1· · ·

· · ·

c0 c1 c2 cMN−1 cMN

x[n]

y[n]m m m m- - - - - -

- - - -

? ? ? ?

(a) Direct Form [4]

G(z−1) G(z−1) G(z−1)· · ·

· · ·

a0 a1 a2 aM−1 aM

x[n]

y[n]m m m m- - - - - -

- - - -

? ? ? ?

(b) Alternative Implementation [7–9]

Figure 1-1: Two Implementations of a Decomposable FIR Filter where H(z−1) =
(F ◦G)(z−1)

where the sensitivities represent the maximum relative magnification of the energy

among all small perturbations. Lower sensitivity indicates higher robustness and

higher reliability in applications. Equivalent compositions are shown to be effective

to decrease certain sensitivities, especially when the degree of h(x) is high.

New algorithms are proposed for both the exact and the approximate decom-

position problems. We propose two types of decomposition algorithms: those with

polynomial coefficients as input and those with polynomial roots as input. Differ-

ent algorithms have different capabilities to decompose high order polynomials and

different robustness to noise.

The remainder of this thesis is organized as follows. Chapter 2 briefly summarizes

the basic properties and existing work on polynomial decomposition. Chapter 3

states the precise definition of the problems that will be explored in this thesis. The

sensitivities are theoretically studied in Chapter 4, where we also develop an approach

to decrease certain sensitivities by equivalent compositions. The algorithms for the

exact and the approximate decomposition problems are presented and evaluated with

numerical simulation in Chapter 5 and 6, respectively. Chapter 7 concludes this thesis

and proposes potential problems for future work.

16

Chapter 2

Background

2.1 Polynomial Composition Properties

A number of basic properties that will be utilized about polynomial composition are

briefly stated in this section. The proofs of these properties are omitted and can be

found in the references [12, 13].

1. Polynomial composition is linear with respect to f(x) but not to g(x). Namely,

(f1 + f2) ◦ g = f1 ◦ g + f2 ◦ g always holds, but generally f ◦ (g1 + g2) 6=

(f ◦ g1) + (f ◦ g2).

2. Polynomial composition satisfies the associative law, i.e., (f ◦g)◦p = f ◦ (g ◦p).

3. Polynomial composition generally does not satisfy the commutative law, i.e.,

(f ◦g) 6= (g ◦f) in general. However, two special situations are worthy of notice

[12]. The cyclic polynomials, which have only a single power term xn, satisfy

xMN = xM ◦xN = xN ◦xM . Similarly, TMN (x) = (TM ◦TN)(x) = (TN ◦TM)(x),

where Tn(x) = cos(n arccos(x)) is the nth-order Chebyshev Polynomial.

4. Polynomial composition is not unique in the following three situations. First, it

holds in general that f ◦ g = (f ◦ q−1) ◦ (q ◦ g), where q(x) = q1x+ q0 is a first-

degree polynomial and q−1(x) = (x−q0)/q1 is the inverse function of q(x) under

composition. Second, xMN
(
v(xM)

)M
= xM ◦

(
xNv(xM)

)
=
(
xN(v(x))M

)
◦ xM

17

where v(x) is an arbitrary polynomial. Third, as stated above, the Chebyshev

polynomials can have more than one decomposition. These three scenarios of

non-unique decomposition include all possible situations: if there are two ways

to decompose a given polynomial into indecomposable components, then the

two ways of decomposition can differ only in the above three situations, as is

described more precisely in [13] on this topic.

5. If h(x) is decomposable, the flipped polynomial hflip(x) =
∑MN

k=0 cMN−kx
k is

not necessarily decomposable.

6. Similar to a minimum phase filter [4], we refer to h(x) as a minimum phase

polynomial if all the roots are inside the unit circle. If f(x) and g(x) are both

minimum phase, the composition h(x) is not necessarily minimum phase. How-

ever, as is shown in Appendix A, if a decomposable polynomial h(x) is minimum

phase, then there always exists a non-trivial minimum phase decomposition.

More precisely, if a minimum phase polynomial h(x) is decomposable into two

components with degrees M and N (M > 1 and N > 1), then we can construc-

t an equivalent composition of h(x), the components in which have the same

degrees and are both minimum phase polynomials. The proof in Appendix A

also provides the construction of a minimum phase decomposition from a non-

minimum phase decomposition of a minimum phase decomposable polynomial,

which may have potential application in implementation of minimum phase

decomposable filters.

7. Similar to a linear phase filter [4], we refer to h(x) as a linear phase polynomial

if the coefficients have odd or even symmetry. If f(x) and g(x) are both linear

phase, the composition h(x) is not necessarily linear phase. If a decomposable

h(x) is linear phase, there may not exist a non-trivial decomposition with linear

phase components, where non-trivial means the degrees of the components are

both larger than one.

18

2.2 Review of Existing Polynomial Decomposition

Algorithms

This section briefly summarizes the existing polynomial decomposition algorithms.1

In mathematics and symbolic algebraic computation, polynomial decomposition has

been an important topic for decades [14–24]. The first algorithm for the exact de-

composition problem was proposed by Barton and Zippel in [14]. This algorithm is

based on deep mathematical results to convert the univariate polynomial decompo-

sition problem into the bivariate polynomial factorization problem [15, 19] and has

exponential-time complexity. Recently, Barton’s algorithm has been improved to

polynomial-time complexity in [16], and extended into the approximate decomposi-

tion problem [16]. An alternative decomposition algorithm was proposed by Kozen

and Landau in [17], which requires the degreesM andN of f(x) and g(x), respectively.

Compared with Barton’s method, Kozen’s algorithm is much more straightforward

to implement. A third type of algorithm was based on the algorithm that Aubry

and Valibouze described in [20], which explores the relationship between the coeffi-

cients and the roots of a polynomial. Kozen’s algorithm is theoretically equivalent

to Aubry’s algorithm; however, they may show significantly different robustness in

numerical computation.

Approximate decomposition algorithms fall into two main categories. The first

category is to find a locally optimal solution based on the assumption that the input

polynomial h(x) is the sum of a decomposable polynomial and a small perturba-

tion. The algorithm proposed by Corless et al. in [18] belongs to this category; this

algorithm employs the result in [17] as an initial value and proceeds iteratively to

find a locally optimal approximate solution. However, the assumption that h(x) is

a nearly decomposable polynomial would not hold in most cases, and this fact in

general constrains the applicability of Corless’s algorithm. Moreover, there is no gen-

eral guarantee for the convergence of this algorithm, nor the global optimality of the

result.

1Much of this background was uncovered by Sefa Demirtas [11].

19

The second category of approximate decomposition algorithms is a generalization

of Barton’s algorithm [14] that employs bivariate polynomial factorization [15, 19].

This approach has a deep theoretical foundation and makes no assumption that h(x)

is nearly decomposable. As an example, Giesbrecht and May [16] employ the theo-

retical results in [19, 25] and convert the approximate decomposition problem into a

special case of the Structured Total Least Squares (STLS) problem [21,24]. There are

a number of heuristic algorithms to solve the STLS problem, such as the Riemanni-

an Singular Value Decomposition (RiSVD) algorithm [21] and the weighted penalty

relaxation algorithm [22,26]. However, none of these heuristic algorithms guarantees

convergence or global optimality in a general setting, which may be a disadvantage of

this type of approach. The Ruppert matrix [25], which is critical in the corresponding

STLS problem, has such high dimension that the numerical accuracy and efficiency

may become problematic. In summary, determining the optimal approximate decom-

position of an arbitrary polynomial still remains a challenging problem.

Theoretically, it does not appear to be possible to determine the distance from

the given h(x) to the nearest decomposable polynomial. Although there is a lower

bound on this distance in [16], this bound may not be sufficiently tight.

20

Chapter 3

Problem Definition

In this chapter, we state the problems to be explored in this thesis. The goal of

this thesis is to theoretically study the robustness of polynomial composition and

decomposition, and to design polynomial decomposition algorithms for both the exact

and the approximate cases.1 The robustness is characterized by the sensitivities in

Section 3.1. For both the exact decomposition in Section 3.2 and the approximate

decomposition in Section 3.3, there are two problems defined with different input

information.

3.1 Sensitivity Analysis

In polynomial composition, a perturbation of the components will typically result in a

corresponding perturbation of the composed polynomial, and vice versa for polynomi-

al decomposition. For example, if the component f(x) has a perturbation of ∆f(x),

then there is a corresponding perturbation ∆h(x) = ((f + ∆f) ◦ g)(x) − (f ◦ g)(x)

in the composed polynomial h(x) = (f ◦ g)(x). However, the energy of perturbation

can be significantly different between the components and the composed polynomial.

Sensitivities for the composition operation describe the maximal extent to which the

small perturbation of the polynomial components is magnified in the perturbation

of the composed polynomial [10], and sensitivities for the decomposition operation

1Many of the results were developed in collaboration with Sefa Demirtas [7].

21

describe the inverse maximum magnification.

3.1.1 Sensitivities of the Coefficients

In this section, we consider the sensitivities of the coefficients of the polynomials. In

the composition h(x) = (f ◦ g)(x), the sensitivity from f(x) to h(x) is defined as [10]

Sf→h = max
‖∆f‖2=κ

(
R∆h

R∆f

)
, (3.1)

where R∆h and R∆f are defined as

R∆h =
‖∆h‖22
‖h‖22

, and R∆f =
‖∆f‖22
‖f‖22

, (3.2)

in which f , h, ∆f , and ∆h are vectors of the coefficients of respective polynomials,

‖ · ‖2 denotes the l2-norm, and κ is the magnitude of the perturbation ∆f which

is constrained to be sufficiently small. To a first-order approximation, Sf→h and

other sensitivities become independent of the specific value of κ when κ is sufficiently

small. Both R∆h and R∆f are the ratios of the perturbation polynomial energy over

the original polynomial energy, and they represent the relative perturbation of h(x)

and f(x), respectively. If we consider the coefficients of polynomials as vectors, then

the sensitivity Sf→h is the maximum magnification of the relative perturbation from

f(x) to h(x), among all possible directions of perturbation. Since the sensitivity is

defined in the worst case scenario, it serves as an upper bound on the ratio between

relative perturbation R∆h

R∆f
when the perturbation ∆f is small.

Similarly, we can define the sensitivity from g(x) to h(x) in the composition process

[10],

Sg→h = max
‖∆g‖2=κ

(
R∆h

R∆g

)
, (3.3)

where R∆h is defined in (3.2) and R∆g denotes

R∆g =
‖∆g‖22
‖g‖22

, (3.4)

22

in which the magnitude κ of the perturbation∆g is sufficiently small. This sensitivity

involves the worst direction of the perturbation of g(x), in which the perturbation is

maximally magnified after composition.

In the composition process, the resulting polynomial is of course decomposable

even after perturbation of its components. In contrast, a decomposable polynomial

can become indecomposable after an arbitrary perturbation. Consequently, compo-

nents do not exist for the perturbed polynomial, and thus sensitivities are undefined

in this scenario. In addition, even if the polynomial remains decomposable after per-

turbation, the degrees of the components may change, which again makes it difficult

to assess the sensitivities. To avoid these situations, in our discussion of sensitivities

in the decomposition operation, we consider only the perturbation after which the

polynomial still remains decomposable and the degrees of the components remain the

same. In such cases, the sensitivities of the decomposition process imply the extent

to which an error is magnified from the composed polynomial to its components.

With the constraints specified above on the perturbation, the sensitivity from h(x)

to f(x) is defined as [10]

Sh→f = max
‖∆f‖2=κ

(
R∆f

R∆h

)
, (3.5)

and the sensitivity from h(x) to g(x) is defined as [10]

Sh→g = max
‖∆g‖2=κ

(
R∆g

R∆h

)
, (3.6)

where perturbations ∆f and ∆g have sufficiently a small magnitude of κ.

In summary, the sensitivities within the coefficient triplet (f, g, h) are defined in

Table 3.1.

3.1.2 Sensitivities of the Roots

Before we introduce the sensitivities of the roots, we first show the relationship of

roots of the polynomials in the composition process. Denoting zh as a root of h(x),

23

Table 3.1: Definitions of the Sensitivities within the Coefficient Triplet (f, g, h)
From To Process Sensitivity Definition

f h Composition Sf→h = max
‖∆f‖2=κ

(
R∆h

R∆f

)

g h Composition Sg→h = max
‖∆g‖2=κ

(
R∆h

R∆g

)

h f Decomposition Sh→f = max
‖∆f‖2=κ

(
R∆f

R∆h

)

h g Decomposition Sh→g = max
‖∆g‖2=κ

(
R∆g

R∆h

)

then h(zh) = f(g(zh)) = 0. Thus, if we define

zf , g(zh), (3.7)

then f(zf) = 0 and zf is a root of f(x). In other words, evaluating the polynomial

g(x) at the roots of h(x) results in the roots of f(x); equivalently, the roots zh

of the composed polynomial are the solutions to the equation (3.7) when zf and

g(x) are both determined. As a result, the root relationship (3.7) can be regarded

as a description of polynomial composition that is alternative to (1.2): while (1.2)

characterizes the relationship among the coefficients f , g, and h in the composition

process, (3.7) describes the relationship among zf , g, and zh.

We can also study the robustness of polynomial composition and decomposition

from the perspective of the relationship among the root triplet (zf , g, zh) in (3.7).

If zf or g(x) are perturbed, then there will typically be a corresponding perturba-

tion in zh to satisfy the constraint (3.7); similarly, perturbation in zh will typically

result in perturbations in zf and g(x), under the assumption of decomposability of

the perturbed polynomial into components with unchanged degrees. As a result,

the worst-case magnification of the magnitude of perturbation can be described by

sensitivities.

In Section 3.1.1, we have shown sensitivities that are described within the coef-

ficient triplet (f, g, h) and listed in Table 3.1; similarly, we can define four new

sensitivities within the root triplet (zf , g, zh). The four new sensitivities are summa-

24

Table 3.2: Definitions of the Sensitivities within the Root Triplet (zf , g, zh)
From To Process Sensitivity Definition

zf zh Composition Szf→zh = max
‖∆zf‖2=κ

(
R∆zh

R∆zf

)

g zh Composition Sg→zh = max
‖∆g‖2=κ

(
R∆zh

R∆g

)

zh zf Decomposition Szh→zf = max
‖∆zf‖2=κ

(
R∆zf

R∆zh

)

zh g Decomposition Szh→g = max
‖∆g‖2=κ

(
R∆g

R∆zh

)

rized in Table 3.2, where perturbation ∆zf or ∆g have sufficiently small magnitudes

of κ.

It may seem asymmetric to include the coefficients of g(x) rather than its roots zg

in the root triplet (zf , g, zh); however, such a root triplet has higher mathematical

simplicity: the coefficients of g(x) have direct relationship with zf and zh as shown

in (3.7), while we do not have such direct relationship for the roots zg.

Till now, we have formulated both the coefficient sensitivities and the root sensitiv-

ities. In Chapter 4, we derive expressions and develop bounds for these sensitivities;

we also compare the coefficient sensitivities and the root sensitivities; in addition,

we explore the effects of equivalent compositions on sensitivities with first-degree

polynomials.

3.2 Exact Decomposition

In the exact case, the input polynomial h(x) is guaranteed to be decomposable. The

approach to decomposition depends on the input information available. With different

input information, two problems in the exact case are as follows.

Problem 1: Exact Decomposition with Coefficients as Input

Given the coefficients of h(x) as well as deg(f(x)) =M and deg(g(x)) = N

where deg(h(x)) =MN , determine a choice for f(x) and g(x) such that

h(x) = (f ◦ g)(x).

25

Problem 2: Exact Decomposition with Roots as Input

Given the roots of h(x) as well as deg(f(x)) =M and deg(g(x)) = N

where deg(h(x)) =MN , determine a choice for f(x) and g(x) such that

h(x) = (f ◦ g)(x).

The above two problems are of course closely related. On the one hand, they are

theoretically equivalent, since the coefficients of a polynomial determine the roots,

and vice versa. On the other hand, the two problems have considerable differences

in numerical computation. Obtaining the roots from the coefficients is difficult for a

polynomial whose degree is high or whose roots are clustered. Thus, an algorithm

for Problem 1 may have better performance than an algorithm that first determines

the roots from the coefficients and then solves Problem 2, since the roots may be

numerically inaccurate. For similar reasons, an algorithm that directly works with

roots may be more robust than an algorithm that first obtains the coefficients and

then solves Problem 1. In fact, algorithms with polynomial coefficients as input and

those with roots as input may have considerably different performance.

The solutions to both problems are potentially useful in signal processing. If we

want to decompose a decomposable signal, the signal values naturally correspond to

the coefficients of the z-transform, which is in the form of Problem 1. In addition

to the coefficients, the roots of polynomials are also important in the z-transform

of a filter and the pole-zero analysis of the transfer function of a system. With the

knowledge of precise roots in such applications, Problem 2 is potentially useful.

In the statements of both problems, the degrees of components are included in the

input information. However, we can also perform decomposition for a decomposable

polynomial without knowing the degrees of the components. Since the product of

the degrees of the components equals to the degree of the composed polynomial,

we can perform the decomposition algorithms for each candidate pair of degrees of

the components, and then we check whether the output of the algorithms is a valid

decomposition. In this case, the computational complexity is higher than the scenario

where the degrees of components are available.

26

3.3 Approximate Decomposition

In this class of problems, we consider indecomposable polynomials; i. e. h(x) 6= (f ◦

g)(x) for any non-trivial f(x) and g(x). In this case, our goal is to find a decomposable

polynomial nearest in some sense to h(x) as the approximate decomposition. The

problems are defined with a one-to-one correspondence to those in the exact case.

Problem 3: Approximate Decomposition with Coefficients as Input

Given the coefficients of h(x) as well as deg(f(x)) =M and deg(g(x)) = N

where deg(h(x)) =MN , determine a choice for f(x) and g(x) minimizing

dist(h(x), (f ◦ g)(x)).

Problem 4: Approximate Decomposition with Roots as Input

Given the roots of h(x) as well as deg(f(x)) =M and deg(g(x)) = N

where deg(h(x)) =MN , determine a choice for f(x) and g(x) minimizing

dist(h(x), (f ◦ g)(x)).

Here dist(s(x), t(x)) is a distance measure between polynomials s(x) and t(x) with

the same degree. As an example, [18] uses the l2 norm corresponding to the energy

of the residue error:

‖s(x)− t(x)‖2 =

(
P∑

k=0

|sk − tk|
2

) 1
2

, (3.8)

where P = deg(s(x)) = deg(t(x)).

Similar to the exact case, these two problems here are also related. Although the

two problems are equivalent in theory, the algorithms for the two problems may have

different numerical performance.

27

28

Chapter 4

Sensitivities of Polynomial

Composition and Decomposition

This chapter explores the sensitivities of polynomial composition and decomposition

to study their robustness, as proposed in Section 3.1. 1 Derivation and bounds for the

sensitivities are developed in Section 4.1. The effects of equivalent compositions with

first-degree polynomials on sensitivities are studied in Section 4.2, with the proposal

of a rule for parameter selection to approach the minimum sensitivities. Simulation

results are shown in Section 4.3.

4.1 Derivation of the Sensitivities

4.1.1 Sensitivities of the Coefficients

In this section, we derive the expressions and bounds for Sf→h, Sg→h, Sh→f , and Sh→g

that are defined in Table 3.1. First, we derive the sensitivities of f(x) and h(x) with

respect to each other. The polynomial composition h(x) = (f ◦ g)(x) in (1.2) can be

equivalently presented by the following linear equations:

h = Gf , (4.1)

1Many of the results in this chapter are summarized in [10] by S. Demirtas, G. Su, and A. V.
Oppenheim.

29

where the vectors f = [aM , aM−1, . . . , a0]
T and h = [cMN , cMN−1, . . . , c0]

T have el-

ements as the coefficients of respective polynomials, and the matrix G is the self-

convolution matrix of the polynomial g(x)

G = [gM , . . . , g2, g1, g0]. (4.2)

From (4.1), it follows that the perturbations satisfy the linear relationship

∆h = G∆f . (4.3)

Thus, the maximal magnification of perturbation energy between ∆f(x) and ∆h(x)

is

Sf→h = max
‖∆f‖2=κ

(
R∆h

R∆f

)
=

‖f‖22
‖h‖22

· max
‖∆f‖2=κ

(
‖G∆f‖22
‖∆f‖22

)
= σ2

G,max

‖f‖22
‖h‖22

, (4.4)

where σG,max is the largest singular value of the matrixG. If the perturbation∆f is in

the direction of the maximal magnification of the matrixG, then the sensitivity above

is achieved. In addition, the sensitivity in (4.4) does not depend on the magnitude κ

of the perturbation, due to the linear relationship in (4.3).

For a fixed polynomial g(x), we can obtain an upper bound for the sensitivity

Sf→h over all possible polynomials f(x) with degree M . Since h = Gf ,

σ2
G,min ≤

‖h‖22
‖f‖22

≤ σ2
G,max,

where σG,min is the smallest singular value of the matrix G. Consequently, the sensi-

tivity Sf→h is bounded by

1 ≤ Sf→h ≤ cond(G)2, (4.5)

where cond(G) =
σG,max

σG,min
is the condition number of the matrix G. The upper bound

in (4.5) depends only on the polynomial g(x) and the degree of f(x), since the matrix

G is the self-convolution matrix of g(x) up to the power of M . The upper and lower

bounds in (4.5) are both tight in theory; however, the sensitivity with a given f(x)

30

may be significantly lower than the upper bound. The upper bound is theoretically

achieved when f(x) and ∆f(x) are in the directions of minimal and maximal mag-

nification of the matrix G, respectively; the lower bound is achieved when f(x) and

∆f(x) are both in the direction of maximal magnification. However, for a given f(x),

the sensitivity Sf→h is empirically shown to be significantly lower than the upper

bound in a number of cases as shown in Section 4.3.1.

Using the same approach as above, the sensitivity Sh→f is:

Sh→f = max
‖∆f‖2=κ

(
R∆f

R∆h

)
=

(
‖f‖22
‖h‖22

· min
‖∆f‖2=κ

‖G∆f‖22
‖∆f‖22

)−1

=

(
σ2
G,min

‖f‖22
‖h‖22

)−1

, (4.6)

which is also independent on the magnitude κ of the perturbation, due to the linear

relationship in (4.3).

This sensitivity has the same bounds as in (4.5), specifically

1 ≤ Sh→f ≤ cond(G)2. (4.7)

The upper bound for Sh→f is achieved when f(x) and ∆f(x) are in the directions of

maximal and minimal magnification of the matrix G, respectively. The lower bound

is achieved when f(x) and ∆f(x) are both in the direction of minimal magnification.

Next, we derive the sensitivities of g(x) and h(x) with respect to each other. In

contrast to f(x), the relationship between h(x) and g(x) is nonlinear. However, if the

energy of perturbation is sufficiently small, then we can use the linear approximation

2

(f ◦ (g +∆g))(x) =

M∑

m=0

am(g(x) + ∆g(x))m

≈

M∑

m=0

am
(
(g(x))m +m · (g(x))m−1 ·∆g(x)

)

= (f ◦ g)(x) + ∆g(x) · d(x), (4.8)

2Derivation similar to (4.8) and (4.11) also appears in [18].

31

where d(x) is the composition of f ′(x) (the derivative of f(x)) and g(x):

d(x) =

(M−1)N∑

k=0

dkx
k = (f ′ ◦ g)(x). (4.9)

Consequently, we have

∆h(x) = (f ◦ (g +∆g))(x)− (f ◦ g)(x) ≈ ∆g(x) · d(x), (4.10)

which indicates that ∆h(x) is approximately the convolution of ∆g(x) and d(x), when

∆g(x) is sufficiently small. Expressed in matrix form,

∆h ≈ D∆g, (4.11)

where the matrix D is a (MN +1)× (N +1) Teoplitz matrix with the last column as

[0, 0, . . . , 0, d(M−1)N , d(M−1)N−1, . . . , d0]
T. Consequently, the sensitivity Sg→h defined

in (3.3) becomes

Sg→h =
‖g‖22
‖h‖22

· max
‖∆g‖2=κ

(
‖∆h‖22
‖∆g‖22

)

=
‖g‖22
‖h‖22

· max
‖∆g‖2=κ

(
‖D∆g‖22
‖∆g‖22

)

= σ2
D,max ·

‖g‖22
‖h‖22

, (4.12)

where σD,max is the maximum singular value of the matrix D, and the perturbation

∆g has a sufficiently small magnitude of κ.

As developed in Appendix B, the sensitivity Sg→h has the upper bound

Sg→h ≤ (N + 1)‖g‖22 · σ
2
T,max, (4.13)

where σT,max is the maximum singular value of the matrix T:

T = GV(GTG)−1GT. (4.14)

32

The matrix V in (4.14) is a (M + 1) × (M + 1) matrix with sub-diagonal elements

M,M − 1,M − 2, . . . , 2, 1 and other elements as zero, i.e.,

V =

0

M 0

M−1 0

0

. . .

0
0

2 0

1 0

. (4.15)

This upper bound holds for all possible polynomials f(x) with a fixed degree

M and a fixed polynomial g(x). Although this bound is not always tight for any

g(x), numerical simulations presented in Section 4.3.1 indicate empirically that it is

a reasonably good estimate.

The sensitivity Sh→g in the decomposition process can be derived in an approach

similar to that used for Sg→h:

Sh→g = max
‖∆g‖2=κ

(
R∆g

R∆h

)

=

(
‖g‖22
‖h‖22

· min
‖∆g‖2=κ

(
‖∆h‖22
‖∆g‖22

))−1

=

(
‖g‖22
‖h‖22

· min
‖∆g‖2=κ

(
‖D∆g‖22
‖∆g‖22

))−1

=

(
σ2
D,min ·

‖g‖22
‖h‖22

)−1

, (4.16)

where σD,min is the minimum singular value of the matrix D, and the perturbation

∆g has a sufficiently small magnitude of κ.

4.1.2 Sensitivities of the Roots

In this section, we analyze the sensitivities among the triplet (zf , g , zh), which are

defined in Table 3.2. Before the derivation of the sensitivities, we study the structure

33

of the roots of decomposable polynomials.

If we denote the roots of f(x) and h(x) as zf(i) (1 ≤ i ≤ M) and zh(k) (1 ≤

k ≤ MN), respectively, then the composed polynomial h(x) can be factored in the

following two ways:

h(x) = aM

M∏

i=1

(g(x)− zf (i)) = cMN

MN∏

k=1

(x− zh(k)) , (4.17)

where aM and cMN are the coefficients of the highest degree term in f(x) and h(x),

respectively. If we denote

g̃i(x) = g(x)− zf(i), 1 ≤ i ≤ M, (4.18)

then (4.17) shows that the union of the roots of all g̃i(x) forms the roots of h(x). Thus,

we can partition the roots zh(k) (1 ≤ k ≤ MN) into M groups Ai (1 ≤ i ≤ M),

where all the roots in the i-th group Ai satisfy g̃i(x) = 0, i.e.,

Ai = {k | g(zh(k)) = zf (i), 1 ≤ k ≤ MN} , 1 ≤ i ≤M. (4.19)

There are N elements in each group Ai; the roots in a group correspond to the same

one root of f(x).

To simplify the analysis of the sensitivity of the roots, we assume that the deriva-

tive of g(x) is non-zero at the roots of h(x), i.e., g′(zh(i)) 6= 0 for 1 ≤ i ≤ MN . In

fact, this assumption holds in most scenarios: if h(x) has only single roots, then it

ensures g′(zh) 6= 0, since h′(zh) 6= 0 and h′(x) = f ′(g(x))g′(x).

First, we consider the sensitivities of zf and zh with respect to each other, when

the polynomial g(x) is fixed. Since the roots zh in each group correspond to the

same root of f(x), the perturbation of zf (i) affects only those roots of h(x) that

correspond to zf (i), i.e., zh(k) where k ∈ Ai. For a sufficiently small perturbation

∆zh(k) (k ∈ Ai), we can employ the following linear approximation

g (zh(k) + ∆zh(k)) ≈ g(zh(k)) + g′(zh(k)) ·∆zh(k), k ∈ Ai,

34

so the the perturbation ∆zf (i) is

∆zf (i) = g (zh(k) + ∆zh(k))− g(zh(k)) ≈ g′(zh(k)) ·∆zh(k), k ∈ Ai.

Consequently, if we perturb only one root zf (i), the ratio of perturbation energy is

‖∆zh‖
2
2

‖∆zf‖
2
2

=

∑
k∈Ai

|∆zh(k)|
2

|∆zf(i)|2
≈
∑

k∈Ai

1

|g′(zh(k))|2
. (4.20)

With the assumption that g′(zh) 6= 0, the ratio in (4.20) is finite.

If two or more roots of f(x) are perturbed, then each zf (i) affects the corre-

sponding roots of h(x) (i.e., zh(k), k ∈ Ai) independently. In this case, the ratio of

perturbation energy is

‖∆zh‖
2
2

‖∆zf‖
2
2

=

∑M
i=1

(∑
k∈Ai

|∆zh(k)|
2
)

∑M
i=1 |∆zf (i)|

2
≈

∑M

i=1 |∆zf (i)|
2
(∑

k∈Ai

1
|g′(zh(k))|2

)

∑M
i=1 |∆zf(i)|

2
. (4.21)

Since (4.21) is a weighted summation of (4.20) over the range of i = 1, 2, . . . ,M , we

know

min
i∈{1,2,...,M}

∑

k∈Ai

1

|g′(zh(k))|2
≤

‖∆zh‖
2
2

‖∆zf‖
2
2

≤ max
i∈{1,2,...,M}

∑

k∈Ai

1

|g′(zh(k))|2
,

Consequently, the sensitivity Szf→zh in the composition process can be derived:

Szf→zh = max
‖∆zf‖2=κ

R∆zh

R∆zf

=
‖zf‖

2
2

‖zh‖
2
2

· max
‖∆zf‖2=κ

‖∆zh‖
2
2

‖∆zf‖
2
2

=
‖zf‖

2
2

‖zh‖
2
2

·

(
max

i∈{1,2,...,M}

∑

k∈Ai

1

|g′(zh(k))|2

)
, (4.22)

35

and the sensitivity Szh→zf in the decomposition process is:

Szh→zf = max
‖∆zf‖2=κ

R∆zf

R∆zh

=

(
min

‖∆zf‖2=κ

R∆zh

R∆zf

)−1

=

(
‖zf‖

2
2

‖zh‖22
·

(
min

i∈{1,2,...,M}

∑

k∈Ai

1

|g′(zh(k))|2

))−1

, (4.23)

where the perturbation ∆zf has a sufficiently small magnitude of κ.

It is shown in (4.22) and (4.23) that the sensitivities depend on the derivative of

g(x) at the roots of h(x). This dependence is intuitive from the fact that zf = g(zh):

if the derivatives g′(zh) have small magnitudes, then a big perturbation on zh may

still result in a small perturbation on zf , so the composition sensitivity Szf→zh may

be large while the decomposition sensitivity Szh→zf may be small; in contrast, a

large derivative could result in a small composition sensitivity Szf→zh and a large

decomposition sensitivity Szh→zf .

As a result, the clustered roots of h(x) influence the robustness between zf and

zh in composition and decomposition. For composition, if h(x) has clustered roots in

one group Ai, then the derivatives g′(zh) at those clustered roots have small values,

so the composition operation is vulnerable to noise. In contrast, if h(x) does not have

clustered roots, or the clustered roots belong to different groups, then the composition

operation is robust. For decomposition, if clustered roots appear in each group Ai,

then the sensitivity Szh→zf has a low value, so the decomposition has high robustness.

Next we derive the sensitivities of zh and g(x) with respect to each other, i.e., Sg→zh

in the composition process and Szh→g in the decomposition process. In contrast to

the sensitivities between zh and zf where changing one root zf affects only N roots

of h(x), a perturbation of g(x) results in perturbation of all roots of h(x). When the

roots of f(x) are all fixed, we have the following relationship between perturbations

of g(x) and the roots of h(x):

g(zh(k) + ∆zh(k)) + ∆g(zh(k) + ∆zh(k)) = zf (i), k ∈ Ai.

36

Applying linear approximation with small perturbations,

g(zh(k) + ∆zh(k)) ≈ zf (i) + g′(zh(k)) ·∆zh(k),

∆g(zh(k) + ∆zh(k)) ≈ ∆g(zh(k)),

the perturbation of zh(k) is derived as

∆zh(k) ≈ −
∆g(zh(k))

g′(zh(k))
.

The perturbations of all roots of h(x) can be expressed in matrix form as:

∆zh ≈ −QW∆g (4.24)

where matrices Q and W are

Q = diag

(
1

g′(zh(1))
,

1

g′(zh(2))
, . . . ,

1

g′(zh(MN))

)
, (4.25)

W =

zNh (1) zN−1
h (1) · · · zh(1) 1

zNh (2) zN−1
h (2) · · · zh(2) 1

...
...

. . .
...

...

zNh (MN) zN−1
h (MN) · · · zh(MN) 1

. (4.26)

Consequently, we can derive the sensitivities Sg→zh in the composition process and

Szh→g in the decomposition process:

Sg→zh = max
‖∆g‖2=κ

(
R∆zh

R∆g

)
= σ2

QW,max

‖g‖22
‖zh‖22

, (4.27)

Szh→g = max
‖∆g‖2=κ

(
R∆g

R∆zh

)
=

(
σ2
QW,min

‖g‖22
‖zh‖22

)−1

, (4.28)

where σQW,max and σQW,min are the maximum and minimum singular values of the

matrix Q ·W, respectively; the perturbation ∆g has a sufficiently small magnitude

of κ.

37

4.2 Sensitivities of Equivalent Compositions with

First-Degree Polynomials

As mentioned in Section 2.1, a composed polynomial may have equivalent composi-

tions when first-degree polynomials are used. Specifically, if we denote

f̂(x) =
(
f ◦ q−1

)
(x), (4.29)

ĝ(x) = (q ◦ g) (x), (4.30)

where q(x) = q1x+ q0 is a first-degree polynomial, then we have

h(x) = (f ◦ g)(x) =
(
f̂ ◦ ĝ

)
(x). (4.31)

However, these equivalent compositions may have different sensitivities. In this sec-

tion, we show the effects of equivalent compositions on sensitivities, and we propose

a practical rule to choose the parameters of the first-degree polynomial to get to a

point that is near the minimum of certain sensitivities.

First, we analyze the sensitivities between the coefficients of f̂(x) and h(x). Ap-

plying (4.1) to the equivalent composition (4.31), we have

h = Ĝf̂ , (4.32)

where the matrix Ĝ has columns as the self-convolutions of the new polynomial ĝ(x).

The self-convolution (ĝ(x))n can be regarded as a composition

(ĝ(x))n = (q1g(x) + q0)
n = (sn ◦ g) (x), (4.33)

where the polynomial sn(x) = (q1x+ q0)
n. Connecting (4.33) with the matrix formu-

lation in (4.1), we have

[(ĝ(x))n] = Gsn,

where [(ĝ(x))n] is the corresponding vector of the polynomial (ĝ(x))n. As a result, we

38

can establish the relationship between the self-convolution matrices G and Ĝ,

Ĝ =
[
(ĝ(x))M , (ĝ(x))M−1, . . . , (ĝ(x))0

]
= G [sM , sM−1, . . . , s0] = GA, (4.34)

where the matrix A is the self-convolution matrix of the first-degree polynomial

q(x) = q1x+ q0. Combining (4.1), (4.32), and (4.34), we can know

f̂ = A−1f . (4.35)

Consequently, the composition sensitivity Sf̂→h becomes

Sf̂→h = max
‖∆f̂‖2=κ

(
R∆h

R∆f̂

)
=

‖A−1f‖22
‖h‖22

· max
‖∆f̂‖2=κ

(
‖GA∆f̂‖22

‖∆f̂‖22

)
=

‖A−1f‖22
‖h‖22

· σ2
Ĝ,max

,

(4.36)

and the decomposition sensitivity Sh→f̂ becomes

Sh→f̂ = max
‖∆f̂‖2=κ

(
R∆f̂

R∆h

)
=

(
‖A−1f‖22
‖h‖22

· min
‖∆f̂‖2=κ

(
‖GA∆f̂‖22

‖∆f̂‖22

))−1

=

(
‖A−1f‖22
‖h‖22

· σ2
Ĝ,min

)−1

,

(4.37)

where σĜ,max and σĜ,min are the maximum and minimum singular value of the matrix

Ĝ, respectively.

Utilizing (4.36) and (4.37), we explore how to choose an appropriate first-degree

polynomial to efficiently enhance the robustness between f̂(x) and h(x). The optimal

parameter choice for q1 and q0 to minimize Sf̂→h or Sh→f̂ is not obvious, since the sen-

sitivities have complicated dependence on both f(x) and g(x). However, combining

(4.36) and (4.37), we note that

Sf̂→h · Sh→f̂ = cond(Ĝ)2, (4.38)

i.e., the product of the sensitivities results in the squared condition number of the

matrix Ĝ, which is independent of f(x) as long as its degree is M . If we want both

sensitivities to be small, then (4.38) implies the condition number cond(Ĝ) has to

39

be small. In addition, as shown in (4.5) and (4.7), the condition number cond(Ĝ) is

an upper bound for both sensitivities Sf̂→h and Sh→f̂ , so a small condition number

ensures that these sensitivities are simultaneously small.

To increase robustness, we are interested in the optimal parameters (q∗1, q
∗
0) that

minimize cond(Ĝ), for a given polynomial g(x) and a given degree M .3 It is still

not obvious how to obtain the optimal parameters or to prove the convexity of the

condition number cond(Ĝ) with respect to q1 and q0; however, we have the following

parameter selection rule that may approach the minimum value of cond(Ĝ).

Approximate Parameter Selection Rule for q(x): Given a polynomial g(x) and

a degree M , the first-degree polynomial q̃(x) = q̃1x+ q̃0 = q̃1(x+ q̃r) with parameters

q̃r = argmin
qr

‖(g(x) + qr)
M‖22, (4.39)

q̃1 =
(
‖(g(x) + q̃r)

M‖22
)− 1

2M , (4.40)

q̃0 = q̃1 · q̃r, (4.41)

results in a corresponding matrix Ĝ whose condition number is near the minimum

among all first-degree polynomials.

The development of the approximate rule is in Appendix C. The function ‖(g(x)+

qr)
M‖22 in (4.39) is convex towards qr, so the parameter q̃r can be computed efficiently,

and then q̃1 and q̃0 are obtained.

The approximate rule can be intuitively explained as follows. If we consider Ĝ as a

geometric mapping from the vector spaces of f̂ to that of h, then the condition number

cond(Ĝ) is the ratio between the lengths of the longest and the shortest vectors that

are the images of unit vectors. In particular, each unit vector on a coordinate axis

is mapped to a corresponding column of the matrix Ĝ. Thus, if the columns of the

matrix Ĝ vary significantly in energy, then the condition number is high. In addition,

if two columns of the matrix Ĝ are relatively very close in space, then their difference

is a vector with low magnitude, which also leads to a high condition number. Thus,

3Although the matrix Ĝ is independent of coefficients of f(x), the degree of f(x) influences the
size of Ĝ.

40

in order to have a small condition number, the columns of Ĝ should be relatively

similar in energy, and they should not be highly correlated. The columns of Ĝ are

the coefficients of self-convolutions of g(x); the rule above may keep relatively similar

energy among the self-convolutions and may avoid high correlation among them. As

a result, the rule above may achieve an approximately minimum condition number of

the associated matrix Ĝ.

The heuristic rule above cannot guarantee to obtain the minimum condition num-

ber cond(Ĝ) among all first-degree polynomials. However, empirically the condition

number with the rule above may achieve near the actual minimum.

Next, we derive the sensitivities Sĝ→h and Sh→ĝ. After composing the first-degree

polynomial, the polynomial d(x) in (4.9) becomes

d̂(x) = (f̂ ′ ◦ ĝ)(x) =
(
(f ◦ q−1)′ ◦ q ◦ g

)
(x) =

1

q1
(f ′ ◦ g)(x) =

1

q1
d(x),

where in the third step, we use the fact that (f ◦q−1)′(x) = ((q−1)′)(x) ·(f ′◦q−1)(x) =

1
q1
(f ′ ◦ q−1)(x). Thus, the sensitivities become

Sĝ→h =
‖q1g + q0e‖

2
2

‖h‖22
· max
‖∆ĝ‖2=κ

(
‖ 1
q1
D∆ĝ‖22

‖∆ĝ‖22

)
= Sg→h ·

‖g + q0
q1
e‖22

‖g‖22
, (4.42)

Sh→ĝ =

(
‖q1g + q0e‖

2
2

‖h‖22
· min
‖∆ĝ‖2=κ

(
‖ 1
q1
D∆ĝ‖22

‖∆ĝ‖22

))−1

= Sh→g ·
‖g‖22

‖g + q0
q1
e‖22

, (4.43)

where the vector e = [0, 0, . . . , 0, 1]T corresponds to the constant term in the polyno-

mial, and the perturbation ∆ĝ has a sufficiently small magnitude of κ.

With respect to the sensitivities between ĝ(x) and h(x), the parameters of the first-

degree polynomial should depend on the application, especially due to the following

tradeoff. Combining (4.42) and (4.43), we notice that the product of Sĝ→h and Sh→ĝ

remains a constant regardless of the choice of the first-degree polynomial:

Sĝ→h · Sh→ĝ =
σ2
D,max

σ2
D,min

.

41

Consequently, these two sensitivities cannot be reduced simultaneously by the same

first-degree polynomial; a decrease in one sensitivity always results in an increase in

the other. Furthermore, we observe that only the ratio qr ,
q0
q1

affects the sensitivities

between ĝ(x) and h(x) but not the individual q0 or q1; the sensitivity Sĝ→h decreases

first and then increases with qr, and the ratio to minimize Sĝ→h is qr = −b0 where

b0 is the constant term in g(x). In addition, for a fixed ratio q0
q1

that achieves good

sensitivities between ĝ(x) and h(x), there is still freedom to adjust the values of q0

(or q1) to decrease the sensitivities between f̂(x) and h(x).

Third, we consider the effects of equivalent composition on sensitivities of the

roots. After the composition with the first-degree polynomial in (4.29), the roots zh

remain the same, but the roots of f̂(x) become

zf̂ = q(zf) = q1zf + q0,

where zf are the roots of the original polynomial f(x). In a derivation similar to the

above, we finally obtain the sensitivities of the roots for the equivalent compositions:

Sz
f̂
→zh = Szf→zh ·

‖zf +
q0
q1
‖22

‖zf‖22
, (4.44)

Szh→z
f̂

= Szh→zf ·
‖zf‖

2
2

‖zf +
q0
q1
‖22
, (4.45)

Sĝ→zh = Sg→zh ·
‖g + q0

q1
e‖22

‖g‖22
, (4.46)

Szh→ĝ = Szh→g ·
‖g‖22

‖g + q0
q1
e‖22

, (4.47)

where Szf→zh, Szh→zf , Sg→zh, and Szh→g are in (4.22), (4.23), (4.27), and (4.28),

respectively.

The same as the sensitivities between ĝ(x) and h(x), the sensitivities of the roots

have the following two properties. First, the product of two corresponding sensitivities

in the composition and decomposition processes remains a constant for all equivalent

compositions, so it is impossible to decrease both of them simultaneously; second,

the sensitivities of the roots are affected only by the ratio qr = q0
q1

rather than the

42

individual values of q1 and q0. Consequently, the optimal choice of parameters has a

tradeoff and depends on the application. In addition, after the determination of the

ratio q0
q1

that has acceptable sensitivities of the roots, it is possible to further improve

Sf̂→h and Sh→f̂ by adjusting q0 (or q1). As for the tendency, we may see that both

Sz
f̂
→zh and Sĝ→zh decreases first and then increases with qr; the ratio to minimize

Sĝ→zh is qr = −b0, which is the same as the ratio to minimize Sĝ→h, but the ratio qr

to minimize Sz
f̂
→zh is usually different.

4.3 Simulation Results

In this section, the results of simulations are presented to evaluate sensitivity in

different contexts. Specifically, simulations are shown to evaluate each sensitivity

with polynomials of different degrees, to compare the sensitivities of the coefficients

and those of the roots, and to demonstrate the effectiveness of decreasing sensitivities

with equivalent compositions.

The data in the simulation are generated with the following parameters: The

degrees of both polynomial f(x) and g(x) vary from 2 to 15. For each degree, we create

100 random samples of f(x) and g(x), respectively. For each sample polynomial, the

coefficients are first generated from i.i.d. standard normal distribution, and then the

polynomial is normalized to have unit energy.

4.3.1 Evaluation of the Sensitivities

At each degree of f(x) and g(x), we compose each of the 100 samples of f(x) and

each of the 100 samples of g(x), and then evaluate all the sensitivities for all the

10, 000 compositions. The results are shown in Fig. 4-1 to Fig. 4-8; each figure shows

a certain sensitivity. In these figures, the continuous curve indicates the median of

the sensitivity among the 10, 000 compositions at that degree, and each vertical bar

shows the maximum and the minimum of the sensitivity obtained at that degree in

the simulation.

The first two figures show the sensitivities between the coefficients of f(x) and

43

2 4 6 8 10 12 14 16
10

0

10
5

10
10

10
15

deg(g(x)) = 7

deg(f(x))

S
en

si
tiv

ity
 S

 f→
h

Figure 4-1: Coefficient Sensitivity from f(x) to h(x).

2 4 6 8 10 12 14 16
10

0

10
5

10
10

10
15

deg(g(x)) = 7

deg(f(x))

S
en

si
tiv

ity
 S

 h
→

f

Figure 4-2: Coefficient Sensitivity from h(x) to f(x).

h(x): the composition sensitivity Sf→h in (3.1) and the decomposition sensitivity

Sh→f in (3.5) are shown in Fig. 4-1 and 4-2, respectively. The degree of g(x) is fixed

to 7, and the degree of f(x) varies from 2 to 15 as indexed by the x-axis. In each

figure, the continuous curve is the median of the sensitivity, and the dashed curve is

the upper bound in (4.5) or (4.7) evaluated with the instance of g(x) that achieves

the maximum sensitivity at each degree. The simulation results demonstrate that the

sensitivities satisfy the theoretical bounds in (4.5) and (4.7). We notice that there

is a considerably large gap between the upper bound for the composition sensitivi-

ty Sf→h and its empirical maximum obtained in the simulation, which indicates the

upper bound in (4.5) is tight in theory but possibly conservative in practice. As for

44

2 4 6 8 10 12 14 16

10
0

10
1

10
2

10
3

deg(f(x)) = 7

deg(g(x))

S
en

si
tiv

ity
 S

 g
→

h

Figure 4-3: Coefficient Sensitivity from g(x) to h(x).

2 4 6 8 10 12 14 16

10
0

10
2

10
4

10
6

deg(f(x)) = 7

deg(g(x))

S
en

si
tiv

ity
 S

 h
→

g

Figure 4-4: Coefficient Sensitivity from h(x) to g(x).

the tendency of the sensitivities, both sensitivities increase with the increase of the

degree of f(x). In addition, the decomposition sensitivity Sh→f is significantly larger

than the composition sensitivity Sf→h in the simulation, which indicates the compo-

sition process is likely to be more robust than the decomposition process. Although

the sensitivities are large in Fig. 4-1 and 4-2, however, as will be shown in the Sec-

tion 4.3.3, the sensitivities between the coefficients of f(x) to h(x) can be decreased

simultaneously using equivalent compositions, and the robustness can be improved

significantly.

The next two figures correspond to the coefficient sensitivities between g(x) and

h(x): the composition sensitivity Sg→h in (3.3) and the decomposition sensitivity

45

2 4 6 8 10 12 14 16
10

−5

10
0

10
5 deg(g(x)) = 7

deg(f(x))

S
en

si
tiv

ity
 S

 z
f→

z h

Figure 4-5: Root Sensitivity from zf to zh.

2 4 6 8 10 12 14 16
10

0

10
2

10
4

deg(g(x)) = 7

deg(f(x))

S
en

si
tiv

ity
 S

 z
h→

z f

Figure 4-6: Root Sensitivity from zh to zf .

Sh→g in (3.6) are shown in Fig. 4-3 and 4-4, respectively. The degree of f(x) is fixed

to 7, and the degree of g(x) varies from 2 to 15. The dashed curve in Fig. 4-3 is the

upper bound in (4.13), where g(x) is chosen as the instance that achieves the maxi-

mum sensitivity at each degree. The simulation results show that the upper bound

is satisfied and empirically tight. Furthermore, the decomposition sensitivity Sh→g is

generally larger and increases faster with the degree of g(x) than the composition sen-

sitivity Sg→h. This indicates the composition is more robust than the decomposition

for g(x).

The subsequent two figures show the root sensitivities between f(x) and h(x): Fig.

4-5 shows the composition sensitivity Szf→zh, and Fig. 4-6 shows the decomposition

46

2 4 6 8 10 12 14 16

10
0

10
2

10
4

10
6

deg(f(x)) = 7

deg(g(x))

S
en

si
tiv

ity
 S

 g
→

z h

Figure 4-7: Root Sensitivity from g(x) to zh.

2 4 6 8 10 12 14 16
10

0

10
2

10
4

10
6 deg(f(x)) = 7

deg(g(x))

S
en

si
tiv

ity
 S

 z
h→

g

Figure 4-8: Root Sensitivity from zh to g(x).

sensitivity Szh→zf . The degree of f(x) varies from 2 to 15 while the degree of g(x)

is fixed at 7. In contrast to the coefficient sensitivities between f(x) and h(x) that

increase fast with the degree of f(x), the median root sensitivities between zf and

zh have only little increase. This phenomenon indicates potential benefit to use the

roots rather than the coefficients for better robustness in polynomial composition and

decomposition where f(x) has a high degree. The root sensitivities between f(x) and

h(x) is generally more homogeneous and less dependent on the degree of f(x) than

the coefficient sensitivities. We may see this difference from the following example 4:

4Although h(x) has multi-roots in this example, however, as long as g(x) has only single roots,
then the multi-roots do not belong to the same group, so the sensitivities Szf→zh and Szh→zf are
still finite.

47

if f(x) = xM , then we can verify the root sensitivities Szf→zh and Szh→zf are the same

value regardless of the degree M , since the ‖zf‖
2
2 and ‖zh‖

2
2 are both proportional to

M2; however, in the coefficient sensitivities, the size of the matrix G depends on M ,

so the singular values of G may be significantly affected when M increases, which

may result in an increase in the coefficient sensitivities.

The last two figures correspond to the root sensitivities between the coefficients

of g(x) and the roots zh: Fig. 4-7 shows the composition sensitivity Sg→zh, and Fig.

4-8 shows the decomposition sensitivity Szh→g. The degree of g(x) varies from 2 to 15

while the degree of f(x) is fixed at 7. The decomposition sensitivity Szh→g increases

with the degree of g(x), while there does not seem to be such an obviously increasing

tendency for the composition sensitivity Sg→zh.

4.3.2 Comparisons of the Sensitivities

This section shows simulation results comparing the coefficient sensitivities with the

root sensitivities. We perform comparison on sensitivities in four pairs, namely Sf→h

vs Szf→zh, Sh→f vs Szh→zf , Sg→h vs Sg→zh, and Sh→g vs Szh→g; each pair contains a

coefficient sensitivity and a root sensitivity corresponding to the same polynomials

involved. At each degree of f(x) and g(x), we compare the sensitivities within each

pair for each of the 10, 000 composition instances, then we record the percentage of

instances where the root sensitivity is smaller than the coefficient sensitivity. The

results for the four pairs of sensitivities are plotted in Fig. 4-9.

The results seem to support that composition and decomposition using the root

triplet (zf , g, zh) are likely to be more robust than using the coefficient triplet

(f, g, h), when the degrees of polynomials are high. As the degrees of f(x) and

g(x) increase, there are more instances in our simulation where the root sensitivity

is smaller than the corresponding coefficient sensitivity. As we mentioned in Section

4.3.1, between the polynomials f(x) and h(x), since the relationship of the coeffi-

cients in (4.1) involves self-convolution of the polynomial g(x), a perturbation may

be magnified; however, the root sensitivities between zf and zh seem to be more ho-

mogeneous. However, we cannot conclude for every polynomial that the root triplet

48

0

5

10

15

0

5

10

15

85

90

95

100

deg(f(x))

Percentage of instances where S
 z

f
→z

h

 < S
 f→h

deg(g(x))

P
er

ce
nt

ag
e

86

88

90

92

94

96

98

(a): Sensitivities from f(x) to h(x),
i.e., Sf→h vs Szf→zh

0
5

10
15

0
5

10
15
0

20

40

60

80

100

deg(f(x))

Percentage of instances where S
 z

h
→z

f

 < S
 h→f

deg(g(x))

P
er

ce
nt

ag
e

0

10

20

30

40

50

60

70

80

90

(b): Sensitivities from h(x) to f(x),
i.e., Sh→f vs Szh→zf

0

5

10

15

0
5

10
15

50

60

70

80

90

100

deg(f(x))

Percentage of instances where S
 g→z

h

 < S
 g→h

deg(g(x))

P
er

ce
nt

ag
e

45

50

55

60

65

70

75

80

85

90

95

(c): Sensitivities from g(x) to h(x),
i.e., Sg→h vs Sg→zh

0

5

10

15

0

5

10

15
0

20

40

60

80

100

deg(f(x))

Percentage of instances where S
 z

h
→g

 < S
 h→g

deg(g(x))

P
er

ce
nt

ag
e

0

10

20

30

40

50

60

70

80

90

(d): Sensitivities from h(x) to g(x),
i.e., Sh→g vs Szh→g

Figure 4-9: Comparison between Corresponding Coefficient Sensitivities and Root
Sensitivities.

has lower sensitivities than the coefficient triplet, since certain multi-roots of h(x)

result in infinite root sensitivities, while all coefficient sensitivities are finite.

4.3.3 Sensitivities of Equivalent Compositions

This section presents simulation results to illustrate the effects of equivalent compo-

sitions on the sensitivities. In particular, we validate the effectiveness of equivalent

49

composition in reducing the sensitivities Sf̂→h and Sh→f̂ , and we show the perfor-

mance of the approximate rules (4.39)-(4.41) of choosing the first-degree polynomial.

In Fig. 4-10 - Fig. 4-14, we show the dependence of the condition number cond(Ĝ)

and all the sensitivities on the parameters of the first-degree polynomial. The degree

of g(x) is 7; polynomial g(x) is chosen as the instance that achieves the maximum

condition number ofG among the 100 random samples (without composing with first-

degree polynomials), which are generated in previous simulations in Section 4.3.1. The

degree of f(x) is chosen as M = 15; f(x) is the polynomial that has the highest sen-

sitivity Sf→h with the g(x) above (without composing with first-degree polynomials)

among the 100 randomly generated instances in previous simulations. In the previous

section, we derive that the sensitivities Sĝ→h, Sh→ĝ, Sz
f̂
→zh, Szh→z

f̂
, Sĝ→zh, and Szh→ĝ

depend only on the ratio qr = q0
q1

of the first-degree polynomial. Thus, the x-axis is

qr in Fig. 4-12 - Fig. 4-14 for these sensitivities. In contrast, cond(Ĝ), Sf̂→h, and

Sh→f̂ depend on both q1 and q0. For consistency with the other sensitivities, we plot

cond(Ĝ), Sf̂→h, and Sh→f̂ with respect to q1 and qr = q0
q1
. The range of q1 and qr

are [0.9, 1.9] and [−1.4,−0.4], respectively.

Fig. 4-10 indicates that there is an optimal q∗(x) that achieves the minimum

0.9 1.1 1.3 1.5 1.7 1.9

−1.4−1.2−1−0.8−0.6−0.4
10

0

10
3

10
6

10
9

q1qr =
q0
q1

co
n
d
(Ĝ

)

Figure 4-10: The Condition Number cond(Ĝ) with Different q1 and qr, where qr =
q0
q1
.

50

0.91.11.3
1.51.71.9

−1.4
−1.2

−1
−0.8

−0.6
−0.4

10
0

10
3

10
6

10
9

q1qr =
q0
q1

S
en
si
ti
v
it
y
S
h
→

f̂

(b) Sh→f̂

0.91.11.31.51.71.9

−1.4−1.2 −1−0.8−0.6−0.4

10
0

10
3

10
6

10
9

10
12

q1qr =
q0
q1

S
en
si
ti
v
it
y
S
f̂
→

h

(a) Sf̂→h

Figure 4-11: The Sensitivities Sf̂→h and Sh→f̂ with Different q1 and qr.

condition number cond(Ĝ); in this example, the optimal first-order polynomial has

parameters as q∗r = −0.8563, q∗1 = 1.3973, and q∗0 = −1.1965. As the parameters q1

and qr deviate from the optimal point, the condition number increases rapidly. In

Fig. 4-11, the sensitivities Sf̂→h and Sh→f̂ also have their respective minimum points,

which are near q∗(x). Thus, these figures show that we can choose a proper q(x)

to have low sensitivities in both the composition and the decomposition operations,

between the coefficients of f(x) and h(x).

In contrast, in each pair of sensitivities in Fig. 4-12 - Fig. 4-14, an decrease

in one sensitivity results in an increase in the other; this phenomenon is consistent

with our derivation in Section 4.2: the product of the two sensitivities remains a

constant regardless of qr. In addition, as discussed in Section 4.2, the composition

sensitivities decrease at first and then increase (the range of qr does not include the

minimum point for Sz
f̂
→zh in Fig. 4-13); the sensitivities Sĝ→h and Sĝ→zh share the

same optimal value for qr.

Fig. 4-15 shows the condition number with polynomials of different degrees, and

tests the performance of the approximate rules in (4.39)-(4.41). In Fig. 4-15 (a) and

(b), the polynomial g(x) has degree 7, and we use the 100 randomly generated in-

stances of g(x) in previous sections; the degree5 of f(x) varies from 2 to 15. The three

5Although the matrix Ĝ is independent of coefficients of f(x), the degree of f(x) influences the
size of Ĝ.

51

curves in 4-15 (a) are obtained as follows: for each degree M , we pick the polynomial

g(x) that achieves the maximum original condition number cond(G) within the 100

samples (without composing with first-degree polynomials); with the instance of g(x)

that we pick, the dash-dot line denotes the original condition number, the dotted

line denotes the minimum condition number by composing with the optimal first-

degree polynomial q∗(x), and the continuous line denotes the condition number by

composing with the first-degree polynomial q̃(x) proposed by the approximate rules

(4.39)-(4.41). For the instance of g(x) at each degree, the optimal first-degree poly-

nomial q∗(x) to minimize cond(Ĝ) is obtained by brute force search. To show the

performance of the approximate rule clearly, we magnify Fig. 4-15 (a) into Fig. 4-15

(b), but without the curve of the original condition number. The above description

also applies to Fig. 4-15 (c) and (d), but the polynomial g(x) has degree 15 rather

than 7 for these figures.

The figures demonstrate that the equivalent composition efficiently reduces the

condition number Ĝ, and the approximate rules are considerably effective to achieve

a nearly minimum condition number. In Fig. 4-15 (a) and (c), compared with the

rapid growth of the original condition number with the degree M , the corresponding

minimum condition number has only considerably small increase. At each degreeM in

Fig. 4-15 (b) and (d), the condition number of equivalent composition by composing

with q̃(x) that is proposed by the approximate rules is considerably near the actual

minimum value. Thus, the approximate rules (4.39)-(4.41) are considerably effective

in practice.

As shown in (4.5) and (4.7), the squared condition number of Ĝ is an upper bound

for both sensitivities Sf̂→h and Sh→f̂ . In our simulation, since the minimum condition

number can be reduced to less than 2.5 with proper equivalent composition, these

two sensitivities also become considerably low, which indicates an improvement of

robustness.

52

−1.4 −1.2 −1 −0.8 −0.6 −0.4
10

1

10
2

10
3

qr =
q0
q1

S
en
si
ti
v
it
ie
s

Sĝ→h

Sh→ ĝ

Figure 4-12: The Sensitivities Sĝ→h and Sh→ĝ with Different qr.

−1.4 −1.2 −1 −0.8 −0.6 −0.4

10
0

10
1

10
2

qr =
q0
q1

S
en
si
ti
v
it
ie
s

Sz
f̂
→zh

Szh→z
f̂

Figure 4-13: The Sensitivities Sz
f̂
→zh and Szh→z

f̂
with Different qr.

−1.4 −1.2 −1 −0.8 −0.6 −0.4

10
0

10
1

10
2

qr =
q0
q1

S
en

si
ti
v
it
ie
s

Sĝ→zh

Szh→ ĝ

Figure 4-14: The Sensitivities Sĝ→zh and Szh→ĝ with Different qr.

53

2 4 6 8 10 12 14 16
10

0

10
2

10
4

10
6

10
8

M

c
o
n
d
(Ĝ

)

deg(g(x))=7

Original
Minimum
Rule

(a): deg(g) = 7

2 4 6 8 10 12 14 16
1

1.2

1.4

1.6

1.8

2

M

c
o
n
d
(Ĝ

)

deg(g(x))=7

Minimum
Rule

(b): deg(g) = 7 (Magnified)

2 4 6 8 10 12 14 16
10

0

10
2

10
4

10
6

M

c
o
n
d
(Ĝ

)

deg(g(x))=15

Original
Minimum
Rule

(c): deg(g) = 15

2 4 6 8 10 12 14 16
1

1.5

2

2.5

3

M

c
o
n
d
(Ĝ

)

deg(g(x))=15

Minimum
Rule

(d): deg(g) = 15 (Magnified)

Figure 4-15: Comparison of the Condition Number of Ĝ among the Original Value,
the Minimum Value, and the Value Achieved with the Approximate Rules (4.39)-
(4.41).

54

Chapter 5

Exact Decomposition Algorithms

In this chapter, algorithms are discussed for the exact decomposition for polynomials

that are known to be decomposable. The associated simulation results are also pre-

sented. Three algorithms are shown for the problems as defined in Section 3.2: one

of the algorithms has coefficients as input corresponding to Problem 1, while the oth-

er two have roots as input corresponding to Problem 2. Simulations are performed

to compare the new algorithm developed in Section 5.2.3 with two other existing

algorithms. 1

In the development of the methods, an assumption is made without loss of gen-

erality. Specifically, in this chapter, we assume that all the polynomials f(x), g(x),

and h(x) are monic, and the constant term in g(x) is zero; i.e.,

aM = bN = cMN = 1, and b0 = 0, (5.1)

where ai, bi, and ci are the coefficients of the term xi in f(x), g(x), and h(x), respec-

tively.

The validity of this assumption results from the equivalent compositions with first-

degree polynomials. As mentioned in Sections 2.1 and 4.2, for an arbitrary first-degree

polynomial q(x) = q1x + q0, it holds that f ◦ g = f̂ ◦ ĝ, where f̂(x) = (f ◦ q−1)(x)

1The first two algorithms in this chapter and the associated simulation results are included in [11]
by S. Demirtas, G. Su, and A. V. Oppenheim.

55

and ĝ(x) = (q ◦ g)(x). Thus, by choosing a proper q(x), we can set ĝ(x) as a monic

polynomial with a constant term of zero. Consequently, there always exists a way of

decomposing h(x) as (f̂ ◦ ĝ)(x) such that bN = 1 and b0 = 0. This case implies that

cMN = aMb
M
N = aM , so the leading coefficients of f̂(x) and h(x) are the same. Thus,

f̂(x) and h(x) can be scaled to monic polynomials simultaneously. This concludes

the validation of our assumption.

As a byproduct, equivalent compositions with linear functions also imply that

the degrees of freedom of decomposable h(x) (with fixed M and N) are at most

(M + 1) + (N + 1) − 2 = M + N , which is two fewer than the total number of

coefficients in f(x) and g(x).

5.1 Problem 1: Exact Decomposition with Coeffi-

cients as Input

An algorithm for exact decomposition with coefficients as input was proposed by

Kozen and Landau in [17]. This algorithm employs the fact that the N highest

degree terms of h(x) depend only on the coefficients of g(x) and the highest degree

term of f(x). By solving a system of equations iteratively, the coefficients of g(x)

can be obtained in the descending order of the degrees of terms. After obtaining

g(x), the coefficients of f(x) can be solved by a projection method due to the linear

relationship between h(x) and f(x) as shown in (4.1).

The coefficients of several highest degree terms in h(x) have the expressions:

cMN = aMb
M
N

cMN−1 =

(
M

1

)
aMb

M−1
N bN−1

cMN−2 =

(
M

2

)
aMb

M−2
N b2N−1 +

(
M

1

)
aMb

M−1
N bN−2

cMN−3 =

(
M

3

)
aMb

M−3
N b3N−1 +

(
M

1

)(
M − 1

1

)
aMb

M−2
N bN−1bN−2 +

(
M

1

)
aMb

M−1
N bN−3

These equations imply the theorem that is observed by Kozen and Landau [17]:

56

Theorem 5.1. [17]. For 1 ≤ k ≤ N − 1, the coefficient cMN−k in h(x) satisfies

cMN−k = µk (aM , bN , bN−1 . . . bN−k+1) +

(
M

1

)
aMb

M−1
N bN−k, (5.2)

where µk (aM , bN , bN−1 . . . bN−k+1) is a polynomial of aM and of the coefficients of

terms with degrees higher than bN−kx
N−k in g(x).

This theorem is directly implied by the fact that the terms cMN−kx
MN−k (1 ≤

k ≤ N − 1) in h(x) can be generated only by aMg(x)
M , i.e., the highest degree term

in f(x). Using multinomial expansion, we can further see that cMN−k is independent

of bN−j where k < j ≤ N . A detailed discussion can be found in [17], which has the

same core idea as the fact above.

Theorem 5.1 shows clearly that, after aM , bN , bN−1 . . . bN−k+1 are obtained, a linear

equation can be constructed with respect to bN−k. Thus, the coefficients of g(x) can

be obtained one by one from the highest degree term to the lowest; in this process of

coefficient unraveling, only the N highest degree terms in h(x) are used.

After g(x) is obtained, the determination of f(x) can be accomplished by the

solution to the linear equations (4.1):

f = G†h, (5.3)

where G† = (GTG)−1GT is the pseudo-inverse matrix of G, and the matrix G is the

self-convolution matrix as defined in (4.2).

In summary, the algorithm for exact decomposition with coefficients as input is

stated as follows:

Coefficient-Unraveling Algorithm [17]

(1) for k = 1 to N − 1

(2) Calculate µk (aM , bN , bN−1, . . . , bN−k+1)

(3) Obtain bN−k = (cMN−k − µk (aM , bN , bN−1, . . . , bN−k+1))/(MaM)

(4) endfor

(5) Construct the matrix G as defined in (4.2).

57

(6) Solve the coefficients of f(x) by (5.3).

5.2 Problem 2: Exact Decomposition with Roots

as Input

This section presents two algorithms for exact decomposition with roots as input: the

first algorithm is based on the algorithm by Aubry and Valibouze [20]; we present

a new algorithm based on grouping the roots of the composed polynomial. Both

algorithms use the structure of the roots of a decomposable polynomial, as well as

the relationship between the coefficients and the roots of a polynomial. The properties

of the roots of a decomposable polynomial are first stated in Section 5.2.1, and then

the two algorithms are presented in Sections 5.2.2 and 5.2.3, respectively.

5.2.1 Properties of Roots of a Decomposable Polynomial

As mentioned in Section 4.1.2, we can partition all the roots of h(x) into M groups

A1, A2, . . . , AM , and the roots in each group correspond to the same root of f(x).

The same as in Section 4.1.2, we denote the roots of f(x) and h(x) as zf (i) (1 ≤ i ≤

M) and zh(k) (1 ≤ k ≤ MN), respectively. Then, the roots zh(k) in the group Ai

all satisfy g̃i(zh(k)) = 0, where g̃i(x) = g(x) − zf (i) is a polynomial with a different

constant term from g(x). Without loss of generality, we assume all polynomials

involved are monic.

Since each g̃i(x) has the same coefficients except for the constant term, Theorem

5.2 is implied by Vieta’s theorem that states the relationship between the coefficients

and the roots of a polynomial [27].

Theorem 5.2. [27]. For each j = 1, 2, ..., N − 1, the j-th elementary symmetric

function σj(·) has the same value on all groups Ai (1 ≤ i ≤ M), where σj(Ai) is

58

defined as

σj(Ai) =
∑

k1<k2<···<kj∈Ai

zh(k1)zh(k2)zh(k3) · · · zh(kj), 1 ≤ j ≤ N − 1. (5.4)

Newton’s identities [28], which show the relationship between the elementary sym-

metric functions and the power summations of the roots of a polynomial, imply the

validity of Theorem 5.3 from Theorem 5.2 [20].

Theorem 5.3. [20]. For each j = 1, 2, ..., N −1, the j-th power summation of roots

sj(·) has the same value on all groups Ai (1 ≤ i ≤M), where sj(Ai) is defined as

sj(Ai) =
∑

k∈Ai

(zh(k))
j , 1 ≤ j ≤ N − 1. (5.5)

5.2.2 Root-Power-Summation Algorithm

Based on Theorem 5.3, an algorithm was proposed in [20] in order to determine a

polynomial g(x) from its self-convolution (g(x))N . In fact, this algorithm can also be

applied to the general problem of determining g(x) from the composition (f ◦ g)(x).

The algorithm in [20] has the following principles. Since the power summations

sj(Ai) in (5.5) are equal for each group Ai (i = 1, 2, ...,M), they can be directly

computed by

sj , sj(Ai) =
1

M

MN∑

k=1

(zh(k))
j , 1 ≤ j ≤ N − 1. (5.6)

Then, the coefficients of g(x) are obtained by using Newton’s identities [20, 28].

Next, we need to determine the component f(x). An elementary way is to first

obtain the roots of f(x) by clustering g(zh(k)) for k = 1, 2, . . . ,MN and using the

largestM clusters; then, f(x) is solved by f(x) =
∏M

i=1(x−zf (i)). However, since nu-

merical errors in the input roots may be magnified and cause the final reconstruction

of f(x) to be inaccurate, the description above is just a basic implementation of the

59

root-power-summation algorithm. We make an improvement to this algorithm in our

implementation to enhance precision; however, for easier and more clear description,

we discuss the improvement at the end of Section 5.2.3 rather than in this section.

The root-power-summation algorithm is summarized as follows.

Root-Power-Summation Algorithm

(1) Compute sj for j = 1, 2, ..., N − 1 by (5.6) [20].

(2) Compute the coefficients of g(x) using Newton’s identities [20].

(3) Compute g(zh(k)) and construct zf (i).

(4) Construct f(x) by f(x) =
∏M

i=1(x− zf (i)).

5.2.3 Root-Grouping Algorithm

In this section, we propose a new algorithm that uses the root-grouping information

for decomposition. For each root zh(k) (1 ≤ k ≤ MN), denote βk as the index of

the root of f(x) such that zf(βk) = g(zh(k)). Then, the mapping property in (3.7)

is expressed in the following matrix form (5.7). In contrast to the coefficients of h(x)

that have a complex nonlinear dependence on g(x), we can form the following linear

equations with respect to g(x) with the roots zf and zh:

zNh (1) zN−1
h (1) · · · zh(1) 1

zNh (2) zN−1
h (2) · · · zh(2) 1

...
...

. . .
...

...

zNh (MN) zN−1
h (MN) · · · zh(MN) 1

bN

bN−1

...

b1

b0

=

zf (β1)

zf (β2)
...

zf (βMN)

. (5.7)

The core problem in this approach is to determine the grouping information βk,

since this information directly leads to the solution to (5.7). The grouping information

is theoretically difficult to obtain, since the total number of possible grouping patterns

is extremely large. Equation (4.17) implies that each root zf corresponds to N roots

of zh, so we want to partition zh into M groups, each of which has N elements. The

total number of such partitions is (MN)!
M !(N !)M

, which increases extremely fast with M

60

and N . Thus, searching all possible grouping patterns is impractical due to its high

computational complexity.

However, Theorem 5.3 constrains the possible grouping patterns and effectively

decreases the computational complexity in practice. We propose an approach that

formulates the grouping pattern as a mixed integer program. There are M steps

in this approach; in each step, we determine the N roots in a group, and then we

remove them from the roots that remain to be grouped. To determine the roots that

form a new group, we introduce binary indicators δk for each zh(k) that has not been

grouped yet, and the following mixed integer program (MIP) is constructed:

min 0 (5.8)

s. t.
∑

k∈S

δk · (zh(k))
j = sj , ∀j = 1, 2, ..., N − 1, (5.9)

∑

k∈S

δk = N, (5.10)

δk ∈ {0, 1}, ∀k ∈ S.

The set S is those roots zh(k) that have not been grouped. If δk = 1, then zh(k) is in

the newly constructed group; otherwise, zh(k) remains not grouped. The constraint

(5.9) is due to Theorem 5.3, and the constraint (5.10) results from the fact that each

group has N roots. The values of sj in (5.9) are calculated by (5.6). Due to numerical

errors in implementation, the constraint (5.9) can be relaxed to

∣∣∣∣∣
∑

k∈S

δk · (zh(k))
j − sj

∣∣∣∣∣ ≤ ǫ|sj|, ∀j = 1, 2, ..., N − 1, (5.11)

for a small ǫ; furthermore, since the roots zh(k) are mostly complex numbers, the

left-hand-side of (5.11) for each j is implemented for the real part and the imaginary

part, respectively. 2 Since we are interested only in the binary points in the feasible

region, the cost function can be arbitrary and we set it as 0 for simplicity. After

2In contrast, the right-hand-side of (5.11) is a constant for the optimization problem, so we do
not separate the real and imaginary parts of it; in addition, |sj | in (5.11) is the magnitude of the
complex number sj.

61

the mixed integer optimization problem in (5.8) has been solved for M times, the

grouping information can be fully determined.

An improvement is performed on the procedure above to decrease time complexity

for obtaining the grouping information. In fact, we do not need to solve the opti-

mization problem in (5.8) for M times; instead, we only solve (5.8) for one time and

get one group of roots. Then we can construct g(x) as follows:

g(x) =
∏

k∈A1

(x− zh(k))− (−1)N
∏

k∈A1

zh(k), (5.12)

Although numerical errors may cause (5.12) to be a rough reconstruction, however,

we may still use (5.12) to determine the grouping information. The roots zh in one

group should have the same value of g(zh), so we can cluster g(zh) to obtain the

grouping information of zh.

After obtaining the full grouping information, we consider the construction of

g(x) and zf . Theoretically, we can construct g(x) in (5.12) with any one group,

then the roots of f(x) are computed by zf(i) = g(zh(k)), k ∈ Ai, 1 ≤ i ≤ M .

However, accumulation of numerical error may cause the direct expansion (5.12) to

be inaccurate. To enhance robustness and precision, we utilize the linear relationship

in (5.7) and form the following linear program to solve zf (i) and g(x):

min
bj ,zf (i)

M∑

i=1

∑

k∈Ai

|ψi,k| (5.13)

s. t. ψi,k =

N−1∑

j=1

(zh(k))
j · bj + (zh(k))

N − zf (i),

for i = 1, 2, ...,M, k ∈ Ai. (5.14)

The cost function for this linear program is the total deviation from g(zh(k)) to zf (i)

where zh(k) belongs to the group Ai; the deviation should be zero in theory without

numerical error. The grouping information Ai has been obtained by solving the mixed

integer program in (5.8). Since the roots zh(k) and zf (i) are mostly complex numbers,

we implement (5.14) for the real and imaginary parts, respectively; then, the terms

62

in the cost function are implemented as |ψi,k| , |Re {ψi,k}|+ |Im {ψi,k}|. In addition

to the constraints listed above, we also constrain that the roots zf that correspond

to conjugate pairs of zh are also in a conjugate pair, which ensures that f(x) has real

coefficients.

The complete algorithm is summarized as follows:

Root-Grouping Algorithm

(1) Set S = {1, 2, ...,MN}, and compute sj (1 ≤ j ≤ N − 1) from (5.6).

(2) Solve the integer program in (5.8).

(3) Construct the first group A1 = {k ∈ S | δk = 1}.

(4) Obtain a rough reconstruction of g(x) from (5.12).

(5) Determine the full grouping information Ai (1 ≤ i ≤M) by clustering g(zh).

(6) Construct precise g(x) and zf (i) from linear optimization (5.13).

(7) Construct f(x) by f(x) =
∏M

i=1(x− zf (i)).

Compared to the high complexity of a number of integer programming problems,

the efficiency in practice of formulation (5.8) is usually high.

As a last comment, the technique of reconstructing g(x) and zf from the linear

program in (5.13) is also applicable to the root-power-summation algorithm, which

can improve the overall precision. In that algorithm, we have a rough reconstruction

of g(x) using the power summation of roots (5.6) and Newton’s identity [20]. Then,

we can obtain the grouping information of roots zh by clustering g(zh). With the

grouping information, we finally use the linear program in (5.13) to solve g(x) and

zf , which enhances numerical performance.

5.3 Evaluation of the Exact Decomposition Algo-

rithms

This section presents a comparison between the three exact decomposition algorithms

with respect to the success rates of f(x), g(x), and h(x) in the decomposition. From

the coefficients or the roots of a decomposable polynomial h(x) = (f ◦ g)(x), the

63

three algorithms obtain the components f̄(x) and ḡ(x), and then we compose f̄(x)

and ḡ(x) into h̄(x) = (f̄ ◦ ḡ)(x). The errors in this decomposition process are defined

as

errp(x) = p(x)− p̄(x), for p(x) = f(x), g(x), or h(x).

The signal to error ratios (SER) are defined as

SERp , 20 log10

(
‖p(x)‖2

‖errp(x)‖2

)
, for p(x) = f(x), g(x), or h(x).

The criterion of successful decomposition is chosen as SERp ≥ 80dB in the simulation,

for p(x) = f(x), g(x), or h(x).

In the simulation, the degrees of f(x) and g(x) are equal and vary from 5 to 75 with

increments of 5; the corresponding degrees of h(x) vary from 25 to 5625. For each fixed

degree, we generate 100 samples of h(x) by composing monic polynomial components

f(x) and g(x) with coefficients of i.i.d. standard Gaussian distribution (except for the

leading terms and the constant terms: f(x) and g(x) are both monic polynomials,

and g(x) has a constant term of zero). The roots zf and zh are computed, and then

zh are sorted into random order. Then all three algorithms perform decomposition

on these samples. The details of parameter setting for the algorithms are as follows.

In the algorithms working with roots, two reconstructed roots g(zh) are considered to

belong to one cluster (i.e., correspond to the same zf) if the distance between them

is lower than a threshold, for which we use 10−3. In the root-grouping algorithm, the

mixed integer optimization problem (5.8) is solved by the CPLEX software where we

set the time limit for the MIP as 2 minutes, and the parameter ǫ in (5.11) is chosen as

10−11 in our simulation. For each algorithm, we record its successful decomposition

rates within the sample polynomials according to the criterion above; the results for

f(x), g(x), and h(x) are plotted in Fig. 5-1 (a), (b), and (c), respectively.

Figure 5-1 indicates that among these three algorithms, the root-power-summation

algorithm has the best performance, followed by the root-grouping algorithm; the

coefficient-unraveling algorithm has the lowest successful decomposition rate. For ex-

ample, when M = N = 50, the coefficient-unraveling algorithm fails to decompose

64

any sample polynomial; the root-grouping algorithm achieves successful decomposi-

tion on 72, 76, and 75 samples of f(x), g(x), and h(x), respectively; the root-power-

summation algorithm succeeds in obtaining 89, 94, and 93 samples of f(x), g(x), and

h(x), respectively. Since the root-power-summation algorithm and the root-grouping

algorithm work with roots, while the coefficient-unraveling algorithm works with co-

efficients, we can conclude that in our simulation, the exact decomposition with roots

as input is more robust than with the coefficients as input. The reasons are two-fold.

First, the coefficient-unraveling algorithm uses only the coefficients of the N highest

degree terms in h(x) to obtain g(x), which does not make full use of the input data. In

contrast, the root-power-summation algorithm and the root-grouping algorithm use

all theMN roots to obtain g(x) and zf , so they have better performance. Second, the

iterative method in the coefficient-unraveling algorithm to obtain the coefficients of

g(x) accumulates numerical errors and may expand them exponentially. In contrast,

in our simulation, the algorithms working with roots seem not to expand numerical

errors so significantly.

An interesting observation for the algorithms working with roots is that the suc-

cessful decomposition rates of f(x), g(x), and h(x) are generally similar for a fixed

degree in our simulation. In fact, if these algorithms obtain the correct grouping

information, then the reconstruction of g(x) and zf in our simulation is reasonably

precise using the linear program in (5.13). In contrast, for the coefficient-unraveling

algorithm, g(x) in the simulation usually has much higher success rate than f(x) for

degrees under 35 (above 40, both of the success rates drop to zero). In this algorithm,

g(x) is first obtained and then used to determine f(x) in the subsequent steps; thus,

the failure to determine g(x) usually leads to failure in f(x). As a result, g(x) usually

has higher success rate. In addition, to determine f(x), the coefficient-unraveling

algorithm uses the least square projection that minimizes the error in h(x), so the

reconstructed h(x) is possibly successful even if the obtained f(x) is already inaccu-

rate. Thus, for the coefficient-unraveling algorithm, the success rate of h(x) is also

normally higher than that of f(x) for a fixed degree.

While the main difficulty of the coefficient-unraveling algorithm and the root-

65

power-summation algorithm is numerical errors, the main challenge for the root-

grouping algorithm is solving the mixed integer program in (5.8). The success rates

of all algorithms generally decrease as the degrees M and N increase, since both

numerical errors in all algorithms and the scale of MIP in the root-grouping algorithm

increase with the degrees. However, the solution to the MIP problem is considerably

efficient as compared with general MIP problems, especially when we take its scale

into account. For example, when M = N = 30, there are 900 binary variables in the

MIP problem, and there are 9.80× 1055 possible patterns for the first group without

considering the constraints on the power summations. However, the constraints from

Theorem 5.3 efficiently shrink the feasible region and lower down the complexity so

that the grouping information is obtained for 97 samples within the time limit of

2 minutes. Moreover, the efficiency of the MIP formulation depends on individual

samples of polynomial; in general, we speculate that our MIP formulation in (5.8)

may be more efficient if the absolute values of roots |zh| do not have a large range.

This speculation results from the constraints (5.11). If there are two roots with a

very large and a very small absolute value, respectively, then the high powers of the

two roots have significantly different magnitudes. Thus, the power of the small root

is susceptible to numerical errors and does not have much influence on the power

summations when j is large. Consequently, if the large root is in the new group, it is

not effective to decide whether the small root belongs to the group using the constraint

(5.11) with a large j. In other words, such constraints may become ineffective to

shrink the feasible region, and the computational complexity may not get efficiently

decreased. In contrast, if all the roots have similar magnitudes, then it is likely that

the power summation constraint (5.11) for each power j effectively shrinks the binary

points in the feasible region, which results in higher overall efficiency.

66

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Degree of f(x) and g(x)

S
uc

ce
ss

 R
at

e
(f

(x
))

Coefficient−Unraveling
Root−Power−Summation
Root−Grouping

(a) f(x)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Degree of f(x) and g(x)

S
uc

ce
ss

 R
at

e
(g

(x
))

Coefficient−Unraveling
Root−Power−Summation
Root−Grouping

(b) g(x)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Degree of f(x) and g(x)

S
uc

ce
ss

 R
at

e
(h

(x
))

Coefficient−Unraveling
Root−Power−Summation
Root−Grouping

(c) h(x)

Figure 5-1: Comparison between the three exact decomposition algorithms on the
Success Rates of (a) f(x), (b) g(x), and (c) h(x).

67

68

Chapter 6

Approximate Decomposition

Algorithms

In this chapter, we present and evaluate algorithms for approximate polynomial de-

composition. In contrast to exact decomposition which can be thought of as a problem

of identification, approximate decomposition corresponds to modeling. Four algo-

rithms are explored for the problems defined in Section 3.3: three of the algorithms

are for Problem 3 for which the input is the coefficients, and the fourth is for Problem

4 for which the input is the roots. Simulation results are presented to evaluate the

algorithms. 1

6.1 Problem 3: Approximate Decomposition with

Coefficients as Input

This section presents three algorithms for the approximate decomposition problem

with polynomial coefficients as input, as stated in Section 3.3. The algorithms belong

to two categories: the iterative mean square approximation algorithm and algorithms

based on the Ruppert matrix.

1The first three algorithms in this chapter and the associated simulation results are included
in [11] by S. Demirtas, G. Su, and A. V. Oppenheim.

69

6.1.1 Iterative Mean Square Approximation Algorithm

This approach was proposed by Corless et al. in [18]; it updates the polynomials f(x)

and g(x) iteratively, where the update is achieved by approximate linearization and

mean square projection. Since the composition is linear with respect to f(x), if we

fix g(x) and want to obtain an approximate polynomial f(x) to minimize the error

energy ‖h(x)− (f ◦ g)(x)‖22, then the optimal f(x) is the mean square projection as

given in (5.3). However, if we fix f(x) and want to derive the optimal g(x) to minimize

the error energy, the problem is much more challenging since the composition is non-

linear with respect to g(x). If the input polynomial is near a decomposable one, then

we may apply the Taylor approximation

h(x)− (f ◦ (g +∆g))(x) ≈ h(x)− (f ◦ g)(x)− (f ′ ◦ g) (x) ·∆g(x), (6.1)

where f ′(x) is the derivative of f(x). If we denote r(x) = h(x)− (f ◦ g)(x), then (6.1)

can be presented in an equivalent matrix formulation

D ·∆g ≈ r, (6.2)

where the matrix D is the Teoplitz matrix in (4.11). Thus, we can apply the mean

square projection to obtain ∆g(x), where g(x) +∆g(x) approximately minimizes the

error energy ‖h(x)− (f ◦ (g +∆g))(x)‖22:

∆g = D†r. (6.3)

If the input polynomial is near a decomposable polynomial, then the coefficient-

unraveling algorithm for exact decomposition [17] in Section 5.1 would possibly have

outputs f(x) and g(x) that are sufficiently near the optimal polynomials. Thus, the

coefficient-unraveling algorithm can provide initial values for f(x) and g(x). In the

iteration, we iteratively use linear projections (5.3) and (6.3) to update f(x) and g(x),

respectively. The algorithm is summarized as follows:

70

Iterative Mean Square Approximation Algorithm [18]

(1) Obtain the initial guess g(0)(x) from the algorithm in Section 5.1.

(2) In the k-th iteration:

(3) Obtain f (k)(x) from (5.3), where the matrix G is constructed with g(k−1)(x)

from the last iteration.

(4) Obtain ∆g(k)(x) from (6.3), where the matrix D and the vector r are

computed with f (k)(x) and g(k−1)(x).

(5) Let g(k)(x) = g(k−1)(x) + ∆g(k)(x)

(6) Continue until the ‖h(x)− (f (k) ◦ g(k))(x)‖2 is sufficiently small or k attains

the limit on iteration steps.

This algorithm has low computational complexity and considerably good empirical

performance when the input polynomial is sufficiently near a decomposable polyno-

mial. However, there is no guarantee on the convergence of this algorithm in general;

since linearization is performed, the algorithm may converge into a local minimum

rather than the global minimum. In addition, the initialization step utilizes the al-

gorithm in Section 5.1 that uses only the N highest degree terms in h(x) to obtain

the component g(0)(x); if the highest degree terms in h(x) have much noise, then the

initial guess g(0)(x) may be significantly noisy, which possibly leads to divergence of

the algorithm or convergence to a local minimum.

6.1.2 Algorithms Based on the Ruppert Matrix

This type of approximate decomposition algorithms [16] is based on a mathematical

theory that establishes an equivalence between the decomposability of a polynomi-

al and the rank deficiency of a corresponding matrix, which is named the Ruppert

matrix. Consequently, the approximate decomposition problem is converted to deter-

mining a structured rank deficient approximation for a given Ruppert matrix. In this

section, the theoretical principles proposed in [15, 19, 25] are briefly described; then

we present the formulation by Giesbrecht et al. [16] of the decomposition problem

71

into a Structured Total Least Square (STLS) problem [21,24]; finally, we present two

algorithms proposed in [16, 21, 23, 24] to solve the converted STLS problem.

The decomposability of polynomials is converted to the rank deficiency of a Rup-

pert matrix via two steps [16]. In the first step, the univariate polynomial de-

composition problem is transformed to corresponding bivariate polynomial factor-

ization [15, 19], as the following theorem states.

Theorem 6.1. [19]. For a polynomial h(x) that is defined on x ∈ C and has a

non-prime degree, h(x) is indecomposable if and only if the bivariate polynomial

Φh(x1, x2) =
h(x1)− h(x2)

x1 − x2
(6.4)

is absolutely irreducible.

In the second step, the bivariate polynomial factorization problem is further trans-

formed into a partial differential equation problem with the following theorem [25].

Theorem 6.2. [25]. Suppose a bivariate polynomial H(x1, x2) has bi-degree (P,Q),

which means degx1
(H) = P and degx2

(H) = Q. Then H(x1, x2) is absolutely irre-

ducible if and only if the partial differential equation

H
∂U

∂x2
− U

∂H

∂x2
+ V

∂H

∂x1
−H

∂V

∂x1
= 0 (6.5)

has no nontrivial solution U(x1, x2), V (x1, x2) with degree constraints

deg(U) ≤ (P − 1, Q), deg(V) ≤ (P,Q− 2). (6.6)

Since (6.5) is linear with respect to the coefficients of polynomials U(x1, x2) and

V (x1, x2) when H(x1, x2) is fixed, the partial differential equation (6.5) is equivalent

to the following linear equation [25]

Rup(H) ·

 u

v

 = 0, (6.7)

72

where Rup(H) is the Ruppert matrix [25] of the polynomial H(x1, x2); both u and v

are vectors with elements as the coefficients of polynomials U(x1, x2) and V (x1, x2),

respectively. The Ruppert matrix Rup(H) represents the polynomial multiplication

in (6.5): each row corresponds to the coefficient of a term xi1x
j
2 in the left-hand-side of

(6.5), and each column represents the factors to be multiplied by a term in U(x1, x2)

or V (x1, x2). The size of the Ruppert matrix is (4PQ − 2P) × (2PQ + Q − 1); the

elements ofRup(H) depend only on the coefficients inH(x1, x2) as well as the degrees

P and Q. The degree constraints (6.6) are incorporated into (6.7) by the size (and

indexing) of the vectors u and v. The linear system (6.7) has a non-trivial solution,

if and only if the Ruppert matrix Rup(H) is rank deficient.

The theorems above show that for a polynomial h(x) with a non-prime degree, h(x)

is decomposable if and only if the corresponding Ruppert matrix Rup (Φh(x1, x2)) is

rank deficient [16].

Next, we present the method in [16] to formulate the approximate decomposition

problem into an STLS problem with (6.7). For an indecomposable h(x), our goal

is to determine a decomposable polynomial ĥ(x) = (f ◦ g)(x) that is close to h(x).

Then we know that Rup (Φh(x1, x2)) has full rank, while Rup (Φĥ(x1, x2)) is rank

deficient. Thus, the approximate decomposition problem becomes determining a rank

deficient Ruppert matrix R̂ = Rup (Φĥ(x1, x2)) that is close toR = Rup (Φh(x1, x2))

[16]. After the solution of the Ruppert matrix R̂, the approximate decomposition

ĥ(x) = (f ◦ g)(x) can be obtained directly from the elements of the matrix.

It should be noticed that the rank deficient matrix R̂ = Rup (Φĥ(x1, x2)) is not

an arbitrary Ruppert matrix; the construction of the bivariate polynomial in (6.4)

introduces certain constraints on the structure of the Ruppert matrix [16]. Using

(6.4) and the linearity of Ruppert matrix to the bivariate polynomial, we can see that

R̂ = Rup (Φĥ(x1, x2)) = Rup

(
MN∑

k=1

ĥk

k−1∑

j=0

xj1x
k−1−j
2

)
=

MN∑

k=1

ĥkRk, (6.8)

73

where the matrices Rk are

Rk = Rup

(
k−1∑

j=0

xj1x
k−1−j
2

)
, 1 ≤ k ≤MN. (6.9)

With the structure in (6.8), the approximate decomposition problem has been

transformed into the following optimization problem [16], which is an instance of the

Structured Total Least Square (STLS) problem [21, 24].

min
ĥ

‖ĥ− h‖2, (6.10)

s. t. R̂ =
MN∑

k=1

ĥkRk is rank deficient. (6.11)

Finally, we turn to the solution of the STLS problem in (6.10). There is no exact

solution to the STLS problem, but there are heuristic algorithms [21–24, 26]. Here

we show two algorithms, namely a heuristic algorithm based on Riemannian singular

vector decomposition [21] and the STLS relaxation algorithm [22, 26]. We can note

that the constant term in h(x) does not influence its decomposability, so we only care

about the other terms in h(x) in the development of the following algorithms.

A Heuristic Based on Riemannian Singular Vector Decomposition

The problem in (6.10) is a special instance of the Riemannian Singular Vector De-

composition (RiSVD) framework [21], and the RiSVD problem can be solved by an

iterative heuristic algorithm proposed in [21].

The RiSVD formulation for the STLS problem in (6.10) aims to obtain vectors p,

q, and the smallest scalar τ such that

Rq = Dqpτ, (6.12)

RTp = Dpqτ, (6.13)

pTDqp = qTDpq = 1, (6.14)

74

where R is the Ruppert matrix, and the matrices Dp and Dq are

Dp =
MN∑

k=1

RT
kp
(
RT

kp
)T
, (6.15)

Dq =

MN∑

k=1

Rkq (Rkq)
T . (6.16)

After the solution to the RiSVD problem, the approximate decomposition result

ĥ(x) is obtained by:

ĥk = hk − pTRkqτ, k = 1, 2, . . . ,MN. (6.17)

Although there is no exact algorithm for the RiSVD problem, there is a heuristic

solution that is referred to as the inverse iteration algorithm [21, 24]. The algorithm

is described as follows.

Inverse Iteration Algorithm for the RiSVD Formulation [21, 24]

(1) Perform the QR decomposition of the matrix R, i.e., [C1 C2]

 S

0

 = R.

(2) Perform the SVD of the matrix R, and obtain the smallest singular

value τ (0) and the associated singular vectors p(0) and q(0).

(3) Compute γ(0) = ((q(0))TDp(0)q(0))
1
4 .

(4) Normalize p(0) = p(0)

γ(0) , q
(0) = q(0)

γ(0) .

(5) In the k-th iteration:

(6) Compute z(k) = (S−1)TDp(k−1)q(k−1)τ (k−1).

(7) Compute w(k) = −(CT
2Dq(k−1)C2)

−1(CT
2Dq(k−1)C1)z

(k).

(8) Compute p(k) = C1z
(k) +C2w

(k).

(9) Compute q(k) = S−1CT
1Dq(k−1)p(k).

(10) Normalize q(k) = q(k)

‖q(k)‖2
.

(11) Compute γ(k) = ((q(k))TDp(k)q(k))
1
4 .

(12) Renormalize p(k) = p(k)

γ(k) , q
(k) = q(k)

γ(k) .

(13) Compute τ (k) = (p(k))TRq(k).

75

(14) Continue until the associated Ruppert matrix is numerically rank deficient

or k attains the limit on iteration steps.

(15) Obtain the final approximate decomposition result ĥ(x) from (6.17).

STLS Relaxation

This algorithm is based on the algorithms in [22, 26]. It relaxes the constraint of

rank deficiency of the Ruppert matrix into a penalty term in the cost function. The

Ruppert matrix R̂ in (6.11) is rank deficient if and only if one column is a linear

combination of the other columns. By switching two columns, we can always make

the last column linearly dependent on other columns. Then the problem of (6.10) is

equivalent to

min
ĥ,y

‖ĥ− h‖2, (6.18)

s. t. R̂

 y

−1

 = 0, (6.19)

where the vector [yT,−1]T is in the null space of the matrix R̂. The constraint in

(6.19) is nonlinear with respect to the pair (ĥ,y), since the matrix R̂ depends on the

coefficients of ĥ. A relaxation of (6.18) is [22, 26]

min
ĥ,y

C(ĥ,y) , ‖ĥ− h‖22 + λ

∥∥∥∥∥∥
R̂

 y

−1

∥∥∥∥∥∥

2

2

, (6.20)

where the parameter λ balances the deviation of polynomial ĥ(x) from h(x) and the

energy of the residue vector R̂[yT,−1]T.

The choice of λ is important for the quality of the relaxation problem (6.20). On

one hand, if λ is large, the residue vector has low energy, but the polynomial ĥ(x) may

not be a close approximation to h(x). On the other hand, if λ is small, the polynomial

ĥ(x) may be near the original h(x), but the rank deficiency of the Ruppert matrix

may be significantly violated.

76

The direct solution to the relaxation problem (6.20) is not obvious, so we would

like to introduce an iterative method with linear approximation. Suppose in the

i-th iteration step, we already have a polynomial ĥ(i)(x) (which is not necessarily

decomposable) and an associated vector y(i), and we would like to make small ad-

justments to them in order to decrease the cost function C(ĥ,y) as defined in (6.20).

If we denote the adjustments as ∆ĥ
(i)

and ∆y(i), then we can perform the following

linearization:

C(ĥ(i) +∆ĥ
(i)
,y(i) +∆y(i))

=
∥∥∥
(
ĥ(i) − h

)
+∆ĥ

(i)
∥∥∥
2

2
+ λ

∥∥∥∥∥∥

(
MN∑

k=1

ĥ
(i)
k Rk +

MN∑

k=1

∆ĥ
(i)
k Rk

)
·

 y(i) +∆y(i)

−1

∥∥∥∥∥∥

2

2

≈
∥∥∥
(
ĥ(i) − h

)
+∆ĥ

(i)
∥∥∥
2

2
+ λ

∥∥∥∥∥∥
R̂(i) ·

 y(i)

−1

+ J(i) ·

 ∆ĥ

(i)

∆y(i)

∥∥∥∥∥∥

2

2

. (6.21)

In the linearization above, we neglect the second order term
(∑MN

k=1 ∆ĥ
(i)
k Rk

) [
(∆y(i))T, 0

]T
.

The matrix J(i) is

J(i) =
[
j
(i)
MN , j

(i)
MN−1, . . . , j

(i)
1 , B

(i)
]
, (6.22)

in which the matrix B(i) consists of the columns of R̂(i) except for the last column,

and the vectors j
(i)
k = Rk ·

 y(i)

−1

 , (1 ≤ k ≤MN).

After the linear approximation, (6.21) becomes a positive semi-definite quadratic

form with respect to the vectors ∆ĥ
(i)
,∆y(i), so the minimum point could be directly

obtained. The optimal solution for ∆ĥ
(i)

and ∆y(i) is

 ∆ĥ

(i)

∆y(i)

 = −

(
Ψ(i)

)−1
m(i), (6.23)

77

where

Ψ(i) = λ(J(i))TJ(i) +ΘTΘ, (6.24)

m(i) = λ(J(i))T · R̂(i) ·

 y(i)

−1

+ΘT

(
ĥ(i) − h

)
, (6.25)

where the matrix Θ is

Θ = [IMN×MN 0] . (6.26)

In summary, the STLS relaxation algorithm can be stated as follows:

STLS Relaxation Algorithm

(1) Obtain the column of R that has the minimum residue error when mean-square

approximated as a linear combination of the other columns, and determine

the coefficients in the linear combination of the other columns as y(0).

Let ĥ(0) = h.

Choose λ = 1/σ2
K,min, i.e., the inverse of the squared minimum singular value

of the matrix K =
[
j
(0)
MN , j

(0)
MN−1, . . . , j

(0)
1

]
.

(2) In the i-th iteration:

(3) Compute J(i) in (6.22) and the Ruppert matrix R̂(i) associated with ĥ(i).

(4) Obtain the adjustments ∆ĥ
(i)

and ∆y(i) in (6.23).

(5) Update ĥ(i+1) = ĥ(i) +∆ĥ(i), y(i+1) = y(i) +∆y(i).

(6) Continue until the Ruppert matrix R̂(i) is numerically rank deficient or

i attains the limit on iteration steps.

6.2 Problem 4: Approximate Decomposition with

Roots as Input

This section proposes an algorithm for approximate decomposition, where the input

is the roots of an indecomposable polynomial that is close to a decomposable one.

This algorithm can be regarded as an extension of the root-grouping algorithm for

78

exact decomposition. Since the polynomial is indecomposable, the groups of roots

are actually not fully defined and not unique. However, if we view the roots of an

indecomposable polynomial as the roots of a decomposable polynomial with some

perturbation, then we may use the grouping information of the nearby decomposable

polynomial for decomposition.

The algorithm consists of iterations, in each of which there are three phases: the

first phase is to determine the grouping information using mixed integer programming;

the second phase is to determine whether to terminate the iteration by obtaining a

decomposable polynomial and measuring its approximation quality to the input poly-

nomial from the perspective of roots; the third phase is to make small adjustments to

the roots of an indecomposable polynomial to approach a decomposable polynomial.

Only the third phase updates the roots of the indecomposable polynomial; the roots

of a decomposable polynomial obtained in the second phase of an iteration are for

the only purpose of determining whether the termination criterion has been met, and

they are not used in the third phase or any future iterations; the reason for this is

explained in the description of the second phase.

In the first phase of each iteration, the grouping information is obtained with a

formulation of a mixed integer program, which is similar to that in the root-grouping

algorithm for exact decomposition. Since the roots are of an indecomposable polyno-

mial, the equality of the power summations (5.9) does not hold and can no longer be

directly applied to determine the grouping information; however, if the perturbation

is small, there should not be significant differences among the power summations of

the roots sj(Ai) in each group 1 ≤ i ≤ M for a given order 1 ≤ j ≤ N − 1, where

sj(Ai) is defined in (5.5). As a result, we consider the most likely grouping pattern

to be the one that minimizes the total difference among the power summations of the

roots in each group. In particular, we formulate a mixed integer program as follows:

79

min
δk,i,ŝj ,ε̂i,j

M∑

i=1

N−1∑

j=1

|ε̂i,j| (6.27)

s. t. ε̂i,j =

MN∑

k=1

δk,i · (zh(k))
j − ŝj , for 1 ≤ i ≤M, 1 ≤ j ≤ N − 1, (6.28)

MN∑

k=1

δk,i = N, for 1 ≤ i ≤M, (6.29)

M∑

i=1

δk,i = 1, for 1 ≤ k ≤ MN, (6.30)

δk,i ∈ {0, 1}, for 1 ≤ k ≤MN, 1 ≤ i ≤ M.

This optimization problem has the following variables: binary variables δk,i that in-

dicate whether the root zh(k) belongs to the group Ai, continuous variables ŝj that

are the standard root power summation of order j, and continuous variables ε̂i,j that

are the deviation from the root power summation of order j in the i-th group to the

corresponding standard root power summation ŝj. Since the roots zh(k) are mostly

complex numbers, the deviations ε̂i,j are respectively implemented for the real part

and the imaginary part, and each term |ε̂i,j| in the cost function (6.27) is imple-

mented as |ε̂i,j| , |Re {ε̂i,j}| + |Im {ε̂i,j}|. For decomposable polynomials with real

coefficients, the standard root power summations ŝj always have real values due to

Newton’s identities [28]; thus, in our implementation, we constrain that ŝj are all real.

In this way, the formulation above is in the framework of mixed integer optimization.

The constraints (6.29) and (6.30) ensure that each group has N roots zh and that

each zh belongs to one group, respectively. The cost function is the total difference

between the power summations in each group and the corresponding standard power

summations.

The formulation above can obtain the correct grouping pattern if the perturbation

is small. If there is no perturbation, the formulation in (6.27) obtains the correct

grouping information with a minimum cost of zero, since all the differences in power

summations are zero due to Theorem 5.3. If the perturbation gradually increases from

80

zero but is sufficiently small, the differences of power summations ε̂i,j also gradually

increase, and the correct grouping information δk,i still has lower cost to the problem

(6.27) than any incorrect grouping patterns; thus, the solution to (6.27) leads to the

true grouping pattern if the perturbation is sufficiently small. This conclusion does

not hold for the large perturbation scenario, where an incorrect grouping pattern may

achieve a lower cost than the correct one.

The formulation (6.27) for the approximate decomposition algorithm has higher

complexity than the formulation (5.8) for the exact decomposition algorithm. In the

exact decomposition algorithm, the grouping process can be divided into multi-steps,

each of which solves a mixed integer program and determines only one new group of

roots using Theorem 5.3. However, for the approximate decomposition algorithm, all

the groups are determined simultaneously in one step rather than multi-stages, since

Theorem 5.3 does not hold for the approximate case and the cost function in (6.27) is

globally dependent on all the groups. As a result, the dimension and the complexity

of the optimization problem increase for approximate decomposition.

In the second phase of each iteration, we obtain the roots of a decomposable

polynomial and determine whether to terminate the iteration. With the current

roots zh which typically do not correspond to a decomposable polynomial, we first

utilize the linear program in (5.13) to determine the roots zf and the coefficients of

g(x), and then we construct f(x) from zf . Last, by solving (3.7) with the obtained

zf and g(x), we reconstruct the ẑh as the roots of (f ◦ g)(x), which are guaranteed

to correspond to a decomposable polynomial. When the total deviation from the

perturbed input roots to the roots ẑh is sufficiently small, we consider the algorithm

as convergent and terminate the iterations; if not, we continue to the third phase

and the next iteration. We want to clarify that the roots ẑh in an iteration are not

used in the following third phase or in future iterations: although ẑh correspond to a

decomposable polynomial, however, ẑh may be significantly deviated from the input

roots due to the way they are obtained; in contrast, if we make small adjustments

on the roots zh of the indecomposable polynomial (in the following third phase) and

obtain a new set of ẑh from the adjusted roots (in the second phase of the next

81

iteration), it is possible that the new set of ẑh is closer to the input roots than the

previous set. Since we want to find a decomposable polynomial whose roots are good

approximation to the input roots, we do not use the roots ẑh as the starting point of

the adjustment in the third phase. As a result, we only update the roots zh in the

third phase, although zh typically do not correspond to a decomposable polynomial.

In the third phase of each iteration, we adjust the roots zh (not the roots ẑh

that are obtained in the second phase) with Taylor approximation to approach a

decomposable polynomial. We aim to approximately minimize the total difference of

power summations with proper adjustment of the roots. Specifically, if the roots zh(k)

are slightly adjusted by ∆zh(k), then the j-th power is adjusted by j (zh(k))
j−1·∆zh(k)

to the first-order Taylor approximation. As a result, a linear program is formulated

as follows.

min
∆zh(k),s̃j ,ε̃i,j

M∑

i=1

N−1∑

j=1

|ε̃i,j|+W ·

MN∑

k=1

|∆zh(k)| (6.31)

s. t. ε̃i,j =
MN∑

k∈Ai

(
(zh(k))

j + j (zh(k))
j−1 ·∆zh(k)

)
− s̃j ,

for 1 ≤ i ≤ M, 1 ≤ j ≤ N − 1. (6.32)

Similar with the first phase, s̃j and ε̃i,j in (6.32) represent the standard power summa-

tions and the approximate deviations in power summations, respectively; in addition,

s̃j are constrained to have real values. The same as (6.28) in the first phase, ε̃i,j in

the constraint (6.32) are implemented for the real part and imaginary part, respec-

tively, and in the cost function |ε̃i,j| , |Re{ε̃i,j}|+ |Im{ε̃i,j}|. The groups Ai in (6.32)

are obtained from the results in the first phase, i.e., Ai = {k|δk,i = 1}. In the cost

function, W is a weight factor to balance between achieving a small total difference of

power summations and lowering down the adjustments of the roots. Since ∆zh(k) are

probably complex numbers, we implement |∆zh(k)| , |Re{∆zh(k)}|+ |Im{∆zh(k)}|.

In addition, we have two details for implementation: first, we constrain that the ad-

justments of conjugate roots are also conjugate to ensure that h(x) is a real-coefficient

polynomial after the adjustments of the roots; second, we set a upper bound for the

82

real and imaginary parts of each ∆zh(k) to avoid huge adjustments which may de-

crease the precision of the Taylor approximation. Since Taylor expansion is used in

(6.32), the adjusted roots from linear program in the third phase typically do not

correspond to a decomposable polynomial.

An iteration with the three phases above may approach a decomposable polynomi-

al. As we mentioned in the second phase, when the total deviation from the perturbed

input roots to the roots ẑh of the decomposable polynomial in the iteration is suf-

ficiently small, we consider the algorithm as convergent. However, we do not have

a guarantee for convergence or global optimality. The approximate decomposition

algorithm with roots as input is summarized as follows.

Approximate Root-Grouping Algorithm

(1) In the i-th iteration:

(2) Phase 1: Solve the mixed integer optimization (6.27).

(3) Phase 2: Solve (5.13) and obtain the coefficients g(i)(x) and the roots

z
(i)
f (k), (1 ≤ k ≤M). Then obtain f (i)(x) =

∏M

k=1

(
x− z

(i)
f (k)

)
.

Solve (3.7) to obtain the roots of the decomposable polynomial

(f (i) ◦ g(i))(x), denoted as ẑh
(i)(k) (1 ≤ k ≤MN).

(4) Phase 3: Solve the linear optimization (6.31) to get ∆z
(i)
h (k).

Adjust the roots z
(i)
h (k) = z

(i−1)
h (k) + ∆z

(i)
h (k), for 1 ≤ k ≤ MN .

(5) Continue until the total deviation from the perturbed input roots to the

roots ẑh
(i)(k) obtained in step (3) is sufficient small, or i attains the limit

on iteration steps.

6.3 Evaluation of the Approximate Decomposition

Algorithms

This section presents the evaluation of the four algorithms for approximate decom-

position. In the simulation, we vary the degrees of f(x) and g(x); for each degree

83

pair (M,N), 100 samples of f(x) and g(x) are generated, respectively, and the com-

posed polynomial h(x) and its roots zh are obtained. The coefficients of f(x) and

g(x) are generated from i.i.d. standard Gaussian distribution except for the leading

coefficients which are fixed to one. Then, we utilize i.i.d. Gaussian noise to make the

polynomial indecomposable: For the first three algorithms that work on coefficients,

noise is added to the coefficients of h(x). For the last algorithm, Gaussian perturba-

tion is added to the roots zh for the real part and imaginary part, respectively; the

perturbation on a conjugate pair of roots is also in a conjugate pair, and the per-

turbation on real roots is real, in order to ensure the perturbed polynomial still has

real coefficients. The signal to noise ratio is at 40dB, where the energy of signal is

the total energy of the coefficients for the first three algorithms or the total energy of

the roots for the last algorithm. For clarity, the generated decomposable polynomial

without noise is denoted as hcl(x) with roots zclh , while the noisy polynomial and its

roots are denoted as hin(x) and zinh , respectively.

Since it is not known how to determine the decomposable polynomial that is the

closest to an indecomposable one, the criterion for successful approximate decompo-

sition is not obvious and may vary due to different structures of the algorithms. As

a result, we present the results for each algorithm separately.

6.3.1 Iterative Mean Square Algorithm

This algorithm [18] works with coefficients and updates f(x) as well as g(x) directly.

Thus, the output of each iteration is guaranteed a decomposable polynomial h(k)(x) =

(f (k) ◦ g(k))(x), where f (k)(x) and g(k)(x) are the results in the k-th iteration. The

criterion for success is that the decomposable polynomial in the k-th iteration is closer

to the input noisy polynomial than the initially generated noiseless polynomial, i.e.,

the energy of current deviation ‖h(k)(x)− hin(x)‖22 in the k-th iteration is lower than

the original additional noise energy ‖hcl(x)−hin(x)‖22 in the data generation process.

A sample is considered unsuccessful if the criterion above has not been satisfied after

100 iterations. The percentage of the successful samples for each degree pair is shown

in Table 6.1.

84

Table 6.1: Success Rate of the Iterative Mean Square Algorithm (%)

deg(f) deg(g) deg(f ◦ g) Success Rate

2 2 4 100.0
3 3 9 100.0
3 4 12 98.0
4 4 16 94.0
4 5 20 84.0
5 5 25 67.0
5 6 30 37.0
6 6 36 26.0
6 7 42 12.0
7 7 49 12.0

The iterative mean square algorithm achieves success in all but 2 samples with

degrees below 12 in our simulation. For higher degrees, it has unsuccessful samples,

either because the algorithm diverges or it converges to a local minimum. In conclu-

sion, the iterative mean square algorithm is a practical and efficient approach if the

input polynomial is close to a decomposable polynomial and its degree is not high,

although there is no guarantee of the convergence to the global minimum.

6.3.2 RiSVD Heuristic and STLS Relaxation

The goal of both RiSVD and STLS relaxation algorithms is to determine a rank

deficient Ruppert matrix that is close to the full rank initial Ruppert matrix. Thus,

these algorithms are considered successful when the Ruppert matrix is numerically

rank deficient, which is determined by the singular values in our simulation. In

particular, a Ruppert matrix is considered rank deficient if the maximum gap between

consecutive singular values among the smallest 20 singular values is larger than 100

times that of the initial Ruppert matrix or larger than 104. A sample is considered

unsuccessful if the criterion above has not been satisfied after 100 iterations. The

success rates of the RiSVD and STLS algorithms are listed in Table 6.2.

In Table 6.2, the success rate is the ratio between total successful samples and the

number of samples where the initial Ruppert matrix is not numerically rank deficient

85

Table 6.2: Success Rate of the Approximate Decomposition Methods that are Based
on Ruppert Matrix (%)

deg(f) deg(g) deg(f ◦ g) RiSVD STLN

2 2 4 73.0 100.0
2 3 6 2.0 97.0
3 2 6 9.0 96.0
2 4 8 5.0 92.0
4 2 8 7.3 94.8
3 3 9 5.0 86.0
2 5 10 1.0 81.0
5 2 10 10.0 90.0
2 6 12 2.0 79.0
3 4 12 12.2 83.7
4 3 12 10.0 82.2
6 2 12 11.3 95.0

(i.e., the maximum gap between consecutive singular values among the smallest 20

singular values is smaller than 104 for the initial matrix). The success rate of the

STLS relaxation algorithm is higher than that of the RiSVD algorithm, which shows

the STLS algorithm performs better in generating numerically rank deficient Ruppert

matrices.

However, complications involving numerical accuracy are encountered for these

two algorithms. In contrast to the iterative mean square method [18] and the approx-

imate root-grouping decomposition method where the polynomial in each iteration

is guaranteed decomposable, the polynomial corresponding to the Ruppert matrix

in each iteration of RiSVD and SLTS algorithms is generally indecomposable. Even

if both RiSVD and STLS converge under our criterion of numerical rank deficiency,

the output polynomials of the RiSVD or STLS algorithms are possibly unable to be

faithfully decomposed with the coefficient-unraveling algorithm for exact decomposi-

tion [17]. In addition, the polynomials obtained by RiSVD may have better perfor-

mance than those by STLS, when they are decomposed by the coefficient-unraveling

algorithm. This implies that our criterion for rank deficiency is not necessarily com-

patible with the coefficient-unraveling algorithm. Although rank deficiency of Rup-

86

pert matrix is theoretically equivalent to decomposability of polynomial, the large

dimensions of Ruppert matrices may cause numerical errors that lead to imprecision

in the singular value calculation in MATLAB, so our rank deficient criterion may not

be determined precisely.

6.3.3 Approximate Root-Grouping Algorithm

This section presents the simulation results for the approximate root-grouping algo-

rithm. In the data generation process, perturbation with 40dB SNR is added to the

roots of decomposable polynomials; the perturbation on a conjugate pair of roots

is also in a conjugate pair, and the perturbation on real roots is real, so the per-

turbed polynomial still has real coefficients. The weight factor in (6.31) is chosen as

W = 10−2, and we set an upper bound of 10−3 for the real and imaginary parts of each

adjustment ∆zh(k) in the third phase of each iteration. As we discussed in Section

6.2, the output ẑh in the second phase of each iteration is guaranteed to correspond to

a decomposable polynomial. Consequently, we choose the criterion for success as that

the roots ẑh of the decomposable polynomial in the k-th iteration are closer to the

perturbed input roots than the roots of the initially generated decomposable polyno-

mial are; in other words, we find a better decomposable approximation to the input

polynomial than the original one in the data generation process, from the perspective

of the energy of the differences of roots. A sample is considered unsuccessful if the

criterion above has not been satisfied after 100 iterations. The successful percentage

for each degree pair is shown in Table 6.3.

In Table 6.3, the column of correct grouping information shows the results for the

first phase of the algorithm, which determines the grouping information; the column

of successful decomposition shows the percentage of the successful samples according

to the criterion above. If h(x) has a degree that is below 20, the approximate root-

grouping algorithm in our simulation achieves considerable success. All grouping

information is correctly obtained when the degree of the polynomial h(x) is below 12;

as the degree increases, there are cases where the grouping information is not correctly

determined; since the total number of possible grouping patterns increases with the

87

Table 6.3: Success Rate of the Root Grouping Algorithm for Approximate Decompo-
sition (%)

deg(f) deg(g) deg(f ◦ g) Correct Grouping Successful
Information Decomposition

2 2 4 100.0 100.0
3 3 9 100.0 99.0
3 4 12 100.0 96.0
4 3 12 100.0 98.0
4 4 16 97.0 96.0
4 5 20 98.0 92.0
5 4 20 100.0 97.0
5 5 25 95.0 91.0
3 9 27 78.0 76.0
9 3 27 52.0 52.0
5 6 30 83.0 85.0
6 5 30 83.0 74.0

degree, the possibility that an incorrect grouping pattern achieves lower cost in (6.27)

than the correct one also increases. In general, the algorithm as a whole works for

most samples in our simulation; for those unsuccessful samples, the algorithm may

diverge or converge to a local minimum.

As a result, the approximate root-grouping algorithm is a practical and efficient

approach if the input roots are close to those of a decomposable polynomial and the

degree of the polynomial is not high; however, we cannot guarantee its convergence

to the global minimum.

88

Chapter 7

Conclusions and Future Work

This thesis studies the sensitivities of polynomial composition and decomposition in

order to characterize their robustness with respect to perturbations in coefficients

and roots. It also presents algorithms for both exact and approximate polynomial

decomposition. Since both the coefficients and the roots of decomposable polyno-

mials are potentially useful in signal processing applications, we explore polynomial

decomposition with inputs of both coefficients and roots.

For sensitivity analysis, we have derived the expressions and developed bounds for

the sensitivities. An empirical comparison shows that composition and decomposition

using the root triplet (zf , g, zh) is likely to be more robust than using the coefficient

triplet (f, g, h), when the degrees of polynomials are sufficiently high. Simulation

results demonstrate that the sensitivities Sf̂→h and Sh→f̂ can be significantly reduced

by utilizing equivalent compositions with first-degree polynomials; in addition, our

heuristic rule for parameter selection is shown to be efficient in approaching the

minimum values for these sensitivities.

Three algorithms are presented for the exact decomposition problem, in which

the polynomial h(x) is ensured to be decomposable into polynomials with specified

degrees. These algorithms all work in theory but have different numerical perfor-

mances. Simulation results show that the algorithms with roots as input are more

robust to numerical errors and can decompose polynomials with much higher degrees

than the algorithm with coefficients as input. Specifically, the root-power-summation

89

algorithm has the highest successful decomposition rate; the root-grouping algorithm

has a step of mixed integer programming, which may have high complexity but is

empirically shown much more efficient than general integer programming problem-

s; the coefficient-unraveling algorithm does not use all the coefficients of the input

polynomial in the step to get g(x) and easily accumulates numerical error due to its

structure.

Four algorithms are shown for the approximate decomposition problem, for which

we want to approximate h(x) with a decomposable polynomial. Three algorithms

work with coefficients: one is an iterative mean square method, and the other two

are based on obtaining a rank deficient Ruppert matrix that approximates that of

the indecomposable polynomial. The fourth algorithm has roots as input. Although

each algorithm may be effective for certain polynomials, none of these algorithms is

guaranteed to converge in general settings. The iterative mean square method is a

practical and efficient algorithm if the input polynomial is near a decomposable one,

but it may converge into a local minimum. The algorithms based on the Ruppert

matrix may obtain a numerically rank deficient Ruppert matrix, but they encounter

numerical problems in computation with the high-dimension Ruppert matrix and in

the determination of the rank, so the output polynomials of these algorithms are

possibly unable to be faithfully decomposed with the coefficient-unraveling algorithm

for exact decomposition; in addition, the choice for an parameter in SLTS algorithm is

not clear. The approximate root-grouping algorithm is effective when the input roots

are near those of a decomposable polynomial, but it may also converge to a local

minimum and the optimal values of parameters in this algorithm are not obvious.

Future work would mainly focus on further development and improvement of the

approximate decomposition algorithms. For these existing algorithms, the conver-

gence criteria may be derived to understand the conditions under which the algo-

rithms converge to the globally optimal decomposable approximation. In addition,

accurate numerical methods to determine the rank of a high-dimension matrix may

improve the termination criteria of the RiSVD and the STLS algorithms as well as

enable these algorithms to work on polynomials with higher degrees. With potential

90

improvements on numerical accuracy, efficient criteria for comparison among algo-

rithms also need to be developed and verified.

New algorithms could also be developed with potentially deeper exploration in

theory or practice. As an example in theory, the RiSVD and STLS algorithms are

both for the general STLS problem but do not make full use of the special structure

of the Ruppert matrix; thus, further study on the structure of the Ruppert matrix

may lead to invention of algorithms with higher efficiency. In practice, exploration

of the properties of the signals to be approximately decomposed may constrain the

range of the problem and result in more specific but more efficient algorithms.

In addition to algorithms, tighter lower bounds may be developed on the dis-

tance from an indecomposable polynomial to its nearest decomposable approxima-

tion, which may serve as a fundamental limit and be used to evaluate the room for

improvement of approximate decomposition algorithms.

91

92

Appendix A

Minimum Phase Decomposition for

a Minimum Phase Decomposable

Polynomial

In this appendix, we proof the statement in Item 6 in Section 2.1: if a decomposable

h(x) is minimum phase, then there always exists a non-trivial minimum phase decom-

position. In other words, if we know that a minimum phase h(x) has the composition

h(x) = (f ◦ g)(x), (A.1)

where deg(f(x)) =M and deg(g(x)) = N (M > 1 and N > 1), then we can construct

an equivalent composition of h(x) into minimum phase components f̂(x) and ĝ(x)

with degrees M and N , respectively. Here minimum phase polynomials refer to the

polynomials the roots of which are all inside the unit circle. We assume f(x), g(x)

and h(x) are all real polynomials, and we require that both f̂(x) and ĝ(x) have only

real coefficients.

Since minimum phase depends on the radius of the roots, we first study the

structure of the roots of a decomposable polynomial.1 If we denote the roots of f(x)

1Similar discussion about the structure of roots of a decomposable polynomial is also presented
in Section 4.1.2.

93

and h(x) as zf (i) (1 ≤ i ≤M) and zh(k) (1 ≤ k ≤MN), respectively, then there are

two ways to factor the composed polynomial h(x):

h(x) = aM

M∏

i=1

(g(x)− zf (i)) = cMN

MN∏

k=1

(x− zh(k)) . (A.2)

where aM and cMN are the coefficients of the highest degree term in f(x) and h(x),

respectively. Denote

g1(x) , g(x)− zf(1), (A.3)

then (A.2) implies that all the roots of g1(x) are included in the roots of h(x). Since

h(x) is minimum phase, all its roots are in the unit circle, so all the roots of g1(x) are

in the unit circle. If zf (1) is a real number, then g1(x) is a real-coefficient polynomial;

otherwise, g1(x) has a complex constant term. We consider the following two cases,

which depend on whether f(x) has at least a real root.

Case 1: f(x) has at least a real root.

Without loss of generality, we can assume zf (1) is a real root of f(x). Then (A.2)

becomes

h(x) = aM

M∏

i=1

(g1(x)− (zf (i)− zf (1))) = (f1 ◦ g1)(x), (A.4)

where

f1(x) = aM

M∏

i=1

(x− (zf(i)− zf (1))) . (A.5)

The complex roots among zf (i) are in conjugate pairs since f(x) is real; in addition,

since zf(1) is real, we know the complex roots in (A.5) are also in conjugate pairs, so

f1(x) is a real polynomial.

The polynomial f1(x) is not necessarily minimum phase; however, we can con-

struct a minimum phase polynomial f̂(x) by scaling the roots:

f̂(x) = aM · θM1 ·

M∏

i=1

(
x−

zf (i)− zf (1)

θ1

)
, (A.6)

94

where

θ1 = 2 · max
1≤i≤N

|zf(i)− zf (1)|. (A.7)

The roots of f̂(x) are zf̂ (i) =
zf (i)−zf (1)

θ1
, and we can verify that these roots have radius

|zf̂(i)| ≤
max1≤i≤N |zf(i)− zf (1)|

θ1
=

1

2
.

Thus, all the roots of f̂(x) are in the unit circle, and f̂(x) is a minimum phase

polynomial. In addition, f̂(x) is a real polynomial since its complex roots are in

conjugate pairs.

To compensate the scaling in f̂(x), we need to scale g1(x) into ĝ(x) correspond-

ingly:

ĝ(x) =
1

θ1
· g1(x) =

1

θ1
(g(x)− zf (1)) . (A.8)

Since ĝ(x) has the same roots as g1(x) and g1(x) is minimum phase, we know ĝ(x) is

also minimum phase. Since g1(x) is real, we know ĝ(x) has also real coefficients.

The composition (f̂ ◦ ĝ)(x) yields

(f̂ ◦ ĝ)(x) = aM · θM1 ·
M∏

i=1

(
ĝ(x)−

zf(i)− zf (1)

θ1

)

= aM ·
M∏

i=1

(g(x)− zf (i))

= h(x). (A.9)

Thus, (f̂ ◦ ĝ)(x) is an equivalent composition of h(x), and both f̂(x) and ĝ(x) are

minimum phase and real polynomials. This completes our proof for the first case

where f(x) has at least a real root.

Case 2: f(x) has only complex conjugate roots.

If f(x) has only complex roots in conjugate pairs, we know g1(x) = g(x)− zf (1) and

g∗1(x) = g(x)−z∗f (1) are both complex-coefficient minimum phase polynomials. Then,

95

we have the following lemma:

Lemma A.1. Let η(z) =
∑N

i=0 ηiz
i be a real-coefficient polynomial with degree N . If

both (η(z) + jα) and (η(z)− jα) are minimum phase polynomials for a real number

α > 0, then η(z) is also minimum phase.

Proof. First, we show that if |γ| ≥ 1 +
∑N

i=0 |ηi|, then (η(z)− jγ) has no root in the

unit circle. This can be shown by

|η(z)− jγ| ≥ |γ| − |η(z)| ≥ |γ| −
N∑

i=0

|ηi| ≥ 1 6= 0,

for any complex number z in the unit circle.

Next, we show the curve ζ = {u ∈ C|u = η(z), |z| = 1} has at most 2N inter-

sections with the imaginary axis on the complex plane. Intuitively, the curve ζ is the

image of the unit circle when it is mapped by the polynomial η(z). For any intersec-

tion of ζ and the imaginary axis, we have Re{η(z)} = 0 for some z on the unit circle

(i.e., |z| = 1); this is equivalent to η(z) + η∗(z) = 0 for some z with |z| = 1. Since

η(z) has real coefficients, for any z on the unit circle, we have η∗(z) = η(z∗) = η(1/z).

Thus, the corresponding values of z of all the intersections of ζ and the imaginary

axis satisfy η(z) + η(1/z) = 0, which can be arranged into a polynomial of z with the

degree of 2N . Thus, the number of such intersections does not exceed 2N (since we

additionally require |z| = 1).

Finally, we show the relationship between the curve ζ on the complex plane and

the number of roots of (η(z)−jγ) that are inside the unit circle. Obviously, (η(z)−jγ)

has root(s) on the unit circle if and only if jγ is on the curve ζ . Thus, as γ varies,

the roots of (η(z)− jγ) move continuously, and the number of roots in the unit circle

changes by one each time when jγ crosses the curve ζ (including multiplicity). Since

(η(z)− jα) are minimum phase, it has all N roots in the unit circle; let γ moves from

α to 1 + max{α,
∑N

i=0 |ηi|}, then jγ crosses the curve ζ for at least N times, since

the number of roots of (η(z)− jγ) that are in the unit circle decreases from N to 0.

Similarly, let γ moves from −α to −1−max{α,
∑N

i=0 |ηi|}, then jγ crosses the curve

96

ζ for at least another N times. Since there are at most 2N intersections of ζ and

the imaginary axis jγ, there is no intersection between −α and α. So the number

of roots in the unit circle does not vary as γ changes from −α to α, i.e., all roots of

(η(z)− jγ) are in the unit circle for −α ≤ γ ≤ α. Specially, when γ = 0, η(z) has all

roots in the unit circle and thus is minimum phase.

This accomplishes the proof for Lemma A.1.

With the lemma above, we may construct a minimum phase polynomial g2(x):

g2(x) = g(x)− Re{zf(1)}. (A.10)

Since g2(x) has real-coefficients, we may construct f̂(x) and ĝ(x) in a way similar to

case 1:

f̂(x) = aM · θM2 ·
M∏

i=1

(
x−

zf (i)− Re{zf(1)}

θ2

)
, (A.11)

ĝ(x) =
1

θ2
(g(x)− Re{zf (1)}) , (A.12)

where the scaling factor is

θ2 = 2 · max
1≤i≤N

|zf(i)− Re{zf (1)}|. (A.13)

In similar procedures with case 1, we may verify that both f̂(x) and ĝ(x) are

minimum phase and real polynomials, and their composition (f̂ ◦ ĝ)(x) yields h(x).

This completes our proof for the second case where f(x) has only complex conjugate

roots.

Combining cases 1 and 2, we have proved the statement about the existence of

minimum phase decomposition for minimum phase decomposable polynomials.

97

98

Appendix B

Derivation of Upper Bound (4.13)

In this appendix, we derive the upper bound (4.13) for the sensitivity Sg→h. First,

we show the relationship between the polynomials d(x) and h(x). The definition of

the polynomial d(x) in (4.9) implies

d = G ·

0

MaM

(M − 1)aM−1

...

a1

= GVf = GVG†h, (B.1)

where the last step uses (5.3); G and V are defined in (4.2) and (4.15), respectively;

G† = (GTG)−1GT is the pseudo-inverse matrix of G.

Next, we want to bound the energy of ∆h(x) with the energy of ∆g(x). Since

(4.8) indicates ∆h(x) is approximately the convolution of ∆g(x) and d(x), we want to

bound the energy of the output signal with the two input signals of the convolution.

In general, we have the following lemma on the energy of the signals in a convolution.

Lemma B.1. Denote s3[n] as the convolution of the finite length signals s1[n] that is

non-zero only for 0 ≤ n ≤ L1 and s2[n] that is non-zero only for 0 ≤ n ≤ L2. Assume

L1 ≥ L2, then the energy of these signals satisfy

Es3 ≤ (L2 + 1)Es1Es2 , (B.2)

99

where the energy is given by Esi =
∑∞

n=−∞ s2i [n], i = 1, 2, 3.

Proof. For 0 ≤ n ≤ L1 + L2, Cauchy-Schwarz inequality implies that

s23[n] =

min(L1,n)∑

m=max(0,n−L2)

s1[m]s2[n−m]

2

≤

min(L1,n)∑

m=max(0,n−L2)

s21[m]

min(L1,n)∑

m=max(0,n−L2)

s22[n−m]

≤

min(L1,n)∑

m=max(0,n−L2)

s21[m]

Es2.

Summing for n = 0, 1, . . . , (L1 + L2), we have

Es3 ≤

L1+L2∑

n=0

min(L1,n)∑

m=max(0,n−L2)

s21[m]

Es2 =

L1∑

m=0

(
m+L2∑

n=m

s21[m]

)
Es2 = (L2 + 1)Es1Es2 .

This accomplishes the proof for Lemma B.1.

Applying Lemma B.1 to (4.8), we know

E∆h ≤ (N + 1)E∆gEd, (B.3)

where E denotes the energy of the signals. A combination of (3.3) and (B.3) shows

Sg→h =
‖g‖22
‖h‖22

·max
∆g

(
‖∆h‖22
‖∆g‖22

)
≤

‖g‖22
‖h‖22

· (N + 1)‖d‖22, (B.4)

where ∆g is a sufficiently small perturbation. Incorporating (B.1) into (B.4), we have

Sg→h ≤
‖g‖22
‖h‖22

· (N + 1)‖GVG†h‖22 ≤ (N + 1)‖g‖22 · σ
2
T,max, (B.5)

where T = GVG† = GV(GTG)−1GT is the matrix in (4.14), and σT,max is its

maximum singular value. Thus, we have completed the proof for (4.13).

100

Appendix C

Explanation of the Approximate

Rules (4.39)-(4.41) for Parameter

Selection

In this appendix, we develop the approximate rules (4.39)-(4.41) for parameter se-

lection for the first-degree polynomials in Section 4.2. In order to decrease the sen-

sitivities between the coefficients of f̂(x) and h(x), the rules propose values for the

parameters in the first-degree polynomial q(x) = q1x+ q0 to approximately minimize

the condition number of the associated matrix Ĝ in (4.34). In addition, we show the

function ‖(g(x) + qr)
M‖22 in (4.39) is convex towards qr, so its minimum point can

be obtained efficiently. Moreover, we analyze the limit of the approximately optimal

parameters when M approaches infinity.

Before developing the rules, we first show a simple fact about the condition num-

ber. The condition number is the ratio between the maximum and the minimum

magnification of vector norm. Thus, for arbitrary vectors f1 and f2 that have dimen-

sion M + 1, the condition number satisfies

cond(Ĝ) =
max

f
(‖Ĝf‖2/‖f‖2)

min
f
(‖Ĝf‖2/‖f‖2)

≥
‖Ĝf1‖2/‖f1‖2

‖Ĝf2‖2/‖f2‖2
. (C.1)

101

As a result, the right-hand-side of (C.1) with any vectors f1 and f2 can serve as a

lower bound to the condition number.

The approximate rules will be explained with certain choices of f1 and f2 in (C.1).

For simplicity, we use an alternative expression of the first-degree polynomial q(x) =

q1(x+ qr), where qr =
q0
q1
. We first show how to select qr with a fixed q1, and then we

consider a reasonable choice of q1.

Now we show reasons for the rule (4.39) for qr, when q1 is fixed. If we let f1 =

[1, 0, . . . , 0]T and f2 = [0, . . . , 0, 1]T, then (C.1) implies

cond(Ĝ) ≥ |q1|
M · ‖(g(x) + qr)

M‖2. (C.2)

When q1 is fixed, the qr to minimize the right hand side in (C.2) is given by

q̃r = argmin
qr

‖(g(x) + qr)
M‖2, (C.3)

which is equivalent to the rule in (4.39).

Then, we consider how to select q1, when qr is chosen according to (C.3). Denote

ei (0 ≤ i ≤ M) as the vector with 1 in the i-th element and 0 in the other elements.

By sweeping both of f1 and f2 over every ei (0 ≤ i ≤M), we may know

cond(Ĝ) ≥
maxi=0,1,...,M |q1|

i · ‖(g(x) + qr)
i‖2

mini=0,1,...,M |q1|i · ‖(g(x) + qr)i‖2
, R(q1). (C.4)

The right-hand-side of (C.4) is a function of q1, which is denoted as R(q1). In fac-

t, R2(q1) is the ratio between the maximum and minimum energy among the self-

convolutions of ĝ(x) = (q ◦ g)(x) up to M-th degree, so the minimization of R(q1)

aims to minimize the energy variation among the self-convolutions. We claim that

R(q1) is minimized when the energy of the polynomial (ĝ(x))M equals 1, i.e.,

q̃1 =
(
‖(g(x) + q̃r)

M‖22
)− 1

2M , (C.5)

which is the rule in (4.40).

102

To justify the claim in (C.5), we first demonstrate the energy of self-convolutions

E(i) = ‖(ĝ(x))i‖22 (i = 0, 1, . . . ,M) is a convex function towards i with a fixed

ĝ(x). For the length-(N + 1) signal b̂0, b̂1, . . . , b̂N where b̂i is the coefficient of the

term xi in ĝ(x), we can zero-pad it and obtain its (MN + 1)-points Discrete Fourier

Transform (DFT) [4], which is denoted as Ĝ[k] (k = 0, 1, . . . ,MN). The convolution

theorem [4] implies that the DFT of the self-convolution (ĝ(x))i (i ≤M) is Ĝi[k] (k =

0, 1, . . . ,MN), since the degree of (ĝ(x))i (i ≤ M) does not exceed MN . As shown

by the Parseval’s theorem [4], the energy of self-convolution satisfies

E(i) = ‖(ĝ(x))i‖22 =
1

MN + 1

MN∑

k=0

|Ĝi[k]|2 =
1

MN + 1

MN∑

k=0

|Ĝ[k]|2i, i = 0, 1, . . . ,M.

(C.6)

Since each term |Ĝ[k]|2i is convex with respect to i, the summation E(i) is a convex

function of i with any fixed polynomial ĝ(x).

Then, we will show the function R(q1) decreases with q1 when 0 < q1 < q̃1, and it

increases with q1 when q1 > q̃1, which proves the claim that q̃1 is the minimum point

for R(q1). When 0 < q1 < q̃1, we know the energy E(M) = ‖(q1(g(x) + qr))
M‖22 < 1;

since E(0) = 1 always holds, the convexity of E(i) implies E(i) < 1 = E(0) for

i = 1, 2, . . . ,M . As a result, the square of R(q1) becomes

R2(q1) =
max

i=0,1,...,M
E(i)

min
i=0,1,...,M

E(i)
=

1

E(m∗)
=

1

‖(g(x) + qr)m
∗‖22

· q−2m∗

1 ,

where m∗ = arg min
i=1,...,M

E(i). Thus, R2(q1) is monotonically decreasing with q1 when

0 < q1 < q̃1. When q1 > q̃1, we know E(M) > 1 = E(0), so E(i) < E(M) for

i = 0, 1, . . . ,M − 1. Thus,

R2(q1) =
max

i=0,1,...,M
E(i)

min
i=0,1,...,M

E(i)
=
E(M)

E(m∗)
=

‖(g(x) + qr)
M‖22

‖(g(x) + qr)m
∗‖22

· q
2(M−m∗)
1 ,

where m∗ = arg min
i=0,...,M−1

E(i). Thus, it is shown R2(q1) is monotonically increasing

with q1 when q1 > q̃1. This analysis completes the proof for the claim that q̃1 in (C.5)

103

is the optimal value to minimize R(q1) in (C.4).

At this point, we have shown the reasons for the approximate rules (4.39)-(4.41)

for the parameters of the first-degree polynomial.

Next, we show the function ‖(g(x)+qr)
M‖22 is convex towards qr, which guarantees

the efficiency of obtaining q̃r in (4.39). If we let ĝ(x) = g(x)+qr in the above analysis

of energy with DFT, then (C.6) becomes

‖(g(x) + qr)
M‖22 =

1

MN + 1

MN∑

k=0

|G[k] + qr|
2M ,

where G[k] is the (MN + 1)-point DFT of the coefficients of g(x). It can be verified

that the second derivative of each term |G[k] + qr|
2M towards qr is non-negative, so

the summation is a convex function of qr. As a result, we may obtain q̃r in (4.39)

efficiently due to the convexity of ‖(g(x) + qr)
M‖22.

Finally, we analyze the behaviors of q̃r and q̃1 in the limit scenario where M

approaches infinity. For g(x) =
∑N

n=0 bnx
n, the discrete-time Fourier transform [4] of

the sequence b0, b1, . . . , bN is g(e−jω) =
∑N

n=0 bne
−jnω. By the convolution theorem

and Parseval’s theorem [4], we can know the energy of the self-convolution (g(x)+qr)
M

is

‖(g(x) + qr)
M‖22 =

1

2π

∫ π

−π

|g(e−jω) + qr|
2Mdω.

Thus, the rule for q̃r in (4.39) becomes

q̃r = argmin
qr

‖(g(x)+qr)
M‖22 = argmin

qr

1

2π

∫ π

−π

|g(e−jω)+qr|
2Mdω = argmin

qr
‖g(e−jω)+qr‖2M ,

(C.7)

where ‖F (ω)‖2M =
(∫ π

−π
|F (ω)|2Mdω

) 1
2M

denotes the 2M-norm of a function on

the interval [−π, π]. As M → ∞, we know ‖F (ω)‖2M approaches the infinity-norm

‖F (ω)‖∞ = maxω |F (ω)|. Hence, the rule for q̃r has the following limit as M ap-

proaches infinity

q̃r → argmin
qr

(max
ω

|g(e−jω) + qr|). (C.8)

104

Similar to the derivation above, the rule for q̃1 in (4.40) is equivalent to

q̃1 =

(
1

2π

∫ π

−π

|g(e−jω) + q̃r|
2Mdω

)− 1
2M

=

(
1

2π

)− 1
2M

·
(
‖g(e−jω) + q̃r‖2M

)−1
. (C.9)

When M approaches infinity, q̃1 has the limit

q̃1 →
(
max

ω
|g(e−jω) + q̃r|

)−1

. (C.10)

An intuitive explanation of the results in the limit scenario is: the term q̃r smoothes

the spectrum of (q̃ ◦ g)(e−jω) since it reduces the maximum peak, and the term q̃1

normalizes the peak of the spectrum in order to avoid significant expansion or shrink

of the energy of the self-convolutions with the increase of the degree M .

In addition, the limit scenario analysis implies: when the order of f(x) is sufficient-

ly large, we may also use the results in (C.8) and (C.10) to construct a first-degree

polynomial to efficiently reduce the condition number cond(Ĝ) as well as the sensitiv-

ities Sf̂→h and Sh→f̂ . In addition, the evaluation of (C.8) and (C.10) does not depend

on M ; thus, compared with the rules (4.39) and (4.40), they may be more compu-

tationally efficient if the value of M may vary, at the expense of potentially lower

approximation quality to the optimal first-degree polynomial that actually minimizes

the condition number.

105

106

Bibliography

[1] D. Wei and A. V. Oppenheim, “Sampling based on local bandwidth,” in Signals,
Systems and Computers (ASILOMAR), 2007 Conference Record of the Forty
First Asilomar Conference on, 2007, pp. 1103–1107.

[2] D. Wei, “Sampling based on local bandwidth,” Master’s thesis, Massachusetts
Institute of Technology, 2007.

[3] J. Clark, M. Palmer, and P. Lawrence, “A transformation method for the recon-
struction of functions from nonuniformly spaced samples,” Acoustics, Speech and
Signal Processing, IEEE Transactions on, vol. 33, no. 5, pp. 1151–1165, 1985.

[4] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed.
Upper Saddle River, NJ, USA: Prentice Hall Press, 2010.

[5] M. Blanco and F. Hill Jr, “On time warping and the random delay channel,”
Information Theory, IEEE Transactions on, vol. 25, no. 2, pp. 155–166, 1979.

[6] R. Lummis, “Speaker verification by computer using speech intensity for tem-
poral registration,” Audio and Electroacoustics, IEEE Transactions on, vol. 21,
no. 2, pp. 80–89, 1973.

[7] S. Demirtas, “Functional composition and decomposition in signal processing,”
Ph. D. Thesis Proposal, Massachusetts Institute of Technology, 2012.

[8] J. Kaiser and R. Hamming, “Sharpening the response of a symmetric nonre-
cursive filter by multiple use of the same filter,” Acoustics, Speech and Signal
Processing, IEEE Transactions on, vol. 25, no. 5, pp. 415–422, 1977.

[9] T. Saramaki, “Design of fir filters as a tapped cascaded interconnection of iden-
tical subfilters,” Circuits and Systems, IEEE Transactions on, vol. 34, no. 9, pp.
1011–1029, 1987.

[10] S. Demirtas, G. Su, and A. V. Oppenheim, “Sensitivity of polynomial composi-
tion and decomposition for signal processing applications,” in Signals, Systems
and Computers (ASILOMAR), 2012 Conference Record of the Forty Sixth Asilo-
mar Conference on, 2012, pp. 391–395.

107

[11] S. Demirtas, G. Su, and A. V. Oppenheim, “Exact and approximate polynomi-
al decomposition methods for signal processing applications,” to appear in the
Proceeding of IEEE International Conference on Acoustics, Speech and Signal
Processing, 2013.

[12] H. D. Block and H. P. Thielman, “Commutative polynomials,” The Quarterly
Journal of Mathematics, vol. 2, no. 1, pp. 241–243, 1951.

[13] J. F. Ritt, “Prime and composite polynomials,” Transactions of the American
Mathematical Society, vol. 23, no. 1, pp. 51–66, 1922.

[14] D. Barton and R. Zippel, “A polynomial decomposition algorithm,” in Proceed-
ings of the third ACM symposium on Symbolic and algebraic computation. ACM,
1976, pp. 356–358.

[15] M. Fried and R. MacRae, “On the invariance of chains of fields,” Illinois journal
of mathematics, vol. 13, pp. 165–171, 1969.

[16] M. Giesbrecht and J. May, “New algorithms for exact and approximate polyno-
mial decomposition,” Symbolic-Numeric Computation, pp. 99–112, 2007.

[17] D. Kozen and S. Landau, “Polynomial decomposition algorithms,” Journal of
Symbolic Computation, vol. 7, no. 5, pp. 445–456, 1989.

[18] R. Corless, M. Giesbrecht, D. Jeffrey, and S. Watt, “Approximate polynomial
decomposition,” in Proceedings of the 1999 international symposium on Symbolic
and algebraic computation. ACM, 1999, pp. 213–219.

[19] G. Turnwald, “On schur’s conjecture,” Journal of the Australian Mathematical
Society-Series A, vol. 58, no. 3, pp. 312–357, 1995.

[20] P. Aubry and A. Valibouze, “Algebraic computation of resolvents without ex-
traneous powers,” European Journal of Combinatorics, vol. 33, no. 7, pp. 1369 –
1385, 2012.

[21] B. De Moor, “Total least squares for affinely structured matrices and the noisy
realization problem,” Signal Processing, IEEE Transactions on, vol. 42, no. 11,
pp. 3104–3113, 1994.

[22] S. Van Huffel, H. Park, and J. Rosen, “Formulation and solution of structured
total least norm problems for parameter estimation,” Signal Processing, IEEE
Transactions on, vol. 44, no. 10, pp. 2464–2474, 1996.

[23] B. Botting, “Structured total least squares for approximate polynomial opera-
tions,” Master’s thesis, University of Waterloo, 2004.

[24] P. Lemmerling, “Structured total least squares: analysis, algorithms and appli-
cations,” Ph.D. dissertation, K. U. Leuven (Leuven, Belgium), 1999.

108

[25] W. Ruppert, “Reducibility of polynomials f(x, y) modulo p,” Journal of Number
Theory, vol. 77, no. 1, pp. 62–70, 1999.

[26] J. B. Rosen, H. Park, and J. Glick, “Total least norm formulation and solution
for structured problems,” SIAM Journal on Matrix Analysis and Applications,
vol. 17, no. 1, pp. 110–126, 1996.

[27] J. Rickards, “When is a polynomial a composition of other polynomials?” Amer-
ican Mathematical Monthly, vol. 118, no. 4, pp. 358–363, 2011.

[28] D. Kalman, “A matrix proof of newton’s identities,” Mathematics Magazine, pp.
313–315, 2000.

109

110

Epilogue

The development of this thesis contains interesting stories and experiences which

are not revealed in the technical chapters. The topic of polynomial decomposition

had already been discovered by Al and Sefa before I joined the group; however, in

the process of developing the thesis, there were shifts of focus and discovery of new

problems, which made up a short but interesting “intellectual adventure.”

This thesis started from an informal talk in one of the earliest 6.341 office hours in

fall 2011, when Sefa put forth the question of polynomial decomposition to Tarek and

me. After one evening’s discussion, we came up with a solution that almost worked

except for the constant term. On the next day, we talked to Sefa about our discovery,

and the problem of constant term was solved from his previous observation. Then,

after several research meetings with Al, we decided that polynomial decomposition for

both exact and approximate cases would be a stimulating direction to explore and had

the potential to result in my master’s thesis. Not long after our discovery, Sefa found a

paper [17] which had proposed the coefficient-unraveling algorithm – nearly the same

as our discovery – at the time when I was one year old. Although at that time I was

not so happy with this fact, looking back now, I think such a “rediscovery” may be

a very common situation. In one meeting with Al near the end of the first semester,

we discussed linear phase decomposition and minimum phase decomposition, which

generated some interesting results as listed in Section 2.1. Meanwhile, I played with

the roots of the polynomial and proposed an elementary algorithm to get the roots of

f(x) with available g(x) from the coefficient-unraveling method. In order to obtain

the roots precisely, Al mentioned Burrus’ root-finding algorithm in our discussion,

and I had an interesting talk with Zahi afterwards; however, we shifted to more

interesting directions before we fully combined Burrus’ algorithm with polynomial

decomposition. In addition, although Sefa sent me a paper [27] introducing Theorem

5.2, I had no idea how that property could help with the decomposition until I made

a related guess (Theorem 5.3, but already proposed in [20]) a year later.

The second semester had two main parts: the first part was writing my master’s

111

thesis proposal, and the second part was developing the sensitivity analysis. With

Al’s patient teaching and guidance, the master’s thesis proposal was a good and

effective exercise for me to improve my technical writing skills, although the content

in the proposal was considerably less than the thesis – the sensitivity analysis and the

decomposition with input as roots were out of the scope of the proposal. Later, the

sensitivity analysis was proposed by Al and Sefa, which was intended to understand

the robustness to perturbations, since our early simulations had already revealed

serious numerical errors when the degrees of polynomials were high. For the process

of collaboratively developing our paper [10], my deepest impression is perhaps how

productive we three were in the last several days before the deadline (in a good

way); the content of the paper got changed and improved to a large extent over the

last weekend before the deadline. The content of [10] and some follow-up work are

summarized in Chapter 4.

In the third semester, I worked on the roots of polynomials, for which one of

Al’s predictions got validated. In the semester before, Al had once commented on

my master’s thesis proposal that the roots seemed to be intriguing and there should

be something to discover. Frankly speaking, at that time I did not know how to

explore more about the roots except for a simple brute-force-search method, due to

the complexity of Theorem 5.2 [27]. In a group meeting in the third semester, Al

made a comment that f(x) was easier to obtain due to the linear relationship in

(4.1); inspired by this comment, I thought that the mapping property between roots

in (5.7) seemed linear with respect to g(x), which might lead to some results. After

discussions with Al and Sefa, I started to explore the roots more deeply with the

possibility of developing algorithms working on roots. Using part of Theorem 5.2,

I first considered the knapsack problem and dynamic programming, which turned

out to be too high memory complexity. Then, by observing a kind of symmetry

within Theorem 5.2, I proposed a guess that the power sums should be equal among

all groups up to power N − 1 (i.e., Theorem 5.3), which turned out to be correct

although I did not think about the proof in the beginning. With this guess and

inspired by the course Optimization Methods that I was taking, I formulated the

112

mixed integer program and developed the root-grouping algorithm in Section 5.2.3,

which in our simulation had much better performance than the coefficient-unraveling

algorithm [17]. In order to put the root-grouping algorithm in the collaborative

ICASSP paper [11] (which finally did not happen), we needed to prove my guess (i.e.,

Theorem 5.3) and we found a proof with Newton’s identities. Later (but before the

deadline of ICASSP), searching the literature with more key words, I came across the

paper [20]; although the title and abstract of this paper [20] seemed unrelated to my

problem in the beginning, I finally realized that it had already proposed Theorem

5.3 and the root-power-summation algorithm (the part to get g(x)) in Section 5.2.2,

which had even higher efficiency. “Rediscovery” happened again for Theorem 5.3. At

that point, we could be sure that my thesis would include decomposition algorithms

with input as roots, and Al’s prediction became true.

Another big topic in the third semester was approximate decomposition algo-

rithms. In IAP 2012, Sefa sent me a paper [16] proposing approximate decomposition

algorithms based on the Ruppert matrix, which became the topic of several meetings

with Al and Sefa afterwards. In fall 2012, we focused on the Ruppert-matrix-based

algorithms with a number of heated discussions from framework to implementation

details; the results are summarized in the collaborative paper [11] and in Section 6.1.2

of this thesis. The transformation from polynomial decomposition to determining a

rank deficient Ruppert matrix was mathematically deep and interesting; however,

after implementation and extensive trials, we realized that the high dimension of the

Ruppert matrix might be a numerical challenge. I still think the direction of de-

veloping and improving algorithms that are based on determining a rank-deficient

approximation of the Ruppert matrix is worth more exploration and may potentially

lead to better and more promising results.

In the fourth semester, my main focus was writing the thesis, for which Al and

Sefa offered significant help in improving the quality of the thesis. In addition to

writing, I extended the root-grouping algorithm to approximate decomposition with

input as roots, which is summarized in Section 6.2, but I believe there is considerable

room for improvements since I did not have sufficient time to work on it.

113

