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Traditional spectral analysis has been developed primarily in the context of stationary time
series, and with the notion of applying such analysis with a fixed frequency resolution over the
spectrum. This has led to a wide variety of practical FFT-based algorithms for performing such
spectral analysis. However, spectral analysis is also important in modeling and characterizing some
important classes of nonstationary signals, including a broad range of fractal processes, ¢.e., processes
in which there is underlying scaling behavior. Furthermore, in many contexts involving nonstationary
and/or stationary signals, a spectral analysis is desired in which there is a fixed percentage frequency
resolution. A rather natural and framework for developing such constant-@) spectral analysis arises
out of recently developed wavelet theory, and practical algorithms can be developed exploiting the
computational efficiency of the discrete wavelet transform (DWT).

The class of signals of interest in this work possess the characteristic property that when filtered
with an ideal bandpass filter whose passband is wo < w < wy, where 0 < wy < w; < oo are arbitrary,
the resulting process is stationary. While this class clearly includes all stationary processes, it also
includes some important nonstationary processes. For example, as developed in [1] [2], this class
includes the 1/f family of fractal processes z(¢) which are statistically scale-invariant, i.e., for all
a>0,
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where = denotes equality 1n a statistical sense.
In the case of 1/f processes, such scaling behavior gives rise to a spectrum of the form
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through the spectral window of the arbitrary ideal bandpass filter, where ¥ = 2H + 1. The suitability
of constant-() spectral analysis and modeling for these processes in particular is well-understood,
and, accordingly, the power-law spectra for these processes are typically depicted on a log-log (Bode)
plot.

The 1/ f processes and their corresponding spectra (1) are appropriate for modeling fractal phe-
nomena dominated by a single scaling mechanism over all scales. In practice, however, physical
fractal phenomena typically exhibit scaling behavior which is different over different ranges of scales
(see, e.g., the seafloor modeling of Goff and Jordan [3]). In such phenomena, there are generally
a collection of natural scaling mechanisms in effect, each of which predominates in different scale
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regime. Spectral analyses of these generalized fractal processes reveal different power-law charac-
teristics in different frequency bands, and Bode plots of the resulting spectra are well-modeled as
piecewise linear.

Orthonormal wavelet bases are, in many respects, ideally suited for spectral analysis of the
processes described above. In particular, we will show, under relatively mild conditions on the
analyzing wavelet basis, that the wavelet coefficients of such processes are effectively uncorrelated,
and that the scale-to-scale variance progression of the coeficients reveals the details of the scaling
behavior in the underlying processes.

In general, the piecewise linear “Bode” spectra associated with these generalized fractal processes
can be effectively modeled using cascade, parallel, and superposition combinations of simpler fractal

processes with spectra of the form
2
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In addition, as we will show, suitable wavelet analyses of these simpler processes yield effectively
uncorrelated coeflicients whose scale-to-scale variance progression is of the form

Vel
for some &2 and § which depend on ¢? and p.

Exploiting the wavelet-based framework described above, and using both Maximum Likelihood
(ML) and Maximum Spectral Flatness (MSF) criteria, we develop a collection of signal processing
algorithms for addressing problems of both fractal signal parameterization and modeling, and fractal
signal smoothing and separation. These computationally efficient data-driven algorithms, of which
those in [4] [2] [1] constitute a special case, appear to be practical and robust, and we demonstrate
results of their application to a variety of both simulated and real data.
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