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ABSTRACT

Signals generated by chaotic systems represent a potentially
rich class of signals both for detecting and characterizing
physical phenomena and in synthesizing new classes of sig-
nals for communications, remote sensing and a variety of
other signal processing applications. Since classical tech-
niques for signal analysis do not exploit the particular struc-
ture of chaotic signals there is both a significant challenge
and an opportunity in exploring new classes of algorithms
matched to chaotic signals. In this paper we outline a vari-
ety of signal processing issues associated with the analysis
and synthesis of chaotic signals. In addition we describe in
some detail two examples illustrating some possible ways
in which the characteristics of chaotic signals and systems
can potentially be exploited. One example is a binary sig-
nalling scheme using chaotic signals.The second example is
the use of synchronized chaotic systems for signal masking
and recovery.

1. INTRODUCTION

In classical signal processing a rich set of tools has evolved
for processing signals which are deterministic and pre-
dictable such as transient and periodic signals, and for pro-
cessing signals that are stochastic. Chaotic signals associ-
ated with the homogeneous response of certain nonlinear
dynamical systems do not fall in either of these classes.
While they are deterministic, they are not predictable in
any practical sense in that even with the generating dy-
namics known, estimation of prior or future values from a
segment of the signal or from the state at a given time is
highly ill-conditioned. In many ways these signals appear
to be noise-like and can of course be analyzed and processed
using classical techniques for stochastic signals. However,
they clearly have considerably more structure than can be
inferred from and exploited by traditional stochastic mod-
eling techniques. Consequently it is important to develop
new signal processing techniques which are matched to the
special characteristics of this class of signals.

The basic structure of chaotic signals and the mechanisms
through which they are generated are described in a vari-
ety of introductory books, e.g. [1} and summarized in [2}.
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Chaotic signals are of particular interest and importance in
experimental physics because of the wide range of physi-
cal processes that apparently give rise to chaotic behavior.
From the point of view of signal processing, the detection,
analysis and characterization of signals of this type present
a significant challenge and an opportunity to explore and
develop completely new classes of algorithms for signal pro-
cessing. In addition, chaotic systems provide a potentially
rich mechanism for signal design and generation for a vari-
ety of communications and remote sensing applications.

In this paper we outline a variety of signal processing is-
sues associated with the analysis and synthesis of chaotic
signals. In addition, we Hlustrate our perspective and ap-
proach with two examples suggestive of some possible ways
in which the characteristics of chaotic signals and systems
can be exploited. Specifically, in section 4 we propose and
illustrate a binary signalling scheme based on the use of
chaotic signals and in section 5 we propose and illustrate
the use of chaotic signals for masking. These represent only
two of many possible directions in which chaotic signals can
be exploited for communications and remote sensing.

2. MODELING AND REPRESENTATION OF
CHAOTIC SIGNALS

The state evolution of chaotic dynamical systems is typ-
ically described in terms of the nonlinear state equation
x(t) = F[x(#)] in continuous time or x[n] = F(x[n —1])
in discrete time. In a signal processing context we assume
that the observed chaotic signal is a nonlinear function of
the state and would typically be a scalar time function. In
discrete-time, for example, the observation equation would
be y[n] = G(x[n]) . Frequently the observation y[n] is also
distorted by additive noise, multipath effects, fading etc.

Modeling a chaotic signal can be phrased in terms of de-
termining from clean or distorted observations, a suitable
state space and mappings F(-) and G(-) that capture the
aspects of interest in the observed signal y.

The problem of determining from the observed signal a
suitable state space in which to model the dynamics is re-
ferred to as the embedding problem. While there is, of
course, no unique set of state variables for a system, some
choices may be better suited than others. The most com-
monly used method for constructing a suitable state space
for the chaotic signal is the method of delay coordinates in
which a state vector is constructed from a vector of succes-
sive observations.

1For convenience and brevity we will sometimes phrase our
discussion only in terms of discrete time systems or continuous
time systems although the essential points will generally apply
equally to both classes.
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It is frequently convenient to view the problem of identify-
ing the map associated with a given chaotic signal in terms
of an interpolation problem. Specifically, from a suitably
embedded chaotic signal it is possible to extract a code-
book consisting of state vectors and the states to which
they subsequently evolve after one iteration. This code-
book then consists of samples of the function F spaced, in
general, non-uniformly throughout state space. A variety of
both parametric and nonparametric methods for interpolat-
ing the map between the sample points in state space have
emerged in the literature, and the topic continues to be of
significant research interest. In this section we briefly com-
ment on several of the approaches currently used. These
and others are discussed and compared in more detail in
the companion paper by Sidorowich [3].

One approach is based on the use of locally linear approx-
imations to F throughout the state space [12, 13] This ap-
proach constitutes a generalization of autoregressive mod-
eling and linear prediction and is easily extended to locally
polynomial approximations of higher order. Another ap-
proach is based on fitting a global nonlinear function to the
samples in state space [4].

A fundamentally rather different approach to the problem
of modeling the dynamics of an embedded signal involves
the use of hidden Markov models {5, 7). With this method,
the state space is discretized into a large number of states,
and a probabilistic mapping is used to characterize transi-
tions between states with each iteration of the map. Fur-
thermore, each state transition spawns a state-dependent
random variable as the observation y[n]. This framework
can be used to simultaneously model both the detailed char-
acteristics of state evolution in the system and the noise in-
herent in the observed data. While algorithms based on this
framework have proved useful in modeling chaotic signals,
they can be expensive both in terms of computation and
storage requirements due to the large number of discrete
states required to adequately capture the dynamics.

While many of the above modeling methods exploit the
existence of underlying nonlinear dynamics, they do not
explicitly take into account some of the properties peculiar
to chaotic nonlinear dynamical systems. For this reason,
in principle, the algorithms may be useful in modeling a
broader class of signals. On the other hand, when the sig-
nals of interest are truly chaotic, the special properties of
chaotic nonlinear dynamical systems ought to be taken into
account, and, in fact, may often be exploited to achieve im-
proved performance. For instance, because the evolution
of chaotic systems is acutely sensitive to initial conditions,
it is often important that this numerical instability be re-
flected in the model for the system. One approach to cap-
turing this sensitivity is to require that the reconstructed
dynamics exhibit Lyapunov exponents consistent with what
might be known about the true dynamics. The sensitivity
of state evolution can also be captured using the hidden
Markov model framework since the structural uncertainty
in the dynamics can be represented in terms of the proba-
bilistic state transitions. In any case, unless sensitivity of
the dynamics is taken into account during modeling, de-
tection and estimation algorithms involving chaotic signals
often lack robustness.

Another aspect of chaotic systems that can be exploited
is that the long term evolution of such systems lies on an at-
tractor whose dimension is not only typically non-integral,
but occupies a small fraction of the entire state space. This
has a number of important implications both in the model-
ing of chaotic signals and ultimately in addressing problems

of estimation and detection involving these signals. For ex-
ample, it implies that the nonlinear dynamics can be recov-
ered in the vicinity of the attractor using comparatively less
data than would be necessary if the dynamics were required
everywhere in state space.

Identifying the attractor, its fractal dimension, and re-
lated invariant measures governing, for example, the prob-
ability of being in the neighborhood of a particular state
on the attractor, are also important aspects of the mod-
eling problem. Furthermore, we can often exploit various
ergodicity and mixing properties of chaotic systems. These
properties allow us to recover information about the attrac-
tor using a single realization of a chaotic signal, and assure
us that different time intervals of the signal provide quali-
tatively similar information about the attractor.

3. ESTIMATION AND DETECTION

A variety of problems involving the estimation and detec-
tion of chaotic signals arises in potential application con-
texts. In some scenarios, the chaotic signal is a form of
noise or other unwanted interference signal. In this case,
we are often interested in detecting, characterizing, discrim-
inating, and extracting known or partially known signals in
backgrounds of chaotic noise. In other scenarios, it is the
chaotic signal that is of direct interest and which is cor-
rupted by other signals. In these cases we are interested
in detecting, discriminating, and extracting known or par-
tially known chaotic signals in backgrounds of other noises
or in the presence of other kinds of distortion.

The channel through which either natural or synthesized
signals are received can typically be expected to introduce
a variety of distortions including additive noise, scatter-
ing, multipath effects, etc. There are, of course, classical
approaches to signal recovery and characterization in the
presence of such distortions for both transient and stochas-
tic signals. When the desired signal in the channel is a
chaotic signal, or when the distortion is caused by a chaotic
signal, many of the classical techniques will not be effec-
tive and do not exploit the particular structure of chaotic
signals.

The specific properties of chaotic signals exploited in de-
tection and estimation algorithms depends heavily on the
degree of a priori knowledge of the signals involved. For ex-
ample, in distinguishing chaotic signals from other signals,
the algorithms may exploit the functional form of the map,
the Lyapunov exponents of the dynamics, and/or character-
istics of the chaotic attractor such as its structure, shape,
fractal dimension and/or invariant measures.

To recover chaotic signals in the presence of additive
noise, some of the most effective noise reduction techniques
proposed to date take advantage of the nonlinear depen-
dence of the chaotic signal by constructing accurate mod-
els for the dynamics. A number of these techniques are
reviewed and summarized in several companion ICASSP
papers [5, 6]. Multipath and other types of convolutional
distortion can best be described in terms of an augmented
state space system. Convolution or filtering of chaotic sig-
nals can change many of the essential characteristics and
parameters of chaotic signals. Effects of convolutional dis-
tortion and approaches to compensating for it are discussed
in the companion paper by Isabelle, Oppenheim and Wor-
nell [10].

4. CHAOTIC SWITCHING

There appears to be considerable potential in the use of
chaotic signals as modulating waveforms in a variety of
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Figure 1: Typical Chaotic Switching Waveform

communication-based contexts due to their ease of gener-
ation, constant-amplitude characteristics, and broadband
spectra. As a particular example, in this section we con-
sider the transmission of a binary data stream by switching
between two first-order chaotic signals with distinct dynam-
ics during each signaling interval 2. A typical transmission
is shown in figure 1. We refer to the resulting scheme as
“chaotic switching.”

The associated hypothesis test for this problem involves
determining which of two sets of chaotic dynamics corre-
sponds to a given finite sequence of noisy observations y[n].
Specifically, under hypotheses Ho and Hy we observe a
chaotic signal z[n] of length K in stationary white Gaussian
noise w[n], where the associated maps are Fo(-) and F1(*),
respectively. Hence,

y = {y[n] = z[n] + w[n], n= 0,1,..., K -1}
where

Ho:z[n] =
Hy:z[n] =

Fo(z[n —1])
Fi(z[n - 1]).

;From the associated likelihood ratio test (LRT), for
equally likely hypotheses, the minimum probability of er-
ror Pr(e) solution to this problem, in principle, involves
iterating each of the two maps Fo and F; from the ini-
tial condition z[0] to generate the candidate clean signals
zo[n] and z1[n}, and determining which is closer to y[n]in a
least-squares sense. When the initial condition is unknown
for all practical purposes, we may model z[0] as a random
variable, and derive a suitably modified LRT.

Although in some sense theoretically optimal, such re-
ceivers are inherently impractical because they fail to
take into account the numerical instability characteristic
of chaotic dynamical maps. A number of practical algo-
rithms for solving this detection problem can be obtained,
however. Here we describe a particularly simple heuristic
algorithm whose performance suggests the basic feasibility
of chaotic keying. The basic strategy is to exploit the fact
that state pairs (z[n], z[n + 1]) will fall on a curve in the
plane whose characteristics depends on the valid hypothe-
sis. Because each of the data pairs (y[n], y[n+1]) provides a
noisy estimate of the state pair (z{n), 2[n+1]), a reasonable

2We wish to thank Mr. Haralabos Papadopoulos for his as-
sistance in generating some the results reported in this section.
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Figure 2: Bit Error Probability vs SNR

decision criterion is based on the total geometric distance
between these data pairs and their nearest points on each of
the two candidate curves. Figure 2 illustrates the empirical
bit-error rate performance of this scheme as a function of
SNR using K = 13 iterates per bit. In this case, the two
maps are of the respective forms

Fo(z) =
Fl(l)

with ao and ai chosen so that F : {0,1] — [0,1]. More gen-
erally the selection of maps for this application constitutes
an interesting signal design problem which is currently be-
ing addressed. Furthermore, although the decoding scheme
illustrated is certainly suboptimal—indeed both the time-
ordering of the data pairs and the statistical dependence
between noise pairs is ignored—the performance suggests
that the scheme may be viable. We are currently exploring
these and a number of other more optimal schemes.

5. CHAOTIC MASKING AND MODULATION

Because chaotic signals are typically broadband and noise-
like, they potentially provide a class of signals which can be
utilized in various communications, radar and sonar con-
texts for masking information-bearing signals and as mod-
ulating waveforms in spread spectrum systems. A partic-
ularly intriguing approach is suggested by exploiting the
synchronizing characteristics of certain classes of chaotic
dynamical systems. This property of chaotic systems was
identified and demonstrated by Pecora and Carroll [8] and
is described in their companion paper in this session [9].
We are actively exploring a number of ways in which this
synchronization property can be used in spread spectrum
modulation and demodulation and in signal masking [11].
We illustrate the approach here with one example of the use
of synchronized chaotic systems for masking.

A noise-like masking signal is added at the transmitter
to the information-bearing signal s(t) and at the receiver
the masking is removed. Abarbanel [2] and others [6] have
been considering the use of noise reduction algorithms as an
approach to retrieving information masked by chaotic sig-
nals. A very different approach which we are exploring is
to use the received signal to regenerate the masking signal
at the receiver and subtract it from the received signal to
recover s(t). Surprisingly, this can be done with synchro-
nized chaotic systems since at least for some systems the

aoz(1 — x)2

a1z(l —z)°°
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Figure 3: Chaotic Signal Masking

ability to synchronize is robust, i.e. is not highly sensitive
to perturbations in the synchronizing drive and thus can be
done with the masked signal. While there are many pos-
sible variations, consider, for example, the chaotic Lorenz
system represented by the dynamical equations

16(y — =)
45.92z -y —z2z
= zy-—4z.

I

Both the (x,z) and (y,z) subsystems are stable and conse-
quently either x or y can be used as the synchronizing drive.
Choosing x as the drive and the chaotic masking, the trans-
mitted signal is r(t) = z(t) + s(t) and it is assumed that for
masking the power level of s(t) is significantly lower than
that of z(2). The basic strategy then is to exploit the robust-
ness of the synchronization using r(t) as the synchronizing
drive at the receiver. The dynamical system implemented
at the receiver is

7 = 16(y1 —z1)
1. = 4592r—y; —rn
21 = ry1— 4z

If the receiver has synchronized with r(t) as the drive,
then z; = z and consequently s(t) is recovered as §(3) =
r(t) — z1(2).

We illustrate the performance of this system in figure 3
with a segment of speech from the sentence “He has the
bluest eyes”. Figure 3 (a),(b) and (c) show the original
speech, the transmitted signal and the recovered speech re-
spectively. The power spectra of the chaotic masking sig-

nal and the speech are highly overlapping and the overall
signal-to-masking ratio is approximately -20dB. Clearly, the
speech signal has been recovered. Also evident in figure 3(c)
is the relatively rapid synchronization at the omset of the
received signal.
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