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ABSTRACT

In an effort to reduce the degradation in speech
recognition performance caused by variation in
vocal tract shape among speakers, a frequency
warping approach to speaker normalization is in-
vestigated. A set of low complexity, maximum
likelihood based frequency warping procedures
have been applied to speaker normalization for a
telephone based connected digit recognition task.
This paper presents an efficient means for estimat-
ing a linear frequency warping factor and a sim-
ple mechanism for implementing frequency warp-
ing by modifying the filter-bank in mel-frequency
cepstrum feature analysis. An experimental study
comparing these techniques to other well-known
techniques for reducing variability is described.
The results showed that frequency warping was
consistently able to reduce word error rate by 20%
even for very short utterances.

1. INTRODUCTION

One major source of interspeaker variability in hidden
Markov model(HMM) based continuous speech recogni-
tion is the variation of vocal tract shape among speakers
in a population. The positions of spectral formant peaks
for utterances of a given sound are inversely proportional
to the length of the vocal tract. Since the vocal tract
length can vary from approximately 13cm for females to
over 18cm for males, formant center frequencies can vary
by as much as 25% between speakers. This source of vari-
ability results in a significant degradation from speaker
dependent to speaker independent speech recognition per-
formance.

Andreou, et.al., proposed a set of maximum-likelihood
speaker normalization procedures to explicitly compen-
sate for variations in vocal tract length [1]. These proce-
dures reduced speaker-dependent variations between for-
mant frequencies through a simple linear warping of the
frequency axis. While this and other studies of fre-
quency warping procedures have shown improved speaker-
independent ASR performance, the performance improve-
ments were achieved at the cost of highly computationally
intensive procedures [2] [3].

This paper extends the work of Andreou, et.al., by
presenting an experimental study of some properties
of the speaker normalization procedures, and proposing
more efficient methods for implementing frequency warp-
ing and for incorporating the speaker normalization pro-
cess into HMM recognition. A mixture-based technique
for directly estimating the linear frequency warping fac-
tor is described and evaluated. A method of implement-
ing frequency warping by directly modifying the shapes of
the component filters in the filter-bank front-end is used.
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The procedures were evaluated on a telephone-based con-
nected digit recognition task in which the utterances range
in length from only a single digit to seven digits long.
This paper consists of three major parts. First, we
describe the HMM-based speaker normalization training
and recognition procedures which were proposed by An-
dreoun, et.al.. More efficient extensions to these proce-
dures, including mixture-based warping factor estimation,
are proposed. The second section describes the front-end
signal processing, and presents a method of directly in-
corporating frequency warping in the filter-bank front-
end. The third section presents results from an experi-
mental study of several properties of the speaker normal-
ization procedures. An experimental study was performed
to compare the effects of speaker normalization to more
well-known compensation techniques and to investigate
the importance of a number of experimental variables.

2. NORMALIZATION PROCEDURES

This section reviews the HMM-based speaker normaliza-
tion procedures developed in [1], and presents more ef-
ficient alternative procedures which can be more easily
applied to speech recognition systems that must be im-
plemented in “real-time”. In speaker normalization, the
standard procedures are preceded by estimation of an op-
timal warping factor, &, during both HMM training and
recognition. During HMM training, one & is first esti-
mated for each speaker in the training set, and then all of
the warped utterances are used to build a “normalized”
HMM. Similarly, during recognition, we first estimate an
& based on the input utterance, and then decode the ut-
terance using the warped feature vectors.

During both testing and ‘training, & is estimated by
maximizing the likelihood of the utterance with respect to
a given Hidden Markov Model. Suppose that A denotes
a set of HMM models, X" denotes the cepstrum domain
observation vectors for a set of utterances from speaker
1 warped by a, and W; denotes the corresponding tran-
scriptions for the utterances. Then, the optimal warping
factor for speaker i, &;, is defined as follows:

&; = arg max Pr(X |\, Wi). (1)
o
Since it is very difficult to obtain a closed—form solution
for & from Equation 1, a grid search over a set of 13 factors
is used. We choose a range of 0.88 to 1.12 for the possible
& to roughly reflect the 25% range in vocal tract lengths
found in humans.

Using a criterion like the one in Equation 1 to esti-
mate a warping function is extremely important. Esti-
mating a warping function that provides a better match
to the HMM model, instead of trying to solve the diffi-
cult problem of obtaining an estimate of the “true” vocal
tract shape for a particular speaker, is much more likely to
have an impact on speech recognition performance. While
there have been many examples of more interesting fre-
quency warping transformations applied to speaker nor-



1. Train an HMM A; with
warped utterances in set T.

2. Choose &' inset A
to maximize Pr(X{ 1Ay, W, ).

Figure 1: HMM training with speaker normaliza-
tion

malization in speech recognition, none have used an op-
timization criterion which is consistent with that used in
the recognizer to estimate the parameters of the transfor-
mation.

2.1. Training Procedure

The goal of the training procedure is to warp the fre-
quency scale of the utterances for each speaker in the
training set so that the resulting speaker independent
HMM will be defined over a frequency normalized feature
set. An iterative proceduie is used to alternately choose
the best warping factor for each speaker, and then build
a model using the warped training utterances. A diagram
of the procedure is shown in Figure 1. After dividing
the training speakers into two sets, training(T) and align-
ing(A), we first train an HMM, A7, using the utterances in
set T. Then, the optimal warping factor for each speaker 1
in set A is chosen to maximize Pr(X|Ar, Wi). All of the
utterances from the same speaker are used to estimate &
for that speaker. We then swap the sets, and iterate this
process of training an HMM with half of the data, and
then finding the best warping factor for the second half.
A final frequency normalized model, Ay, is built with all
of the frequency warped utterances when there is no sig-
nificant change in the estimated &’s between iterations.

2.2, Testing Procedure

During recognition, the goal is to warp the frequency scale
of the test utterance to “match” that of the normalized
HMM model Ay. Unlike the training scenario, however,
we have only one testing utterance with which to estimate
&, and the transcription is not given. A three-step process
is used:

1. Decode the unwarped utterance x using the Ay
model. Denote the transcription as w".

2. Set & = arg max, Pr(z*|An,w"), where z° is the
frequency warped utterance. This probability is
evaluated by probabilistic alignment of each warped
set of feature vectors with the transcription w®.

3. Decode the utterance £* with the model Ay.

2.3. More Efficient Testing Procedures

The testing procedure is computationally intensive be-
cause the inefficiency of performing an exhaustive grid
search is compounded by the need to use probabilistic
alignment at each possible a. As a simplification, we
have tried to use more coarsely sampled search grids dur-
ing recognition. We have also devised a mixture-based
method to choose & during recognition. This method is
as shown in Figure 2.

During training, after warping factors have been de-
termined for all of the speakers using the process shown in
Figure 1, mixtures of multivariate Gaussians are trained
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to represent the feature space distributions of each of the
possible classes. That is, for each warping factor, mix-
tures are trained using the unwarped feature vectors from
utterances which were assigned to that warping factor.
Then, during recognition, the probability of the incoming
utterance before frequency warping is evaluated against
each of these distributions, and the warping factor & is
chosen for the distribution which yields the highest like-
lihood over the entire utterance. The speech is warped
using & and the resulting feature vectors are then used
for HMM decoding.

Using this method, there is no need to obtain a pre-
liminary decoding using the unwarped utterances, nor is
there a need to perform probabilistic alignment at all of
the grid points. However, unlike the method described
in section 2.2, this mixture-based method does not take
advantage of the temporal information in the signal.
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Figure 2: Mixture-based warping factor estima-
tion

3. FRONT-END SIGNAL PROCESSING

Frequency warping can be incorporated directly into the
mel-spaced filter-bank front-end by varying the spacing
and width of the component filters and keeping the speech
spectrum unchanged. This is illustrated by the block di-
agram in Figure 3.. Instead of resampling the sampled
speech waveform, we can push the warping process into
the filter-bank stage. For example, to compress the speech
signal in the frequency domain, we can keep the frequency
scale of the speech signal the same, but stretch the fre-
quency scale of the filters. Similarly, we can compress
the filter-bank frequencies to effectively stretch the signal
frequency scale.
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Figure 3:
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When the frequency axis is warped, the bandwidth
of the resulting signal differs from that of the original.
For the experiments described in this work, the original
sampling rate band-limits the unwarped signal to 4kHz
bandwidth. Consequently, with the warping factors rang-
ing between 0.88 and 1.12, the bandwidths of the warped
signals range between 3.52 kHz and 4.48 kHz. Because



comparisons for the “best” warping factor are made over
a constant range between 0 and 4kHz, the compressed sig-
nals do not contain useful information over the entire 4
kHz, and the stretched signals contain information above
4 kHz that are not used. Different bandwidths at different
warping factors represent a source of mismatch between
the warped signal and the model. In the mel-spaced filter-
bank front-end, this problem is mitigated somewhat by
the fact that filters near the band~edge have bandwidths
approaching 800 Hz. Thes wider filters serve to blur the
exact location of the band-edge.

4. EXPERIMENTAL STUDY

This section describes a set of experiments using the
speaker normalization techniques described earlier. We
first describe the recognition task and database. Next,
recognition results comparing speaker normalization to
gender-dependent models and cepstral mean normaliza-
tion are shown. We then present experiments using the
more efficient recognition procedures described earlier.
The next subsection presents results on the effect of HMM
parametrization on speaker normalization procedures. Fi-
nally, we show data on how the number of iterations taken
during training changes the recognition performance.

4.1. Task and Recognition System

The experiments were performed on a telephone-based
connected digit recognition task. The database was
recorded in shopping malls across 15 dialectally distinct
regions in the US, using two carbon and two electret hand-
sets. The speakers read digit strings between 1 and 7
digits over a telephone. The training set contained 713
speakers, with 8802 utterances totaling 26717 digits. The
testing set contained 596 speakers, with 4304 utterances
totaling 13185 digits. The training utterances were end-
pointed, whereas the testing utterances were not. We use
word error rate as the performance metric.

Continuous-density left-to-right HMMs with 8-10
states were used to model each digit in the recognizer.
In addition, silence was explicitly modeled by a single-
state HMM. The observation densities were mixtures of 8
multi-variate Gaussian distributions with diagonal covari-
ance matrices. 39-dimensional feature vectors were used:
normalized energy, c[1]-c[12] derived from a mel-spaced
filter-bank of 22 filters, and their first and second deriva-
tives.

4.2. Baseline Recognition Results

Table 1 compares the recognition performance results us-
ing the baseline system, speaker normalization, gender-
dependent models, and cepstral mean subtraction. The
first row reports the word error rate observed when test-
ing unwarped feature vectors using models trained on un-
warped feature vectors. The second row reports the error
rate observed using speaker normalization. The models
were trained using frequency-normalized feature vectors
obtained after the first iteration of the iterative HMM
training procedure. In implementing cepstral mean sub-
traction, the mean of the cepstral vectors over the non-
silence portions of each utterance is computed and sub-
tracted from the entire utterance; the results are shown
in the third row. Finally, gender-dependent models were
implemented using 2 sets of HMMs with 8 Gaussians per
mixture were trained, one for the female speakers and
one for the male speakers, and the results are shown in
the fourth row. The error rates for utterances spoken
through the carbon and electret handsets are shown sep-
arately in the second and third columns, and averaged in
the last column.
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Condition Carbon | Electret All

Baseline 2.8 % 1% 34 % |
Speaker Normalization | 2.4 % 31% | 2.7% |
Cepstral Mean Norm. 2.5 % 3.7 % 31 % |
Gender-Dep. Models 2.3 % 34% | 29% |

Table 1: Performance of speaker normalization
procedures as compared to using no warping, to
using gender-dependent models, and to cepstral
mean normalization.

There are several observations that can be made from
Table 1. First, it is clear from the table that the overall
word error rate is reduced by approximately 20% through
the use of frequency warping during both HMM training
and recognition. Speaker normalization performed bet-
ter than both cepstral mean normalization and gender-
dependent models, even though the GD models used twice
as many model parameters as the others. The second ob-
servation concerns the relative error rate obtained using
carbon and electret transducers. For both conditions, the
error rate for the carbon transducers is significantly lower
than that for the electret. These results are consistent
with those observed in [4], and a possible explanation for
the performance discrepancy was provided there. Finally,
it is interesting to note that this performance difference
between carbon and electret transducers is reduced after
speaker normalization.

4.3. Distribution of Warping Factors

We also examined the distribution of the chosen warping
factors over the speaker set to verify our intuition about
distortions caused by vocal tract length variations, and
the distribution of vocal tract length over the human pop-
ulation. Histograms of the chosen warping factors for the
speakers in the training set are shown in Figure 4. On av-
erage, about 15 utterances are used to estimate the warp-
ing factor for each speaker. The value of the estimated
warping factor is displayed along the horizontal axis, and
the number of speakers who were assigned to each given
warping factor is plotted on the vertical axis. Warping
factors below 1.00 correspond to frequency compression,
and those above 1.00 correspond to frequency expansion.
The mean of warping factors is 1.00 for males, 0.94 for
females, and 0.975 for all of the speakers.
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Figure 4: Histogram of warping factors chosen for
speakers in the training set



Clearly, the average warping factor among males is
higher than that among females. This satisfies our in-
tuition because females tend to have shorter vocal tract
lengths; and higher formant frequencies. As a result, it
is reasonable that the normalization procedure chooses to
compress the frequency axis more often for female speech
than for male speech. At the same time, however, the
fact that the mean of the estimated warping factors over
all speakers is not 1.00 is somewhat surprising, because
the iterative training process was initiated with a model
built with unwarped utterances. One explanation for this
result lies in the difference in the effective bandwidth be-
tween utterances whose frequency axes have been com-
pressed or expanded to different degrees. One side-effect
of frequency compression is the inclusion of portions of
the frequency spectrum which may have originally been
out-of-band. If parts of the discarded spectra carry in-
formation useful for recognition, the ML warping factor
estimation is likely to be biased toward frequency com-
pression.

4.4, Efficiency of Recognition Procedure

Experiments which examined the necessity of a large
finely-sampled search grid during recognition and the
importance of time-alignment in likelihood computation
were also performed. These results are as shown in Ta-
ble 2. The baseline result is taken from the no warping
case. HMM-based search method refers to using proba-
bilistic alignment at each possible warping factor during
recognition. The mixture-based search method refers to
the more efficient search method we proposed earlier and
shown in Figure 2. The error rate is computed over all of
the test data.

Search method # Search pts. | Error Rate
Baseline(No warping) 0 3.4%
HMM-based 13 2.7%
HMM-based 7 2.8%
HMM-based 5 2.8%
HMM-based 3 2.9%

| Mixture-based | 13 [ 29% |

Table 2: Performance of more efficient speaker
normalization recognition procedures

A comparison among rows 2-5 in Table 2 shows that
using a successively smaller number of possible warping
factors results in a graceful degradation in performance.
The recognition error rate increased by only about 7.5%
when the number of warping factors decreased from 13
to 3. Compared with the baseline system with no fre-
quency warping, allowing only 3 possible warping factors
still offers a 15% reduction in error rate.

Comparing the second and last rows of Table 2, we see
that using the mixture-based search method also results in
about a 7.5% increase in error rate. This suggests that the
temporal information in the speech signal is indeed useful
for determining the warping factor. Despite the slightly
higher error rate, however, the computational complexity
of the warping factor estimation stage during recognition
is significantly reduced using the mixture-based method.

4.5. HMM Parametrization

We also investigated how the complexity of the HMMs
used affects the amount of performance gain achieved by
speaker normalization. The results of the experiment are
shown in Table 3. The rows of the table show the recog-
nition results as the number of Gaussians used in each
observation density mixture is increased.
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Size of Mix. | Baseline | Warping | % lmprovement
8 j 34% 2.7 % 20 %

16 32 % 2.4 % 25 %

24 2.5% 2.0% 20 %

32 2.6 % - -

Table 3: Performance of speaker normalization
over different complexity HMMs

It is especially notable from Table 3 that in every case,
using frequency warping with a simpler HMM performs
better than using no warping with more complex HMMs.

4.6. Effect of Iterative Training Procedure

Finally, we performed experiments to see how the num-
ber of iterations change the recognition rate on both the
training and the testing data. These experiments verified
that the frequency warping procedures do indeed reduce
the speaker variability on the training set, and that the
“normalized” HMMs become more efficient over the itera-
tions. Further, they allow us to examine whether multiple
iterations result in improved recognition performance on
the test set. The results are as shown in Table 4. While
multiple training iterations improved the recognition per-
formance on the training data dramatically, it did not help
recognition during testing. One explanation for this be-
havior is overfitting to the training data. Another expla-
nation is a “drift” in the average warping factor estimates
that can occur in training. It is interesting that using the
speaker normalization procedure during recognition with
an unnormalized HMM (first row of the table) still offers
a significant improvement over the baseline.

No. of Iter. | Train Set | Test Set
0 2.4 % 2.9%
1 1.7% 2.7 %
2 1.3 % 2.9 %
3 1.3 % 2.9 %

Table 4: Recognition performance of HMM model
on training and testing data after different number
of training iterations

5. CONCLUSIONS

This paper has presented an experimental study of the
effectiveness of speaker normalization procedures on. a
telephone-based digit recognition task with very short ut-
terances. The results show that these procedures reduce
the digit recogunition error rate by approximately 20 %.
Additionally, more efficient extensions to these procedures
can reduce their computational cost with little degrada-
tion in performance.
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