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ABSTRACT

In recent years methods for modeling and mitigating variational nui-

sances have been introduced and refined. A primary emphasis in

this years NIST 2008 Speaker Recognition Evaluation (SRE) was

to greatly expand the use of auxiliary microphones. This offered

the additional channel variations which has been a historical chal-

lenge to speaker verification systems. In this paper we present the

MIT Lincoln Laboratory Speaker Recognition system applied to the

task in the NIST 2008 SRE. Our approach during the evaluation was

two-fold: 1) Utilize recent advances in variational nuisance model-

ing (latent factor analysis and nuisance attribute projection) to allow

our spectral speaker verification systems to better compensate for the

channel variation introduced, and 2) fuse systems targeting the dif-

ferent linguistic tiers of information, high and low. The performance

of the system is presented when applied on a NIST 2008 SRE task.

Post evaluation analysis is conducted on the sub-task when interview

microphones are present.

Index Terms— speech processing, speaker recognition

1. INTRODUCTION

A main theme in the 2008 NIST speaker identification evaluation

(NIST-SRE) was the use of data gained from auxiliary microphones

recorded in an office environment. The significant task in 2008 was

an interview, simultaneously recorded on 14 microphones [1]. Aux-

iliary microphones were first introduced in the 2005 NIST SRE and

were continued in 2006. The task in prior years used only the aux-

iliary microphone data in the speaker detection phase and not in en-

rollment. The 2008 NIST SRE uses the auxiliary microphone data

in both enrollment and detection.

The potential variation of microphones and recording environ-

ment influenced our design philosophy for the 2008 NIST-SRE. Our

goal was to utilize recent advances in variational modeling, factor

analysis [2] and nuiance attribute projection [3], to mitigate the ef-

fects of microphone and room acoustics. To this end, we concen-

trated on the cepstral based, Gaussian mixture modeling (GMM) and

support vector machine (SVM) systems.

In addition to the core spectral systems, we also maintained a

goal of designing efficient high-level systems based on phone recog-

nition. We have found in past years that speaker verification systems

based on a phone recognizer yielded good performance while at the

same time avoided the complexity of a speech-to-text STT system.

Additionally, we have found that speaker verification performance

of the STT-based systems suffered when applied to the auxiliary mi-

crophone data. The high-level systems developed for this evalua-
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tion were an SVM trigram, an SVM keyword system, and an SVM

maximum-likelihood linear regression (MLLR) system with NAP.

Consideration of systems that would fuse well also influenced

which systems were fielded for the evaluation. It has been histori-

cally verified from our organization, as well has many others in the

SRE community, that fusion is most successful with “lower-level“

spectral systems and higher-level STT-based systems. This point of

view is based purely on empirical evidence over recent years. The

belief that follows is that the two classes of speaker verification sys-

tems provide complementary information. The lower-level systems

yield spectral information about the talker whereas the higher-level

systems capture cues such as information about prosody, phonotac-

tics, idiolect, and dialog.

We outline in this paper the systems, techniques, and experimen-

tal results for the new systems. Sections 2.2 and 2.3 describes the

cepstral systems. The base phone recognition system is presented

in section 3. Sections 3.1, 3.2 and 3.3 describe the high-level tok-

enizer and the multiple modeling systems. In Section 4, we describe

experimental evaluation of the system on the NIST SRE 2008 data.

Finally, we present some post evaluation analysis on the condition

pertaining to the auxiliary microphone.

2. CEPSTRAL SYSTEMS

2.1. Front end processing for cepstral systems

The cepstral-based systems used a common set of speech activity

detection marks from a GMM-based speech activity detection (SAD)

system and an adaptive energy-based SAD.

The features used for recognition were MFCCs. The MFCCs

consisted of 19 cepstral coefficients and deltas to produce a 38 di-

mensional feature vector. The feature vector stream is processed

through SAD to eliminate non-speech vectors. RASTA, CMS, and

variance normalization are then applied to the feature stream.

To combat additive noise in the microphone channel two noise

reduction techniques were employed, 1) steady tone removal and

2) wideband noise reduction, were applied in series as preproces-

sor step to MFCC feature processing. The steady tone suppression

method used very long analysis window, 8 seconds, to exploit the

coherent integration of the Fourier transform. The wideband noise

reduction algorithm used an adaptiveWiener-filter approach directed

toward preserving the dynamic components of a speech signal while

effectively reducing noise. Greater detail can be found in [4].

2.2. GMM LFA System

The base system was the MITLL GMM-UBM speaker detection sys-

tem with 2048 mixtures, fully described in [5], and is similar to that

used in previous evaluations.

The GMM Latent factor analysis (LFA) was based directly on

the work presented in [6]. The approach models session variabil-

ity through a low dimensional subspace projection in both training



and testing. The session variability is modeled as a low-dimensional

additive bias to the model means:

mi(s) = m(s) + Ux(s) (1)

where mi(s) and m(s) are supervectors of stacked GMM means

[6, 7]. The mi(s) is the supervector from the i-th session of talker s
whereas the m(s) is the session independent term of talker s.

Training of the low-rank transformation matrix U was generated

directly as described in [8] and not iteratively. Z-norm followed by

T-norm was also performed on the scores.

The LFA system was applied gender dependently. Factor anal-

ysis was performed using session loading matrices generated with

class-variation constrained to be speaker only. However, in the pres-

ence of a microphone channel the loading matrix used was one gen-

erated with class-variation constrained to be speaker and session. A

corank of 64 was used thoughout conditions.

2.3. SVM GMM Supervector System (SVM GSV)

The SVM GMM supervector system is based on [3]. The frontend

used 19 MFCCs and deltas followed by mean and variance normal-

ization. For microphone data, stationary tone reduction followed by

wideband noise reduction was used as in [4].

GMM supervectors were derived using MAP adaptation of

means only with a relevance factor of 4 on a per utterance basis.

The kernel inner product used was

K(ga, gb) =

N
X

i=1

λim
t
a,iΣ

−1

i mb,i

=

N
X

i=1

„√
λiΣ

−
1

2

i ma,i

«t „√
λiΣ

−
1

2

i mb,i

«

(2)

as in prior work. In equation (2), m∗,i are the adapted means, λi are

the mixture weight of the UBM, and Σi are the UBM covariances.

SVMs were trained using SVMTorch. The NAP corank was 64.

3. HIGH-LEVEL SYSTEMS

This year we used a single cross-channel phonetic recognizer based

on the Brno University (BUT) design [9] as the source of tokens

for our high level systems. We used the tokenizer to generate 1-

best and lattices from which we extracted N-grams, keywords and

phonetic class alignments for our three high-level systems. Thus, we

eliminated the need to run an STT system which greatly reduces the

computational overhead for the high-level systems.

The tokenizer uses a standard three state left-to-right HMM

and a null grammar. There are two key components for generat-

ing HMM state posteriors: TRAPS [10] which are long time-span

time-frequency features, and feedforward artificial neural nets. The

tokenizer was trained on approximately 10 hours of Switchboard-2

phase-1 data re-recorded through a subset of the microphones used

in the this years evaluation. The data was phonetically segmented

using an STT system, and the resulting system used 49 monophones

including silence.

3.1. SVM Trigram

3.1.1. SVM N -gram Language Modeling

The SVM token systems use a bag-of-N -grams approach similar

to [11]. For a lattice, W, joint probabilities of the unique N -grams,

wj , on a per conversation basis are calculated, p(wj |W ) and are

mapped to a sparse vector with entries Djp(wj |W ) where

Dj = min
“

Cj ,
p

1/p(wj |all)
”

(3)

and Cj = 10000.0. The probability p(wj |all) in (3) is calculated

from the observed probability across all classes.

The general weighting of probabilities is then combined to form

a kernel; for two lattices, W and V , the kernel is

K(W, V ) =
X

j

D2

j p(wj |W )p(ŵj , wj |V ). (4)

SVM training and scoring are performed as in prior work [11].

3.1.2. Trigram SVM System Description

The approach described above in 3.1.1 was used to train trigram

SVMs for the cross-channel tokenizer described above. The trigram

system was only used in the MIT/LL primary system when the data

(enrollment or verification) did not come from the interview micro-

phone channel.

Two slightly different system configurations were used depend-

ing on whether the test message came from a telephone channel or

from an auxiliary microphone channel. Both configurations used a

NAP corank of 32, and T-norm speakers from the NIST SRE Eval04

data set. In the case where both training and testing were on 4w data,

we used gender dependent models trained on a larger background

data set. When the test data came from an auxiliary microphone

channel, we used gender independent models trained on a smaller

background data set. Also, NAP training consisted of Eval04 and

Switchboard 2 part 1 data when testing on 4w data, and Eval05 aux-

iliary microphone data when training on the auxiliary microphone

data.

3.2. SVM Keyword System

The SVM keyword system, which is based on the SVM trigram sys-

tem described in 3.1, includes specially selected variable length N-

grams of up to order 17. The varying length N-grams were selected

by taking the most discriminative bigrams from an ASR based word

SVM token system [12]. All of the phones in each pronunciation of

the top and bottom ranking bigrams were concatenated to make the

set of N-gram “keywords”.

For the keyword system used in the 2008 SRE evaluation, we se-

lected the 400 top and 400 bottom ranking word bigrams from mod-

els trained on the NIST 2004 SRE data set. The total number of key-

word N-grams (including multiple pronunciations) totaled between

75 and 78 thousand. Posterior counts were collected efficiently using

compacted parse trees across the lattices and accumulating counts at

the parse tree leaf nodes [13].

The keyword system was only applied to the eight conversation

(8conv) task as part of the MIT/LL secondary submission. The SVM

kernel used in the keyword system was identical to the kernel de-

scribed in 3.1.1. Two different configurations were used for 4w tele-

phone and auxiliary microphone test messages mirroring the config-

urations used for the the trigram system described in 3.1.2. Both

configurations used a NAP corank of 32, and T-norm speakers from

the NIST SRE Eval04 8conv data set.



3.3. SVM MLLR NAP

The SVM MLLR system is a SVM GSV system with two class

MLLR adaptation used instead of MAP adaptation, as in [14]. The

system starts with a 512 mixture GMM (UBM), comprised of a

weighted convex combination of two 256 mixture GMMs represent-

ing broad phonetic classes, sonorants and obstruents:

gUBM = µs
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where µs = .71 and µo = .29 are class mixing weights, based

on the class priors in the background. Open-loop phonetic classi-

fication is used to assign the frames of each utterance to either of

the two classes. The means of the UBM are then adapted to each

utterance using two-class MLLR adaptation, where the classes are

the sonorants and obstruents. The adapted, sonorant and obstruent,

means are then stacked to form GMM supervectors which are used

as features for the SVM classifier with the following GSV kernel:
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This system also applies ZT-Norm and NAP with a corank of 32.

4. EXPERIMENTS

4.1. Experimental and System Setup

Experiments were performed on the NIST 2008 SRE data set.

Enrollment/verification methodology and the evaluation criterion

(minDCF) were based on the NIST SRE evaluation plan [15]. The

systems as described in Sections 2 and 3 used background derived

from Switchboard and Fisher corpora. For telephone conditions,

T-Norm models and Z-norm utterances were drawn from the 2004

NIST SRE. For microphone conditions, T-Norm models and Z-

Norm utterances were taken from the NIST SRE 2005 auxiliary mi-

crophone data. Nuisance subspace training for telephone conditions

was performed using 2004 NIST SRE data. Subspace training for

the microphone conditions was performed using 2005 SRE auxiliary

microphone data.

Fusion was accomplished using a standard multi-layer percep-

tron as in prior evaluation systems [16]. Fusion was trained from

scores on the NIST SRE 2006 evaluation set. Results were obtained

for both the English only task (ENG) and for all trials (ALL) which

includes speakers that enroll/verify in different languages. Addition-

ally, when microphone data was present the noise-reduction frontend

was applied as described in section 2.1.

4.2. Results

The system results of the 2008 NIST-SRE for our primary fusion

system is presented in Table 1. The results are broken out according

to the four training condition categories:

• Short - single training utterance from either telephone (tel) or

conversational microphone or interview microphone (intmic)

• 3conv - three training utterances all from telephone channels

• 8conv - eight training utterances all from telephone channels

• Long - single long training utterance (> 8min.) from inter-

view microphone

Fusion was accomplished with the following combinations. For

short telephone trials, all systems except the SVM keyword were

used. For the 8conv case, all systems were used. For cross

microphone-telephone trials, the SVM trigram, SVM GSV, and

GMM LFA were used. Finally, for microphone only trials, only the

cepstral systems were used. We note that specializing fusion and

system design to every subcondition (training channel type, testing

channel type, number of conversations) was critical for good perfor-

mance.

From the results in Table 1, we can make the following observa-

tions. First, we note the performance hit incurred by the submit-

ted telephone system when comparing English trials tasks versus

all trials. The performance drop-off occurs for all the training cate-

gories: (short:tel-tel, 3conv:tel-tel and 8conv:tel-tel). When compar-

ing to the English subsets for these conditions, (short:tel-tel-English,

3conv:tel-tel-English and 8conv:tel-tel-English), we draw the suppo-

sition that there may be language mismatch in the background model

and T-norm-cohort training data. The performance degradation is

noted here, but we will reserve analysis and mitigation of these ef-

fects for later study.

4.3. The Interview Task

A main goal entering the evaluation was to try to understand the

effects of the auxilary microphones on speaker recognition perfor-

mance. We can observe the degradation in the conditions involving

the auxilary interview microphones Table 1. Considering the results

for the two conditions 1) short:Tel-Tel-English and 2) short:intmic-

intmic∗ , we observe the performance degradation in the presence of

interview microphones. During post evaluation analysis, we noted

three areas where we could improve performance of our systems.

Since our submitted system consisted of a fusion of the GMM-LFA

and GSV-NAP systems, we only considered improvements to these

systems for this task.

First, we noted that performance of the GMM-LFA system could

be vastly improved with the use of interview-microphone develop-

ment data provided by NIST prior to the evaluation. The develop-

ment consisted of speech utterances from six talkers (3 male and 3

female). Initially, we only used this data for threshold setting. How-

ever, performance can be improved if the data is utilized in train-

ing the transfer-loading matrix U of equation 1 and given as much

weight as the other data used to train the loading matrix through

stacking the loading matrices in a similar fashion to [17]. The sec-

ond area for improvement was to use a speech activity detector uti-

lizing the logical AND of VAD and ASR transcripts from a clean

lapel microphone provided by NIST. The third improvement was to

use both LPCC and MFCC SVM GSV systems and linearly fuse the

scores [16].

Figure 1 and Table 2 present the results of implementing the

improvements described above. The DET plot shows a significant

overall improvement. Additionally, the equal error rate and DCF

points of Table 2 are closer to the phone channel results of Table 1.

One challenge with these results for future evaluations is that the

processing is based upon NIST-provided oracle knowledge; that is,

knowledge of the microphones and good VAD are not necessarily

available in real speaker recognition applications.

5. CONCLUSIONS

We have presented the speaker recognition used for the NIST 2008

SRE. We have described systems for speaker recognition using fac-

∗ The interviews were conducted in English.



Table 1. Summary of performance on the NIST SRE 2008 task with

the primary system

Task EER minDCF

train-test (%) (×100)

sh
o
rt

Tel-Tel 7.0 3.6

Tel-Tel (English) 3.3 1.6

Tel-Tel (US-English) 3.5 1.6

Tel-Phnmic 5.5 2.2

intmic-Tel 6.9 2.9

intmic-intmic 5.2 2.6

3
co
n
v

Tel-Tel 4.9 2.8

Tel-Tel (English) 2.2 1.0

Tel-Tel (US-English) 2.0 1.0

Tel-Phnmic 3.5 1.4

8
co
n
v

Tel-Tel 3.4 2.1

Tel-Tel (English) 1.2 0.6

Tel-Tel (US English) 1.4 0.5

Tel-Phnmic 2.4 0.7

lo
n
g

long-long 4.8 2.0

long-Tel 5.7 2.3

long-intmic 4.5 1.7

Table 2. Performance on the NIST SRE 2008 task with post evalua-

tion improvements.

Task EER minDCF

train-test (%) (×100)

sh
o
rt

intmic-intmic 2.71 1.6

tor analysis, discriminative techniques, channel compensation, and

high-level speaker recognition. Post-evaluation analysis showed that

for the interview microphone in training and test, we can get close

to telephone channel level performance. Future work will focus on

the interview task, more in-depth analysis and new compensation

techniques to create deployable systems.
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