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ABSTRACT — Solitons and the evolution
equations that support them arise in the anal-
ysis of a wide range of physical phenomena
including shallow water waves, piezoelectrics,
and optical transmission in nonlinear fibers.
Although such systems are nonlinear, they are
exactly solvable and possess a class of solutions,
known as solitons, which satisfy a form of su-
perposition. This paper is an extension of a
previous paper, in which a circuit implemen-
tation of the Toda lattice was examined for a
variety of signal processing problems includ-
ing multiple access communications, private or
low power transmission, and multi-resolution
transmission. In this paper, a novel diode lad-
der circuit is presented that more accurately
implements the Toda lattice and is potentially
more robust to additive channel corruption
while providing more efficient modulation and
demodulation.

1 Introduction

Fourier representations of signals and their rela-
tionship to stationary processes and linear time-
invariant (LTI) systems have had a tremendous
impact on the design of many traditional commu-
nication systems. Recently, a class of nonlinear
system models has been shown to possess many
of the important properties of LT systems. Al-
though nonlinear, these systems are exactly solv-
able through a technique known as “inverse scat-
tering” which can be viewed as an analog of the
Fourier transform [1]. These systems admit a
class of eigenfunctions, known as solitons, which
satisfy a nonlinear form of superposition [3, 6].
In a recent paper [4], the use of solitons as
modulating waveforms was discussed for a vari-
ety of signal processing and communication con-
texts. Specifically, soliton solutions of a nonlin-
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ear LC ladder circuit were considered for a mul-
tichannel AM and FM-like modulation, variable-
rate pulse amplitude modulation with low-power
applications, and priority or hierarchical multiple
access channels. These represent only a few of the
many ways in which solitons may be exploited for
communications and signal processing.
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Figure 1: Nonlinear LC network of Hirota and
Suzuki

2 Solitons in a Nonlinear Circuit

The communication schemes developed in [4] rely
on the properties of the nonlinear transmission
line model shown in Fig. 1. This LC circuit was
first shown to support soliton solutions by Hirota
and Suzuki [2] when the capacitor voltage v, and
charge ¢, are related by

q(vyn) = CoVoIn(1+ vn/Vh), (1)

where V4 is the bias voltage and Cj is a constant.
In this case, the circuit is governed by the equa-
tions
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where 8 = 1/LCoVs, v, is the voltage across the
nth capacitor, vgp = Vi, and L is the inductance.
Suzuki, et al. have shown that this circuit is
equivalent to the more familiar Toda lattice [6].
The Toda lattice describes a chain of masses
(each of mass m) connected by nonlinear springs.
If the displacement of the nth mass from its rest
position is yn, then the net displacement between
the nth and (n+1)th masses is rn = Yn41 —Yn- In



the case that the springs obey a force relationship
given by

flrn) =0 (e'b"" - 1) , (3)

where a and b are arbitrary positive constants,
the resulting system is called the Toda lattice.

The governing equations of motion for the lat-
tice are given by
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An equivalent expression in terms of the forces on
the springs, f. = f(rn), is given by
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which are equivalent to the equations in (2).
Nonlinear LC ladder realizations of such cir-
cuits have been constructed using biased varactor
diodes [2, 5] to approximate the nonlinear capac-
itors over a range of voltages. Such circuit tech-
niques are discussed in [2, 5, 4]. To more accu-
rately match the Toda lattice, an electronic ana-
log of the exponential spring is sought. This leads
to the semiconductor junction diode. If voltages
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Figure 2: Diode ladder network.

vp_; and vy, are applied to the terminals of a junc-
tion diode, the current through the device is well
modeled by

in = I, (et male _ 1), (6)

where I, is the saturation current and v; is the
thermal voltage. If we place the diodes in a ladder
configuration as shown in Fig. 2, then the current
through the nth shunt impedance is given by

i —tpen = (e(vn-rvn)a’vs e e(vn—vn-n)!'v:) (7)
By analogy with (4), we see that if the shunt
impedance is a “double capacitor” with a voltage-
current relation given by

= Oc'i-n, (8)

where @, = iy — in+1 is the current through the
nth shunt impedance, then the governing equa-
tions become
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and
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where iy = 4, — i3. These are equivalent to

the Toda lattice equations with a/m = al, and
b = 1/v;. A double capacitor can be realized
using ideal operational amplifiers in the gyrator
circuit shown in Fig. 2, which has the required
impedance of Z, = a/s* = R3/R1R,C?s?.
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Figure 3: Double capacitor circuit design.

In addition to more closely matching the evolu-
tion equations for the Toda lattice, the diode lad-
der circuit can be more easily terminated than the
nonlinear LC ladder. To find the proper termina-
tion, the diodes are replaced with their equivalent
linearized resistance Req and the input impedance
of the line is determined. This results in

= (11)
For the component values considered and for fre-
quencies below 1 MHz, a load impedance consist-
ing of a 10() resistor and a 60nF capacitor ap-
proximate 11 well and yield no almost reflections

in practice.
When i#;,(¢) in Fig. 2 is of the form

) = I,Q%sech?(vt), (12)
b= Q\/Iscv—/vr,
it can be shown that (10) has the solution
in(t) = I,Q%sech?(pn — 7t), (13)



where = sinh(p). This response corresponds to
a single pulse traveling-wave solution, parameter-
ized by the wavenumber, p, and is referred to as
a soliton solution.

3 HSPICE Implementation

The diode lattice has been implemented with
HSPICE using realistic component models for
circuit simulations. The diode models used are
din4449’s with I, =~ 2nA. To prevent satura-
tion of the operational amplifiers in the double
capacitor circuits, we have chosen to set R =
R, = Rz = 1kQ. These values together with
capacitors in the gyrators of 10nF permit soli-
ton pulse widths of about 2us with amplitudes of
about 2mA. The double capacitors use precision
LT1028A op-amps with a gain bandwidth product
of about 65 MHz.

For the communication strategies of [4], two of
the most important properties of the lattice solu-
tions are illustrated in Fig. 4. First, these solu-
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Figure 4: HSPICE simulation of two solitons in
the diode lattice. Each horizontal trace shows the
current through one of the diodes.

tions have amplitude-dependent pulse-width and
velocity, yielding high-amplitude short-duration
solitons which travel faster than those of lower-
amplitude and longer-duration. Second, soliton
solutions satisfy a form of nonlinear superposi-
tion whereby two solitons pass through one an-
other leaving each virtually unchanged (except
for a small phase shift) after their nonlinear in-
teraction. A major difference between soliton so-
lutions to this circuit and those of the nonlinear
LC line lies in the scale of operation. Due to bias-
ing constraints for the LC line, solitons were gen-
erally restricted to a small range wavenumbers,
p ~ 1. Over this range, the traveling velocity
of the solitons, which is proportional to sinh(p)/p

does not vary greatly between solitons of different
wavenumbers. In the new diode ladder circuit,
however, since I, =~ 2nA, we must have p =~ 8 for
solitons to have amplitudes in the mA range. Due
to the exponential nature of the sinh function, the
velocities of solitons with slightly different cur-
rents in the mA range yield drastically different
velocities. This enables modulation and demod-
ulation circuits to separate messages into their
component solitons with far fewer nodes. An in-
teresting additional aspect of operating at higher
soliton wavenumbers, as shown in Fig. 4, is the
extra ripple that appears during the nonlinear in-
teraction between the two solitons on node 6.

4 Noise Dynamics

For the nonlinear LC lattice, the effects of small
amplitude white Gaussian noise on the dynamics
of the soliton solutions was previously examined.
It was found that for high signal-to-noise ratios
the soliton solutions were relatively unaffected by
the presence of the noise in the lattice. Further-
more, the noise dynamics were also qualitatively
unaffected by the presence of the solitons. In the
noise-only case, the small signal model for the
lattice was a dispersive low pass filter. The effect
of the solitons on the noise was to create a time
varying gain in the lattice which traveled through
the lattice with the solitons [4].

Since the range of wavenumbers over which the
diode ladder circuit operates is drastically differ-
ent from those of the nonlinear LC circuit, it is
not surprising that the small signal analysis does
not carry over. If the input to the lattice is com-
posed of a soliton component and a noise com-
ponent, 4in(t) = Sin(t) + #in(t), from [4], the non-
soliton portion of the signal, tin(t) satisfies
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where S,, and i, are the components of the diode
currents due to the soliton and non-soliton inputs
respectively. In the nonlinear LC ladder analy-
sis, we may assume that the contribution to the
argument of the In function from the noise com-
ponent is small, and linearize the left hand side.
In this case, since I, ~ 1nA and S, and ¢, are
on the order of 1 mA, the noise term dominates
the argument of the In function. Since the soli-
ton terms, Sp, are small compared to 1 and are
very smooth, we may ignore their contribution to
the left-hand side of (14). Therefore, the noise
component of the response approximately satis-
fies (10), as it would if the soliton component were



not present. Replacing the diodes with their lin-
earized resistance, we see that the ladder becomes
a very narrow lowpass filter, through which nearly
all frequencies result in non-propagating (evanes-
cent) waves. This result is confirmed empirically
as shown in Fig. 5 for the two soliton example in
white Gaussian noise with 20 dB signal to noise
ratio. Note that although the noise is rapidly fil-
tered out of the response, the velocity of the small
amplitude soliton is slightly perturbed, resulting
in the two solitons meeting a node later than in
the noise-free case shown in Fig. 4. The apparent
independence between the noise component and
the soliton components and between the soliton
components of different wavelengths is a result
of a more fundamental property of the Toda lat-
tice and relates to the inverse scattering method
of solution whereby a large class of solutions to
the Toda lattice comprise a discrete set of soli-
ton components and a continuum of non-soliton
components [6].
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Figure 5: Solitons in the diode lattice at an SNR
of 20 dB

5 Conclusions

In a previous paper [4], the use of a nonlinear LC
ladder implementation of the Toda lattice and its
soliton solutions was discussed for signal synthe-
sis in a variety of modulation techniques. The
ideas behind such strategies involve exploiting the
independent behavior of solitons of different am-
plitudes as well as an apparent robustness to ad-
ditive channel noise.

In this paper, a new circuit has been presented
for soliton modulation that more accurately mod-
els the Toda lattice. In addition, this circuit can
be more effectively terminated to avoid reflec-
tions. The diode ladder circuit also operates over
a different range of soliton wavenumbers, allow-
ing greater variation in the velocities of transmit-

ted solitons, thus enabling more efficient modu-
lators and demodulators in terms of the required
number of nodes. Some of the implications of
the new circuit on the noise analyses given in [4]
were also discussed. The inverse scattering ap-
proach to the solution of the Toda lattice equa-
tions may provide insight into the higher order
effects of additive corruption on the demodula-
tion performance. This is an area of ongoing re-
search.
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