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Spread-Signature CDMA: Efficient Multiuser
Communication in the Presence of Fading

Gregory W. Wornell, Member, IEEE

Abstraci— A new class of orthogonal code-division multiple-
access (CDMA) systems is developed for efficient multiuser com-
munication in environments subject to multipath fading phenom-
ena. The key characteristic of these new systems, which we refer
to as “spread-signature CDMA” systems, is that the associated
signature sequences are significantly longer than the interval
between symbols. Using this approach, the transmission of each
symbol of each user is, in effect, spread over a wide temporal
and spectral extent, which is efficiently exploited to combat the
effects of fading. These systems generalize and improve on the
spread-response precoding systems developed in [1].

Both efficient signature sets and efficient receiver structures for
such systems are developed. Several aspects of the performance
of the resulting spread-signature CDMA systems are presented,
including both the achievable bit-error rate characteristics and
the effective capacity of such systems. The results suggest that
spread-signature CDMA may be an attractive alternative to
conventional CDMA in a variety of application scenarios.

Index Terms—Multiuser communication, CDMA, wireless sys-
tems, Rayleigh fading channels, precoding.

1. INTRODUCTION

YSTEMS for efficiently coordinating communication
Samong multiple users in multipath fading environments
are important in a wide range of applications. Indeed,
such systems are essential in proposed digital mobile radio
communications, personal wireless systems, indoor wireless
networks, and digital audio and television broadcasting
systems. However, rapidly escalating demand for both wider
availability of such services and increasingly sophisticated
capabilities has put great pressure on the limited available
bandwidth within the radio spectrum. Given such constraints,
it is clear that the use of increasingly sophisticated signal
processing in wireless modems will be critical to accommodate
large numbers of services and users within the available
spectrum.

In a comparison paper [1] we explored the use of a signal
processing technique which we referred to as “spread-response
precoding” for mitigating the effects of fading in single-user or
frequency-division multiplexed data transmission systems used
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in multipath fading environments. From the perspective of the
coded symbol stream, this precoding effectively transforms
a fairly general Rayleigh fading channel into a nonfading,
simple white marginally Gaussian additive noise channel with
no intersymbol interference. By using such precoding to
combat fading while reserving coding to combat only the
remaining additive noise, substantial reductions in system
complexity appear possible. Furthermore, although spread-
response precoding represents a form of time diversity, it is
efficient in the sense that it requires no additional power or
bandwidth.

In this paper, we develop a natural generalization of the pre-
coding concept for general multiuser communication problems
in multipath fading environments. The result is a code-division
multiple-access (CDMA) system in which, in effect, precoding
is embedded directly into each user’s signature sequence while
maintaining orthogonality among Users. We term the resulting
system “spread-signature CDMA.” These signature sequences
have some very special characteristics as we will show, most
notable of which is that their temporal extent significantly
exceeds the intersymbol (baud) duration.

In a manner analogous to spread-response precoding, using
such signature sets in multipath fading environments has the
effect of transforming the collection of channels seen by
the individual symbol streams from a collection of coupled
Rayleigh fading channels into a uncorrelated collection of
identical nonfading simple white marginally Gaussian additive
noise channels. In essence, spread-signature CDMA converts
various degradations due to fading, co-channel interference,
and receiver noise into a single, comparatively more benign
form of uncorrelated additive noise that is white and quasi-
Gaussian.

Transformations of this type are, in general, highly desirable
in multiuser systems; see, €.2., [2]. As we will see, spread-
signature CDMA systems provide some important potential
performance advantages over traditional CDMA systems. Fur-
thermore, we will see that spread-signature CDMA systems
achieve this benefit without requiring additional power or
bandwidth, and are attractive in terms of computational com-
plexity, robustness, and delay considerations.

Our model consists of a fairly general cellular multiple-
access scenario in which each cell contains a single base
station (sometimes referred to as a “cell site”) and a num-
ber of mobiles (or, more generally, “subscribers”). We as-
sume that both forward link (base-to-mobile) and reverse
link (mobile-to-base) communication is required, but takes
place on separate (i.e., noninterfering) channels. Between each
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transmitter—receiver pair is a fairly general Rayleigh fading
channel, which may be frequency-selective or nonselective.

The outline of the paper is as follows. In Section II, we
develop the equivalent discrete-time baseband model for our
multiuser system and some basic notation. In Section III
we then develop a useful framework for characterizing the
generalized orthogonal CDMA signature sets of interest in
this work, and use this framework to develop an efficient
family of spread-signature sets. Section TV develops some
important aspects of spread-signature CDMA systems, ranging
from transmission characteristics to channel-transformation
properties of such systems. We then exploit these properties to
develop efficient spread-signature CDMA receivers. Section V
explores the potential performance of such optimized systems
both in terms of capacity and bit-error rate characteristics, and
Section VI contains some concluding remarks.

II. SYSTEM MODEL

Consider a single cell of a multiple-access system, in which
there are M users, all sharing a total fixed bandwidth MW,, so
that W is the effective bandwidth per user. In the equivalent
discrete-time baseband model for the system, the modulation
process can be viewed as follows. The coded symbol stream
of the mth user (1 < m < M), which we denote by z,,[n],
is modulated onto a unique signature sequence h,,[n] to
produce y,,,[n] which is transmitted within the total available
bandwidth.

Conceptually, it is convenient to view the modulation
process in two stages. As depicted in Fig. 1, these stages
correspond to upsampling (i.e., zero insertion) by a factor M,
followed by linear time-invariant filtering with the signature
sequence, i.e.,

Ym[n] = Z T [K]hm [0 — kM. (1
ke
The multiuser channel we consider, which is depicted in
Fig. 2, is a rather general stationary Rayleigh fading environ-
ment with uncorrelated scattering. More specifically, ., [n: k]
represents the zero-mean, complex-valued Gaussian kernel of
the fading channel seen by that user. Hence, the sequence
obtained at the receiver is

r[n] = Z Z U [102 K]ym [n — K] 4+ w(n) 2)

where w[n] is a zero-mean, complex-valued stationary white
Gaussian sequence with variance!

Ellw[n]?] = NoW, (3)

that is statistically independent of both the a,,[n; k] and the
Ym[n]. In general, the randomly time-varying kernels a,,, [n: k]
capture the effects of multipath fading due to both fluctua-
tions in the media and the relative motions of transmitters

'Note that, for convenience, in our equivalent model the channel parameters
are bandwidth-normalized, i.e., the statistics of both am[n: k] and wn]
are independent of the bandwidth parameter /. To maintain the proper
dependence of signal-to-noise ratio on M, we therefore bandwidth-normalize
the transmitted power as well. Indeed, as we will establish in Section IV-A,
when the coded stream .r,,, [1] has power &£,,,, the transmitted stream y,», [n]
has power &, /M.
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Fig. 1. Modulation of the /nth user’s coded symbol stream ., (1] onto a
signature sequence hi,, [1] for transmission.
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Fig. 2. General multiuser fading channel model, where «,,[n: k] denotes
the randomly time-varying linear kernel corresponding to the mith user.

and receivers in the system. Meanwhile, w[n] captures both
receiver noise and any sources of cochannel interference not
otherwise taken into account. We use A,,(w: n] to denote
the (stationary) time-variant frequency response corresponding
to the mth channel.” Our notation for characterizing other
aspects of this class of linear randomly time-varying systems
is summarized for convenience in Appendix I.

Two special cases of this general channel model are of
primary interest. The first, corresponding to base-to-mobile
transmission, is referred to as the forward link. In this case, the
messages to the individual mobiles are multiplexed together
before being broadcast over the channel. From the perspective
of a particular receiver all messages are transmitted through
the same channel, i.e.,

ai[n: k] = as[n: k] = - = aar[n: k] 2 aln: k. (4)

The second case, corresponding to mobile-to-base trans-
mission, is referred to as the reverse link. In this case, the
messages are transmitted through separate channels to the base
station. With reasonable physical separation among mobiles,
as we will assume, the kernels of the individual mobile-to-
base channels may be modeled as mutually independent. We
shall further assume that no base-to-mobile feedback channel
is available to provide synchronization information to the
mobiles. Accordingly, the kernels a,,[n; k] in our model
capture the effects of both multipath fading and asynchronism
among users.

Finally, we make the reasonable assumption that, in both
forward and reverse link cases, while the transmitters have
no knowledge of the channel kernels a,,[n; k] or their sta-
tistics, these parameters are known—or, more typically, can
be reliably measured—at the corresponding receivers in the
system.

2We adopt the useful convention of using parenthesis (-) to denote
continuous-valued arguments and brackets [-] to denote discrete-valued ar-
guments. For functions of two arguments where the first is continuous and
the second is discrete (as in the case of time-variant frequency responses)
we use the convenient mixed notation (-: -]. The notation [-: -) is used in a
similar manner.
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[II. ORTHOGONAL MULTIUSER MODULATION

In traditional CDMA systems, the signature sequences
hun[n] used in the modulation (1) have length equal to the
upsampling rate or intersymbol period M. In this way, the
signatures are used in a nonoverlapping manner. However,
in this section we consider signatures of arbitrary length
N. When N > M, the resulting sequences have valuable
partial response characteristics akin to those of spread-
response precoding, and we refer to these sequences as
“spread-signature” sequences.

A useful mathematical framework for representing such
signature sets arises out of multirate system theory [3], as
we now show. To begin, we first express the signature set as
the vector sequence, ie.’

h[’ll] = [hl[n]hz[n} Ce hM [nHT (5)

and, for convenience, let us restrict our attention to real-valued
signature sets. When each of the component signatures .y, [n]
has only finitely many nonzero values, we shall refer to the
signature set as having finite spread. Specifically, when

hin]=0, n<0,n>N

we say that the signature set has temporal spread N.

Although the theory can accommodate more general classes
of signature sets, we restrict our attention to those satisfying
certain convenient orthogonality conditions, which facilitate
both analysis and implementation. Specifically, we require that
the signature sequences together with all translates by integer
multiple of M constitute an orthonormal set, ie.t

57 hlk = nMIRT [k — mM] = 8[n — m]I (6)
k.

where I denotes the identity matrix of appropriate size, and
where 6[n] denotes the unit sample, viz.,

5[] £ {6

In turn, the corresponding completeness condition for this
orthonormal set can be expressed as

ST AT [n — kMlh{m — kM) = S~ hiln = kM]hi[m ~ kM]
k k¢
= 6[n —m) ®)

n=20
otherwise ’

Q)

and, in fact, (8) can be interpreted as a special instance of
Mercer’s Theorem [4].

It is important to emphasize that orthonormal signature
sets, i.e., sets satisfying (6) and (8), correspond to lossless
systems. As a result, demodulation in the absence of distortion
is particularly simple. To illustrate, if the input symbol streams
are x,,[n] and the superimposed output is the sequence ylnl,
ie., via (1)

M-1
yinl = S gl =Y huln = MEJem[k] )
m=0 m, k

3The superscript T denotes transposition.

4Note that (6) directly incorporates the natural requirement that each
signature sequence h.,, [n] have unit energy.
g q 8y
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then the sequences ., [n] can be reconstructed from y[n] via

Tm[n] = Z han [k — nM]y(k]. (10)
%

As we shall see, the discrete-time matched-filter and downsam-
ple operation (10) is also a key component of the demodulation
process when distortion is present as well.

For M > 2, there is a rich collection of signature sets
satisfying (6) and (8), even when we restrict our attention
to signatures with finite spread. For M = 1, however, the
modulation process (1) is equivalent to prefiltering with a
linear time-invariant filter whose unit-sample response is the
signature sequence hi[n]. In this case, which was extensively
developed in [1], the condition (6) is equivalent to requiring
that hi[n] be an allpass filter, and it is well-known that
nontrivial finite-length allpass filters do not exist.

Several aspects of orthogonal signature sets are more con-
veniently viewed in the frequency domain. Accordingly, we
express the set of Fourier transforms corresponding to (5) in
the form

H(w) = /+OO hln]e™ 7™ dw

an

For example, the orthogonality properties (6) and (8) are
frequently more conveniently viewed in the frequency do-
main—as an illustration, (8) is equivalent to’

Al (W)H(w) =Y [He(w)* = M
k

2 [Hy(w) Ha(w) - Ha(w)]".

(12)

which is sometimes referred to as a (power) complementarity
condition.

More importantly, the frequency-domain representation (11)
leads to the efficient factorization

H(w) = QMw)A(w) (13)

where Q(w) is a square matrix and A(w) is the Fourier
transform of the delay chain of order M, i..

8[n) = [6n] 6[n — 1] ---6[n — M + 1] (14)

whence

Aw)=[1e 7 eie(M=1T (15)

The decomposition (13) is referred to as the polyphase rep-
resentation of the set, and Q(w) is termed the associated
polyphase matrix. As is true for multirate systems in general
[3], polyphase representations of signature sequences are not
only conceptually useful, but lead to computationally efficient
modem implementations as well.

For specifially orthonormal signature sets, the associated
polyphase matrix satisfies the special property

QW)QT(w) =1

and we remark that matrices satisfying (16) are termed parau-
nitary. Furthermore, it is straightforward to verify that Q(w) is

(16)

5The superscript 1 denotes the conjugate-transpose operation.
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independent of w if and only if the signature set is not spread
(i.e., N = M)

The polyphase matrices associated with some familiar or-
thogonal signature sets provide useful insight. For example,
the polyphase matrix corresponding to time-division multiple-
access (TDMA) systems is

Qlw) =1

while that corresponding to ideal frequency-division multiple-
access (FDMA) systems has (k, {)th element®

[Q(w)]k.l — ()/J(w-72xk)1/ﬂll 0<w<7.

In contrast, for discrete Fourier transform (DFT) multiplexing,
Q(w) is the DFT matrix, i.e.

[Q(W)]k_ | = (3‘1'2‘“'1&'1/31'

For Hadamard sequence based CDMA systems, for which
we will develop a powerful generalization in Section III-A.,
we have

Qw) ==

where E is the Hadamard matrix of appropriate dimension.
Recall that the Hadamard matrix of dimension M, viz., By,
where M is a power of two, is defined recursively: for
M =24,.-.

_1_{5‘\1/2 Eir)2 }

= =
Sar/1 T Earge

where 2; = 1.

CDMA system designers are frequently interested in the
auto- and crosscorrelation characteristics of the signature se-
quences. Indeed, the autocorrelation characteristics generally
affect, for example, the ability of a receiver to synchronize
to the transmission, while the cross-correlation characteristics
generally affect the degree and nature of co-channel interfer-
ence. Ideally, therefore, one would like the autocorrelation of
each signature hi[n] to satisfy’

hi[n] * hi[-n] ~ 8[n) (17)

and the crosscorrelation between distinct signatures hi[n] and
hi[n] to satisfy

ha[n] * hy[-n] =~ 0,

k#1.

It is well-known that (17) and (18) are conflicting objectives
for traditional signature sets (see, e.g., Welch [5] or Sarwate
and Pursley [6}). In fact, this is also true for spread-signature
sets. To see this, let us define quadratic auto- or crosscorre-
lation merit factors which penalize deviations from (17) and
(18), respectively. Specifically, analogous to the merit factors
defined by Golay [7], let

™

3 ([ Hi(w)H} (w)| = 8k - 1]]? dw.

(18)

1
/L8 = — (19)
27
®Note that Q(.') is both conjugate symmetric, i.e.. Q" (w) = Q(—«), and
2m-periodic. The superscript * denotes complex conjugation.
7The operator * denotes convolution.
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Then, using (12), it is straightforward to verify that, for any
M > 2

1 1

= 5oz || Sl = 2l + 1)
k,

=T

Y (|Hk<w>|‘2|H,<w>|2>} do
k. l#£k

L TM-1), (M)

_27r,/ i dw = T

(20)
—7
Hence, from (20), we see that good autocorrelation character-
istics can only be obtained at the expense of crosscorrelation
characteristics, and vice versa. At one extreme the trivial
signature set corresponding to TDMA systems has perfect
autocorrelation characteristics, but the worst possible cross-
correlation characteristics.® i.e.
k=1

h __ oG,
Lir= {1. kAL

At the opposite extreme we have the signature set cor-
responding to ideal FDMA systems. This set has perfect
crosscorrelation characteristics but poor autocorrelation char-
acteristics; in particular

, /(M~-1), k=1
= { LMY

k1

In practical CDMA systems, a compromise between these
extremes is generally sought.

The auto- and crosscorrelation characteristics constitute
only one of the important issues in the design of good
spread signature sets. For example, it is also important that
the signature sets we develop are effective in spreading the
transmission of each symbol of a user’s transmission over a
large range of time samples in order to mitigate the effects
of fading. This is, of course, analogous to the objectives of
spread-response precoding as developed in [1]. Accordingly,
we define a dispersion factor D;, which measures a signature
set’s spreading capability via

1 1 1
D, M;D,

T

20

where D), represents the dispersion in the sequence h,, (n],
i.e., consistent with [1]

-1
Dy, = <thn[n]> .

™m

(22)

Note from (21) that, as we would expect from any reasonable
definition of dispersion, the set has perfect spreading, i.c.,
D), — oo, if and only if every signature in the set is perfectly
spread, i.e., Dy, — oc forevery 1 < m < M.

#1n fact, as can be verified from (19) and (20, this is true for any orthogonal
signature sct whose sequences have allpass Fourier transforms.



1422

Important insights are obtained by examining what values
Dy, can take. It is straightforward to verify, for instance, that
for all orthonormal signature sets

Dy 2>1

(23)

and that this bound is attained when h[n] is the TDMA
signature set. More importantly, at another extreme we have,
for finite-spread signature sets with temporal spread N

Dp <N (24)

with equality precisely when, for each 1 <m < M

|ham[n)| = 1/VN,

0<n<N-L1

Hence, for finite-spread signature sets, maximum dispersion is
achieved when the signature sequences are antipodal (binary-
valued). For this reason, we refer to the corresponding sig-
nature sets as “maximally spread.” Note, too, that because
they are discrete-valued, maximally spread signature sets are
especially attractive in terms of computational efficiency and
numerical stability.

As another important design issue, it will also be important
that the spread-signature sets we use possess what we refer
to as a good “partitioning” characteristics. In particular, as
we will see, good partitioning results in more uniform distri-
bution of cochannel interference among users in the system.
To develop this concept, we define the following modified
correlation function:

Onfr.ml = Y hln - Mihfn = MK 05)
k.

which corresponds to correlating h;[n] with a version of h;[n]
in which all but every Mth sample is replaced with zero. While
the complementarity condition (8) directly implies that

ZG’“ [n, m] = é[n —m] (26)
this condition says nothing about the properties of each of
the M terms in the summation of (26). However, as will
become apparent in Section IV, the set has good partitioning
characteristics when the unit sample in (26) is, in some
sense, distributed uniformly among the M modified correlation
functions.
To make the notion of good partitioning characteristics more
precise, we let
Oy, [n, m] = Op,[n, m] Q27

- %5 [n—m|
denote the deviation from ideal partitioning in each com-
ponent. It is straightforward to show that (:)hi[n, m] is the
following symmetry, periodicity, and finite-energy character-
istics:

O, [n, m] = Op,[m, 1] (28a)

O [n, m] = O, [n+ kM, m+kM],  anyk (28b)
and

(28¢)

1/M? <Y 63 [n, m) < (1—1/M)*.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 5, SEPTEMBER 1995

A signature set has asymptotically perfect partitioning if
Oy, [n, m] can be made arbitrarily small using sufficiently long
signatures. Accordingly, we define the following partitioning
factor:

1 1 1
=y 29
xn M Z Xh;
where
1 .
— =su ®4L n,m 30)
Xh, ’"pzn: u[ ]

and note that good partitioning corresponds to large partition-
ing factors, and vice versa. It is important to note, however,
that signature sets with good dispersion factors do not neces-
sarily have good partitioning characteristics.’ Nevertheless, we
emphasize that we shall be primarily interested in signature
sets which have both good dispersion and good partitioning
characteristics.

A. An Optimum Class of Spread-Signature Sets

In this section, we develop a family of orthogonal signature
sets that are optimal in the sense of being maximally spread,
i.e., having the best dispersion characteristics for a given length
(or, equivalently, delay) constraint. As we discussed earlier,
the maximally spread condition is achieved precisely when
the signature sequences are binary-valued. The signatures
we construct are conveniently obtained out of a powerful
paraunitary generalization of the Hadamard matrix, and have a
computationally efficient recursive synthesis that is attractive
in terms of modem implementation.

Our construction is based on the polyphase decomposition
of a signature set (13). In particular, we rephrase the problem
of designing a suitable orthogonal signature set H(w) into
problem of designing a suitable paraunitary polyphase matrix
Q(w). Thus requiring that the desired H(w) correspond to a
maximally spread signature set is equivalent to requiring that
the polyphase matrix sequence g[n] whose transform is Q(w)
be binary-valued.

We begin by observing that the Hadamard matrix = is one
matrix satisfying these properties. Accordingly, we let our
zeroth-order polyphase matrix be'®

QV(w)=E 31
and note that the spread of the corresponding signature set is
N = M.

9To verify this, it suffices to note that from any orthogonal signature set
ki [n], we can construct a new orthogonal signature set gm [n] via

gmln] =Y _em[Khmln — kM|
T

where the ey, [n] are any set of nontrivial lossless (allpass) filters. However,
while this new system generally has greater dispersion Dy > Dy, it
is straightforward to show that the partitioning factor is unchanged, ie.,
\g = \h-

10For convenience, we restrict our attention to orders A for which
Hadamard matrices exist. These include, for example, all integers M that
are powers of two.
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To obtain signature sets for which N > M, we exploit
a recursion that preserves the binary sequence requirement;
specifically, we let

Q" (w) =BAM'w)Q Vw), i=1,2.--- 32
where A(w) is the diagonal delay matrix whose diagonal is
constructed from the elements of A(w), i.e., with A(w) as
defined in (15),

A(w) = diag A(w).

We see immediately that the paraunitary property (16) is pre-
served by the recursion (32) because the product of paraunitary
matrices is also paraunitary: It is similarly straightforward to
verify that the recursion (32) preserves the binary sequence
property—indeed, in the time domain one can interpret (32)
and (31) as implementing a succession of simple sequence
concatenations initiated with Hadamard sequences.

Using (13), we can also express the recursion (32) di-
rectly in terms of the signature set vector Fourier transform:
specifically, we have, for i = 1, 2,---

H(w) = BAM 'w)H"D (). (33)
From (33) we can verify that the spread of the signature set
grows by a factor of M with each application of the recursion,
so that, in particular, H(i)(w) has spread N = M**! for
¢ = 0,1, 2,---. For convenience, several sets of signature
sequences obtained by the recursion (32) with (31), and
corresponding to different values of M and N, are tabulated
in Appendix II.

As a historical aside, it is interesting to note that orthogonal
systems of the type constructed in this section have been
reinvented numerous times over the last several decades,
particularly for the case corresponding to M = 2. However,
it would appear that this work is the first to attempt to exploit
such systems in multiuser communication problems.

Using a variety of constructions, such systems emerged
independently in a variety of unrelated communities within
mathematics, physics, and engineering. Work within the
engineering community dates traced back to 1950 when
Golay constructed pairs of pseudorandom sequences which
he referred to as “complementary sequences” [8], [9].
These sequences—now frequently referred to as Golay se-
quences—were defined as binary-valued sequences satisfying
the frequency-domain complementarity condition (12) for
M = 2. These Golay sequences have subsequently been
explored extensively, though the focus has been primarily on
issues of existence of such pairs for various values of NV; see,
e.g., [10] and [11].

From (12) it is apparent that binary-valued orthogonal
sequences are a subset of complementary sequences. However,
more importantly, complementary sequences are also useful in
the construction of orthogonal sequences, which both Golay
and Turyn [12], and later Taki, et al. [13] observed in the

! As such, there is a natural correspondence between such complementary
pairs and power complementary filters as developed in the multirate signal
processing literature [3].
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case’> M = 2. The corresponding generalizations for M > 2
appear in, e.g., Tseng and Liu [14].

Within the mathematics community, binary-valued, pseu-
dorandom, orthogonal sequence pairs (and, in particular, a
time-domain version of the recursion (33) for M = 2) were
also discovered independently by both Shapiro [15] and, later,
Rudin [16]. As a result, the frequency-domain representations
for such sequences are sometimes referred to as Rudin-Shapiro
polynomials.

As discussed in, e.g., Odlyzko [17], several useful properties
of such sequences, as well as their connections to other
families of binary pseudorandom sequences, have been devel-
oped. For example, the asymptotic auto- and crosscorrelation
characteristics of our maximally spread orthogonal signature
sets for the case M = 2 follow immediately from the results
of Newman and Byrnes [18]. In particular, we have that

[,;:k — 3, N — > (35)
which, using (20), implies that for k # [
Lk —3/2, N — 0. (36)

Based on earlier discussion in Section IlI, (35) and (36)
suggest that our maximally spread signature sets are localized
in neither time nor frequency. In fact, not only is this the case,
but such strong spreading in both time and frequency is critical
to good performance in our intended application. Furthermore,
in addition to their good spreading characteristics, our maxi-
mally spread signature sets have good asymptotic partitioning
characteristics as well; specifically, x, — 0o as N — oo.

IV. SYSTEM CHARACTERISTICS

In this section, we develop the key characteristics of spread-
signature CDMA systems, and then apply these results in
developing efficient receivers for such systems. We begin with
a general discussion of transmission characteristics.

A. Transmission Characteristics

Spread-signature CDMA systems give rise to transmissions
with some rather special spectral and temporal characteristics,
only some of which are shared by conventional CDMA sys-
tems. To illustrate the spectral features, we begin by observing
from (1) that, provided the coded symbol stream of the mth
user is stationary, the corresponding transmitted stream is
cyclostationary with a time-averaged power spectrum given by

Sy (W) = | Hpn (@) [*Se, (Mw) /M

where S, (w) is the power spectrum of the coded symbols of
the mth user. When x,,[n] consists of uncorrelated symbols
of energy &£,,, as we shall generally assume in practice, the

12To see this, it suffices to verify using (16) with (12) that

g2 [Aw) B ”
Q)= B (w) —a7(w) 69
is a paraunitary matrix whenever the corresponding sequences a[n] and b[n]
constitute a complementary pair.
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transmitted power spectrum associated with the rnth user
further simplifies to
Sy (@) = [ Hyn(W)PEm /M. 37
From (37) several observations can be made. First, we
immediately note that since H,,(w) has unit energy, the total
transmitted power in this case is £y, /M. When compared with
(3) we see that this appropriately results in a signal-to-noise
ratio (SNR) that decreases inversely with system bandwidth.
We also note from (37) that, in general, the transmitted
power spectrum, is not, strictly speaking, white. However,
when the maximally spread signature sets of Section III-A
are used, the transmitted power spectrum is broadband and,
in a particular sense, asymptotically white. More specifically,
as N — oc, each H,,(w) “converges” to a highly irregular
function whose energy is effectively uniformly distributed
over frequency. Furthermore, the transmitted spectrum coOr-
responding to forward link transmission is typically truly
white. Indeed, when the component coded symbol streams
are mutually uncorrelated and of equal energy &, = £,
it is straightforward to verify using (12) that the aggregate
transmitted power spectrum is

Sy(w) =€ (38)
where y([n] is the aggregate transmission, i.e.
yln] = Zym[n], (39)

m

The temporal characteristics of spread-signature CDMA
transmissions are noteworthy as well. In traditional CDMA
systems the individual (baseband) transmissions are generally
binary-valued. However, in spread-signature CDMA systems,
although the signature sequences and coded streams may be
binary-valued, (if, e.g., the signature sequences of Section
III-A are used), the transmitted streams generated via the
modulation (1) generally are not. This 1s, of course, a con-
sequence of the overlap between modulated symbols than
invariably results from choosing signature sequence lengths
N that exceed the intersymbol epoch M. In fact, as N — o<,
a simple Central Limit Theorem argument suggests that each
y,,,,[n] is a marginally Gaussian process.

This quasi-Gaussian behavior is generally rather appealing
from the point of view of certain transmission security and
capacity considerations. However, it is important to point out
that, as was true in the case of spread-response precoding
systems, these characteristics also pose significant engineer-
ing challenges in terms of managing peak-to-average power
and receiver synchronization requirements. While such issues
certainly warrant further investigation, they are beyond the
scope of the present paper.

B. Receiver Characteristics and Design

In Section IV-A we explored the transmission characteristics
of spread-signature CDMA by examining what the coded sym-
bol streams look like (after modulation) from the perspective
of the channel. In this section, we develop efficient receivers
for such systems by examining what the channel looks like
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r(n] b, [nik] b [-n] M X ln]

Fig. 3. Receiver structure for extracting the symbol stream of the mith user.
The first stage is equalization, producing §um [n], while the second stage is
demodulation, producing &, [r]. A final stage (not shown) is decoding.

from the perspective of the coded symbol stream (before
modulation).

We begin by observing that what the coded symbol stream,
in effect, “sees” is the cumulative effect of modulation, fol-
lowed by distortion introduced by the channel, followed by
processing performed at the receiver. Accordingly, we refer to
what the coded symbol stream sees, then, as the “composite
channel.” :

Before we explore the key properties of this composite
channel, we must first develop an appropriate receiver structure
for these systems. In general, the receiver processing required
to recover the mth transmitted message 1s comprised of three
stages. First, the received data r[n] are equalized according to

Tm[n] = me [n; K]rin — k). (40)
k

As is apparent from (40) and depicted in Fig. 3, the corre-
sponding equalizer is, in general, a linear time-varying filter
whose kernel we denote by b[n; k|. Because the fading
channel coefficients and statistics are assumed to be available
to the receiver, the equalizer kemnel by, [ ] is generally a
function of all the channel kernels ax[-: -], k = 1, 2 M,
although the dependence is often simpler in certain special
cases of interest.

In the second stage, also depicted in Fig. 3, the equal-
ized data are demodulated from the corresponding signature
sequence, Viz.,

T [n] = Z@m[k]hm [k — Mn]. 1)
k

This is conveniently interpreted as a discrete-time matched-
filter and downsample operation.

Finally, the last stage of the message recovery, which is
not depicted in Fig. 3, consists of decoding the demodulated
stream Z,,[n] (using, for example, maximum-likelihood meth-
ods). It is important to point out, however, that while we will
not consider the actual implementation of the decoder in this
paper, we will discuss in Section V what kinds of coding
and decoding strategies are appropriate for spread-signature
CDMA, and their effect on system performance.

The composite system consisting of modulation, the chan-
nel, equalization, and demodulation has some appealing char-
acteristics provided the channel, and, in turn, the corresponding
equalizers, have some reasonable ergodicity properties. In
effect, these ergodic properties are required to ensure that
spreading the transmission of each symbol over a sufficiently
long time interval by modulation allows these symbols to see
the average characteristics of the fading channel—i.e., that
the time averaging implicit in the modulation is equivalent to
ensemble averaging. The following technical definition will
prove to be sufficient for our purposes.



WORNELL: SPREAD-SIGNATURE CDMA

Definition 1: Let f;[n: k] be the kernels of a family of
linear systems, and define

filns K] = f5ln; k] = E[f;[n: K]). (42)
Furthermore, let
d;/[n, m; k1] = fj[7L; k]f]*, [m; [ 43)

and define
& [n, ms ky 1) = d [0, m; &, 1] = E[d) [n, m; k)] (44)

Then the family f;[n; k] is admissibly ergodic if the following
conditions are satisfied:

E[fj[n: k)] = E[F;]6[k] (45a)
E[fjln; K)f3lm: 0] = RY [n —m; K[k — 1] (45b)
E[d [n, m; k, 1]
ng[n’, m'; k', U] = T]j,[n —m,n —m/,

n—n's k1, K,

Spir = ZZ\R;/[n; k|| < o
’ n k

Spr = 3 D (1] [mama mas by o ks, k]| < oc.

nLnY ky, ko
n3 kg, ky

(45¢)

(45d)

(45¢e)

Definition 1, in fact, represents a straightforward general-
ization of the corresponding definition in [1]. In particular,
conditions (45a), (45b), and (45c) are essentially stationarity
constraints, while (45d) and (45e) are ergodicity constraints.
Note, too, that for convenience we have omitted specification
of the frequency w and time n from E[F}(w; n)] in (45a) due
to stationarity.

The key properties of the composite channels, which we
now develop, represent a natural generalization of those devel-
oped for single-user systems in [1]. In particular, we show that
subject to only relatively mild ergodicity constraints, the use of
spread-signature modulation with sufficiently long signatures
leads to composite channels that are effectively a collection of
uncorrelated additive white-noise channels, each of which is
not only free of fading, but has no intersymbol interference.
In developing our detailed results, we consider the forward-
link and reverse-link systems separately since there are some
fundamental differences in behavior.

1) The Forward Link: The characteristics of the composite
system for the forward link are summarized in the following
theorem. A proof is provided in Appendix III.

Theorem 1 (Forward Link): Let z,,[n] be mutually uncor-
related sequences of zero-mean, uncorrelated symbols, each
with energy &,,, and let a,,[n; k] and win] be as defined in
(2) and (4). Furthermore, let the common equalizer be

biln: k] = baln: k] = -+ = by[n; k] 2 bln; k]
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and let c[n; k] denote the kernel of the linear system formed
by cascading the channel whose kernel is a[n; k], with the
equalizer whose kernel is b[n; k}, i.e.

c[n; k] = Z b[n; lla[n — 1; k= 1. (46)
1

Finally, suppose the c[n; k] and b[n; k] are both admissibly
ergodic kernels in the sense of Definition 1, and let Z,,[n]
be defined via (41) and (40). Then, as D, — oo (infinite
dispersion) and x, — oo (perfect partitioning'® ), we have,
for each n,'*

Em 0] B[C)zm[n] + vm[n] 47)

where the wv,,[n] are mutually uncorrelated, zero-mean,
complex-valued, marginally Gaussian white-noise sequences
that are uncorrelated with the input symbol sequences ., [n].
Furthermore, the variance of the noise v,,[n] is independent
of both m and n, and is given by

var v, [n] = NoWoE[|B|?] + var[C]€ (48)
where
. 1 M
&= MZ &k (49)

is the average transmitted power. In both (47) and (48) we
have, for convenience, again omitted specification of the time
sample n and frequency w corresponding to B and C due to
stationarity.

While we postpone more general remarks until Section IV-
B3, we emphasize that Theorem 1 implies that the composite
forward-link channels are asymptotically mutually uncorre-
lated, identical, nonfading, quasi-Gaussian channels with no
intersymbol interference. Moreover, from Theorem 1 we also
note that the SNR on the mth of these composite channels is

_ En| E[C]?
T NoWE(|BJ2] + Evar [C]’

(50)

The design of a suitable equalizer for the receiver in this
case is straightforward. In particular, for sufficiently slow
fading we have

C(w; n] & A(w; n]B(w; n]
so that (50) becomes
_m |E[AB]|?
T = | (NoWo/E)E(|BI?) + var [AB] |

Then, recognizing that the term in brackets in (51) is identical
in form for an SNR expression that was maximized in [1], we
immediately deduce that (50) is maximized when
A*(w; n]

l1+a

(5D

B(w; n] < (52)

13 Actually, perfect partitioning is strictly speaking not required for the
forward link theorem to hold, although this is not apparent in our proof.
However, it is necessary for the reverse link theorem to hold.

14We use the notation =3 to denote, specifically, convergence in the
mean-square sense.
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where
E|A(w; n]|?
NoWy

Furthermore, in this case the corresponding SNR can be
expressed as

a(w: n] =

(53)

& 1

g

which may be further simplified using methods described in
[1]. In fact, as we will discuss further in Section V-A, when
&, = &, these results specialize to precisely those obtained
in [1].

2) The Reverse Link: The following theorem summarizes
the characteristics of the composite channel on the reverse link.
We emphasize that in this scenario we are assuming completely
uncoordinated (i.e., fully asynchronous) transmissions from
mobiles to the base. A proof is again provided in Appendix III.

Theorem 2 (Reverse Link): Let x,[n] be mutually uncor-
related sequences of zero-mean, uncorrelated symbols, each
with energy &,,, and let a,,[n; k] and w[n] be as defined in
(2) with the channel kernels being statistically independent.
Furthermore, let ¢p,;[n; k] denote the kernel of the linear
system formed by cascading the channel seen by user m whose
kernal is a,[n; k], with the equalizer corresponding to the
detection of user 4, whose kernel is b;[n: k], i.e..

cmiln. k] = Z bi[n: Ham[n —1; k=1].
]

&

Ym = -1 (54)

ol

(55)

Finally, suppose the ¢p,;[n; k] and b,,[n; k] are admissibly
ergodic kernels in the sense of Definition 1, and let 7,,[n]
be defined via (41) and (40). Then, as D;, — oo (infinite
dispersion) and yx, — oc (perfect partitioning), we have, for
each n

m.s.

T [1] = E[Crn]tm[n] + v [n] (56)

where the 7;,,,,[71,] are mutually uncorrelated, zero-mean,
complex-valued, marginally Gaussian white-noise sequences
that are uncorrelated with the input symbol sequences ,, [n].
Furthermore, the variance of the noise samples v,,[n] is
independent of n and satisfies

A
- 1 ¢
varv,, [n] = NoWo E[|B,, %] + MZ Epvar[Crm ). (57)
k=1

Again, in both (56) and (57) we have omitted specification of
the time sample » and frequency w corresponding to B,,, and
Cl, due to stationarity.

Again, although we defer further more general remarks
until Section TV-B3, we emphasize that, as in the forward-
link case, Theorem 2 implies that the composite reverse-link
channels are asymptotically mutually uncorrelated, nonfading
quasi-Gaussian channels with no intersymbol interference.

From Theorem 2, we observe that the SNR of the composite
channel seen by the mth user is

Em, [E[Cmm} |2
NOWOE(| B 2] + & 500L, & var [Ch ]

Y = (58)
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As in the forward link, it is possible to develop equalizers
yielding the best possible SNR in the composite channels for
the reverse link. In particular, given sufficiently slow fading
that

Cri(ws n] & Ap(w: n]Bi(w: n]
we can re-express (58) in the form

5," |E[Am Bm”Q

 NOWOE[ B2 + £ 0 Exvar (A B,)

(59)
In turn, the following lemma directly establishes the optimum
equalizer for the mth user, viz.

A% (win)

m,

A ]

Y By

B(w; n] «

(60)

where

Em| A (w; 0]?
NoWy

is the SNR at the receiver corresponding to the mth user. A

proof of the lemma is provided in Appendix IV.

Lemma 1: Let Ay, Ao.---. Axr denote a collection of sta-
tistically independent, complex-valued, zero-mean Gaussian
random variables, each with finite variance, and let NgW, and
€1, &2, -+, Ea; be arbitrary real, nonnegative weights. Then
the function ~,,(B,,) defined in (59) satisfies

(61)

o (wi n] =

-1
L+ L5 o

’Y,,,(B,,,) S E ]\[?k;ﬁm k -1 (62)

M 1+ VZI« 472

where the «, are as defined in (61). Furthermore, equality in
(62) holds when
B A
C —
1+ %221:1 ¥k

3) General Remarks: Several aspects of both the interpre-
tation and the implications of Theorems 1 and 2 are worth
developing in more detail.

First, it is important to emphasize that these theorems do
not establish that the composite channels are truly Gaussian
channels. For example, although we argue that the additive
noise sequence in the composite channel models is margin-
ally Gaussian, we do not assert that these noise samples
are actually jointly Gaussian. More generally, while these
theorems describe the second-order properties of the composite
channels, it should be stressed that they say very little about
higher order statistical dependencies.'” Indeed, while they
establish that the collection of noises and coded streams
are mutually uncorrelated, there is no claim of full mutual
independence. Nevertheless, as we will see in Section V,
useful approximations are obtained by modeling the composite
channel as truly Gaussian and thereby ignoring these residual
statistical dependencies.

ln fact, because of the emphasis on second-order properties, versions of
these thcorems hold even when the original channel noises and kernels are
not Gaussian.
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It is also useful to note that the additive noise in the
composite channel model can be viewed as consisting of three
components. Indeed, from both (48) and (57) we see that one
component is due to the receiver noise in the original fading
channel, while another is due to co-channel interference from
other users. However, the third component is a form of self-
interference generated as a by-product of the modulation, and
thus the total noise power has a term that depends on the
transmitted signal power. Collectively, these factors, in turn,
give rise to the rather special equalizer structure which is
optimum for such systems. In particular, we note that the
optimum equalizers for these systems are minimum mean-
square-error-type equalizers in contrast to the matched-filter-
type equalizers associated with traditional CDMA systems.

It should also be emphasized that in establishing Theorems
1 and 2, both the dispersion and partitioning characteristics
of the signature set are important, as the proofs of these
theorems reveal. In particular, it is perfect dispersion that leads
to the absence of fading and intersymbol interference in the
composite channels, while it is perfect partitioning that leads
to mutually uncorrelated, identical white-noise characteristics
in the composite channels.

In addition, while Theorems 1 and 2 establish asymptotic
results which involve signature sequences having infinite tem-
poral spread ( N — o0), it is important to note that the
asymptotic behavior can, in fact, be approximated arbitrarily
closely with realizable, finite-spread signature sets. In fact,
it this approximation property that underlies the practical
importance of these theorems.

In general, the temporal spread required to achieve a given
level of approximation to the results of the theorems depends
on the coherence time characteristics of the fading. Specifi-
cally, analogous to the results for spread-response precoding
in [1], if N’ is the spread required in the case of memoryless
fading, then the spread required when the coherence time (in
samples) is 7, is

N =N'(r, +1).

Thus a larger coherence time implies that greater delay must
be incurred to achieve a given level of performance. This,
of course, is true of communication over fading channels in
general. However, it is important to recognize that the delay
constraints in spread-signature CDMA are no worse than in
other systems employing, for example, interleaving.

Although greater coherence times require longer signature
sequences, it is important to note that the computational
requirements need not grow with coherence time. In fact, the
required number of nonzero coefficients in each signature
sequence is independent of the coherence time. In particular,
to match the coherent time characteristics of a channel of
interest, it suffices to upsample some prototype set of signature
sequences (such as those developed in Section III-A) to
achieve the necessary temporal spread. Furthermore, we note
that the energy, dispersion, partitioning, and computational
characteristics are all unaffected by such upsampling.

While this upsampling approach to coherence time matching
is also used with spread-response precoding as described in [1],
an important difference in the case of spread-signature CDMA
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is that the upsampling factor K cannot be freely chosen.
In particular, in order to preserve orthogonality among the
signatures, we may only upsample the signatures by an integer
K that is not a multiple of a prime factor of the number of users
M.'® Hence, if the h,,[n] are a set of prototype maximally
spread signature sequences applicable to memoryless fading,
the signature sequences applicable when the coherence time
is 7, are given by

hG)[n] = {gm[n/K(]], n=--,—Ko, 0, Ko, 2Kop, - --

otherwise

(63)
where K, denotes the smallest integer that is not less than
7. + 1 and is not a multiple of a prime factor of M.

V. PERFORMANCE

In this section we explore both the effective capacity and bit-
error rate characteristics of spread-signature CDMA systems.
Again, we examine the forward and reverse links separately
so as to emphasize some important differences between these
cases.

A. The Forward Link

Due to the coordinated nature of the transmission, perfor-
mance on the forward link generally follows immediately from
the results presented for single-user systems in [1]. Indeed, on
the forward link, it is typical to choose

E1=E = =Ey=E2¢

in which case the optimum equalizer (52) and the optimum
SNR (54) both specialize to precisely those derived in the
single-user scenario developed in [1]. Furthermore, since for-
ward link performance for any m coincides with reverse link
performance for M = 1, we will ultimately rederive these
results as special cases in Section V-B.

While many of the performance characteristics on the for-
ward link may be directly extracted from [1], those concerning
performance with realizable (finite-spread) signature sets can-
not. Accordingly, we depict forward link performance obtained
with realizable signature sets in Fig. 4. Specifically, we plot
realizable uncoded quadrature phase-shift keying (QPSK) bit-
error rate performance in Rayleigh fading as a function of
SNR per bit as measured through Monte Carlo simulations.
In these simulations we use the maximally spread signature
sets of dimension M = 2 developed in Section III-A, and
the dash-dotted and dashed curves indicate the performance
corresponding to N/ = 32 and N’ = 128, respectively. For
comparison, the solid curve corresponds to the asymptotic
performance obtained with infinite temporal spread (N’ —
o).

More generally, the single-user scenario (M = 1) warrants
further discussion. As remarked earlier, no nontrivial finite-
spread orthogonal signatures for M = 1 exist. As a result,
in [1] the orthogonality (losslessness) constraint had to be

16 This implies, for instance, that when the number of users M is a power
of two, i.e., M = 27, we can use any odd I". Likewise, for M = 37, we

can use any A which is not a multiple of 3, and for M = 6 7, we can use
any K" which is not a multiple of 2 or 3, ie., K =5. 7, 11..-- . etc.
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Fig. 4. Bit-error probabilitics using uncoded QPSK in Rayleigh fading on
the forward link. The dash-dotted and dashed curves represent the perfor-
mance obtained using maximally spread signature sets with N/ = 32 and
N’/ = 128, respectively. The solid line represents the ideal performance
bound (N — ).

relaxed in developing realizable precoders. In turn, this led
to a corresponding degradation in the precoder performance.
However, from within the broader framework of this paper,
we can see that orthogonal signature sets corresponding to
M > 2 can also be usefully applied to single-user precoding
problems. In particular, we may distribute successive symbols
in a stream x[n] among M different substreams z,,[n] by
periodic subsampling, i.e.

Tmn] = x[nM +m - 1]

and then use an orthogonal spread signature set of order M
to implement perfectly lossless precoding. At the receiver, the
substreams may be demodulated from the signature sequences,
and appropriately reintegrated into the single stream i [n].

This strategy for implementing lossless precoding has a con-
ceptually rather useful interpretation. Specifically, the cyclic
distribution of symbols among substreams may, itself, be
interpreted as a lossless system, and, hence, in effect what
we construct in this manner is a linear periodically time-
varying precoder.!” Hence, we see that by adopting this more
general precoder structure we are able to achieve lossless
spread-response precoding with finite-length filters.

In light of these observations, we see that the curves in
Fig. 4 also correspond to the single-user performance thai
is achievable using the improved precoders. And, comparing
Fig. 4 to |1, Fig. 5], we see that significantly better perfor-
mance is achieved for a given length constraint (N') when we
have perfect orthogonality (losslessness).

B. The Reverse Link

The performance characteristics on the reverse link are
dramatically different than those on the forward link due the

'7We remark as an aside that traditional interlcavers are essentially trivial
examples of such linear periodically time-varying systems.
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uncoordinated nature of the transmissions, as we now illus-
trate. We begin by noting that, in practice, on the reverse link
power control is generally employed to adjust the transmitter
power for each user so that the average received power from
each user is the same, i.e., for all users m, the SNR in the
corresponding original channel is

Elom (w: n) 2 1/¢o (64)

where «,,,(w: n] is as defined in (61). Indeed, such power
control is a practical technique for mitigating the vulnerability
of CDMA systems to, among other problems, near-far effects
[2].

Some important insights into the potential capacity of
spread-signature CDMA systems arise out of the theorems
of Section 1V-B. Theorem 2, in particular, suggests that the
composite quasi-Gaussian channel seen by the rnth user has
a “capacity” given by

Cm = W() lOg (1 + '7771,) (65)

where 7, is the SNR in the composite channel of the mth
user. However, we emphasize that caution must be exercised
in interpreting this notion of capacity. In particular, we note
that this measure of capacity ignores all statistical effects of
greater than second order in the composite channels—despite
the fact that such effects can in principle be exploited to yield
still higher throughputs. Nevertheless, the particular concept of
constrained capacity defined here has a useful interpretation
as we will develop. In particular, it provides a measure of
throughput that can be achieved when traditional forms of
coding are superimposed on our CDMA system.

Convenient expressions can be obtained for the composite
channel SNR which maximizes this effective capacity. In
particular, from Lemma 1, we have that when we use optimum
equalization, vy, can be expressed as

’yf” 1
— = — -1 66
M~ D (00)
where
L+ 55 L o
i = | LA Zn (©7)

1+ _\%ZL oy

Under our power control assumption, (%,, as defined in (67)
as independent of m, and thus we simply use f%, 0. and
C to denote the quantities (66), (67), and (65), respectively.
Furthermore, in this case, by exploiting symmetry (67) can be
expressed in closed form in terms of the exponential integral.
In particular, we have the following Lemma, whose proof is
provided in Appendix V.

Lemma 2: Let vy, va,---.va; be independent, identically
distributed exponential random variables with mean 1/4. Then
forany 1 < m < M

1+ ) v g ’f\l
E Zk#rn k — M 1+ H
155, 00 MM
M2 !
M4l A—k M
| (SO E () + ;()H) | (©®)
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Fig. 5. Reverse-link capacity per user as a function of the number of users

M. The successively higher curves correspond to SNR’s of —35, 5, 15, and
25 dB. Note that the capacities corresponding to M = 1 also coincide with
forward-link performance with any number of users. The connecting dashed
lines have no special interpretation; they are provided as visual aides only.

where

oo e—t
is the exponential integral [19].
Thus using Lemma 2 with vy =
obtain that (67) can be expressed as
(MGo)™

ar/M we immediately

6 —E_{_
T M M!

S (=DMAMO By (M ()

M—-2

— M-k k!
+ ;} (_1) (A/[CO)IH_I

(70)
Hence, evaluating (65) via (66) and (70), we obtain relation-
ships for the capacity per user as a function of the number of
users M, the SNR, and the bandwidth per user. In Fig. 5 we
plot capacity per user as a function of M at various levels of
SNR, while in Fig. 6 we plot capacity per user as a function
of SNR for various values of M, with the Gaussian channel
capacity included for comparison.

Note from Fig. 6 that for M > 2 the reverse link capacity
appears to saturate at high SNR, with the saturation level
depending on the number of users. This is, in fact, the
case, and it reflects the fact that reverse-link performance is
fundamentally interference-limited rather than noise-limited.
This phenomenon, which is a direct consequence of the
constrained receiver structure we employ, is well known. see,
e.g., Verdd [20]. While it is possible to design multiple-access
systems that are strictly noise-limited, this requires the use of
receivers employing joint detection strategies. Unfortunately,
joint detection is, in general, computationally very intensive,
particularly when the number of users in the system is large
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Fig. 6. Capacity per user as a function of SNR. The successively lower solid
curves correspond to reverse-link transmission with M = 1, A/ = 2, M =4,
and M — oc users. Note that the curve for A/ =1 also coincides with
forward-link capacity with any number of users. The dashed line indicates the
capacity of the corresponding Gaussian channel.

[21]. For these reasons, such receivers are often considered
impractical.

To verify the interference-limited behavior, let us consider
the high-SNR regime performance in more detail. In this case,
we may use the series expansion [19]

> ko k
El(l/) = —F() —Inv — E (——l}z'—y

k=1

(1H

with I'p = 0.57721 - - - denoting Euler’s constant, to show that
at high SNR (o — 0), (70) satisfies

M-1
bo = =

(72)

Thus the asymptotic capacity on the reverse link in this regime
is
2M — 1) . 73)

€~ log <ﬁ_—1

Hence, (73) implies that the resulting capacity is finite, con-
sistent with the saturation behavior apparent in Fig. 6.

Another important asymptotic regime to explore is the large
number of user scenarios. Fortunately, as M — oc, convenient
closed-form expression are possible. In particular, since the
are independent, identically distributed random variables, we
have, by the law of large numbers

M
%Zak—ﬁl/ﬁo, as M — oc.
k=1

Hence, we get

1
—_ — 74
Y=g e (74)
and, in turn, (65) becomes
2+ o
— 1 . 75
C — Wylog (1 +Co> (75)
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Fig. 7. Capacity per user as a function of bandwidth. The successively lower
solid curves correspond to reverse-link transmission with M = 1, Al = 2,
M =4, and M — oo users, respectively. Note that the M = 1 curve for
the reverse link coincides with the performance of the forward link with any
number of users. The dashed line corresponds to the capacity of the Gaussian
channel.

Note from (75) that when the system contains large numbers
of users, we have, regardless of the transmitter power used,
C/Wy < 1 bit/s/fHz with C/W, — 1 bit/s/Hz as (o — 0.

It is also significant that in this case, the equalizer structure
simplifies substantially as well. Again, via the law of large
numbers we get

B« AL, (76)

the familiar matched filter equalizer, which we note is sub-
stantially easier to implement than the optimum equalizer for
finite M. Fortunately, the asymptotic performance is achieved
for fairly moderate values of M as Fig. 5 reveals, so that in
practice this simpler equalizer can frequently be used.

Let us now turn our attention to the SNR-limited setting,
and consider the large-bandwidth behavior. In Fig. 7 we plot
normalized capacity as a function of bandwidth per user for
various values of M, with the Gaussian channel capacity
included for comparison. Several general remarks regarding
Fig. 7 are appropriate. First, as in the case of the Gaussian
channel, the capacity in our multiuser fading environment
increases monotonically with bandwidth per user. Second,
the horizontal distance between the M = 1 and M > 2
curves quantifies how much additional bandwidth is required
to compensate for the absence of coordination on the reverse
link.

Perhaps the most important observation from Fig. 7, how-
ever, is that the infinite bandwidth capacity is identical to that
of the Gaussian channel. To verify this property, we note that
using the asymptotic series expansion [19]

o0

Bw) =3 (-1

k=0

large v amn

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 41, NO. 5. SEPTEMBER 1995

we have that for large Wy (i.e., large (o)

> (k4 M) (—1)k+!
Bo~14 g (78)
oM (MG)
Using (78) in (66), we see that for large W,
M
Yo ~ w—l (79
1 0 —

However, since 7o in (79) is small, (65) can be expressed
asymptotically as

MW,
MG -1
Using the fact that (61) and (64) imply
EmE[|Am|’]

No

C~Wov = (80)

Wo/Co =

we verify from (80) that

gTrLEHA'Hl |2]

_y gmliiTml ]
No

which we emphasize is independent of m by our power

control assumption. Finally, we note that (81) is, of course,
the capacity of the infinite-bandwidth Gaussian channel.

C (81)

C. Exploiting Additional Processing Gain

For reverse-link communication, co-channel interference is
such that even at high SNR, the SNR ~, of the composite
quasi-Gaussian channel for each user is low. In particular,
using (72) in (66) we see that regardless of the available
bandwidth or power we have

0 < < M1 f 1

for M > 2. This means that in order to achieve a throughput
per user anywhere near that predicted by the capacity cal-
culations in Section V-B, an enormous amount of coding is
required. Conversely, without the use of coding, bit-error-rate
performance on the reverse link will be invariably poor.

As an alternative to coding, one can consider exploiting
simple spread-spectrum processing gain to raise o to a level
sufficient for acceptable bit-error-rate performance. Although,
as we shall see, direct coding is always preferable in terms
of efficiency, using simple processing gain is appealing in
terms of its substantial ease of implementation and reduced
computational complexity.

Augmenting our M -user system model to incorporate such
processing gain is straightforward. In essence, we expand
the bandwidth per user while fixing the symbol rate by
replacing the up- and downsampling rates in Figs. 1 and 3
with an integer L satisfying L > M. The resulting bandwidth
expansion factor or processing gain is then

p=1L/M. (82)

With this change, the SNR «,, of the composite channel
becomes

Jmo_ - 1

L~ B (829
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where
1 M
Ll o

— = (83)
1+ %Zﬁil o1

and with «aj as in (61). Again, assuming power control and
using Lemma 2 with vy, = ay,/L we can express (83) in closed
form as
M-1  (L)M

M M!

Bo =

()Mt By (L)

M-2

M—k k!
+ kzﬂ)(_l) (LCO)I(I+1 :

In the remainder of this section, we focus on the large number
of users (M — oo) scenario. In this case, again using the law
of large numbers, we get

(84)

1
Co+1/p

where p is as given by (82). At high SNR (i.e.,, when the
receiver noise is negligible), (85) further simplifies to

Yo (85)

Yo ~ P

The use of processing gain permits a tradeoff between
bit-error rate and bandwidth. In particular, from (85) we
see that larger processing gains invariably give rise to im-
proved bit-error-rate performance. However, this improvement
is obtained at the expense of bandwidth. From an information-
theoretic point of view, this particular tradeoff is not efficient.
To see this, note that if we apply coding on top of this new
system that exploits processing gain, the apparent capacity per
user per unit bandwidth is

C 1 1 1
— = —log(l+ =—log|l+ ——+ (86
Wop  p g(1+%0) p g( Co + 1/0) 80)

where the last equality follows from (85). In Fig. 8, we use
(86) to plot capacity per user per unit bandwidth as a function
of the processing gain p in the large number of users limit
M — oo. We note that the effective capacity achievable
with additional coding falls monotonically with p, and that
the case p = 1 corresponds to our original system, i.e., the
system without processing gain. This is because the bandwidth
expansion incurred by using a larger processing gain p more
than offsets the increase in the SNR per symbol achieved. In
fact, it is straightforward to show from (86) that C — 0 as
p — 0.

Despite the inherent bandwidth inefficiency, exploiting pro-
cessing gain is a highly practical technique and enjoys wide-
spread use. Let us consider, for example, the bit-error-rate per-
formance of uncoded QPSK (quadrature phase-shift keying)
using spread-signature CDMA with M users and processing
gain p = L/M, some integer L. In this case, again assuming
the use of power control, the bit-error probability is given by

P = Q%) 87)
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Fig. 8. Capacity per user per unit bandwidth as a function of processing gain

p, where the number of users satisfies M — oo. The successively higher
curves correspond to SNR’s of -5, 5, 15, and 25 dB.

where

_ ; = —t2/2

o)== |

and where 7y, is given by (82') with (84), or, in the case of
large numbers of users, (85).

In Fig. 9 we plot bit-error probability as a function SNR per
bit for several processing gains in the large number of user
scenarios, and include comparison to conventional CDMA. In
both the spread-signature and conventional CDMA systems, no
channel coding is used. From this plot, it is apparent that there
is an enormous advantage in using spread-signature CDMA
over conventional CDMA in such uncoded systems. This is
due to the fact that spread-signature CDMA is much more
effective than conventional CDMA at mitigating the effects of
fading even without additional coding. In particular, at high
SNR and for large numbers of users, the bit-error probability
of spread-signature CDMA saturates at

P~ Q(V/p) (88)
while for conventional CDMA the bit error probability satu-
rates at

(89)

1 1
TS

Finally, in Fig. 10, we plot bit-error probability as a function
of processing gain for several SNR values, again in the large
number of users scenarios. For comparison, we also plot the
performance of conventional CDMA, using (89).

VI. CONCLUDING REMARKS

Spread-signature CDMA as developed in this paper consti-
tutes a potentially attractive alternative to conventional COMA
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Fig. 9. Bit-error probability as a function of SNR per bit for uncoded QPSK

on reverse link with A/ — oo users. The successively lower solid curves
correspond to the performance of spread-signature CDMA with processing
gains of p = 1. 7. 13, 19. For comparison, the successively lower dashed
curves correspond to the performance of conventional CDMA with the same
series of processing gains. For these comparisons, no coding is used in either
system.

Bit Error Probability
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Fig. 10. Bit-error probability as a function of processing gain for uncoded

QPSK on reverse link with A/ — oc users. The successively lower solid
curves correspond to the performance of spread-signature CDMA with SNR’s
of =5, 5, 15, and 25 dB/bit. For comparison, the successively lower dashed
curves correspond to the performance of conventional CDMA with the same
series of SNR’s. For these comparisons, no coding is used in either system.

for general multiuser communication in fading environments.
Indeed, the performance results suggest that by effectively
combining modulation and precoding, such systems appear to
offer significantly better performance.

Nevertheless, numerous issues remain to be explored. In
traditional CDMA systems, coding is used to combat the
effects of fading, co-channel interference, and receiver noise.
However, in spread-signature CDMA systems, the effects
of fading are mitigated by the precoding implicit in the
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modulation, leaving coding to handle only the remaining
interference and noise effects. This would appear to be a fa-
vorable computational tradeoff, since in general demodulation
is computationally much cheaper than decoding. However,
further simulations are required to verify these computational
advantages. In addition, while we have restricted our attention
to single-user detector receivers, the possibility of developing
viable joint detector receivers is also worth pursuing.

Other issues, both technical and practical, also warrant
further investigation. Among the technical issues, an obvious
question that arises concerns the extent to which the capacity
expressions developed in this paper can be interpreted in a
strict Shannon sense. Some of the more important practical
issues which remain to be explored include receiver synchro-
nization and peak-to-average transmitter power requirements,
and equalizer sensitivity characteristics. Another practical is-
sue concerns how these strategies behave on more realistic
(and thus more complicated) fading and related channel mod-
els. From this perspective, the analysis for the highly tractable
Rayleigh fading channel presented here is a good starting point
for further investigation.

Among the signature design issues that warrant further in-
vestigation include developing design techniques that provide
some control over the correlation structure in the signatures
when subject to shifts of less than the intersymbol period M.
While we impose strict orthogonality on shifts by multiples of
M, we do not optimize our behavior for other shifts. The
signature sets developed in Section III-A have reasonable
intrasymbol shift correlations, but this would appear to be
somewhat coincidental. The Welch-bound generalizations in
Section III indicate some constraints, but not all. In addition,
it would appear that to provide control over intrasymbol shift
correlations one might have to give up the binary constraint on
signature sequences, the consequences of which remain to be
explored. More generally, there are several significant issues to
be explored here, including how such factors affect practical
system performance.

Several extensions and variations on the spread-signature
scheme can also be developed within the framework of this
paper. As an example, in many CDMA systems with tradi-
tional (nonlapped) signature sequences (such as the Qualcomm
system), the signature sequence spans multiple symbols. This
can be viewed as a system in which instead of using the same
signature sequence for every symbol in a particular user’s
stream, each symbol is modulated onto one of several distinct
signatures. Spread-signature systems can also be extended to
accommodate this flexibility if desired. In fact, the approach is
to generalize the single-user periodically time-varying strategy
discussed in Section V-A. As a simple example for the
purposes of illustration, to obtain a two-user system in which
cach user alternates between two signature sequences for
consecutive symbols, a total of four orthogonal signatures
are required and can be generated via the construction of
Section ITI-A. A particular user’s stream is then constructed
by creating two parallel symbol substreams via subsampling,
each of which is modulated on one of that user’s two signature
sequences and then the resulting modulated substreams are
superimposed.
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APPENDIX 1
LINEAR RANDOMLY TIME-VARYING SYSTEMS

We adopt the following notation for linear randomly time-
varying systems corresponding to wide-sense-stationary un-
correlated scattering. We begin by using f[n; k] to denote the
kernel of a discrete-time linear system, corresponding to the
response of the system at time 7 to a unit sample at time n— k.
Hence, the response of the system to an input z[n| is

y[n] = Z fIn; klz[n — k).
k

The time-variant system frequency response associated with
this system is denoted by

F(w;n] =Y fln; kle 7<% (90)
k

and represents the response of the system to complex expo-
nential ¢’“". For stationary systems, we define the system
correlation function by

R[m; k] = E[f[n: k| f*[n — m; k)]
where
fln: k] = fln; K] = E[f[n: k]

and the system scattering function by

S(A; k) = ZR[m; kle=3A™,

When the system is characterized by uncorrelated scattering
we have both

E[f[n; k]| = E[f[n; O]]6[k]
and
E[fn; K|f*[n —m; )] = Rlm; k)é[k — 1].

This makes F'(w; n] defined in (90) wide-sense-stationary in
both w and n, a property we exploit extensively.

Another useful characterization of such systems is in terms
of the associated spaced-frequency spaced-time correlation
function, which is given by

U(w; m| = z R[m; ke 7@k
k

= E[F(6; n]F* (0 — w; n — m]]

where

F(w; n] = F(w; n] — E[F(w; n]].
In turn, we define the system Doppler power si)ectrum by

T()) = Z\I’(O; m]edAm.

m

Finally, the multipath intensity profile or delay power spec-
trum of the system is

II[k] = R[0, k] = var f[n: k]
so the total power is

var F(w; n] = ¥(0; 0] = ZH[k]
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APPENDIX II
MAXIMALLY SPREAD SIGNATURE SEQUENCES

Coefficients are first converted to a binary sequence, with
1/V'N represented by “1” and —1/v/N represented by “0,”
then replaced with the hexidecimal equivalent.

M N
2 4

4 4

96

EDE2

ED1D

FACY

F5C6

FA36

F539

EDE2ED1D

EDE212E2

EDE2ED1DEDE212E2

EDE2ED1D121DED1D

FACQFSCEFA36F539

FAC90A39FA360ACE

FACYF5C605C90ACE

FAC90A3905C9F539

FFAACCY9FOASC396

FF55CC66F05AC369

FFAA3366F0A53C69

FF553399F05A3C96

FFAACCS90F5A3C69

FF55CC660FA53C96

FFAA33660F5AC396

FF5533990FA5C369

EDE2ED1DEDE212E2EDE2ED1D121DED1D
EDE2ED1DEDE212E2121D12E2EDE212E2
EDE2ED1DEDE212E2EDE2ED1D121DED1DEDE2ED1DEDE212E2121D12E2EDE212E2
EDE2ED1DEDE212E2EDE2ED1D121DED1D121D12E2121DED1DEDE2ED1D121DEDID
FACOF5CEFA36F539FACI0A39FA360AC6FACIF5CE605CI0ACEFACI0A3905CIF539
FAC9F5CEFA36F5390536F5C605COF539FACOFSCE05CI0AC60536F5C6FA360ACE
FAC9F5C6FA36F539FACI0A39FA360AC605360A39FA36F5390536F5C6FA360ACE
FACOF5CE6FA36F5390536F5C605CIF53305360A39FA36F539FACI0A3905CIF539

2 32

2 64

APPENDIX 111
PROOFS OF THEOREMS | AND 2

It is convenient to develop some intermediate results for a
family of related systems. Let S;;{-} denote a linear system
which is the cascade of a rate-M upsampler, an LTI system
whose unit-sample response is h;[n], a linear time-varying
system whose kernel is f;;[n; k], another LTI system with unit-
sample response h;[—n], and finally a rate-M downsampler.
Hence

Sij{pln]}
= Y fijlm; hj[m — nM]hi[m — 1 — kM]p[k]

m,l k

1l

qln]

On
and it is straightforward to show that the kernel of this system
is

wijln; k] = Z fijlnM + m; kM + lhj[m]him —1]. (92)
m,l

We begin with the following lemma.
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Lemma 3: Let h;[n] and h;[n] be chosen from an set of M
orthogonal signatures, and let fi;[n; k] for j = 1,2,---.M

be an admissibly ergodic family of kernels in the sense of

Definition 1. Then, with D, and Y, as defined in (21) and
(29), respectively, as D, — oo and xp — o0, the kernel (92)
obeys

wigln: K5 BE ]8Ikl — §] = ui[k] 93)
and
S gl Kl o~ 175
,‘.
wvar [Fijléln — m][j — 57 (94)
where
aijln: k) = wijln k] —ujk].
Proof: Using (45a) with (92), we obtain
Efuijn; k] = E(FG)Y_h;[0hill + kM]
:EU%W§—ﬂNH 95)
and
dijln: k] =3 fij[nM +mz kM + b mlhifm — 1} (96)

m,

where f[j [n; k] is as defined in (42).
From (96) we get

Z R mfm': EM -]

m,m’, 1

g [mlhg [T [+ m]ha[l +m]

Ellijn; k)?

o7

where R [m k] is as defined in (45b). Applying, in order
the trlangle inequality and the Cauchy inequality, (97) can be
bounded by

Bl [ns K]1*] < @(hi)e(hy) (98)

Z |I?”[m —m's kM — 1)|g*[m]g*[m']. (99

m, m'

Applying the Cauchy inequality again to ©?(g), however,
gives after some simplification, and using (45d)

©*(g) < SR;j /Dy

Dy = (Z HJ‘[”])

Spu

/Dn.Dr,

which tends to zero as Dj, — oo. Collectively, (95) and (100)
establish (93).

where

Hence

E|a;;[n; K)*] < (100)
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To show (94), we begin by noting that
pﬁ}’:,[n, ) 2 Z’fl,i]' [n: n — klujjfm; m — k]
A,
= ZZ fijlnM + s: t]fi’;,[’m,]W + 5’3 1]

s, 87t t
< h[s]h (']
SO, [nM + s —t, mM + s =t

where O, [n, m] is as defined in (25).
Using (45b), we obtain

ZR

’11[ Jhis[s']
SO, M+ s —t, mM + s — 1]

E'[/) [n. m]) (n —m) ]L[+s—s:t]

which, with

2 Z Rijr[(n —m)M + 5 — 8" t]h;[s]hj[s']

s, 8t

2O, [nM + s =t mM+ s —t)

[);Jl/ [n. m)
(101)

and using (27), can be rewritten as

E[py; [n.m]] = p” ‘[n. m)

[s + (n — m)M)]

+MZ:Rf [0: th

- 1
= pi5 [nom] + — var 1Fi;1617 —

i 316[n — ml.

(102)

Now applying the triangle inequality and the Cauchy in-
equality to (102), we obtain the bound

lﬁ?? [n. m]| < &1 (103)
where
= SR [(n - m)M + s — " byl [ (104)
s, 8"t
and
&= 3 IR [(n—m)M +s— s h[s)h[s]
s.s't
. (:9,2“ [nM+s—t.mM+ s —tl. (105)
Applying the Cauchy inequality to (105) yields
€ <& (106)

where

@—ZIR

-0 h,, [nM + 5 —t, mM+ s —1].

n—mM+5—s

tlh;lslhy (s gl

(107)
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Similarly, applying the Cauchy inequality to (104) yields Now, from a simple application of the Cauchy inequality
to (25) we obtain
&<t Y IR (n—m)M +s— s t]|h2s] 1O [n. m]| < 1. (113)
s, 8t

Applying, in turn, the triangle inequality, the bound (113), and

Z |R (n—m)M+s— s t]|h?, (] the Cauchy inequality to (112) we obtain
e B33 In, m]
=S (108)
A, . ’
Similarly, applying the Cauchy inequality to (107) yields < ZZ|T Sit=th s =tk KL
s.sl ot t!
Kok U
& < Z |RZ; [(n —m)M + s s 1] ~h§[s-—nM]h§y[s’——mM}>
s, s, t

. h? [s](:);t [nM+s—t, mM4 s — t])

AN T st =t s =tk KLY

vl
> IRE (- m)M + s — s 4)]
s, ot -h3[t = n MR [ — mM1). (114)

Applying the Cauchy inequality once again to the right-hand

h3[s'O5 [nM + s — t, mM + &' — t]> .
side terms of (114) yields

SQ
R J ..y
< —- (109) E(|57} [n, m]]*)* (115)
Xhl
where the last inequality in (109) results from using, in order, < Z Z‘Tl] s—s t—t.s—tk K LU

the simple bound .
s,s" t,t
Kokt

IR s Bl < 87,
! R -hf[s—nM])

and (30).
Using (108), (109), and (106) with (110) we get
g5/ ZZ|T”S—5 t—t,s—t kK, LT
RJ/ s.eh ottt
163 [n, m]| < —== o (110) 4M
which tends to zero as x, — oo. “hi[s' —mM] =
Next, we define
pi3 [n, m] = piZ [n, m] — E[p [n, m]] A S s o=t sk K L)
and note g bt
ﬁi;/ [n, m] = ZZ (igl[& s’y k, KO, [s — k; 8’ — K 2‘— nM>
s,s'k, k!
~hj[s—nM]h]~,[5’_mM] (111)
e et
where d;} [s, s'; ¢, '] is as defined in (44) and (43). ZZ'T s—s =t s =tk KL
In turn, using (45¢) with (111), we get PP
B0 n, m?) f_mMQ
—Zz I7[5—5 t—t s—tkk'll] 54
k:,k’ l,[' (116)
Onls— ki s — KO [t —1; ' — 1 D%P"’

“hjls = nM]H;[s" = mM]h;[t — nMhp[t' —mM].  which tends to zero as Dy — oc. Collectively, (102), (110),
(112) and (116) establish (94). "
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Proposition 1: Suppose that the input to the system defined
by (92) is a zero-mean, white Gaussian sequence p;[n] with
variance o?, and let the corresponding output sequence be
gij[n). Moreover, assume that for different values of i the
sequences p;[n] are mutually independent. Then given the
same hypotheses of Lemma 3, we have

i [n)=> E[Fy3)é[i — jlpi[n] + 245(n]

where the z;;[n] are mutually uncorrelated, zero-mean white
marginally Gaussian sequences with variances o2 var [F;;]/M,
ie.

(117)

Elzij[n]) =0 (118a)
Elzj[n]pi[m]] = 0 (118b)

Elzij[n]zirj:[m]] = 8[i — 7'18[j — j"18[n — m]
LIS I [Fi5)- (118¢c)

M 7
Furthermore, we have that the sequences g;;[n] are zero-mean
and white with variance

. 1
varqi]-[n} — 5[2 7_7]0’12|E[F”]|2 -+ MU’? var[Fij] (119)

and are mutually uncorrelated for different values of j.
Proof: We begin by noting that

qjln] = Zui]‘[n; Elpi[n — K]
k

can be rewritten as
¢ijln] = E[Fy)6[i — jlpln] + zijn]
where

zij[n] = Z tij{n; klpiln — k] (120)
k

From (120) we get immediately, since p;[n] is zero-mean,
that z;;[n] satisfies (118a), i.e.
Ep[zij[n]]) = 0
where we use E,[] to denote expectation with respect to p[n]

given fixed but arbitrary realizations of the kernels f;[n; k].
In addition, from (120) we get

Ey[zi5[n]pi [m]] = o261 — 'la[n; n — m]. (121)
Hence, since (93) in Lemma 3 implies

an; kK]30
we get, from (121), the result (118b), i.e.

m.s.

E,[zi;mlpsr [m]] 0.
Finally, using (120) we also obtain
Ey[zi5[n) 23 [m]]

o268[i — i']z&lj [n; klag; [m; 1]

~ Bylpiln ~ Klpifm — 1]
o26[i — z']z @il n = Nag; m; m — 1.

Il

(122)
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Applying (94) in Lemma 3 to (122) we obtain (118c) imme-
diately, i.e.

Eylziy(nlzy ] — o263 — i) gzvar (13 )5l — mjalj - 7'

Finally, to show that z;;[n] is marginaily Gaussian requires
a Central Limit Theorem argument. |

A. The Forward-Link Theorem

Using Proposition 1, we can readily establish Theorem 1.
In particular, due to linearity we can partition Fm[n] into
two components: i) [n], which is generated by the set of
transmitted sequences x;[n], and igﬁ)[n], which is generated
by the background noise w{n).

We first note that if in Proposition I we let pi[n] =
x;[n] and fi;[n: k] = c[n; k], then we readily obtain, using
superposition, that

M
'isrlz)[n] = Z (Iun [n] HSAE[C}"L.’" [’I’L} + 7)1(11) [TI,]

i=1

(123)

where
M
v WD[n] =Y zim[n]-
i=1

Note, in addition, that due to the properties of the z;;[n] in
Proposition 1 the of) [n] are mutually uncorrelated, zero-mean,
white marginally Gaussian noise sequences with variances

M

1
arvWMin] = _E ,
varv(Vn] = var [C]M &

m
=1

(124)

Next we note that if in Proposition 1 we let

piln] = Zw[k]hm[k —aM] and fij{n; k] = bin; K]
k

then we again readily obtain that

M
#PMn] =Y aimn =0 0] (125)
=1

2 .
where the v\’ [n] are mutually uncorrelated, zero-mean, white
marginally Gaussian noise sequences with variances

var v [n] = NoWo|E[B]|* + NoW var B
= NoWoE(| BI?). (126)
Hence, combining (123) and (125) we obtain (47) where
vm[n] = v 0] + 05D ).

Furthermore, since the z,,(n] and w(n] are uncorrelated, we
obtain (48) using
var v, [n] = varv'[n] + var vP[n)

m

with (124) and (126).
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B. The Reverse-Link Theorem

Using Proposition 1, we can also readily establish Theo-
rem 2. Again, exploiting linearity we partition %,,[n] into
two components: :Eﬁ,%)[n], which is generated by the set of
transmitted sequences x;[n], and &P [n], which is generated
by the background noise w{n].

When in Proposition 1 we let p;[n] = z;[n] and f;;[n; k] =
cij[n; k], we readily obtain, using superposition, that

M

M [n Gim [0S E[Coumm[n] + 000  (127)
=1
where
M
vV [n] = Z Zim[n].

i=1
Note, in addition, 1hat due to the properties of the z;;[n] in
Proposition 1, the v} [n] are mutually uncorrelated, zero-

mean, white marginally Gaussian noise sequences with vari-
ances

varv(l) (128)

Z & var [Cim).

Next, when in Proposition 1 we let

= Zw[k]hm[k —naM] and fi;[n; k] = bj[n; k]
k

piln]
we again readily obtain that

D[] =

Z Gim [P)5 02 [n] (129)

2 .
where the v’ [n] are mutually uncorrelated, zero-mean, white
marginally Gaussian noise sequences with variances

varvP[n] = NoWo|E[Bp]|? + NoWj var [Br]
= NoWoE[| B, |3 (130)
Hence, combining (127) and (129) we obtain (56) where
U [n] = vﬁ,})[n] + 'Ug) [n].

Furthermore, since the z,,[n| and w[n] are uncorrelated, we
obtain (57) using

var vm[n] = var v’ [n] + varv? [n]
with (128) and (130).

APPENDIX IV
PROOF OF LEMMA 1

First, note we may rewrite (59) in the form

g?TL‘E[ATYLB]!z
Ym(B) = 131
B = werm- Iy emmmr 0
where
1
:¢MM+M;&MP (132)
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Using the invertible change of variables
B=D¢ (133)
Am = VEmAm/E (134)
we can then rewrite (131) in the form
>, E B* 4 n 2
Ym(B) = BB Al (135)

E[|BP) — 37 34 EIB* A

Note that by symmetry, Ay, Ay, -+, Ay are also zero-mean,
mutually uncorrelated random variables, whose variances we
denote by Ay, Aa, oo, Apg. '

Now, any B with finite variance can be expanded in the
form

(136)

M
B =€+ Z T]kuik
k=1

where, for all k, F[e*A;] = 0 and 7 are complex constants.
In particular, it suffices to choose

N = E[B*Ak]/EHAkF]

Furthermore, from (59) we see that if B maximizes Yms SO
does kB for any x. Hence, to fix a particular solution, we
may, without loss of generality, set 7,, = 1.

Using (136), (135) simplifies to

Y (B) = 7, <E[|E|2] +Am(1 = A /M)

+ ) "M (1 = X /M),
k#m

which, since

&|Ai|2 :l
AN =E <M
{No + a7 2k Skl Akl

is maximized when ¢ = 0 and 7, = 0 for k # m. Thus the
maximum value of v, is obtained when B is of the form (60).

To obtain the bound (62), it suffices to substitute the
optimum value of b into (131), which yields

Om/M _ 1
1_(an/M 1 _(pm/M

-1

Vm /M =

where
WHL = E[€W|Am|2/£2]
It, therefore, remains only to note that

NOWO + M Ek#m gk|Ak|
NOWO ]\,12]6 5k‘Ak|2

1—om/M =
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APPENDIX V
PROOF OF LEMMA 2

Let &, denote the left-hand side of (68). Then

512522“'251\13&3
and, hence
fo=—E|S
0= 737 kvk
1 {M+(M—1)Zkv;C
= p|Z T " ik k
M 1+Ekvk
M-l L 137
= A4 (137)
where
gl (138)
=515
with
(139)

VZZ’U)C.
k

Now 7 as defined in (139) is an Erlang random variable of
order M and mean M/u. Hence

oo M=zM—1,-p7
pry e
= Sl S a— 140
v /0 e (140)
Exploiting the identities [19]
o e—st
dt = ¢e* 3
/0 = Ey(s)
o
/ the et dt = K!/s*T
0
and
k—1
" _ (_l)n n—k—1,4k
1T T T
k=0
we get
¢ = MAI (_1)1’\'[+1F[LE ( )
(M —1)! St
Af—2
+ 3 (=DM FR L 4D
k=0

Finally, substituting (141) into (137) we get (68). ]
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