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Abstract

We consider source requantization in tw oforms | successive degradation
(i.e., source �delity reduction) and bit stealing (i.e., information embedding) |
when no forward planning has been done to facilitate the requantization. We
focus on �nite-alphabet sources with arbitrary distortion measures as well as
the Gaussian-quadratic scenario. F orthe successive degradation problem, w e
show an ac hievable distortion-rate trade-o� for non-hierarchically structured
rate-distortion achieving codes, and compare it to the distortion-rate trade-o�
of successively re�nable codes.

We further consider source requantization in the form of bit stealing, whereby
an information embedder acts on a quantized source, producing an output at the
same rate. Building on the successive degradation results, we develop achievable
distortion-rate trade-o�s. Two cases are considered, corresponding to whether
the source decoder is informed of any bit stealing or not. In the latter case, the
embedder must produce outputs in the original source codebook.

F or the Gaussian-quadratic scenario, all trade-o�s are within 0.5 bits/sample
of the distortion-rate bound. F urthermore, for bit stealing, the use of simple
post-reconstruction processing that is only a function of the embedded rate can
eliminate the loss experienced by uninformed decoders.

1 Introduction

We consider aspects of the problem of source requantization when no provisions hav e
been made for requantization. First, we examine the successive degradation, or quan-
tization rate reduction, problem. As a motivating example, consider transporting a
source through a multi-hop network, where the source is originally encoded at rate
Rorig with distortion d0. If the capacity of some intermediate link along the path
drops to a residual rate Rres < Rorig due to fading, congestion, etc., a transcoder is
required to reduce the rate of the quantized source to Rres, which in turn increases
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the distortion to d > d0. Ideally, we would like transcoding to be eÆcient in the sense
that Rres and d still lie on the rate-distortion curve.

If the source was originally encoded in a successively re�nable manner [1 ], one
could easily reduce the rate by erasing the least signi�cant descriptions. We consider
what can be achieved ev enwithout requiringsuc h special source coding structure at
the original encoder b yconsidering arbitrary random rate-distortion codebooks.1

In the network congestion example, when a source packet and data pack et arrive
at a link that cannot support their combined rate, an alternative to dropping source
bits to accommodate the data pack et is to inject the data bits into the source bits via
information embedding into the source reconstruction. If the embedded(stolen) rate
is Rem b, then the residual rate that is e�ectively allocated to the source representation
is Rres = Rorig �Remb. We examine the degree to which this can be eÆcient in terms
of the associated distortion-rate trade-o�s.

The basic di�erence between the scenarios considered here and those in, e.g., [1, 2],
is the sign of the change in total rate. Those works consider how best to make use of
an additional source observation and an increase in the total rate (abov e the rate of
the �rst codebook) to minimize the distortion of the �nal source estimate(s). In this
work the total rate change is negative, and when that change must be made there is
no source observation to work with, nor hav e prior provisions been made for the rate
decrease. In contrast to the results of [1], these constraints lead to an unav oidable rate-
distortion ineÆciency, even in the Gaussian-Quadratic case. F urthermore, as opposed
to, e.g., [3, 4, 5], the order of operations considered herein is reversed. In those works
information embedding occurs �rst, followed by compression. We consider the reverse
scenario where information embedding must be done in an already-compressed source.

Section 2 considers requantization in the form of successive degradation, while
Section 3 in turn considers requantization in the form of bit stealing, both for informed
and uninformed destination source decoders.

2 Successive Degradation

Fig. 1 depicts the successive degradation scenario. The source x is encoded at rate
Rorig b y a rate-distortion achieving source code using a random codebook, produc-
ing source reproduction x̂ at distortion d0 � E [D(x̂; x)]. Throughout this paper, we
assume that the source coder is generated in an i.i.d. manner; this structure is suÆ-
cient to achieve the rate distortion bound and we believe that the output of any good
source coder will look approximately i.i.d. The reproduction x̂ is processed at the
successive degrader to produce a second source reproduction �x. We de�ne Rres(d) to
be the successive degradation rate-distortion function. That is, Rres(d) is the small-
est residual rate such that we can keep the distortion level E [D(�x; x)] < d + Æ. In
Appendix A we show the follo wing:

1By `arbitrary random rate-distortion codebook' we mean that the codebook is generated accord-
ing to an i.i.d. distribution p(x̂jx), without any special structure such as, e.g., the Markov structure of
a successively-re�nable codebook which, in the notation of [1], satis�es p(x̂1; x̂2jx) = p(x̂1jx̂2)p(x̂2jx)
where E [D(x̂1; x)] � E [D(x̂2; x)].
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Figure 1: Requantization for successive degradation: reducing the rate of an already-
quantized source x̂; Rres < Rorig.

Theorem 1 Let x be dr awn i.i.d. � p(x) and let p(x̂jx) determine the design of a

random source-codebook with rate Rorig = I(x̂ ; x) and distortion d0 < E [D(x̂; x)] +
Æ. An achievable upper bound on the successive de gr adationrate-distortion function

Rres(d) is given by Rres(d) � infp(�xjx̂) I(�x; x̂) where p(�x; x̂; x) = p(�xjx̂)p(x̂jx)p(x) and

E [D(�x; x)] � d.

2.1 Gaussian-Quadratic Results

In Appendix B we show that an ac hievable upper-bound on the successive degrada-
tion rate-distortion function Rres(d) for i.i.d. Gaussian sources under a mean-squared
distortion (MSD) measure is, for d > d0,

Rres(d) � min

�
1

2
log

�
�2
x
� d0

d� d0

�
;
1

2
log

�
�2
x

d0

��
: (1)

As d! �2
x
, Rres ! 0. As d! d0, Rres ! Rorig. Because the approach in Appendix B

requantizes the source as if it is an i.i.d. Gaussian source, while in fact it is a member
of a �nite set of 2nRorig v ectors, there is some �nite range of distortions abov e d0 for
which requantization will not save us any rate, it is better to leave the original source
code as is. T o�nd the point where successive degradation (without time-sharing)
becomes useful, set the �rst term in the minimization of (1) equal to Rorig to get

d = d0 + (�2
x
� d0)2

�2Rorig = d0
�
2� 2�2Rorig

�
, d�: (2)

This sa ys that each time we independently requantize the source with an indepen-
dently generated source code of the same rate, the ov eralldistortion increases b y
roughly d0. We now upper bound the rate-loss in successive degradation (which can
be further decreased with time-sharing). Since the biggest rate loss occurs at d = d�
in (2), the maximum loss is

Rres(d�)�R(d�) �
1

2
log

�
�2
x

d0

�
�
1

2
log

�
�2
x

d0(2� 2�2Rorig)

�
=

1

2
log[2�2�2Rorig ] <

1

2
: (3)

Our results indicate there is a positive rate-loss: unlike in the successive re�nement
problem [1], in successive degradation we do not hav e access to the original source
signal when degrading the source, only to a quantized version of it. In recent work [6]
we hav e shown that random codebooks can be constructed so that Rres(d) is also
lower-bounded b y the right-hand-side of (1). In other words, in the worst case (1)
holds with equality.

Proceedings of the DATA COMPRESSION CONFERENCE (DCC�02) 
1068-0314/02 $17.00 © 2002 IEEE 



Source
Decoder

Source 
Coder

Remb

Source
Decoder

Message
Decoder

Rorig x

m

Rorigx x

m

Re−encoder

Information Embedder

Figure 2: Requantization for bit stealing: embedding a message in to an already-
quantized source; Remb < Rorig.

3 Embedding in a Quantized Source

Fig. 2 depicts the scenario where requantization takes the form of embedding a mes-
sage into a quantized source. The source x is encoded at rate Rorig b y a rate-distortion
achieving source code using a random codebook, producing source reproduction x̂. A
message m of rate Rem b is embedded in tohost x̂. Because we want to embed a mes-
sage in to thequantized source, the rates in toand out of the embedder are identical.
The decoder produces two estimates: of the source, �x, and of the message, m̂.

We consider two embedding subclasses of such problems. In the �rst class, the
source destination is informed of any bit stealing and thus the embedder is free to cre-
ate an entirely new source codebook, requantize the source to that code, and transmit
that description; the remaining bits are used for the message. In the second class, the
source destination is not informed of any bit stealing, and th usthe embedder must
produce outputs in the original source codebook. In the Gaussian-quadratic case we
show that, ev enwith this additional constraint, if the decoder becomes informed of
the rate of the embedding Rem b, then through the use of a simple post-reconstruction
scaling, the same distortion can be achieved as if a totally new codebook were gener-
ated | as in the �rst class.

3.1 Embedding for Informed Decoders: Rate-Splitting

In this case, it suÆces to apply the results of Section 2 to the embedding problem. In
e�ect, we split the rate into t wo streams. One, of rate Rem b, encodes the message. The
other, of rate Rorig�Rem b, is the residual rate left to describe the source. Theorem 1
gives us a strategy to achieve a particular rate-distortion trade-o� between Rem band
d for any �nite-alphabet source.

T oexplore this trade-o� for Gaussian sources and MSD, substitute Rorig � Rem b

into (1) for Rres, and solve for d to see that this method achieves distortion equal to

d(Rorig � Rem b) = d0 + (�2
x
� d0)2

�2(Rorig�Rem b) = d0 + d0
�
1� 2�2Rorig

�
22Rem b: (4)

3.2 Embedding for Uninformed Decoders

In this case, the source decoders in Fig. 2 are identical. We de�ne Remb(d) to be the
largest embedding rate such that we can keep the distortion level E [D(�x; x)] < d+ Æ.
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In Appendix C we show the follo wing:

Theorem 2 Let x be drawn i.i.d � p(x) and let p(x̂jx) determine the design of a ran-

dom source-c odebook with rate Rorig = I(x̂; x) and distortion d0 < E [D(x̂; x)]+ Æ. An

achievable lower-bound on the rate-distortion embedding function is given by Rem b(d)
that satisfy Rorig � Rem b(d) � infp(�xjx̂) I(�x ; x̂) where p(�x; x̂; x) = p(�xjx̂)p(x̂jx)p(x),
px̂(x) = p�x(x), and E [D(�x; x)] < d+ Æ.

3.2.1 Gaussian-Quadratic Results

Let x be an i.i.d. zero-mean Gaussian sequence of v ariance�2
x
. Assume we are given

x̂, the output of a rate Rem b source coder with MSD 1
n
E [
Pn

i=1(x̂i � xi)
2] � d0 + Æ.

If we wish to embed in this quantized source a message of rate Rem b� Rorig, then
Appendix D shows that the following MSD is achievable by an uninformed decoder:

dU(Remb) =
1

n
E

"
nX
i=1

(�xi � xi)
2

#

= �2
x

�
2� 2�2Rorig

�
� 2�2

x

�
1� 2�2Rorig

�p
1� 2�2(Rorig�Remb): (5)

In the case of a decoder that is informed of the rate of embedding, Appendix D further
shows we can improve the distortion by multiplying �x b y� where

� =
p
1� 2�2(Rorig�Remb): (6)

In particular, this scaling is in v ertible,so it does not e�ect the embedding rate, but
improv es distortion to

dI(Rem b) = d0 + d0
�
1� 2�2Rorig

�
22Rem b (7)

where d0 = D(Rorig) = �2
x
2�2Rorig . Comparing (7) with (4) we see that the informed

decoder does as well as one given a completely new codebook.
As one limiting case, we substitute Rem b= 0 into (7) to get [c.f. (2)] dI(0) = d0(2�

2�2Rorig) ' 2d0. This can be in terpreted as follows. If Rem b= 0 the embedder has
nothing to do and no additional distortion should be incurred, i.e E [(�x � x)2] = d0.
But if we wish to embed at a sligh tly positive rate, Rem b> 0, because the embedder
is restricted to mappings between quantization v ectors, the codeword will be mov ed
from the original quantization vector to a di�erent one in the source codebook to
encode the message. In a good vector quantizer, quantization vectors have a minimal
spacing of approximately 2d0. F orpositive rates then, we expect to see a minimal
distortion on the order of 2d0.

As a second limiting case, we substitute Rem b = Rorig into (6) and (7) to get
� = 0 and dI(Rorig) = �2

x
. In contrast, in the case of uninformed decoders (� = 1),

since �jRem b=0 6= 1, then dU(0) > dI(0) = d0(2� 2�2Rorig). In particular, substituting
Rem b= Rorig in to (5) yieldsdU(Rem b) = 2�2

x
� d0. This can be interpreted as follows.

When Rem b = Rorig the source is erased, and each quantization v ector is used to
encode a di�erent message. Erasing all information relevant to the source incurs
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distortion �2
x
. Mapping a message independent of the source to one of the codebook

codewords incurs an additional distortion (�2
x
� d0), the variance of the quantization

v ectors. This results in an ov eralldistortion of 2�2
x
� d0. Clearly though, if all bits

are used to send the embedded message, there is no data about the original source
left, so the decoder (if informed) should set �x = 0, yielding a MSD of �2

x
, which is

re
ected b y�jRem b=Rorig
= 0.

A normalized distortion measure for the informed decoder is, via (7),

dnormI (Rem b) = dI(Rem b)=�
2
x
= 2�2Rorig + 2�2(Rorig�Remb)

�
1� 2�2Rorig

�
: (8)

A normalized measure for uninformed decoders, dnormU (Rem b) can be derived by divid-
ing (5) by �2

x
.

In Fig. 3 normalized distortion is plotted versus residual source coding rate, Rres =
Rorig � Remb, for Rorig = 2. The normalized distortions of the uninformed decoder,
dnormU (Rem b), and of the informed decoder, dnormI (Rem b), are plotted as dashed and
dash-dotted curves, respectively.2 Time-sharing, when possible, makes the points
that lie along the dotted line achievable. At a particular residual source-coding rate,
the minimum ac hievable distortion is lower-bounded b y the distortion-rate function
D(Rorig �Rem b), which is plotted with the solid curve.

In Fig. 3, note the \requantization" gap between the bit stealing curves and the
distortion-rate bound at Rorig � Rem b= Rorig, i.e., Rem b= 0, which occurs because
the embedder is requantizing the quantized source. Unless the original quantization
point is mapped back to itself, a non-zero minimal distortion is incurred. Since, using
the approach detailed in Appendix C, for any Remb > 0 the probability of mapping
back to the same point goes to zero, we observe a gap. Unfortunately, one cannot
always av oid this discontinuity via time-sharing because one cannot time-share within
a single vector codebook. Only if there is a sequence of quantized sources transmitted
can time-sharing be implemented. In this special case one can time-share between the
achievable distortions giv enb y (8) and doing nothing (Rem b= 0) to get the points
along the dotted line.

A Successively Degrading a Finite-Alphabet Source

Let x1; x2; : : : ; xn be dra wni.i.d. � p(x) and let D(x; x̂) be a distortion measure for this
source. Given a randomly-generated source code that achieves distortion d0, w ecan re-
encode this codebook into a second codebook of rate R that achieves distortion d as long as
R > Rres(d), where Rres is the rate-distortion function for this source/�rst codebook pair.
We show that an achievable upper-bound on Rres(d) is

Rres(d) � inf
p(�xjx̂)

I(�x ; x̂) (9)

where p(�x; x̂; x) = p(�xjx̂)p(x̂jx)p(x) and E [D(x ; �x)] � d.

2As shown in (7), the distortion-rate performance of the informed decoder for Gaussian sources
is equivalen t to the performance of the rate-splitting embedder (4). This means that the dash-dot
line in Fig. 3 also shows us the distortion-rate performance of successive degradation source coding
for the quadratic Gaussian case discussed in Section 2.1.
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Figure 3: Residual-Rate-Distortion behavior; Rorig = 2. The dashed and dash-dot
curves plot dnormU (Rem b) and dnormI (Rem b), respectively; the latter is equivalent to suc-
cessive degradation performance. Time-sharing (when possible) makes the points
along the dotted line achievable. The solid curve is the lower-bound corresponding to
the Gaussian distortion-rate function D(Rorig � Rem b). Note dnormU (Remb = Rorig) =
2� 2�2Rorig � 2.

Quantizer: Assume the source is quantized using a randomly generated codebook ac-
cording to p(x̂jx) where Rorig > I(x̂ ; x) and d0 � E [D(x̂ ; x)] + Æ. In particular, the source
codebook C consists of 2nRorig n-length sequences generated according to

Qn
i=1 p(x̂i). These

sequence are labeled x̂(1); : : : ; x̂(2nRorig). F orsource encoding, �nd the indices i suc hthat

(x; x̂(i)) 2 A
�(n)
� , where A

�(n)
� denotes the set of jointly strongly typical sequences of length

n. If there is more than one such index, choose any one of them. T ransmit thati.

Source Degrader: Given that w ew an tto increase the source distortion to d > d0, at
the source degrader searc hoverjoint distributions p(�x; x̂; x) = p(�xjx̂)p(x̂jx)p(x) suc hthat
(1) p(x̂jx) and p(x) are as de�ned as above, and (2)E [D(�x ; x)] < d+ Æ. Pick the distribu-
tion that satis�es these constraints while minimizing I(�x ; x̂).

Generate a second codebook C2 which consists of 2nR n-length sequences generated
according to

Qn
i=1 p( �xi). These sequence are labeled �x(1); : : : ; �x(2nR). For encoding, �nd

the indices j such that (x̂; �x(j)) 2 A
�(n)
� . If there is more than one suc h index, choose an y

one of them. T ransmit thatj.

Decoding: At the decoder the source estimate is �x(j).

Probability of error: The probability that the source coder cannot �nd at least one
x̂(i) join tlystrongly typical with x goes to zero for n large. This follows from standard
join tstrong typicality reasoning because Rorig > I(x̂ ; x). The probability that the source
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degrader cannot �nd a �x(j) join tlytypical with x̂(i) goes to zero for n large. This follows
from standard joint strong typicality reasoning because R > I(�x ; x̂).

Distortion: We now analyze the expected distortion betw een�x and x. Because x and x̂

are jointly t ypical, x̂ and �x are jointly typical, and x ��Æ̂x ��Æ�x form a Markov chain, as n

gets large (x; �x) 2 A
�(n)
� with probability approaching one by the Markov lemma. Because

they are jointly strongly typical, E [D(x; �x)] =
P

x;�x p(x; �x)D(x; �x).
Since R > I(�x ; x̂) is achievable, and R > Rres(d), then (9) provides an upper bound on

the rate-distortion function Rres(d).

B Successively Degrading a Gaussian Source

T oextend the results of Appendix A to continuous alphabets, w emust partition x ! xp,
x̂ ! x̂p and �x! �xp carefully, so as to preserve the Markov relationship xp ��Æ̂xp ��Æ�xp for
each partition. See [7] for more details.

De�ne the follo wingtest channel: x̂ = �x + eorig where � = (1 � d0=�
2
x
) and eorig �

N(0; �d0). This is the standard test-channel for rate-distortion source coders. Next de�ne
a second standard test channel �x = 
x̂ + eres where 
 = (1 ��=�2

x̂
) and eres � N(0; 
�).

This compound test channel gives us overall MSD d = E
�
(�x � x)2

�
= d = d0 +�, and

I(�x ; x̂) =
1

2
log

�
�2
x
� d0
�

�
: (10)

Substitute � = d� d0 into (10) to get an upper bound on Rres(d),

Rres(d) �
1

2
log

�
�2
x
� d0

d� d0

�
; (11)

where d� d0 > 0.

C Embedding in a Quantized Finite-Alphabet Source

Let x1; x2; : : : ; xn be dra wni.i.d. � p(x) and let D(x; x̂) be a distortion measure for this
source. Given a randomly-generated source code that achieves distortion d0, we can embed
a message of rate R in to this codebook causing overall distortiond as long as R < Rem b(d),
where Rem bis the rate-distortion function for this source/�rst codebook pair. We show that
an achievable low er-bound onRem b(d) is given by the Remb(d) that satisfy

Rorig �Rem b(d) � inf
p(�xjx̂)

I(�x ; x̂) (12)

where p(�x; x̂; x) = p(�xjx̂)p(x̂jx)p(x), p�x(x) = p
x̂
(x), and E [D(x ; �x)] � d.

Quantizer: Assume the source is quantized using a randomly generated codebook ac-
cording to p(x̂jx) where Rorig > I(x̂ ; x) and d0 � E [D(x̂ ; x)] + Æ. In particular, the source
codebook C consists of 2nRorig n-length sequences generated according to

Qn
i=1 p(x̂i). These

sequence are labeled x̂(1); : : : ; x̂(2nRorig). F orsource encoding, �nd the indices i suc hthat

(x; x̂(i)) 2 A
�(n)
� , where A

�(n)
� denotes the set of jointly strongly typical sequences of length

n. If there is more than one such index, choose any one of them. T ransmit thati.
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Information Embedder: Given that we want to embed a message at distortion d, at
the information embedder search over joint distributions p(�x; x̂; x) = p(�xjx̂)p(x̂jx)p(x) suc h
that (1) p(x̂jx) and p(x) are as de�ned as above, (2) p�x(x) = p

x̂
(x), and (3) E [D(�x ; x)] <

d+ Æ. Pick the distribution that satis�es these constraints while minimizing I(�x ; x̂).

Randomly bin C in to 2nR subcodes Cj where R = Rorig� I(�x ; x̂)� �, � > 0.. That is, for
each x̂(i) pic kan index j uniformly distributed over 1; : : : ; 2nR and assign x̂(i) to subcode
Cj. On average there are 2n(Rorig�R)

x̂ sequences in each Cj. Relabel the x̂ sequences in Cj
as �x(j; k) where j 2 1; : : : ; 2nR and k 2 1; : : : ; 2n(Rorig�R). Finally, given a source codeword

x̂(i), and a message m = m, �nd the indices k such that (x̂(i); �x(m; k)) 2 A
�(n)
� . If there is

more than one such index pick any one. T ransmit the indexl such that x̂(l) = �x(m; k).

Decoding: The source estimate is x̂(l), and the message estimate is m̂ = m suc hthat
�x(m; k) = x̂(l).

Probability of error: The probability that the source coder cannot �nd at least one
x̂(i) jointly strongly typical with x goes to zero for n large. This follows from standard joint
strong typicality reasoning because Rorig > I(x̂ ; x).

The probability that the information embedder cannot �nd a �x(m; k) jointly typical with
x̂(i) goes to zero for n large. T o see this, note that the probability that the original source-
quantization vector x̂(i) falls into the selected bin m is 2�nR, which goes to zero for n large.
Then, conditioned on the event that x̂(i) is not in bin m, the rest of the codewords in bin
m look like i.i.d. sequences generated independent of x̂(i) according to

Qn
i=1 p�x(xi). (Since

the elements of Cm are also in C, and those in C w ere generated independently according toQn
i=1 px̂(xi), because px̂(x) = p�x(x) the codewords in bin m look like they w eregenerated

according to
Qn

i=1 p�x(xi).) The probability that at least one of these sequences, �x(m; k),
is jointly strongly typical with x̂(i) goes to one for n large because there are 2n(Rorig�R)

codewords in bin m and Rorig � R > I(�x ; x̂). The probability that m̂ 6= m is zero because
there is no noise in the system.

Distortion: We now analyze the expected distortion between �x and x. Because (1) x

and x̂ are jointly t ypical, (2) x̂ and �x are jointly t ypical, and (3)x ��Æ̂x ��Æ�x form a Markov

chain, as n gets large (x; �x) 2 A
�(n)
� with probability approaching one by the Markov lemma.

Because they are jointly strongly typical, E [D(x; �x)] =
P

x;�x p(x; �x)D(x; �x).
Since R = Rorig � I(�x ; x̂) � � is achievable for all � > 0, and R � Remb(d), then (12)

pro vides a low er bound on the rate-distortion functionRem b(d).

D Embedding in a Quantized Gaussian Source

T oextend the results of Appendix C to contin uousalphabets, w emust partition x ! xp,
x̂ ! x̂p and �x! �xp carefully, so as to preserve the Markov relationship xp ��Æ̂xp ��Æ�xp for
each partition. See [7] for more details. In this section we derive a compound test channel
for Gaussian source.

First, de�ne the follo wing test channel: x̂ = �x + eorig where � = (1 � d0=�
2
x
) and

eorig � N(0; �d0). This is the standard test-channel for rate-distortion source coders. Next
de�ne an information embedding test channel [8] �x = 
x̂ + eem bwhere eemb � N(0; (1 �

2)(�2

x
� d0)). Note that E

�
�x2
�
= E

�
x̂
2
�
which satis�es the constraint p

x̂
(x) = p�x(x) since
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both are zero-mean Gaussian random variables. Finally, de�ne ^̂
x = ��x . In Appendix C

w edid not allo wpost-processing of the estimate. That was the case of an `uninformed'
decoder, when the decoder does not know embedding has occurred. In that case � = 1.
We analyze the case � = 1 below, but also analyze the case of `informed' decoders when
� can be chosen as a function of the embedding rate R. The multiplication by � doesnot
e�ect the achievable transmission rates, since the multiplication can be inverted, hence the
achievabilit yarguments from Appendix C still hold. The e�ect of the � scaling is thus
restricted to distortion calculations. We optimize over all possible scalings
 and �.

From rate-distortion results for white Gaussian sources and mean-squared distortion

measures, w eknow that to ac hieve distortion d0, Rorig > 1
2 log

�
�2
x

d0

�
= I(x ; x̂). F rom

Theorem 2 w eknow that w ecan embed at a rate R suc h that Rorig � R = I(x̂ ; �x) =
1
2 log

�
1

1�
2

�
. Solve for 
 as a function of R to get 
 =

p
1� 2�2(Rorig�R) � 0, which holds

with equality when R = Rorig. Next, solve for the expected distortion and substitute in for
�, 
, and the variances of eorig and eem bto get

d = E
h
(^̂x � x)2

i
= (��
 � 1)2�2

x
+ ��2
2d0 + �2(1� 
2)(�2

x
� d0)

= �2
x

"
�2
�
1�

d0
�2
x

�
� 2�

�
1�

d0
�2
x

�s
1�

d0
�2
x

22Remb + 1

#
: (13)

For uninformed decoders, substitute � = 1 and d0 = �2
x
2�2Rorig in to (13) to get (5).

For informed decoders, di�erentiate (13) with respect to � and set equal to zero to get

� =
p
1� 2�2(Rorig�R), which uponsubstitution in to (13) with d0 = �2

x
2�2Rorig yields (7).

Solving (7) for R yields a low er-bound onRem b(d) because Rem b(d) � R.

References

[1] W. H. Equitz and T. M. Cover, \Successive re�nement of information," IEEE T rans.

Info. Theory, vol. 37, pp. 269{275, Mar. 1991.

[2] H. Viswanathan and T. Berger, \Sequential coding of correlated sources," IEEE Trans.

Info. Theory, vol. 46, pp. 236{246, Jan. 2000.

[3] D. Karakos and A. P apamarcou,\Relationship between quantization and distribution
rates of digitally watermarked data," in Pr oc. IEEE Inter. Symp. Info. Theory, 2000.

[4] D. Kundur, \Implications for high capacity data hiding in the presence of lossy com-
pression," in Proc. IEEE Int. Conf. On Info. T ech.: Coding & Comp., pp. 16{21, 2000.

[5] M. Ramkumar and A. N. Akansu, \Information theoretic bounds for data hiding in
compressed images," in Pr oc. IEEE Workshop on Multimedia Sig. Proc., 1998.

[6] A. Cohen, S. C. Draper, E. Martinian, and G. W. Wornell, \Stealing bits from a quan-
tized source," Submitted to Int. Symp. Info. Theory, 2002.

[7] A. D. Wyner, \The rate-distortion function for source coding with side information at
the decoder{II: General sources," Information and Control, v ol. 38, pp. 60{80, 1978.

[8] M. H. Costa, \Writing on dirty paper," IEEE Trans. Info. Theory, vol. 29, pp. 439{441,
May 1983.

Proceedings of the DATA COMPRESSION CONFERENCE (DCC�02) 
1068-0314/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


