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ABSTRACT

A class of efficient strategies for exploiting transmit an-
tenna diversity on fading channels is developed. These
techniques, which we refer to as linear antenna precod-
ing, asymptotically transform a nonselective Rayleigh fad-
ing channel into a nonfading, simple white marginally Gaus-
sian noise channel with no intersymbol interference. Linear
antenna precoding requires no additional power or band-
width, and is also attractive in terms of computation, ro-
bustness and delay considerations.

1. INTRODUCTION

In wireless applications, fading due to multipath propaga-
tion severely impacts system performance. However, the
effects of fading can be substantially mitigated through the
use of diversity techniques in such systems via appropriately
designed signal processing algorithms at both the transmit-
ters and receivers.

We focus on the use of spatial diversity in nonselective
fading environments, a situation that applies when time
variations in the channel are very slow relative to the sym-
bol duration, and when frequency variations are on scales
much larger than the system bandwidth. Spatial diver-
sity involves the use of multiple antennas at the receiver
and/or the transmitter. We focus on the latter case, which
is termed transmit diversity. This form of diversity is partic-
ularly attractive in applications such as broadcasting and
forward-link (base-to-mobile) transmission in cellular sys-
tems.

For such scenarios, we develop a class of efficient and
practical linear signal processing algorithms for exploiting
transmit diversity on nonselective fading channels with-
out incurring bandwidth expansion. Moreover, these algo-
rithms can be efficiently combined with other forms of diver-
sity and error-correction coding to further improve system
performance. Our framework is also convenient for ana-
lyzing and relating several novel strategies proposed in the
literature, including, e.g., [1] [2] (3] [4].

2. LINEAR ANTENNA PRECODING

Consider the equivalent discrete-time baseband model of a
passband channel for a system with M transmit antennas,
where the (generally complex-valued) transmission from the
mth antenna we denote using yn[n] for m = 0,1,..., M —1.
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At the receiver we obtain

i) = win + 3 am yln, 0

m=0

where wln] denotes the complex-valued, zero-mean, white
Gaussian noise receiver noise, which has variance Ay and
is independent of the fading coefficients ag,a1,...,am-1.
Given sufficient physical separation among the constituent
antennas, the fading coefficients can be modeled as mutu-
ally independent, complex-valued, zero-mean Gaussian ran-
dom variables with variance ¢2. We assume that these co-
efficients are not known at the transmitter (i.e., feedback
is not viable), but are known (or, more typically, can be
reliably estimated) at the receiver.

For this channel, we consider a transmitter structure in
which the bit stream is first processed by a single, suitably-
designed error-correcting coder. The resulting coded sym-
bol stream z[n] is then processed by a linear processor at
each of the constituent antennas of the transmitter. We
refer to this second stage of processing as “linear antenna
precoding.” At the receiver, the observations rn] are first
processed by a linear equalizer to generate the equalized
signal Z[n], which is subsequently decoded.

3. LTI ANTENNA PRECODING

When the linear antenna precoding takes the form of lin-
ear time-invariant (L'TI) filtering, the transmission from the
mth antenna is

+o0
ynlnl = 2= 3 hlnlaln— 4, (@)

where we refer to the (generally complex-valued) unit-
sample response hp,[n] as a “signature” of the precoder.
The associated Fourier transform of each signature will be
denoted by Hy,,(w). We refer to the set of M signatures
as the signature set, and to a collection of signature sets
{hm[n]}M . indexed by the array size M as a family of
signature sets.

We restrict our attention to families of signature sets
meeting the following conditions.

Definition 1 A family of signature sets is termed admissi-
ble if the following conditions are satisfied:

1 M-1
i [ Ho)* = 1, alw (3a)
m=0
M-1
lim — Hp(w)Hy(v) = 0, w # v. (3b)
Moo
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Condition (3a) ensures that the total average transmitted
power is independent of M, while (3b) ensures that certain
attractive asymptotic characteristics can be achieved.

An example of a linear antenna precoding system meeting
the conditions of Definition 1 is one using antenna signa-
tures with ideal bandpass characteristics, i.e.,

Ho(w) = VM mw/M < |w| < (m+ )n/M
m 0 elsewhere in |w| < 7.
This corresponds to the notion of assigning each antenna a
distinct portion of the available bandwidth.

Although ideal bandpass signatures are, of course, unre-
alizable, families of practical finite-length signatures can be
readily constructed. We consider signatures of length M,
for which we can construct the matrix representation

hol0] holl}  --+  ho[M —1]
mo] R[] - Ra[M 1]
= : : - : (4)
hM;l[O] hM—‘—l[H hM—l[M ~1]

For such signatures, we have the following theorem [5].

Theorem 1 For a family of signature sets whose con-
stituent signatures have length M to be admissible in the
sense of Definition 1, it is sufficient that H in ({) be a
unitary matriz, i.e., that each signature set consist of or-
thogonal signatures.

Theorem 1 leads to a broad class of systems. For example,
when we choose H = I where I is the M x M identity matrix
50 that Ax[n] = d[n—m], we obtain a scheme explored both
by Wittneben (1] for the case M = 2 and, more generally,
by Winters [4]. We can also choose H = F or H = =, which
are the discrete Fourier transform (DFT) and (normalized)
Hadamard matrices, respectively. For M = 2, both are
equivalent to a scheme also explored by Wittneben [1].

3.1. System Characteristics and Receiver Design
An important interpretation of linear antenna precoding is
that it effectively transforms the original nonselective fading
channel into a frequency-selective fading channel. To see
this, we observe, combining (1) with (2), that the received
signal can be expressed in the form

r[n] = a[n] x z[n] + w[n] (5)
where o
n -1
a[n] = T n};ﬂ am hm[n] (6)

is the impulse response of the “effective” channel generated
by the antenna precoder. This channel has frequency re-
sponse

M-1
1
Alw) = T > am Hu(w), (7)
m=0
which is a zero-mean, 2m-periodic, Gaussian random process
in frequency w, with variance o;.

We restrict our attention to linear equalizers for exploit-
ing the inherent frequency diversity, which remain practical
even when the number of antennas is large, so that our
receiver structure consists of an equalizer followed by a de-
coder. Specifically, for an LTI equalizer with unit-sample
response b[n], the equalized signal is

&[n] = bln] * rln] = Y _ blk]rin - K] (8)

k

We consider equalizers whose frequency response takes the
form B(w) = f(A(w)) where A(w) is as defined in (7), and
where f(-) is a complex-valued function that satisfies some
mild admissibility conditions [5].

Combining (8) with (5) we obtain

&[n] = c[n]  z[n] + b[n] * w[n], 9)

where c[n] = a[n] % b[n], so that C(w) = A(w)B(w) is
the effective frequency response after equalization. For
the class of equalizers under consideration, we have that
w = BE[BW)], pe = E[C(w)], 0y = var B(w), and ¢¢ =
var w).

In turn, we obtain the following theorem that asymptot-
ically characterizes the composite system consisting of the
antenna precoder, channel, and equalizer [5].

Theorem 2 Let z[n] be a sequence of zero-mean uncorre-
lated symbols, each with energy & . Furthermore, for every
M, let am form =0,1,...,M~1 be a collection of indepen-
dent complez-valued Gaussian random variables, each with
mean zero and variance ol. Finally, suppose bn] is the
unit-sample response of an admissible equalizer, and that
the antenna precoder signature sequences hm[n] satisfy the
conditions (3). Then, as M — co, we have, for each n,

#[n] =% pezln] + vln), (10)

where v[n] is a compler-valued, marginally Gaussian, zero-
mean white noise sequence, uncorrelated with the input sym-
bol stream z[n] and having variance

varvn] = Es02 + No (0? + I,ub|2) . (11)

Theorem 2 asserts that given transmit antenna diver-
sity of this form, the channel “seen” by the coded sym-
bol stream is transformed from a fading channel into a
marginally Gaussian white noise channel. From (11), we
see there are two components in this equivalent noise: one
component is due to the original receiver noise, the second
is due to intersymbol interference (ISI) that is generated
by the transmit diversity, and hence has a variance that
scales with the symbol energy. In effect, we see that this
IS is transformed into a comparatively more benign form
of uncorrelated, additive noise. This theorem is the trans-
mit diversity counterpart of one developed for a class of
linear temporal diversity schemes in [6] [7], and the salient
features of the characterization are analogous.

As Theorem 2 suggests, in the absence of additional cod-
ing, good performance is achieved using simple symbol-by-
symbol detection after the equalizer. Such simplifications
mean that it is practical to combine this antenna diver-
sity with additional error-correction coding for the Gaus-
sian channel. For example, if trellis-coding 1s used, Viterbi
decoding can be used after equalization as if the channel
were Gaussian.

System performance depends strongly on the signal-to-
noise ratio (SNR) associated with the equivalent channel,
which in turn depends strongly on the choice of equalizer.
A useful criterion for equalizer design is to select among
admissible equalizers that yielding the largest SNR in the
equivalent channel, which leads to [5]

A*(w)
CTAWF+ &’

where &9 = No/Es. Note that, coincidently, this is a mini-
mum mean-square error type equalizer, which is attractive
from the point of view of implementation. Also, note that
the numerator of (12) is a conventional matched filter (i.e.,
RAKE receiver [8]), so that the denominator can be viewed
as an additional compensation stage.

B(w) (12)
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3.2. Performance

The asymptotic performance characteristics (M — co) of
the optimized system also follow from the equivalent quasi-
Gaussian channel. Specifically, while the SNR in the origi-
nal channel, i.e.,
A(W)?Es
ao(w) = A&, (i;ol 2 (13)

is both random and varies as a function of frequency w, with
the optimum equalizer, i.e., (12), we immediately obtain
that the SNR in the equivalent channel is a deterministic
constant of the form
‘y 1 1 1
0 = —_— =y —_

E [aﬁ] Coe0 E1(Co)
where 1/¢o = E [ao(w)] = 02&: /Ny is the average SNR in
the original channel, and where E\(-) denotes the exponen-
tial integral defined via

Er(v) :/”ooi;dt. (15)

A useful notion of capacity for our transmit diversity
scheme results when we ignore the higher-order statistical
dependencies in the equivalent channel of Theorem 2 and
view the channel as strictly Gaussian channel. Specifically,

C = log(1 + o) = — log (¢oe E1 (o)) (16)

suggests the achievable bit rate when sufficient coding is
used prior to precoding.

This effective capacity can be compared to that of related
transmit diversity systems without such stringent compu-
tational constraints [9]. For example, when we remove the
constraint that the front end of our receiver be a linear
equalizer and allow an arbitrarily complex decoder, the
asymptotic capacity increases to

CL = Elog(l1 + ao)] = % 1 (Co) an

in the case hm[n] = 6[n — m]. When, in addition, we re-
move the constraint that the antenna precoding be linear
and allow an arbitrarily complex encoder at each antenna,
then the asymptotic capacity increases still further to the
conventional Gaussian channel capacity

Cr = log(1 + E [ao]) = log(1 + 1/o),

which, it should be pointed out, is also what can be achieved
using unconstrained receive diversity [9].

Even with no additional coding, the use of antenna pre-
coding leads to substantially reduced bit-error rates over
systems without such transmit diversity. As an illustra-
tion, when z[n] is an uncoded quadrature phase-shift key-
ing (QPSK) symbol stream, the bit error probability given
infinite transmit diversity is

P=9(/n) = 712_; /Fe-‘gfz dt, (18)
o[t

where 7o is as defined in (14). For comparison, without
transmit diversity the QPSK bit error probability is [8]

1, (14)

1 1
YD

The asymptotic bit error rate (18) provides a useful
bound on what can be obtained in practice with finite trans-
mit diversity (M < oo). However, the LTI antenna precod-
ing we have developed thus far is impractical because the
optimum equalizer is unrealizable and approximations in-
cur excessive delay. We now consider a generalization that
allows such problems to be circumvented.

4. LPTV ANTENNA PRECODING

We now allow the processing at each antenna to take
the form of more general linear periodically time-variant
(LPTV) filtering, but restrict our attention to a particular
class of such systems that admit the following factorization.
The coded symbol stream z[n] is first processed by a com-
mon LPTV prefilter that is time-varying with some period
K > 2 and has length M, and whose kernel we denote by
g[n; k]. The result,

yln) =Y gln; k] zln — K, (20)

k

is then subsequently processed at each of the antennas.
Specifically, this prefiltered stream is modulated at each
antenna by a different M-periodic sequence, i.e.,

ymln] = ﬁhmm ylnl, 1)

where hm[n] is the generally complex-valued periodic se-
quence associated with the mth antenna. We use hn[n]
to denote a single period of this modulating sequence—i.e..
hm[n] = hm[n] for 0 < n < M —1 and is zero otherwise—
and refer to this as the “signature” of the associated an-
tenna.

4.1. Signature Design

Using (21) in (1), we obtain that the response of the channel
to the prefiltered symbol stream y{n] is

r[n] = wln] + a[n] y[n], (22)
where
) ) M-l
a[n] = \/“_ﬁ mz__;oamhm [n] (23)

is an M-periodic fading sequence.

From (22) we see that the signature modulation subsys-
tem effectively transforms the original nonselective fading
channel into a time-selective one. As such, this transfor-
mation is the dual of the nonselective to frequency-selective
transformation we explored in Section 3.. The maximum
achievable time diversity benefit is obtained when the fad-
ing is independent among time-samples within a period,
and thus we design our signature sequences to ensure that
this condition is met. Again collecting our signatures into a
matrix H of the form (4), it is straightforward to verify [5]
that the coefficients a[0], a[l], ..., a[M — 1] are statistically
independent if and only if H is a unitary matrix.

Evidently, there are infinitely many signature sets that
ensure the independent fading condition. One example cor-
responds to H = I, but this symbol-dealing strategy has
high peak-power requirements. An alternative is H = F,
where F is the suitably-sized DFT matrix, which can be in-
terpreted as an efficient discrete-time variant of the phase-
sweeping transmit diversity system explored by Hiroike et
al. [2] and Weerackody [3]. Finally, the choice H = & where
= is the Hadamard matrix, is particularly attractive both
from the point of view of peak-power and computational
complexity.

4.2. Prefilter Design

We next turn our attention to the design of a LPTV pre-
filter that can exploit the time diversity generated by the
signature modulation process. Although prefiltering is not
strictly necessary if coding is used, [6] suggests that given
computational constraints the best diversity benefit is often
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achieved by combining (or sometimes even replacing) cod-
ing with suitably designed prefiltering. In particular, the
bandwidth-preserving LPTV maximally-spread precoders
developed in [7] (after [6]) are naturally suited as prefilters
for our application. For time-selective fading channels,
these binary-valued and finite impulse response orthogonal
systems provide the optimum linear diversity benefit with
very low computational complexity (7] [5].

4.3. System Characteristics and Receiver Design

For these systems, the natural linear equalizer consists of
the cascade of two stages:

gln) = b[n]r[n], then 3[n] =Y glksn]gln—k], (24)
k

where b[n] is a suitable equalizer for the time-selective fad-
ing, and where we recognize that the postfilter g[k; n] cor-
responds to the inverse of the prefilter since the system is
orthogonal. Hence,

iln] = é[n] yln] + bln] win), (25)

where &n] = a[n]b[n]. Using orthogonal signatures and
equalizers of the form b[n] = f(a[rn]), where f(-) again
meets some mild admissibility conditions [5], we we obtain
vari[n] = o2 and, in turn, puy = E [b[n]], pe = E[E[n]],
of = varb[n), and 02 = var &n].

The counterpart of Theorem 3 for the case of LPTV pre-
coding then follows immediately from the results of [6] [7].

Theorem 3 Let z|n] be a sequence of zero-mean uncorre-
lated symbols, each with energy Es. Furthermore, for ev-
ery M, let am for m = 0,1,...,M — 1 be a collection
of independent comples-valued Gaussian random variables,

each with mean zero and variance o2. Finally, suppose l;[n]
is an admissible equalizer, that the length-M antenna pre-
coder signature sequences form an orthonormal set, and that
mazimally-spread prefilters of spread M are used. Then, as
M — oo, we have, for each n,

#[n] =% pexln] + vln], (26)
where v[n] s a complez-valued, marginally Gaussian, zero-
mean white noise sequence, uncorrelated with the input sym-
bol stream z{n] and having variance

varv[n] = Esoe + No (af + |m,[2) . (27)

The SNR in the equivalent channel of Theorem 3 is, anal-
ogously, maximized when

. a°[r]
) o G+ g

(28)
where, again, & = NMy/&s. As a result of the new equalizer
structure, systems with optimized LPTV antenna precod-
ing retain the same attractive asymptotic characteristics as
those based on LTI systems, but system delay is substan-
tially less.

4.4. Performance

Using maximally-spread prefilters and the optimum equal-
izers, the performance of LPTV antenna precoding is de-
picted in Fig. 1 for several different antenna array sizes
M. Also, superimposed is the performance without antenna
diversity, the performance with infinite transmit diversity
M — oo.

These results, along with several others, are developed in
detail in [5].
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Figure 1. Bit error probabilities using uncoded QPSK on
the Rayleigh fading channe] with linear antenna precoding
and linear equalization. The successively lower curves corre-
spond to M =1, 2, 4, 8, 16, 32, 64, 128, and M — oo trans-
mit antennas, respectively. From left to right, the dashed
vertical lines denote the capacities Ct, Cr, and C, respec-
tively.
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