Stealing Bits from a Quantized Source

Aaron S. Cohen Stark C. Draper Emin Martinian Gregory W. Wornell Massachusetts Institute of Technology, Cambridge, MA 02139 {acohen,scd,emin,gww}@allegro.mit.edu

Abstract — We analyze the efficiency of source requantization to reduce rate when starting with an arbitrary rate-distortion achieving codebook. In the quadratic-Gaussian case, it is possible to get within 0.5 bits/sample of the rate-distortion bound, i.e., all good codebooks automatically have close to successive-refinement structure. This same performance is achievable when rate is stolen by embedding bits in the source reconstruction.

I. Introduction

Consider the scenario depicted in Fig. 1 in which a source is originally encoded at rate $R_{\rm orig}$ with distortion $d_0 = E\left[D(\mathbf{x}^n,\hat{\mathbf{x}}^n)/n\right]$. If a transcoder subsequently drops the encoding to a residual rate $R_{\rm res} < R_{\rm orig}$, the distortion in the ultimate reconstruction $\bar{\mathbf{x}}^n$ is increased to $d > d_0$. Transcoding is efficient if $R_{\rm res}$ and d still lie on the rate distortion curve. If the source was originally encoded in a successively refinable manner (see, e.g., [3] and the references therein), this is possible by discarding least significant descriptions. We show, however, that near-efficiency is possible even without such a constraint on codebook design.

Figure 1: Successive Degradation.

II. SUCCESSIVE DEGRADATION

For finite-alphabet i.i.d. sources with arbitrary distortion measures, we have that $R_{\rm res}(d)=\inf I(\bar x;\hat x)$ where the infimum is over all $\bar x$ such that $x\leftrightarrow \hat x\leftrightarrow \bar x$ and $E\left[D(x,\bar x)\right]\leq d$.

In the case of an i.i.d. Gaussian source whose elements have variance σ_x^2 and a mean-square distortion (MSD) criterion we have the following stronger result: for an arbitrary original source code meeting the rate-distortion bound, the smallest distortion between $\bar{\mathbf{x}}^n$ and \mathbf{x}^n achievable by a transcoder is, in terms of the original distortion $d_0 = \sigma_x^2 2^{-2R_{\rm orig}}$,

$$d(R_{\text{res}}) = d_0 + (\sigma_x^2 - d_0)2^{-2R_{\text{res}}}, \text{ for } R_{\text{res}} < R_{\text{orig}},$$
 (1)

which is within 0.5 bits/sample of the rate-distortion function. Note the discontinuity at $R_{\rm res}=R_{\rm orig}$: to achieve a smaller distortion increment requires time-sharing; see Figure 2.

To show that (1) is achievable for any rate-distortion achieving source code, we first show that $E[\|\hat{x}^n\|^2/n] \approx \sigma_x^2 - d_0$ for large n, then analyze the distortion incurred by a Gaussian random re-encoder using [4, Thm. 3]. To establish the converse, we construct an original rate-distortion achieving source code that produces a reconstruction \hat{x}^n that is indistinguishable from a noisy observation y^n of the source x^n

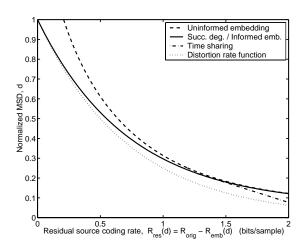


Figure 2: Quadratic-Gaussian bit stealing.

according to some $p_{y|x}$. Since the rate-distortion trade-off for this coding scheme is the same as for the problem of quantizing a source given a noisy observation, this codebook does not allow smaller distortions than (1) to be achieved.

III. EMBEDDING IN A QUANTIZED SOURCE

If the rate of a source is being reduced to accommodate an additional bit stream, one could alternatively reconstruct the source, embed the bit stream of rate $R_{\rm emb}$ into the reconstruction in the spirit of [2]—increasing the ultimate distortion to $d>d_0$ —then requantize to the original codebook. The "effective" residual rate at which the source is encoded is then $R_{\rm res}(d)=R_{\rm orig}-R_{\rm emb}(d)$. In contrast to successive degradation, the embedding approach does not require that the source decoder at the destination know $R_{\rm res} \leq R_{\rm orig}$.

For uniformed embedding, $R_{\rm res}(d)=\inf I(\bar x;\hat x)$ as in Section II, but with the addition constraint $p_{\bar x}=p_{\hat x}$, which results from the fact that the decoder is uniformed.

In the quadratic-Gaussian case, we have that $d(R_{\rm res}) = 2\sigma_x^2 - d_0 - 2(\sigma_x^2 - d_0)\sqrt{1 - 2^{-2R_{\rm res}}}$, which is close to (1) for small $R_{\rm emb}$ as depicted in Fig. 2. Furthermore, (1) can be achieved without requiring a new codebook to be generated at the point of embedding; it suffices to use the same codebook and have the source decoder apply simple post-decoding scaling [1].

References

- A. S. Cohen, S. C. Draper, E. Martinian, and G. W. Wornell, "Source requantization: Successive degradation and bit stealing," *Proc. DCC*, pp. 102–111, (Snowbird, UT), Mar. 2002.
- [2] M. H. Costa, "Writing on dirty paper," IEEE Trans. Inform. Theory, v. 29, pp. 439–441, May 1983.
- [3] W. H. Equitz and T. M. Cover, "Successive refinement of information," *IEEE Trans. Inform. Theory*, v. 37, pp. 269–275, Mar. 1991.
- [4] A. Lapidoth, "On the role of mismatch in rate-distortion theory," *IEEE Trans. Inform. Theory*, v. 43, pp. 38–47, Jan. 1997.

This work has been supported in part by NSF Grant No. CCR-0073520 and a grant from Microsoft Research.