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Spfead—Response Precoding for
Communication over Fading Channels

Gregory W. Wornell, Member, IEEE

Abstract—Interleaving is an important technique for improving
the effectiveness of traditional error-correcting codes in data
transmission systems that exhibit multipath fading. Such channels
often arise in mobile wireless communications. We present an
alternative to interleaving for such systems, which we term
“spread-response precoding.” From the perspective of the coded
symbel stream, spread-response precoding effectively transforms
an arbitrary Rayleigh fading channel into a nonfading, simple
white marginally Gaussian noise channel. Furthermore, spread-
response precoding requires no additional power or bandwidth,
and is attractive in terms of computational complexity, robust-
ness, and delay considerations.

Index Terms—Wireless communication, Rayleigh fading chan-
nels, diversity techniques, precoding, interleaving, smearing.

1. INTRODUCTION

HE need to reliably transmit analog and digital data
over channels subject to fading arises in a wide range
of applications including mobile radio and personal wireless

‘systems, and audio and television broadcasting. Generally, the

fading characteristics of the channel, which are a function of
both the nature of the transmission media and the relative
motions of the transmitter and receiver lead to variations in
the quality of channel both in time and in frequency.

Diversity techniques are widely used in communication
systemis to compensate for these variations [1], [2]. These
range from simple multiple transmission strategies in time,
frequency, and space, to more sophisticated diversity tech-
niques based on the use of coding. In such scenarios, coding
is used to combat both the effects of fading and the effects of
stationary additive noise.

In order for coding to be effective against fading in par-
ticular, it is generally necessary to combine coding with
interleaving, a simple but nevertheless useful form of precod-
ing. The purpose of interleaving is to scramble the coded data
stream so that fading channel effectively seen by this stream
is uncorrelated from time-sample to timeé-sample. This sub-
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stantially reduces the coding complexity required to achieve a
given level of fidelity, allowing shorter lengths in the case of
block codes, or fewer states in the case of convolutional codes.

In this paper, we develop an attractive alternative to in-
terleaving which we term “spread-response precoding.” With
spread-response precoding, the fading channel as seen by the
coded data stream is effectively transformed into a simple
additive white noise channel. As a result, when combined
with coding techniques such as trellis-coded modulation, the
precoding stage combats any fading effects, while the coding
stage combats the remaining additive noise. This partitioning
appears to be rather attractive in terms of system com-
plexity considerations. Indeed, spread-response precoding, in:
requiring comparatively simple linear signal processing at
the transmitter and receiver, is significantly less. demanding
computationally than error-correcting coding and decoding al-
gorithms. Moreover, precoding constitutes a diversity strategy
that incurs no additional cost in terms of bandwidth or average
power, and is competitive with traditional approaches in terms
of robustness and delay considerations.

While it has generally been understood that interleaving is
not the most efficient of precoding strategies (see, e.g., [3]),
the literature has offered surprisingly few alternatives. Perhaps

" the work closest in spirit to the ideas presented here is that of

Wittneben [4], although in that work precoding is developed
for use in conjunction with interleaving rather than as an
alternative to interleaving. Nevertheless, Wittneben’s paper
was among the first to explore some of the key ideas, and
contains a number of important insights on the topic.

In this paper we restrict our attention to single-user sys-
tems, or equivalently, multiuser systems employing frequency-
division multiplexing. However, we note in advance that
powerful multiuser extensions of these ideas can be developed
and lead to efficient new classes of code-division multiple-
access (CDMA) systems; these are explored in detail in the
companion paper [5].

The paper is organized as follows. In Section II, we outline
the Rayleigh fading channel model we consider. In Section
III, we develop the transmitter portion of the system, while
in Section IV, we turn our attention to the receiver portion
of the system, developing optimum designs. In Section V, we
explore aspects of the performance of systems using precoding,
including theoretical capacity and attainable bit error rate
calculations. In Section VI, we discuss precoder design and
implementation issues, and develop results on achievable
performance with practical precoders. Finally, Section VII
contains some concluding remarks.
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Fig. 1.

Precoding system.

II. SYSTEM MODEL

Fig. 1 depicts a block diagram of the overall system we
consider. In this figure, z[n] is the complex-valued M-ary
symbol sequence representing the coded bit stream, and y[n] is
the precoded symbol stream to be transmitted. The transmitted
data y[n] are corrupted by complex-valued fading and additive
noise, producing r[n] at the receiver. The received data are first
processed by an equalizer to produce g[n], then by a postcoder
to produce Z[n]. Finally, a decoder (not shown) processes [n]
to produce an estimate of the original bit stream.

The channel in Fig. 1 is the equivalent discrete-time base-
band model of a fairly general stationary Rayleigh fading
channel with uncorrelated scattering and bandwidth W,. The
channel consists of two components, a linear time-varying
filter which captures the effects of multipath fading due to
multiple scatters in the transmission medium, and an addi-
tive noise term representing both receiver noise and, more
significantly, co-channel interference.

More specifically, the response of the channel to an input
sequence y[n] is given by

rin] = aln; Klyln — k] + win] (M)
k
where w(n] is a zero-mean complex stationary white Gaussian
sequence with variance '
E[jw[n]|*] = NoWy

and a[n; k|, the response of the channel at time n to a unit-
sample at time n — k, is a complex Gaussian fading process.
For fixed values of k, the a[n;k] are zero-mean complex-
valued jointly stationary, Gaussian sequences. Furthermore,
uncorrelated scattering implies sequences corresponding to
distinct values of k are statistically independent. Hence

Ela[n; k] a™[n —m;l]] = Relm; k) 6k — 1]

where §[n] is the unit-sample, i.e.
ﬂwﬁ{a
With uncorrelated scattering, the time-variant channel fre-

quency response!

A(win] =" a[n; k] e774F 3)

k

n=0
otherwise

€))

is then stationary in both n and w and satisfies

E[A(w;n]]=0 (4a)
E[|A(w;n]|?] = o2. (4b)

I'We adopt the useful convention of using parentheses (-) to denote
continuous-valued arguments and brackets [-] to denote discrete-valued ar-
guments. For functions of two arguments where the first is continuous and
the second is discrete (as in the case of time-variant frequency responses) we
use the convenient mixed notation (-; -]. The notation [-; -) is used in a similar
manner.

Both w{n] and a[n; k] are assumed to be statistically indepen-
dent of the input to the channel.

Finally, we assume that while the transmitter does not have
access to the fading channel kernel a[n;k] or its statistics,
these parameters are known, or more typically, can be reliably
measured at the receiver.

III. SPREAD-RESPONSE PRECODING

In this section, we consider, the transmitter portion of the
system in Fig. 1. We begin by observing that although the
detailed characteristics of a fading channel fluctuate from time
sample to time sample, the performance of communication
systems using such channels is generally dictated by the
average characteristics of that channel over time. Certainly
most capacity estimates for such channels involve averaging
of this type; see, e.g., [6] and the references therein. As a
consequence, an efficient communication strategy for such
channels would, in some sense, “spread” the transmission of
each symbol over a large number of time samples.

Conveniently, spreading of this type can be achieved
through simple linear time-invariant (LTI) filtering of the
coded symbol stream—a form of precoding. Specifically,
denoting the unit-sample response of the precoding filter by
h[n], the transmitted sequence is* (cf. Fig. 1)

y[n] = z[n] * h[n] = Zm[k] hin — k). ©)
k
For convenience, we restrict our attention to the case in which
h[n] is a real-valued sequence.

It is also highly desirable for the precoding to be lossless,
in which case y[n] constitutes an orthonormal transformation
of the data symbols z[n]. Lossless LTI filters satisfy the time-
domain constraint

: Y hln— kA~ 1) = [k~ 1. ©)

In the frequency domain, the condition (6) corresponds to
Hw)>=1 ™

and, for this reason, lossless filters are frequently referred to
as allpass filters in the signal processing literature [7]. An
important property of such filters which follows immediately
from (6) is that

h~t[n] = h=n].

Accordingly, we may conveniently and stably recompute z[n]
from y[n] according to

wln] = yln] * hl~n] = S_ y[K] hlk — n). ®)

From a practical standpoint, it is necessary to restrict our
attention to finite impulse response (FIR) precoders. How-
ever, as is well known, -the only lossless FIR filters are the
shifted unit-samples, i.e., hln] = §[n — k] for arbitrary k.
Nevertheless, many infinite impulse response (IIR) lossless

2 We use operator # to denote convolution, and the superscript * to denote
complex conjugation.
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filters have strongly localized temporal support and can be
truncated without significantly altering their characteristics.
More generally, there are a wide variety of FIR filters that
closely approximate the losslessness ‘condition (6).

To make this notion of approximation more precise, consider
the class of LTI filters h[n] with unit-energy, i.e.

> hn] =1 ©)

and let

®[n] = hln] * h[—

E hlk
denote the autocorrelation function. Then, since the autocorre-
lation of a perfectly lossless filter is the unit-sample, a useful
measure of the deviation from losslessness is the reciprocal
of the total sidelobe energy in the autocorrelation function.
Specifically, we define the following convenient losslessness
merit factor £y for a unit-energy filter hjn]:

: -1 o -1
Ly = <Z (@n[n] - 5[n])2) = (2 > @’;[ﬂ]) (10)
. n=1

n

[k —n]

with large £, corresponding to filters that are nearly lossless.
Specifically, we have 0 < £ < oo with the right-hand
equality if and only if the filter is perfectly lossless. This merit
factor is identical to that introduced by Golay to evaluate the
quality of low autocorrelation binary sequences [8].

While losslessness is an important attribute of a precod-
ing filter, a second important attribute is their effectiveness
in spreading the transmission of each symbol over a large
number of time samples. This is achieved when the precoder’s
unit-sample response energy is widely dispersed in time, or
equivalently, when the precoding system has strong partial
response characteristics. Indeed, one can interpret spread-
response precoding as a form of partial-response precoding,
although the objectives of traditional partial-response precod—
ing are markedly different.

A useful measure of dispersion for an arbitrary unit-energy
filter h[n] in the context of this work is given by

Dy = (; h"‘[n]) )

with large Dy, corresponding to good spreading characteristics.
Using (9), it follows that for unit-energy filters

an

Dy >1 (12)

with equality when h[n] = §[n|. However, for FIR filters of
length N with unit-energy, (9) also implies that

D <N
with equality precisely when
|h[n]| = 1/VN, al0<n<N-1.

Consequently, for FIR precoders maximum dispersion (i.e.,
Dy = N) is obtained when h[n] is an antipodal (binary)
sequence. Conveniently, binary sequences are also highly

attractive in tefms of both computational efficiency and nu-
merical sensitivity.

While both good losslessness and spreading characteristics
are desirable in design of FIR precoders, they are competing
objectives. Based on the preceding discussion, at one extreme
the precoder h[n] =.§[n] corresponds to the best possible Ly,
but the worst possible Dj,. At the opposite extreme, precoders
with binary-valued unit-sample responses provide the best
possible Dj, for a given length constraint, but poor values of
Ly,. Indeed, a conjecture of Golay [9] based on an ergodicity
postulate suggests that for such binary sequences

m}?.xﬂh — 12.3247--. as N — oo .
Consequently, as we will discuss later, for a fixed filter length
prescribed by external delay constraints imposed on the overall
system, the precoder design process requlres a compromise
between the two components.

As an aside, it is useful to note that the need for compromise
can be avoided by relaxing the requirement that the precoder
be linear and strictly time-invariant. In particular, if the broader
class of linear periodically time-varying (LPTV) precoders are
considered, then FIR systems can be readily contructed so
as to be both lossless and maximally dispersive (i.e., have
binary-valued unit-sample responses). Such generalizations are
explored in detail in the companion paper [5].

When spread-response precoding is used in a system, the
transmitted data have some rather special asymptotic charac-
teristics. First, we note that with lossless precoding we get,
via (7), that y[n] will have same (average) power spectrum as
the original coded data z[n], i.e.

Sy(w) = Sx(w).

In particular, when z[n] is a sequence of statistically inde-
pendent complex-valued symbols each with energy &, then
y[n] is a complex wide-sense-stationary white sequence with
variance &£;. In addition, it can be shown that in the limit"
of infinite dispersion (D), — oo) the transmitted stream is
marginally Gaussian, i.e., that each transmitted sample y[n]
has a Gaussian distribution. This follows from a Central Limit
Theorem argument: using (5) we see each y[n] is the balanced
sum of a large number of independent random variables. From
the point of view of transmission security and capacity consid-
erations, such characteristics are rather appealing. However,
we should also note that from the point of view of peak-
to-average power and receiver synchronization requirements,
these characteristics present important practical challenges in
terms of system design. However, such considerations are
beyond the scope of the present paper.

IV. SYSTEM CHARACTERISTICS AND RECEIVER DESIGN

In this section, we turn our attention to the receiver in
Fig. 1. We begin by noting that the receiver for decoding
the bit stream can be partitioned into two stages. The first
is the equalization stage, which, as depicted in Fig. 1 and,
without loss of generality, can be described as the cascade
of an equalizer and postcoder. The second is the decoding
stage (not shown in Fig. 1) that typically consists of some
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form of Maximum-Likelihood (ML) sequence detection. As
will become apparent, when no coding is employed, simple
symbol-by-symbol detection generally suffices at the decoder.
However, in the sequel we restrict our attention to the equal-
ization and postcoding stages.

In general, the equalizer, which compensates for the fading,
is a linear time-varying filter whose kernel is b[n; kj, so that

gln] = Zb[n; k] r[n - k]
k

Typically, this kernel is a function of the fading channel kernel
a[n; k] and the noise statistics, both of which are assumed to
be available at the receiver.

In turn, the postcoder inverts the transformation of input
symbols that takes place during precoding, and is simply a
linear filter whose unit-sample response is (cf. (8)) a time-
reversed version of the lossless precoding filter h[n], i.e.

Z[n] = h[-n] * §[n]. (13)

The overall system consisting of the channel with precoding,
equalization, and postcoding, will be referred to as the “com-
posite channel.” In the remainder of this section we first derive

the key properties of this composite channel, then optimize

them through judicious choice of the equalizer parameters.

Our main result is that subject ‘to only relatively mild
ergodicity constraints on the channel, the use of lossless
precoding with a large dispersion factor leads asymptotically
to an additive white noise composite channel that is free of
fading. In order to make our result precise, we first define a
sufficiently realistic class of ergodic kernels for our purposes,
which we term “admissibly ergodic.”

“Definition 1: Let f[n;k] be the kernel of a linear system,
and define

flns K] = flns k] — E(fln; k). (14)
Furthermore, let .
dln; k] =~ flns 1] f*[n — k31— K] (15)
1
and define
d[n; k] = din; k] — E[d[n; k). (16)

Then f[n;k] is an admissibly ergodic kernel if the following
conditions are satisfied:

E[fn;k]]=wnb[k] for every k,n (17a)
E[f[n;k] Fln—m; l]] =R[m; k| 8[k—1] for every k,1,m,n
(17b)

E[d~[n; Kl d*[n—m; l]} =T[m;k,l] forevery k,l,n,m

(17¢)

Sr=) 3 |RIn;k]|<o0 (17d)
k n

Sr=> "> |T[m;k, 1| <oc. 17¢)

kil m

Before proceeding, we adopt some nomenclature. It will be
convenient to view a generic linear kernel such as f[n; k] as

a collection of sequences in n indexed by k. Hence, when
we refer to “the sequence f[n;k]” we specifically mean the
sequence in n corresponding to a fixed (but generally arbitrary)
value of k. From this viewpoint, the conditions in Definition
1 are straightforward to interpret. Conditions (17a)—(17¢) are
essentially stationarity constraints. They ensure, specifically,
that the kernel sequences f[n; k] and the correlation sequences
d[n; k] are each jointly wide-sense-stationary. The condition
(17b) also ensures that sequences f[n;k] corresponding to
distinct values of k are uncorrelated. Finally, conditions (17d)
and (17e) in effect ensure that linear combinations of the kernel
sequences f[n; k] are mean- and correlation-ergodic.

Equivalently, the conditions in Definition 1 can be inter-
preted in terms of stationarity and ergodicity constraints on
the time-variant system frequency response

F(w;n] = Zf[n, ke 7wk, (18)
k

We note, in particﬁlar, that (17a) and (17b) imply that F'{w;n]
is wide-sense-stationary in both n and w and satisfies

E[F(w;n]] = p. (19)
Furthermore, with
F(w;n] = F(w;n] - E[F(w;n]]
we have |
E[F(a;n] (0 —win— m]] =U(w;m]  (0)

where U(w;m] is the spaced-frequency spaced-time correla-
tion function of the system and satisfies

U(w;m] = Y Rlm; k] eIk, (1)
k

The multipath intensity profile or delay power spectrum of the
system is therefore given by

o = R[0; k] = var f[n; k] (22)
and the total power is given by
0? £ var[F(w;n]] = ¥(0;0] = Y o2, (23)
k

We can now present our main theorem- concerning the
composite system depicted in Fig. 1. A proof is presented in
Appendix 1.

Theorem 1: Let z[n] be a sequence of zero-mean, uncorre-
lated symbols, each with energy &,; let a[n; k] and w[n] be as
defined in (1); and let ¢[n; k] denote the kernel of the composite
linear system formed by cascading the channel corresponding
to kernel a[n; k] with the equalizer corresponding to kernel
b[n; k], ie.

cln; k] = Z bln; Y aln — Lk 1. 24)
i

Finally, suppose c[n; k| and b[n; k] are both admissibly ergodic
kernels in the sense of Definition 1. Then, as D; — oo, we
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have,® for each n

N

#[n] &5 pezn] + v[n] (25)
where v[n] is a complex-valued, marginally Gaussian, zero-
mean white-noise sequence, uncorrelated with the input sym-
bol sequence z[n| and having variance '

varv[n] = &0 + NoWo(af + |us]?)- 26)

Theorem 1 asserts that the use of sufficient precoding
transforms the channel “seen” by the coded symbol stream
from a fading channel into a marginally Gaussian white-noise
channel. In particular, and as will become more apparent,
the intersymbol interference usually generated by fading is
transformed into a comparatively more benign form of additive
white interference. As a result, the characteristics of the
composite channel depend only on the statistics of the fading
channel parameters a[n; k] and w(n] but not on the values of
the parameters themselves. Not surprisingly, this is a natural
consequence of the time averaging induced by precoding being
applied to an ergodic fading process.

A few additional remarks regarding Theorem 1 are appropri-
ate. First, as can be readily verified from the proof in Appendix
1, Theorem 1 is true even when the kernel a[n; k] and receiver
noise win] are not Gaussian. This observation is important for
robustness, since these processes are at most approximately
Gaussian in practice.

As a second comment, we also point out that the assumption
of an uncorrelated symbol stream at the input to the precoder
is a reasonable one, even when this input represents the output
of a traditional coder. For example, when typical trellis codes
are used with random bit streams, the output is generally a
white symbol stream [10]. In addition, the use of random codes
produces asymptotically white symbol streams.

Third, we emphasize that v[n] in Theorem 1 is a marginally
Gaussian process. Specifically, this means that o[n] is a
sequence of uncorrelated random variables each having a
Gaussian distribution, but that the random variables are not
necessarily jointly Gaussian. Hence, v[n] is not necessarily a
Gaussian random process, and, as a result, there may exist at
least some statistical dependence among the noise samples.
However, we shall assume that, in practice, v[n] is an at
least approximately Gaussian process, so that the statistical
dependency among samples is negligible.

The noise v[n] has other special characteristics as well.
As is apparent from (26), the noise consists of the sum of
two uncorrelated components. The first component has power
NoWy (o2 + |1p)%) and is due to the noise in the original
fading channel. The second component has power £;02 and is
icherently generated in the precoding process. The existence
of this second noise component means that boosting the
transinitter power in the system also leads to an increase in
noise power in the composite channel. For this reason, we
shall find that the familiar matched-filter equalizer [11] is not
best suited for use with precoding.

. m.s. . .
3 We use the notation — to denote, specifically, convergence in the
mean-square sense.

Finally, we point out that although Theorem 1 establishes
only an asymptotic result valid for perfectly lossless precoding
with infinite dispersion (implying, for example, infinite de-
lay), the asymptotic behavior can be approximated arbitrarily
closely with realizable precoders. A discussion of the design
and properties of finite-delay precoders is deferred to Section
VL ‘

Let us now consider the design of the equalizer. We be-
gin by observing that Theorem 1 implicitly imposes certain
constraints on the equalizer kernel b[n; k] in order that the
equivalent channel model structure is attained asymptotically.
These constraints are, from a practical standpoint relatively
mild. Specifically, it suffices that b{n;k] be chosen so that
both b[n; k] and the cascade of a[n; k] with b[n; k| (i.e., (24)),
are admissibly ergodic. For convenience, let us refer to kernels
bln; k] with this property as admissible equalizers.

Among the class of admissible equalizers, some yield bet-
ter composite channels than others. One useful measure of
the quality of the composite channel is the signal-to-noise
ratio (SNR). Certainly when v[n] is Gaussian then both the
theoretical capacity and achievable bit error rates increase
monotonically with the channel SNR. Consequently, a useful
criterion for equalizer design is to select among the admissible
equalizers that yielding the largest SNR in the composite
channel. Conveniently, when b[n; k] is an admissible equalizer,
the  SNR in the composite channel follows directly from
Theorem 1 as .
_ |iae|?

02 + &0 (o7 + |1al)

v(b)

@7

where

&0 = NoWh/Es. (28)

In Sections IV-A and IV-B, we proceed to derive these
optimum equalizers in the two cases of perhaps greatest
interest in practice, corresponding to frequency-nonselective
fading and frequency-selective slow fading, respectively.

A. Frequency-Nonselective Fading

In this section, we restrict our attention to the Rayleigh
fading channel model of (1) with

aln; k] = aln] 8[k].

in which case, as is strajghtfofward to show, the admissible
equalizers are also of the form

bln; k] = b[n] 6[k].
Accordingly, we may rewrite (27) in this scenario as
| Efat]]”
b) =
)= Varla + TP

where & is as defined in (28) and where we have omitted a
specification of the time-sample n due to stationarity.

To derive the optimum equalizer, we begin by rewriting
(29) as '

29)

1

RO b

v(0)
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where
| Bfab]|” ‘
o) = —— 2 31)
)= Bl + o)) (
and where we have exploited the identity
var [ab] = E[|ab|?] — |E[ab]|>.
Then, by the Schwarz inequality we have
2
a
|Blab]* = |B | —=m=—=-bV/]al" + &
Vial® + &
|a]? ] 2 2
<E{————|E[(|la]* + &)|b
< B ] Bl0aP + o
with equality if and only if
a*
b .
, laf? + &
Hence, (31), and, in turn, (29) are maximized when
a*[n]
b[n] x ——m—r 32
N P Ear 2

where the (complex) constant of proportionality is arbitrary.

Not surprisingly, the optimum equalizer is specified only to
within an arbitrary gain factor, since such factors do not affect
the resulting SNR. In addition, it is interesting to note (and
can be readily verified) that the equalizer yielding optimum
SNR in the composite channel, i.e., (32), also corresponds,
when suitably normalized, t0 a minimum mean-square-error
linear equalizer for the fading channel. Specifically, §[n] and,
in turn, Z[n] are minimum mean-square-error linear estimates
of y[n] and z[n), respectively. Although he did not establish
its optimality, it was Wittneben [4] in his preliminary work on
precoding for the nonselective fading channel with interleaving
who first suggested that a minimum mean-square-error-type
equalizer was well-suited to this scenario.

B. Frequency-Selective Fading

In this section, we consider the more general channel model
(1) for which the fading is, in general, frequency-selective.
This scenario generally arises when larger transmission band-
widths are used, as is often desirable to achieve additional
diversity benefit. Furthermore, in deriving the corresponding
optimum equalizers, we exploit the fact that in this case the
fading process becomes increasingly slowly varying as the
bandwidth is expanded.

Accordingly, we begin by assuming that the coherence time
in the channel is large, so that the fading coefficients are
effectively constant over a several time-samples. Then the
time-variant channel frequency response A(w;n] will vary
slowly with n, and admissible equalizers will also have
a slowly varying time-variant frequency response B(w;n].
Furthermore, we have

C(w;n] = A(w;n] B(w;n]. (33)

Now (19) and (23) imply

pe = E[C(w;n]] (34a)
o2 = var[C(w;n]] (34b)
and
a3 + |us|* = E[|B(w;n]|]. (34¢)

Hence, using (34) with (33) in (27), we get that the channel
SNR is effectively given by

BB
"0~ TAB] + & BB

(35

" where, again, £ is as given by (28), and where we have

omitted specification of both the time sample n and frequency
value w due to stationarity. Clearly, (35) is identical in form to
(29), and, consequently, the equalizer providing the best SNR
for the composite channel follows analogously as

A*(w;n]

P i+ &

(36)

where, again, the (complex) constant of proportionality is
arbitrary. As in the nonselective fading case, we remark that
this equalizer not only maximizes the channel SNR but also,
when suitably normalized, makes #[n] a minimum mean-
square-error linear estimate of x([n].

The receiver structure in this frequency-selective scenario
warrants some additional discussion. With b[n; k] varying
slowly with n, let us denote by b[k] the nominal value
of b[n; k] over some sufficiently long generic time interval.
To implement the unit-sample response b[k|, it is useful, at
least conceptually, to view the equalization process in two
stages. The first stage implements the numerator of (36), and
corresponds to the appropriate matched-filter equalizer, and,
hence, is a conventional RAKE receiver [1]. The unit-sample
response of this stage is, therefore, a*[—k]. The second stage,
which implements the denominator of (36), then performs
additional compensation, taking into account the SNR in
the channel. The unit-sample response corresponding to this
second stage, which we denote by e[k], is symmetric and, in
general, infinite in extent (hence, two-sided), precluding any
recursive implementation. However, typically, the tails of the
unit-sample response fall off quickly. In particular, when a[k]
is nonzero for only finitely many values of k as is frequently
assumed in practice, e[k] decays exponentially quickly with k:
Hence, using truncation e[k] may be effectively approximated
as a symmetric FIR filter. As an example, Fig. 2 depicts the
normalized RMS value of the coefficient e[k], viz.

VElle[k]P}/E[le[0]]]

as a function of %, where

Elja[k)?] = {3/ B e

(37N

and where & = o2,



494 ) IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 2, MARCH 1996

oy

4
©
T

o o © o
o o N

<}
N
C

normalized RMS value

o
w
T

Fed
%)
T

o
=
T
b
b
o
e
F—
—o
o
(@t
P
&
i

index k

Fig.'2. A typical RMS unit-sample response of the second stage of equalizer.
In this example, the variances of the fading coefficients aLk were chosen
according to (37), and the SNR was chosen so that {o = o

V. PERFORMANCE

" In this section, we explore the potential performance achiev-
able through the use of spread-response precoding with opti-
mized receivers. We begin by observing that with the optimum
equalizer, i.e., (32) in the case of frequency-nonselective
fading or (36) in the case of frequency-selective fading, we
readily obtain that the corresponding SNR in the composite
channel is given by

Yo = -1 (38) .
B[]
where*
12
%MM:E%%¥E (39)

denotes the SNR in the original fading channel at a particular
time instant n and frequency w. A useful notion of the capacity
of the composite channel is given by the equivalent Gaussian
capacity,’ i.e., using (38)

1
C/Wy =log (1 = -1 E .
o =108 (1-+20) = —tog (E| = |). @0
Exploiting the easily verified identity
1 1
= — = o
Ellog (a0 + 1) QELMJ}e Fi(Co) @D
where
A o2&
1/Go=F =22 42
/o = Elool = 37 “2)

4Of course, in the case of nonselective fading A(w; n] = a[n;0] = a|n]
using the notation of Section IV-A.

SMore precisely, this can be interpreted as a constrained capac-
ity—specifically the bit rate that can be achieved when the remaining
higher order statistical dependencies in the composite channel model are
not exploited.

9 T T T T T

=]

~

=)

[%)]

4

w

Capacity (bits/sec/Hz)

L 1 L | 1
% 0 5 10 15 20 25
SNR (dB) :
Fig. 3. Capacity estimates, Rayleigh fading channel. The solid curve is

the capacity estimate C determined using precoding. For comparison, the
dash-dotted curve is the capacity Coo when infinite spatial diversity is
available, while the dashed curve is the capacity estimate Cy due to Lee [13].

denotes the average SNR in the original fading channel (cf.
(46)), and F; () denotes the exponential integral [12]

o5 C_t
we get that (40) can be expressed more conveniently as

C/Wo = —log ({oe®® E1(¢o)).

The capacity estimate (44) can be compared to some related
capacity calculations. In particular, by the Schwarz inequality
we get

(43)

(44)

E[ 1 } N 1 _ 1
a+1] 7 Elag+1]  1+1/6
so that, as expected, (44) is upper-bounded by the capacity of

the Gaussian channel or, equivalently, the fading channel with
infinite spatial diversity, i.e.

Coo/Wo = log (1 + Elag]) = log (1 +1/(o).

More generally, there have been a variety of attempts to
estimate the capacity of fading channels in the literature [6].
As an example, between C and C, lies the estimate of fading

channel capacity without spatial diversity derived by Lee [13],
ie.

(45)

Co/Wo = Euog (1+ a0)] = € Ey(Co) (46)

where the second equality follows from (41). In Fig. 3, these
capacity estimates (in bits per second per hertz) are plotted as
a function of the average available SNR. The capacities C, Cp,
and C, are represented by the solid, dashed, and dash-dotted
curves, respectively.

Athigh SNR (i.e., small {y), we can use the series expansion
[12]

1)1/

Eq(v )——To—logy——z( P

47
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where I'g = 0.57721 - - - is Euler’s constant, to show that (44)
is given asymptotically by

¢/~ tog (A0 ). @9
By Cohtrast, in the same regime (45) behaves like
Coo/Wo ~ log (1/(o) 49
while (46), as can be shown via (47), satisfies
Co/Wo ~ Tg + log (1/{o). (50)

Hence, comparing (50) with (49) and (48) we can verify that
at high SNR the difference between C, and Cy is 10I'¢ loge =
2.506 dB while the difference between Cy and C diverges to
infinity.

We stress that these capacity estimates correspond to the
case in which the transmitter has no knowledge of the state
of the fading channel or its statistics at any point in time,
i.e., there is no side-channel for feedback from the receiver
to the transmitter. We note, however, because of memory in
the fading channel, the availability of a feedback path would
naturally lead to higher capacity [14].

We also remark that to approach the capacity C of the
composite channel requires, of course, that coding be applied
to the data stream prior to precoding. However, because the
composite channel is effectively an additive white Gaussian
noise channel, any of the traditional forms of coding for
this channel would be - appropriate. In particular, we note
that conventional implementations of trellis-coded modulation
appear to be well-suited to this scenario.

Nevertheless, even without coding significant improvements
in bit error rate performance can be achieved from the inherent
diversity benefit of using spread-response precoding. We em-
phasize that this is in marked contrast to the use of interleaving,
which offers no improvement in bit error rate performance
without coding. For the purposes of illustration, let us consider
the case in which z[n] is an uncoded QPSK (quadrature phase-
shift keying) stream. When precoding is used, the bit error
probability as a function of the SNR per bit, i.e.

&ol &l
NoWg - 2NoWo
is given by
P = 2(v) 629
where

Qv) = #/ et /2 gt

and where -, via (38) with (39), is given by

1
(o€ E1(Co)

with (o given by (42).

Yo -1

Bit Error Probability Pr(e)

0 2 4 6 8 10 12 14 16 18 20
SNR (dB/bit)

Fig. 4. Bit error probabilities using uncoded QPSK on the Rayleigh fading
channel. The solid curve represents the performance achievable with pre-
coding. For comparison, also depicted is the attainable performance without
precoding but, instead, with spatial diversity and maximal ratio combining.
The dotted curve corresponds to the performance with infinite spatial diversity,
while the successively lower dashed curves correspond to the performance
with L= 1, 2, ---, 5 branches of spatial diversity, respectively.

For comparison, without precoding the QPSK bit error
probability using L-fold spatial diversity and maximal ratio
combining is given by [1]

L-1 k
NTAPEY PR SN o LA S L
Poll] =3 [1 V3GL+1 kzzo (k ) (2(240L + 1)) ] '
(52)
Furthermore, (52) specializes to
1 1

=3t~ 7o) =

when there is no spatial diversity, and to
Poloc] = Q(v/Eleo]) = 2(1/v/) (54)

when there is infinite spatial diversity. We stress that the bit
error rates (52), and their special cases (53) and (54), are
the best that can be achieved in uncoded QPSK systems—in
particular for the optimum choice of equalizer. As such it is
useful to compare the performance of these systems to that of
precoded systems with their optimum equalizers.

In Fig. 4, we plot bit error probability as a function of
SNR per bit (i.e., 1/(2{p)) with and without precoding. The
solid curve in Fig. 4 corresponds to the use of precoding (with
infinite dispersion) but no spatial diversity. The dashed curves
correspond to the use of no precoding but L-fold diversity for
L=1,2,---, 5. Finally, the dotted curve corresponds to the
use of no precoding but infinite spatial diversity, L — oo.

Comparing P with Py[1] we see that precoding markedly
improves bit error rate performance in the channel. We can
further show, by applying (47) and the asymptotic expansion
[12]

Q) ~ (55)

1 _ejpe=(=1)™(2m)! _
v/2 2m
e E —_— vy
V2ny 2m m!

k=0
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to (51), that at high SNR (i.e., small (p) the bit error rate with
precoding is given by

log (1/60) (- 1/(260)
P "G p< 1og<1/co>)‘

By contrast, in the high SNR regime, Po[L] is well-
approximated as [1]

(56)

PolL] ~ &5
while (54), via (55), takes the form
Poloc] ~ +/Coe™H/ ).

Thus we note that the while P falls off at a slower rate than
Poloo], it falls off faster than Po[L] for any fixed L. This im-
plies that, asymptotically, precoding provides higher “effective
diversity” than can be achieved using spatial diversity with
~any L < co, butless than can be achieved with infinite spatial
diversity. That the dotted curve (infinite spatial diversity) is
lower than the solid curve (infinite temporal diversity) is due
to unavoidable intersymbol interference effects in the latter.

The reader is cautioned from inferring more than is appro-
priate from Fig. 4, since direct comparisons between spatial
diversity strategies and temporal diversity strategies naturally
provide only limited insight. For example, it should be em-
phasized that in spatial diversity, schemes are effective even
when the coherence time of the channel is infinite (e.g., when
a mobile is stationary), whereas temporal diversity strategies
provide no benefit in such scenarios. From this perspective,
we note that the ergodicity requirements in Theorem 1 would
not be realistic in mobile communications scenarios where
the mobiles are stationary. More generally, these ergodicity
assumptions may not be realistic for some classes of nonsta-
tionary channels that arise in practice.

Finally, we remark that experiments exploring the sensitivity
of system . performance to the parameters of the equalizer,
while beyond the scope of this paper, are clearly warranted in
the future. In the meantime, preliminary simulations reported
in [4] involving minimum-mean-square-error-type equalizers
lend at least some insight into what kind of behavior may
be expected. Specifically, the results suggest that performance
ought to depend only weakly on the estimate of &,/(Mowp)
used in the equalizer, and that the performance can be expected
to degrade fairly gracefully with errors in estimates of the
magnitude and phase of the fading coefficients.

VI. PRECODER DESIGN ISSUES

All of the preceding results are asymptotic in the sense
that they correspond to the use of ideal precoders. However,
ideal precoders are lossless and perfectly dispersive, implying
infinite length (and, hence, délay). In this section, we explore
some of the considerations in the design of practical finite-
delay precoders, and in addition present some ad hoc strategies
for optimizing the loss characteristics of such precoders.

First, we discuss the impact of channel coherence time on
precoder design. We begin by observing that although Theo-

rem 1 is an asymptotic result, with suitably chosen finite-length

precoders, the white Ijnarginally Gaussian channel model can
be an extremely useful approximation to the actual composite
channel. Furthermore, the delay requirements in this case are
comparable to those of conventional interleaving. Specifically,
the filter length N required to effectively converge to the
equivalent model is given by

N~ N (1, +1) (57)

where N’ is the length required in the case of memoryless
fading, and where ‘7, is the coherence time of the fading
channel (in samples).} Specifically

1 =) ‘ 1" +o0.
Te= 3 Z Re{W,|(0;m]} = (ﬁ E \I/a(O;m]> -1

@ m=1
(5%)
where, defined according to (20), ¥,(w;m] is the original
channel’s spaced-frequency spaced-time correlation function.
Later we discuss appropriate values for N’ in practice.

It is important to note that while large coherence times
(or, equivalently, small Doppler spreads) correspond to.larger
inherent delays in the|system, they need not incur additional
computational complexity either at the transmitter or receiver.
In fact, from a single prototype precoder h[n] one can derive
an entire family of pr%zcoders with the same loss, dispersion,
energy, and computational characteristics but suitable for
scenarios corresponding to different coherence-time/Doppler-
spread parameters. Specifically, if A[n| is a precoder designed
for memoryless fading (7, = 0), then the corresponding
precoder k., [n] for the case in which the fading has coherence
time 7, is obtained by simply upsampling A[n], i.e.

@ m=—oco

_ [hin/M), = MO, MM,
v In] = {0, otherwise (59)
where®
M = [1,+1]

is the upsampling factpr. Equivalently, this upsampling rela-
tionship can be described in the frequency domain as

H,(w) = H(Mw). (60)
Using both (59) and (%0) one can verify that the energy, loss,
dispersion, and compuﬂ;ational characteristics are unaffected by
such upsampling. »

Let us next turn td a discussion of the optimization of
finite-length precoders,% and begin by observing that in general,
overall system performance depends in a rather complicated
manner on the loss and dispersion characteristics of the pre-
coding filter. Furthermore, even if a weighted combination of
the losslessness and dispersion factors were to correspond to
some reasonable measure of ultimate system performance, op-
timizing such a criterion is an intrinsically difficult numerical
problem. ‘

Nevertheless, there are a number of approaches that work
well in practice for obtaining precoding filters corresponding to
a reasonable compromi%se between losslessness and dispersion

6The ceiling function [z] +:ienotes the smallest integer greater than or equal
to . ; :
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factors, and providing good overall system performance. In
fact, design techniques are suggested from a variety of sources,
largely because such filters find application in a number of
distinct communication problems ranging from the mitigation
of impulse noise in communication systems [15] to robust
quantization of non-Gaussian sources [16]. Those we discuss
here are closely related to the techniques which have proven
useful in these problems.

As discussed earlier, binary precoders have attractive com-
putational properties and optimal dispersion factors but poor
losslessness factors. The binary sequences having optimal loss-
lessness factors for a given length constraint N are tabulated’
in [17] for N < T71. For length N = 13, the corresponding
sequence is, for example, the well-known Barker sequence for
which £}, ~ 14.08. Likewise, for length N == 27, the optimum
sequence has £, ~ 9.85. Another class of binary sequences
with better-than-average losslessness characteristics are the
maximal length shift-register sequences (or m-sequences) [18],
for which L;, ~ 3 for large N as shown in [19].

In practice, the losslessness characteristics of these se-
quences can be markedly improved while largely preserving
their dispersion properties by relaxing their binary amplitude
constraints in a controlled manner. One way to accomplish this
is to apply the following simple heuristic algorithm. Beginning
with an initial binary sequence hg[n], we proceed to maximize
Ly, in the form (10) via an iterative ascent algorithm (such
as the Simplex method) subject to the unit-energy constraint
(9). Naturally, a global optimization would result in the trivial
solution é[n]. However, the objective function typically has
many local maxima, and in practice, the algorithm generally
converges to such a fixed point, and results in a filter with
substantially improved L, at a relatively modest cost in Dj,.

Other filters with reasonable dispersion factors are also
suitable as an initialization for this type of algorithm. For
instance, in [16] a chirp sequence of the form

hg[n] = Bsin [%1—2] forn=0,1,---,N -1

is used with good results. This initialization is especially useful
in the design of very long precoders, in which case the corre-
sponding optimal binary sequences are unknown. However,
depending on the specific value of N and on the specific
iterative descent algorithm, certain initializations lead to better
precoders than others in terms of overall system performance.
Consequently, trial and error is invariably involved.

Again we emphasize that the performance results developed
in Section V are asymptotic results, i.e., they apply to infinite
length (and hence delay) precoders. From this perspective,
the solid curve in Fig. 4 is obviously a lower bound on the
bit error rate performance achievable in practice using finite
length precoders. In Fig. 5, we plot bit error probability for
uncoded QPSK as a function of SNR per bit using realizable
precoders. The uppermost curve indicates the performance
without precoding (N’ = 1) while the lowermost curve

7 Actually, to simplify the search for such sequences, typically only skew-
symmetric binary sequences are considered. This restriction is not severe,
however, since this class generally includes many of the best séquences even
when the restriction is removed.

Bit Error Probability Pr(e)

8 0 12 14 16 18 20
SNR Eb/No, dB/bit

Fig. 5. Bit error probabilities using uncoded QPSK on the Rayleigh fading
channel with realizable precoders. The top curve corresponds to the per-
formance without precoding (N’ = 1), while the bottom curve indicates
the performance bound corresponding to an infinite-length (delay) precoder
(N'" — o0). The successively lower curves between these two extremes
represent the performance obtained using FIR precoders with length (delay)
parameters N/ = 13, N’ = 27, and N’ = 200, respectively.

indicates the performance bound corresponding to infinite-
length precoders (N’ — o0). The successively lower curves
between these two extremes indicate the performance with
practical precoders corresponding to N’ = 13, N’ = 27, and
N’ = 200, respectively. The coefficients of these precoders,
together with a description of how they were designed, are
provided for reference in Appendix II. Since system delay
is proportional to N’ as we have discussed, Fig. 5 indicates
how achievable performance varies as a function of delay,
normalized by the coherence time of the channel. From Fig. 5
we can also conclude that the asymptotic solid curve in Fig. 4
is a close approximation to what is attained in practice when
the precoding filter has length N given by (57) for N’ =~ 100.
However, such extreme delays are likely to be intolerable in
many applications.

VII. CONCLUDING REMARKS

Spread-response precoding as developed in this paper con-
stitutes a potentially attractive alternative to interleaving in a
wide range of communication systems designed for use with
multipath fading channels. Even when no additional coding is
used, precoding can significantly improve system performance
over other uncoded systems. Similarly, the use of precoding
in conjunction with coding has the potential to substantjaily
reduce computational complexity at both the transmitter and
the receiver for a given level of performance. This is because
the effects of fading are entirely controlled by the precoding,
which requires only low-complexity signal processing. Thus,
only additive noise remains for coding to control, which can
in turn be achieved with comparatively shorter codes. As an
additional potential feature, the noise-like characteristics of
the transmitted stream resulting from the use of precoding
appears to be well-suited for applications involving secure
communication.
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Nevertheless, several technical issues remain to be explored.
For example, a thorough investigation of the complexity
benefits that can be realized through the use of precoding with
coding is clearly warranted. The development of techniques
for adequately synchronizing the receiver in such systems
as well as for managing the inherent peak-to-average power
requirements is also an important avenue for future research.
Furthermore, in order for precoding to be effective, reliable
estimates of the fading channel parameters and statistics must
be available at the receiver. It would appear that this can be-
accomplished in practice through the use of training sequences
or decision feedback teéhniques. However, such issues remain
to be explored in detail. Finally, as remarked earlier, regardless
of the technique used, any such parameter estimates are
imperfect and, as a result, a thorough sensitivity analysis would
ultimately be important in further verifying the viability of
spread-response precoding.

APPENDIX 1
PROOF OF THEOREM 1

As an intermediate step, we obtain results concerning the
following related system. Let S{-} denote a linear system
which is the cascade of an LTI system whose (real) unit-
sample response is gi[n], followed by a linear system whose
(complex) response at time 7 to an unit-sample at time n — &
is f[n; k], followed by another LTI system whose (real) unit
sample response is. g2[n]. Hence

qln] = S{pln]} ;
= Dol Y fin— ik} aulllpln— i~ k1]

(61)

Furthermore, let u[n; k] denote the kernel of the overall linear
system, 1.e., its response at time n to a unit-sample at time
n — k. "
We begin with a useful lemma regarding such systems.
Lemma 1: Let g1[n| and gz[n] be lossless, and let fn;k]
be the kernel of an admissibly ergodic system. Then as

~1
Dy = (Z gg[i]) — 00 (62)
the kernel u[n; k] defined above obeys
ulni K] 5 (k] < gelk) S ulk] - (63)
and
Z Al n — k] @ [m;m — k] =3 o%8[n — m] (64)
k
where

aln; k) = uln; k] — ulk].
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TABLE 1
COEFFICIENTS OF PRECODER WITH N/ = 13
hin] n , hln]
-5.8411858005023801e-03 7 - -3.1185041135844094e-01
2.4550906513458115¢-03 8 1.7981312¥91890364¢e-01
4.0809152050496414e-02 9  -8.2661635586315216e-02

-1.4930692875175594e-01 10

-6.7555021202975918e-01° 11

-4.4807541797136691e-01 12
4.2575301996495318e-01

3.2767268474091955¢-02
-1.0462535657742033e-02
2.3742704387674806e-03

U W N e OfS

1

Proof: From (61) we get

ufn; k] = Zggm S fn-illglk—i—1. (65

Then
Eluln; k]| = MZQQM g1k — i] = pe - g1[k] * g3 [k]

and _
afn; k] = Zgz[i]zl:f[n — i3l gak —i—1]
where, consistent with (14),
Flns k] = flns k] - ps[k]
Hence
E[lan; k11?] N
= Z.,;g?[i]gz[i/] Rli! — 51 gulk — 1 — i] gulk — 1~ 7]

=

(66)

where R[m; k] is as defined in (17b). Applying, in order; the
triangle inequality and the Cauchy inequality, we are able to
bound (66) by _
Eljan, KI*] < ¢(g1) ¢(g2) (67)
where ‘
¢*(9) = Y IRl — 5019 [ 6°1i'] < Sr
44,1

provided
Z g*[n] < 1.
n

Applying the Cauchy inequality again to ¢?(gz), however,

giveg, after come simplification and using (62)

©*(g2) < Sr/Ds.

Hence, (68) and, in turn, (66) tend to zero as Dy — oo, which
verifies (63).

To show (64), we begin by noting that since g; [n] is lossless,
we get, using (15),

. p[n, m] = Zﬂ[n;n — k) a*[m;m — k]

(68)

=" go[n —i] galm — i + 1] d[i; 1].
4,1
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TABLE 1II
COEFFICIENTS OF PRECODER WITH N' = 27
n hln] n hin] n _ hin)
0 -9.9015416362606340e-02 9 -2.1507649306322030e-01 18  2.2770635469845774e-01
1 -1.4962526200154719¢-01 10  1.3465094288183066e-01 19 -1.6416819374047256¢-01
2 -1.2494634826461959¢-02 11 -2.088893107323198%¢-01 20 -1.0105982280370986e-01
3. 1.5310048500665450e-01 12 -2.3723201347398892¢-01 21  2.4568799799401064e-01
4 2.8095844765330646e-01 13 -2.8141046006102444e-01 22 -2.9580333293734362¢-01
5  1.9088320211272225¢-01 14  2.4456267753644959¢-01 23  1.6617449019023858¢-01
6  8.5047173390195421e-02 15 -1.7757930264336236e-01 24  5.5625529622671227e-02
7 -2.5661278692721445¢-01 16 -1.2222751930073791e-01 25 -1.6595106517284344¢-01
8 -2.7249797704898165¢-01 17 -1.4688495027957671e-01 26  1.1775033638223745e-01
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Then, since by (17b), (22), and (23)
E[d[n; k)] = o® 8[K]
we get, since go[n] is lossless,
Elp[n, m]] = o® §[n — m].
Next, we write, using (16)

pln,m] £ pln, m] — o26[n — m]
= Zm[" — i ga[m — i + 1] d[5; (]

and, using (17c)

E[|pln,m]l"] = > galn — il ga[m —i+1]
il L
-ga[n — ') go[m — &' + U] Tl — &5 1,1'). (69)
However, applying the triangle and Cauchy inequalities, in
order, and noting

Tlm; k1) = T*[-m; 1, k]
we can bound (69) by
E[lpln,m]P] < > g3[n — il glm — i+ T~ &5 1, 1]].
NG 70

Applying the triangle and Cauchy inequalities, in order, again,
to the right side of (70), and changing variables, we get

E[|pln,m][?] < > gslllTl';1, V)| = Sr/D>

> ol !
2,37,1,1

(1)

which approaches zero as Dy — 0. O
Using Lemma 1, we obtain the following theorem:
Theorem 2: Let g1[n] and ga[n] be lossless, and let f[n; k]

be an admissibly ergodic system kernel. Further, and suppose

p[n] is a wide-sense-stationary, white raadom process with

mean zero and variance 01%7 and that p[n] and the channel

kernel f[n; k] are statistically independent. Then, as D, —

oo, g[n] as defined by (61) satisfies, with u[n] as defined in

(63)

gln] =5 uln] * p[n] + 2([n] (72)

where z[n| is a marginally Gaussian wide-sense-stationary,
white random process with mean zero and variance azcrg, and

where z[n] is uncorrelated with p[n].

Proof: By superposition
gln] = Zu[n; k] p[n — k]
k
hence

2[n] = gln] — u[n] * pln] = Y aln; K] pln — k).
k

(73)

From (73) we get immediately, since p[n] is zero-mean
By[z[n]] = 0

where we use E,[] to denote expectation with respect to p[n]
given a fixed but arbitrary realization of the kernel f[n;k].
In addition, from (73) we get

Eylzln]p*[ml} = Y ln; k] Eplpln — k] p"[m]
- .
2

= oL aln;n — m.

2 (74)

Hence, since (63) in Lemma 1 implies
a[n; k] =5 0 as Dy — 00
we get from (74)
E,[z[n]p*m]] =5 0 as Dy — 00 .
Finally, using (73) we also obtain
Eyleln] 2 [ml] = 3 lns k] " fm; [, [pn — K p"[m — 1]
k1
=0} Zﬂ[n; n — k| @*[m;m — kl. (75)
k
Applying (64) in Lemma 1 to (75), we see immediately

Ey[z[n] 2" [m]] == 0”0}

8n —m] as Dy =00 .
Finally, to show that z[n] is marginally Gaussian requires a
Central Limit Theorem argument. O
The following corollaries lead directly to a proof of our
main theorem.
Corollary 1: Suppose gi[n] = g2[—n] in Theorem 2. Then
as Dy — o0

gln] =5 pp[n] + z[n]. (76)
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h[n}

hln]

wonqo:c».&ww:-o:

6.7481759487174279e-03
6.2399846643046283¢-03
2.3121320489424739e-03
-2.1211506895814540e-03

© 3.5102254094720173e-04

4,9937802628538012e-03
1.4984053323151954e-02
2.5203915461724336e-02
3.9798349600777438e-02
5.5551183441280842e-02
6.7288182918999545e-02
9.0392651115411560e-02
1.2050201278976566e-01
1.3319069287581600e-01
1.2941965652091353e-01
1.2869085815897530e-01
1.2883748628498681e-01
1.1207361561371065e-01
7.5770772973918196¢-02
3.2171594752145573e-02
8.7158815307746551e-03
7.4800978349197052¢-03
-4.8356918721120124e-03
-3.8648910229053639e-02
-7.8362676756697849e-02
-9.1879216789721246e-02
-7.6277974846228738e-02
-4.6401505563091174e-02
-1.9275653906712049e-02
9.3872778388958307e-03
4.9958428365860480e-02
8.2664124686710333e-02
9.1647925938961164e-02
6.7983526073862433e-02
3.4040998868462270e-02
-4.9145491606543638e-03

"-5.8885351510306584e-02

-1.0103817084231298e-01
-9.8138351826530884e-02
-5.4534429214527766e-02
-1.4933548278368292e-02
2.5962761620815004e-02
8.3123979384541913e-02
1.1808609119356409e-01
9.1789254030566064e-02
1.6960452014801397¢-02
-5.6810317206874683¢-02
-1.1070595506895339e-01
-1.0612974904916984e-01
-3.5113217564966312e-02
4.021835901752655%e-02
7.8361783003269556e-02
7.3398676062824464e-02
4.0082784033609056e-02
-2.2383543408815619e-02
~-8.2296082804443393e-02
-8.4147745310137301e-02
-7.5234101684223472¢-03
8.7766471759585227e-02
9.9943486158437109e-02
2.9076457641035492e-02
-5.7229534535489082e-02
-9.8004508916357966e-02
-7.9824646745027372e-02

1.8507973015108112e-02 .

1.1593905953827086e-01
7.8734679864611079¢-02

TABLE IO
COEFFICIENTS OF PRECODER WITH N’ = 200

n hin]
67 -1.9812865943925784e-02
68 -6.5158588465724657e-02
69 -6.0671964289127335e-02
70 -5.8502372962630301e-03
71 7.4961066626407058e-02
72 7.2081840324012825e-02
73 -3.8878837530640788e-02
74 -9.3785655315623093e-02
75 -4.8648827925370244e-02
76 5.6955491301629524e-02
77 1.2316803297557807e-01
78 1.5387319674599003e-02
79 -1.2293448245238595¢e-01
80 -7.9990444425209556e-02
81 7.4049574737542784e-02
82 1.0057295318039847e-01
83 -5.7613802110531836e-03
84 -8.7898534630834940e-02
85 -4.2790572645302158e-02
86 6.8875940510209216e-02
87 5.5918915180891579%e-02
88 -3.7418688847588095e-02
89 -7.7219864077822525e-02
90 3.8475560784670404e-03
91 1.0051646628831766e-01
92 2.6585413581657308e-02
93 -9.3086565360855439e-02
94 -4.8247900353889150e-02
95 8.4497553917583901e-02
96 4.2292822933925084e-02
97 ~-7.1804994558062135e-02
98 -4.2172204658277881e-02
29 6.01830379533965940e-02
100 6.4238065492258398e-02
101 -7.7180841048434062¢-02
102 -4.781659740773368%e-02
103 7.3106003333906405¢-02
104 2.6381717497109474e-02
105 -6.1794082890507113e-02
106 -3.4127365748038485¢-02
107 9.8844539751448440e-02
108 2.0277700593667149e-02
109 -1.2805057651021626e-01
110 6.3400166096573064e-04
111 1.2564583308008287e-01
112 -1.7091309884048406e-02
113 -1.1038360258378160e-01
114 5.1286439467240055¢-02
115 6.1202392116556523e-02
116 -6.7580753007337319e-02
117 -1.6437971040579487e-02
118 8.3823412299087741e-02
119 -3.1129582248823506¢-02
120 -9.0606281623062307¢-02
121 9.9165641845843672¢-02
122 1.8782838667999648e-02
123 -9.3854837791789411e-02
124 4.7611614221696491e-02
125 4.6554985458385927e-02
126 -8.0607535393314583e-02
127 1.3822186988443654e-03
128 1.0686983339236208e-01
129 -1.0156480430924225e-01
130 -1.7945677496148255e-02
131 1.1344820737049335e-01
132 -9.1357858286120752e-02
133 -6.7060256957023360e-03

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

162
163
164
165
166
167
168

195
196
197
198
199

6.7742129938659024e-02
-3.8687441526780691e-02
-2.5257690444906160e-02
5.1191350115345584e-02
-4.2680062356762853e-02
-4.2119123303270859e-03.
9.1740729473087229e-02 -
-1.2639520276889260e-01
3.8437811184807144e-02
7.8142875235300086e-02
-1.1452645727161301e-01
7.6485962980356953¢-02
-4.1513288095059190e-03
-6.5221324247226389¢-02
8.0068586977575254e-02
-2.7427212758030589e-02
-3.9649334610519296e-02
7.4311438031468946e-02
-6.8324453161421245e-02
2.1265783767044862e-02
5.5255938046250050e-02
-1.0812107916172052e-01
1.0433507079345014e-01
-6.3041542086211766e-02
-8.4762023687665403e-04
8.3391803227558570e-02
-1.3663301918921161e-01

© 1.1640358139880574e-01

-5.3459874620862345¢-02
1.5692615498749335e-03
3.9671816576985652¢-02

-8.0702853067170566¢-02
1.0554972708952620e-01

-9.0224086359934313e-02
3.9366214767518434e-02
1.0166816185420646e-02

-3.0671765812497406e-02
3.8010890554600614¢-02

-5.6882677375084026¢-02
6.8870641150388101e-02

-5.3600301902024840e-02
2.5191115869247566e-02

-3.0378475939394102e-17

-2.3783861299020385e-02
3.3660425705331322e-02

-3.0434462069177784e-02
3.1545001332020539e-02

-8.7715267793237528e-02
3.25846655689150824e-02

-2.0737283754424712¢-02
1.3864352749485618e-02

-8.7829054862095680e-03
2.1524752594113381e-04
8.0141810052076230e-03

-2.4354075926243869¢-02
5.4932158991081281e-02 -

-8.6782177238567931e-02

1.0670313317405239e-01
-1.1472547242235932e-01
1.2161291209232598e-01
-1.3322042163313333e-01
1.4082258050588076e-01
-1.3267679708926211e-01
1.04195942828890154e-01
-6.1699999136031615e-02
2.2550418599469341e-02
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Proof: Tt suffices to note that, since go[n] is lossless
g1ln] * ga[n] = ga[n] * g2[—n] = b[n]. 0
Corollary 2: Suppose g1[n] = 6[n]. Then q‘[n] is white and
has variance
Bp[laln]’] = oplul® + 030
(riE [|F(w; n)|?].

varpg[n)
an

Il

Proof: Since p[n] and z[n] are uncorrelated in Theorem 2

var,q[n] = var,(pga[n] * p[n]) + var, z[n].

‘Furthermore, since gz[n] is lossless, p[n] and p[n]  g2[n] have
the same spectrum and thus

var, (ugz[n] * p[n]) = |uf*o}.
Applying (23) and (19) we then verify (77). O
Finally, to establish Theorem 1 we need only recognize that
£[n] can be divided into two uncorrelated components

#[n] = #1[n] + £2[n]

where #;[n] is the component due to z[n] and where Z3[n]
is due to wln]. Using Theorem 2 and Corollary 1 with
pln] = aln], gln] = #1[n], and fln; k] = cln; k], we see

#1[n] =5 pe zn] + 2[n)]

where the white noise z[n] has variancé £,02. Similarly, using
Theorem 2 and Corollary 1 with p[n] = wn], g[n] = &2[n],
and f[n; k] = bn; k] we get that

var &a[n] = NoWo E[|B(w; n]f?]. O

APPENDIX II
OPTIMIZED PRECODER COEFFICIENTS

Tables I-IIT show the precoder coefficients that were used
to generate the experimental results in Section VL. The (nor-
malized) lengths N’ of the precoding filters in the tables are,
respectively, 13, 27, and 200. The first two of these were
obtained by starting with the minimum-loss binary squence
of the corresponding length, and locating the unit-energy
sequence corresponding to the nearest local minimum of the

loss function when the binary constraint is relaxed. A similar
procedure was used to obtain the precoding filter of length
200, except that the initial sequence was a chirp sequence of
the same length.

(78)
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