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Abstract
This thesis develops several approaches for signal sampling and reconstruction given differ-
ent assumptions about the signal, the type of errors that occur, and the information available
about the signal. The thesis first considers the effects of quantization in the environment of
interleaved, oversampled multi-channel measurements with the potential of different quan-
tization step size in each channel and varied timing offsets between channels. Considering
sampling together with quantization in the digital representation of the continuous-time
signal is shown to be advantageous. With uniform quantization and equal quantizer step
size in each channel, the effective overall signal-to-noise ratio in the reconstructed output
is shown to be maximized when the timing offsets between channels are identical, result-
ing in uniform sampling when the channels are interleaved. However, with different levels
of accuracy in each channel, the choice of identical timing offsets between channels is in
general not optimal, with better results often achievable with varied timing offsets corre-
sponding to recurrent nonuniform sampling when the channels are interleaved. Similarly,
it is shown that with varied timing offsets, equal quantization step size in each channel is
in general not optimal, and a higher signal-to-quantization-noise ratio is often achievable
with different levels of accuracy in the quantizers in different channels.

Another aspect of this thesis considers nonuniform sampling in which the sampling grid
is modeled as a perturbation of a uniform grid. Perfect reconstruction from these nonuni-
form samples is in general computationally difficult; as an alternative, this work presents a
class of approximate reconstruction methods based on the use of time-invariant lowpass fil-
tering, i.e., sinc interpolation. When the average sampling rate is less than the Nyquist rate,
i.e., in sub-Nyquist sampling, the artifacts produced when these reconstruction methods are
applied to the nonuniform samples can be preferable in certain applications to the aliasing
artifacts, which occur in uniform sampling. The thesis also explores various approaches to
avoiding aliasing in sampling. These approaches exploit additional information about the
signal apart from its bandwidth and suggest using alternative pre-processing instead of the
traditional linear time-invariant anti-aliasing filtering prior to sampling.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Engineering
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Sampling Theory - A Historical Overview

Sampling theory is a fundamental concept in signal processing and its applications. It plays

an important role as a connecting link between continuous-time and discrete-time signals

as it allows representation, without loss of information, of continuous-time bandlimited

signals by discrete-time sequences, which can then be processed digitally. The most com-

monly used sampling theorem asserts that a bandlimited signal, observed over the entire

time axis, can be perfectly reconstructed from its equally spaced samples taken at a rate

which exceeds twice the highest frequency present in the signal. The sampling theorem

was first introduced in information theory and communication engineering by C. E. Shan-

non in 1940. However, it did not appear in the engineering literature until after World War

II in 1949 [79]. Shannon states the sampling theorem in the following terms: ”Theorem 1:

If a function f (t) contains no frequencies higher than W cps, it is completely determined by

giving its ordinates at a series of points spaced 1/(2W ) seconds apart.” Shannon did not

claim it as his own, and in fact following the theorem he notes: ”This is a fact which is com-

mon knowledge in the communication art.” However, later he adds, ”Theorem 1 has been

given previously in other forms by mathematicians but in spite of its evident importance

seems not to have appeared explicitly in the literature of communication theory.”

The sampling theorem has been attributed in the literature to numerous different authors

including E. T. Whittaker [92], H. Nyquist [67], J. M. Whittaker [93, 94], V. A. Kotel’nikov
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[50], D. Gabor [28], and C. E. Shannon [79], and its historical roots have been often dis-

cussed. The Mathematician E. T. Whittaker [92] is considered to be the first to address

the sampling theorem in 1915 in his study of the cardinal functions. The sampling theo-

rem introduced by Shannon is very close to the more refined statement in 1935 of J. M.

Whittaker [94], concerning the relation between the cardinal functions and the finite-limit

Fourier integral. Shannon was aware of the mathematical work of J. M. Whittaker and he

acknowledged it in his paper. Nyquist [67] (1928) did not explicitly consider the problem of

sampling and reconstruction of continuous-time bandlimited signals, but a different prob-

lem which has some mathematical similarities. Considering the problem of distortionless

transmission of telegraphic signals, Nyquist showed that up to 2W independent pulse sam-

ples could be sent through a system of bandwidth W . When Shannon stated the sampling

theorem, he referred to the critical sampling interval T = 1/(2W ) as the Nyquist interval

corresponding to the band W , in recognition of Nyquist’s discovery of the fundamental

importance of this interval in connection with telegraphy. In the late fifties, it became

known that Kotel’nikov [50] introduced the sampling theorem in the Russian literature to

communications theory in 1933.

Sampling theory has found application in many fields including signal analysis, system

theory, information theory, spectroscopy and image processing, radar, sonar, acoustics, op-

tics, holography, meteorology, oceanography, crystallography, physical chemistry, medical

imaging, and there are important connections with multi-resolution analysis and wavelets.

1.1.2 Extensions of the Sampling Theorem

Many extensions and generalizations of the Nyquist-Shannon sampling theorem exist. Kohlen-

berg [49] (1953) extended the sampling theorem to bandpass signals. For a bandpass signal

to be accurately represented by a set of its equally spaced samples at the minimum possi-

ble rate, the lowest frequency occupied by the signal must be an integer multiple of the

signal’s bandwidth. Introducing “second-order sampling,” which involves two interleaved

sequences of uniformly spaced sampling points, Kohlenberg proved that perfect reconstruc-

tion of bandpass signals is possible at a rate equal to twice the bandwidth of the signal, with

20



no restrictions on the range of frequencies that the signal occupies.

The first to extend the Nyquist-Shannon sampling theorem to bandlimited signals in

higher dimensions was Parzen [72] in 1956. Petersen and Middleton [74] show that in the

case of multidimensional sampling, the most efficient lattice is in general not rectangular.

Hexagonal sampling and its higher dimensional generalizations are shown in [63, 64] to

yield a lower sampling density. Sampling expansions for radially symmetric functions that

are bandlimited to the unit sphere in RN have also been obtained [42].

When the Nyquist-Shannon sampling theorem is applied to the autocorrelation function

of a bandlimited wide-sense stationary stochastic process, the optimal linear estimator, in

the mean square sense, of the stochastic process based on its Nyquist-rate samples achieves

zero mean square error, as shown by A. V. Balakrishnan [2] in 1957. Generalization to

bandpass or multipass stochastic processes is presented in [56]. Extension of stochastic

sampling to n-dimensional processes is introduced in [66]. Sampling theorems for nonsta-

tionary random processes are also presented [29, 75, 101].

Another interesting extension involves the reconstruction of a bandlimited signal from

samples of the signal and its derivatives. When Shannon [79] introduced the sampling

theorem, he also remarked that a bandlimited signal could be reconstructed from uniform

samples of the signal and its derivative at half the Nyquist rate. He then generalized his

remark to higher derivatives. The details were later worked out and Shannon’s statements

were mathematically formulated and proved by L. Fogel [27], D. Jagerman and L. Fogel

[39], D. Linden [54], and D. Linden and N. Abramson [55]. Specifically, it was shown

that a bandlimited signal can be perfectly reconstructed from equally spaced samples of the

signal and its first M −1 derivatives taken at a rate that is M times lower than the Nyquist

rate of the signal. The importance of this result lies in its application. For example, the

velocity and the position of an aircraft are sampled at half the Nyquist rate to determine

a continuous course of its path. Linden [55] also showed that for large M, the expansion

approaches a Taylor-type series weighted by a Gaussian density function centered about

each sample point.

Papoulis’ generalized sampling expansion [71] (1977) is a further generalization of

the sampling theorem which suggests reconstructing a bandlimited signal using data other
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than the sampled values of the signal and its derivatives. Papoulis has shown that under

certain conditions on multi-channel systems for which the input is bandlimited, the ban-

dlimited input signal can be perfectly reconstructed from samples of the responses of M

linear time-invariant (LTI) systems, each sampled at 1/M times the Nyquist rate. The sam-

pling expansion introduced by Linden [55] can be viewed as a special case of Papoulis’

generalized sampling expansion, in which the LTI systems of the multi-channel system are

chosen so the multi-channel outputs correspond to the signal and its first M−1 derivatives.

The generalized sampling expansion of Papoulis suggests various ways to split a signal

into different channels in which the analog-to-digital (A/D) converter in each channel pro-

vides different information about the signal. This parallelism is one possibility for improv-

ing data acquisition systems whose performance is limited by the A/D converters, which

work at their limits and cannot be pushed further. A very common method for splitting a

signal into different channels is the use of time-interleaved A/D converters [46], in which

the input signal in each of the M channels is first time-delayed and then sampled at a rate

which is M times lower than the signal’s Nyquist rate. With the time-delays appropriately

designed, interleaving the multi-channel output samples produces uniform samples of the

input signal at the Nyquist rate. Thus, sampling with an ideal time-interleaved A/D con-

verter with M channels is equivalent to sampling with an ideal A/D converter with a sam-

pling rate M times higher. In practice, however, channel mismatches limit the performance

of time-interleaved A/D converters.

Papoulis [70] also generalizes the sampling theorem for the case in which the sampling

rate exceeds the Nyquist rate, i.e., oversampling. He shows that in this case the demands

on the reconstruction filter can be considerably relaxed. Reconstructing the signal from

its Nyquist rate samples requires an ideal lowpass filter, which is, of course, impossible to

realize. Alternatively, by increasing the sampling rate above Nyquist, the requirement of a

sharp cut-off of the interpolation filter is removed due to the existence of a free attenuation

interval. There are other advantages of oversampling. When a signal is oversampled, its

samples become dependent and the signal reconstruction is not affected when losing an

arbitrarily large but finite number of sampled values. Oversampling can also improve the

performance in the presence of quantization error [15, 69]. Specifically, a high-resolution
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A/D converter can be achieved by oversampling a low-resolution A/D converter followed

by discrete-time processing of the digital oversampled signal.

The sampling expansions discussed so far assumed that the entire signal is observed.

Brown [13] considers the problem of predicting bandlimited signals from their past values.

He shows that a bandlimited signal can be approximated fairly well by a linear combination

of past samples, provided that the sampling rate exceeds twice the Nyquist rate of the signal.

The first to extend the sampling theorem for the analysis of signals specified by a time-

varying spectrum with time-varying bands was Horiuchi [35]. In this expansion, the coef-

ficients are in general not the same as the samples of the continuous-time signal.

Reconstruction of a bandlimited signal from nonuniform samples has also been exten-

sively explored in the literature. J. R. Higgins [33] suggests that irregular sampling is a

norm: ”Irregular sampling arises mathematically by simply asking the question ”What is

special about equidistantly spaced sample points?”; and then finding that the answer is

”Within certain limitations, nothing at all”. In practice it is often said that irregular sam-

pling is the norm rather than the exception.” In a variety of contexts, nonuniform sampling

naturally arises or is preferable to uniform sampling. Uniform sampling with missing sam-

ples or with time-jitters can be regarded as nonuniform sampling. In the spatial domain,

non-uniformity of the spacing of the array elements in an antenna or acoustic sensor ar-

ray is often part of the array design as a trade off between the length of the array and the

number of elements. A signal specified by time-varying spectrum is another example for

which nonuniform sampling is more natural than uniform sampling. When the signal is

varying rapidly it is more appropriate to sample it at a higher rate than when it is varying

slowly. Reconstruction from nonuniform sampling has been used in many fields including

Computed Tomography (CT), Magnetic Resonance Imaging (MRI), optical and electronic

imaging systems. H. S. Black [7] credits Cauchy [16] for the origin of nonuniform sam-

pling in 1841 and offers the following translation to Cauchy’s statement: ”If a signal is a

magnitude-time function, and if time is divided into equal intervals such that each subdi-

vision comprises an interval T seconds long, where T is less than half the period of the

highest significant frequency component of the signal, and if one instantaneous sample is

taken from each sub-interval in any manner, then a knowledge of the instantaneous mag-
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nitude of each sample plus a knowledge of the instant within each sub-interval at which

the sample is taken, contains all the information of the original signal.” J. R. Higgins [32],

however, notes that such a statement was not included in the paper by Cauchy.

With unequal spacing of the sampling instants, the reconstruction process is often more

involved. Yen [100] (1956) considers the reconstruction of a bandlimited signal from its

nonuniform samples for various special cases which possess simple reconstruction formu-

las. Specifically, he treats the case of uniform sampling where a finite number of samples

migrate to distinct new positions. He also provides an explicit reconstruction formula for

the case in which an infinite number of samples are shifted by the same amount, resulting in

a gap in an otherwise uniform sampling grid. The case of recurrent nonuniform sampling,

in which the nonuniform sampling grid has a periodic structure, is also analyzed by Yen,

who provides an exact reconstruction formula. The sampling instants in this case can be

divided into groups of M samples each, where each group has a recurrent period, which is

M times the Nyquist period of the input signal. Recurrent nonuniform sampling can also be

viewed as a special case of the generalized sampling expansion of Papoulis [71], in which

the LTI systems are pure delays. Comparing the reconstruction formulas for the different

cases of nonuniform sampling with that of uniform sampling, Yen remarks that it is evident

that the composing functions become more and more complicated as the sampling grid

deviates more and more from a uniform grid.

More generally, Beutler [5] (1966) proved that a bandlimited signal can be perfectly re-

constructed from its nonuniform samples, under certain conditions on the nonuniform grid

and provided that the average sampling rate exceeds the Nyquist rate, i.e., that the number

of samples per unit time exceeds (on the average) twice the highest frequency present in

the signal. This result, which is shown for deterministic signals as well as for wide-sense

stationary stochastic signals, depends most directly on some closure theorems first obtained

by Levinson [53]. Yao and Thomas [98, 99] later derived a sampling expansion for nonuni-

form samples of a bandlimited signal for the case, in which each of the sampling instants

deviates less than (1/π) ln2 from the corresponding uniform grid. They also considered the

question of stable reconstruction and showed that Lagrange interpolation is stable when the

deviation of the sampling instants from a uniform sampling grid is less than 1/4.
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Landau [51] considers the question of whether the Nyquist rate can be improved if the

sampling instants are chosen differently; or the signals are bandpass or multi-band; or at

the cost of more computing than is required by sinc interpolation. He proves that stable

sampling cannot be performed at a rate lower than the Nyquist, regardless of the location

of sampling instants, the nature of the set of frequencies which the signals occupy, or the

method of construction.

There are also other extensions of the sampling theorem in which the sampling instants

are dependent on the signal. Representing a bandlimited signal by its zero crossings or

by its crossings with a cosine function are just a few examples. This kind of sampling is

referred to as implicit sampling and it was first considered by Bond and Cahn [9]. Since

nonlinear transformation may increase the signal’s bandwidth, this sampling approach may

be advantageous in reconstructing a bandlimited signal that was processed through a non-

linear zero-crossing-preserving transformation.

A comprehensive review of literature concerning other extensions and generalizations

of the sampling theorem can be found in [33, 38, 43, 88, 102].

1.1.3 Error and Aliasing

The sampling theorem assumes that the signal is bandlimited, it is observed over the entire

time axis, its exact sampled values are accurately known, and the sampling instants are

uniformly spaced. However, in many cases of practical interest, the underlying signal is

not strictly band-limited, it is observed only over a finite time interval, its exact sampled

values are not known, and jitter occurs in acquiring the samples. These deviations from the

ideal scenario influence the accuracy of the signal reconstruction and result in interpolation

error.

When the signal is not band-limited or, alternatively, it is bandlimited but sampled at

a rate lower than its Nyquist rate, frequency components of the original signal that are

higher than half the sampling rate are folded into lower frequencies resulting in aliasing.

The aliasing error is defined as the difference between the original signal and the series

constructed using the signal’s samples. A classical result giving an upper bound on the
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aliasing error was stated originally by P. Weiss [91] in 1963 and proved in 1967 by J. L.

Brown [12], who also obtained an upper bound for the aliasing error of bandpass signals.

To avoid aliasing in sampling, the continuous-time signal must be forced to be ban-

dlimited to frequencies below one-half the desired sampling rate. This aim is often accom-

plished by processing the continuous-time signal through an LTI anti-aliasing low-pass

filter prior to sampling it. There is a variety of other contexts, in which the alias of the

signal is preferable to the original signal. This is the case, for example, with band-pass

signals, in which the aliasing is exploited for modulating the signal into baseband frequen-

cies. Another example in the same category is a sampling oscilloscope. This instrument

is intended for observing very high-frequency waveforms, and it exploits the principles of

sampling to alias these frequencies into ones that are more easily displayed. In other cases,

aliasing is deliberately distributed to various channels in such a way that when they are

combined properly, aliasing is cancelled and perfect recovery is achieved. This is the case,

for example, with interlaced sampling as in interleaved A/D converters or more generally

with Papoulis’ generalized sampling expansion.

When the signal is observed over a finite time interval, only a finite number of samples

can be used for the signal reconstruction. Since the sampling expansion requires an infinite

number of terms to exactly interpolate a bandlimited signal from its samples, an interpola-

tion error, referred to as a truncation error, occurs. Several results concerning the truncation

error were obtained by several authors including B. Tsybakov and V. Iakovlev, [87], Helms

and Thomas [31], and Papoulis [70].

The amplitude error arises when the exact sampled values are not accurately known and

their approximations are used for the interpolation of the signal. Round-off and quantiza-

tion errors may be considered as special cases of amplitude error. Papoulis [70] shows that

even if the errors in the sampled values are bounded, the amplitude error may exceed all

bounds for some values of t.

Deviations of the sampling instants from the uniform sampling grid also occur in prac-

tice, and the problem is to determine the original signal based on these samples. This error

is referred to as a time-jitter error and is similar in its treatment to the amplitude error.

Assuming that the timing errors are known, Papoulis [70] derives an approximation of the
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reconstructed signal from these samples. Butzer [14] provides a bound for the time-jitter

error which is similar to the bound obtained on the amplitude error.

In practice, more than one of the errors mentioned above can occur. Butzer [14] pro-

vides an upper bound for the error caused by approximating a not-necessarily band-limited

signal by a truncated series with quantized sampled values taken at jittered time instants.

1.2 Objectives

This thesis considers the problem of reconstructing a bandlimited signal from its sampled

values. It develops various methods for optimal reconstruction given different assumptions

about the signal, the sampling grid and the type of errors that arise. The thesis also explores

the benefits of nonuniform sampling over uniform sampling in the presence of quantization

error and when aliasing occurs as a result of sub-Nyquist sampling.

The work discusses optimal reconstruction of the continuous-time bandlimited signal

in the environment of interleaved multi-channel measurements in the presence of quanti-

zation error. A new approach for mitigating the effects of quantization error on the re-

constructed signal is introduced. This approach involves time-varying quantization whose

time-dependent parameters are specified according to the relative timing between adjacent

samples. In a broader view, this approach suggests the benefits of considering sampling

together with quantization in the digital representation of the continuous-time signal.

The thesis also considers an extension of the Nyquist-Shannon sampling theorem, in

which additional information is available about the continuous-time signal apart from its

bandwidth. Utilizing this additional information can result in perfect reconstruction of the

bandlimited signal from samples taken at a rate lower than the Nyquist rate.

In the context of sub-Nyquist sampling, the thesis also suggests various methods for

mitigating or avoiding aliasing, which may be preferable in some contexts to the tradi-

tional LTI anti-aliasing filtering. Among these methods are non-linear methods, linear

time-varying methods and methods in which aliasing mitigation is accomplished by per-

turbation of the uniform sampling grid. In the scenario of multiple correlated signals, co-

sampling is introduced as a way to possibly reduce the overall sampling rate by distributing
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co-aliasing in sampling so that it gets cancelled in reconstruction.

1.3 Outline

The thesis is organized as follows. Chapter 2 considers the case of multi-channel measure-

ments as may arise in interleaved A/D converter or in distributed sensor networks. We con-

sider the case of oversampling and design optimal reconstruction filters under the constraint

of perfect reconstruction in the absence of errors. Chapter 3 takes a different approach to

the design of the reconstruction filters in which the constraints of perfect reconstruction

are relaxed. In both approaches, the effects of quantization error on the reconstructed out-

put are analyzed, and optimal design of the relative timing between the channels and the

quantizer step size in each of the channels is discussed.

Chapter 4 considers the case in which the nonuniform sampling grid is modeled as a

perturbation of a uniform grid. The exact reconstruction in this case is comuptationally

difficult, and a class of simple approximate reconstruction methods based on the use of

LTI low-pass filtering is suggested and analyzed. Chapter 5 analyzes the effects of timing

errors in processing continuous-time bandlimited signals using discrete-time systems. It

also discusses the design of a discrete-time system which compensates for the timing errors.

In Chapter 6 we use the class of approximate reconstruction methods developed in Chapter

4 for the reconstruction from nonuniform samples at a rate lower than the Nyquist rate. We

show that the artifacts due to sub-Nyquist sampling can be controlled so that aliasing is

traded off with uncorrelated noise, which may be beneficial in various contexts.

In Chapter 7, we assume that additional information about the signal apart from its

bandwidth is available and suggest a sampling-reconstruction scheme which exploits this

information for reducing the sampling rate. In this chapter we also discuss various alterna-

tive methods to avoid aliasing in sampling.
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CHAPTER 2

PERFECT RECONSTRUCTION IN

MULTI-CHANNEL NONUNIFORM

SAMPLING

This chapter considers interleaved, multi-channel measurements as arise for example in

time-interleaved analog-to-digital (A/D) converters and in distributed sensor networks.

Such systems take the form of either uniform or recurrent nonuniform sampling, depending

on the relative timing between the channels. Uniform quantization in each channel results

in an effective overall signal-to-quantization-error ratio (SQNR) in the reconstructed output

which is dependent on the quantizer step size in each channel, the relative timing between

the channels and the oversampling ratio. It is shown that in the multi-channel sampling

system when the quantization step size is not restricted to be the same in each channel and

the channel timing is not constrained to correspond to uniform sampling, it is often possible

to reduce the SQNR relative to the uniform case.

2.1 Introduction

High bandwidth signals or the use of large oversampling ratios often require the use of

time-interleaved A/D converters [46]. Similarly in a sensor network environment, separate

sensors might independently sample a shifted version of an underlying signal with the sen-

sor outputs then transmitted to a fusion center for interleaving and processing. The relative

timing of the channels is typically chosen so that simple interleaving results in uniform
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sampling. More generally, the interleaved samples correspond to recurrent nonuniform

sampling [23, 43, 61, 71, 100].

When interleaving is assumed to correspond to uniform sampling but fails to do so

because of timing errors, the channel timing is often referred to as mismatched; if not

accounted for, this mismatch can lead to significant degradation in performance. A variety

of methods have been suggested in the literature to mitigate these problems. To reduce the

errors introduced by timing mismatches it is first required to detecting the timing errors.

In general, there exist two approaches for detection of timing errors: one which does not

assume prior knowledge and is based on the output samples of the time-interleaved A/D

converter [21, 22, 36, 37, 59, 78, 83, 90], and another which incorporates a known signal at

the input to the system [41, 44]. Once the timing errors have been measured, the correction

can be done either by adjusting the sampling clock in each A/D converter to eliminate the

timing errors, or by digital processing of the output samples to obtain uniform samples.

In single or multi-channel sampling systems for A/D conversion, quantization effects

must also be taken into account. Oversampling is a well established approach to mitigating

the effects of quantization, effectively trading off between the oversampling ratio and the

required quantization step size for a fixed signal-to-quantization-error ratio. This trade-

off can be accomplished in a direct way by following the quantizer with a sampling rate

converter or by using noise-shaping techniques as in delta-sigma A/D converters [15, 69].

A systematic alternative approach is introduced in [47, 48] to derive the time-interleaved

equivalent structure for an arbitrary delta-sigma converter. A vector quantization approach

is used in [85] to develop a lower bound on the mean squared reconstruction error for

periodic bandlimited signals from the quantized oversampled signal.

The multi-channel sampling system which we consider is presented in section 2.2,

where we also suggest a multi-channel reconstruction scheme. In section 2.2.1 we design

the multi-channel reconstruction filters to achieve perfect reconstruction of the input signal

in the absence of quantization error. In sections 2.2.2 we consider the effects of uniform

quantization in the environment of interleaved, oversampled multi-channel measurements

and the design of the optimal reconstruction filters, which compensate for the nonuniform

spacing of the channel offsets and for the quantization error. Modeling quantization er-
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ror with an additive noise model, we show in section 2.2.3 that for the multi-channel case,

when the quantizer step size is not constrained to be the same in each channel and the chan-

nel timing is not constrained to result in uniform sampling, it is often possible to reduce the

SQNR relative to the uniform case. Specifically, we show that timing mismatches between

channels can be compensated for by appropriate choice of quantization step size in each

channel rather than attempting to correct the timing mismatch. Alternatively, the choice of

using different quantizer step size in each channel can be matched by appropriate choice of

the relative timing between channels together with properly designed compensation filters.

The concept of having different levels of accuracy in different channels is similar to the

approach in sub-band coding [19, 76, 89], in which each sub-band is quantized with an

accuracy based upon appropriate criteria. Replacing uniform quantization with differential

uniform quantization, it is shown in section 2.3 that higher performance gain is achieved

when the channel offsets are nonuniformly spaced.

2.2 Multi-channel Sampling and Reconstruction

The basic multi-channel sampling which we consider is shown in Figure 2-11. In this

system, the Nyquist rate of the bandlimited input signal x(t) is denoted by 1/TN , and each

of the M channels is sampled at a rate of 1/T = 1/(LTN) with M > L, corresponding to

an effective oversampling factor of ρ = M/L > 1. We assume the usual Nyquist-Shannon

sampling model but with the sampling done in a multi-channel structure. The notation

C/D in Figure 2-1 represents continuous-to-discrete-time conversion and refers to ideal

sampling, i.e., xm[n] = x(nT − τm) with τm as the time delay of the mth channel.

Interleaving the outputs of the multi-channel sampling system, as shown in Figure 2-2,

we obtain either uniform or recurrent nonuniform samples of x(t), depending on the relative

timing between the channels. Specifically, when

τm = (m/M) ·T, m = 0,1, . . . . ,M−1, (2.1)

1This system can be viewed as a special case of the multi-channel case discussed by Papoulis [71].
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Figure 2-1: Multi-channel sampling.
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Figure 2-2: Interleaving the output samples of the multi-channel sampling system of Figure
2-1 obtains either uniform or recurrent nonuniform sampling.

the interleaved sequence xM/L[n] will correspond to uniform samples of x(t) at a rate of

M/L times its Nyquist rate. Otherwise, with nonuniform spacing of the time delays, xM/L[n]

will correspond to recurrent nonuniform samples of x(t), as shown for example in Figure

2-3.

0 2TN
4TN

6TN t

x0[0]

x0[1] x0[2]

x0[3]

Figure 2-3: An example of recurrent nonuniform sampling of x(t) where M = 3 and L = 2.
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2.2.1 Perfect Reconstruction

In [71], Papoulis has shown that under certain conditions on multi-channel systems for

which the input is bandlimited, the bandlimited input signal can be perfectly reconstructed

from samples of the responses of M linear time-invariant (LTI) systems, each sampled

at 1/M times the Nyquist rate. Specifically, perfect reconstruction is possible when the

condition in (2.2) on the frequency response Hm(Ω) of each channel in the multi-channel

systems is satisfied.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H0(Ω) . . . HM−1(Ω)
... . . . ...

H0(Ω− k · 2π
MTN

) . . . HM−1(Ω− k · 2π
MTN

)
... . . . ...

H0

(
Ω− (M−1) · 2π

MTN

)
. . . HM−1

(
Ω− (M−1) · 2π

MTN

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0, Ω ∈

[
π
TN

− 2π
MTN

,
π
TN

]
.

(2.2)

Similarly, perfect reconstruction of x(t) is possible from the multi-channel outputs of Figure

2-1, provided that the effective sampling rate meets or exceeds the Nyquist rate of the input

signal x(t). For example, perfect reconstruction can be accomplished by combining the

sequences xm[n] to form uniform Nyquist samples of x(t), as shown in Figure 2-4, from

which x(t) is obtained by sinc interpolation.

G1(e
jω)

G0(e
jω)

L

L
x0[n]

x1[n]

+
x[n]

TN

L GM−1(e
jω)

xM−1[n]

∑
n
x[n]δ(t− nTN )Sample

to
Impulse

x(t)

Ω

TN

−

π

TN

π

TN

Figure 2-4: Multi-channel reconstruction.
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2.2.1.1 Uniform spacing of the time delays

When the time delays of the multi-channel system of Figure 2-1 are uniformly spaced as in

(2.1), choosing the reconstruction filters in the system of Figure 2-4 as

Gm(e jω) =
L
M

e jω L
M m, |ω|< π, m = 0,1, . . . ,M−1, (2.3)

results in perfect reconstruction of x(t). With this choice of Gm(e jω), the discrete-time

processing in the multi-channel reconstruction of Figure 2-4 is equivalent to interleaving

the outputs of the multi-channel sampling system followed by sampling rate conversion by

a noninteger factor of L/M, as shown in Figure 2-5.

e
jω

1

M

x0[n]

x1[n]

M e
jω(M−1)

xM−1[n]

+

M

xM/L[n] x[n]

ωπ

M
π

M
−

L

L M

Figure 2-5: Interleaving followed by sampling rate conversion.

This follows by first noting that interchanging the sampling rate expanders with filtering

in the system of Figure 2-5 resulting in the system of Figure 2-6. Then, the reconstruction

filters in (2.3) can be shown to be equivalent to the processing follows the sampling rate

expanders in Figure 2-6.

More generally, the filters Gm(e jω) are chosen to compensate for the nonuniform spac-

ing of the channel offsets τm so that x[n] represents uniform samples of x(t).

2.2.1.2 Nonuniform spacing of the time delays

Perfect reconstruction of x(t) is obtained in the system of Figure 2-4 when

M−1

∑
m=0

Gm(e jω)Xm(e jωL) =
1

TN
X
(

ω
TN

)
, |ω |< π, (2.4)
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Figure 2-6: Multi-channel sampling rate conversion.

or equivalently when

M−1

∑
m=0

Gm(e jω) ·

[
1
T

L−1

∑
k=−(L−1)

X

(
ω − 2π

L k
TN

)
· e− j(ω− 2π

L k) τm
TN

]
=

1
TN

X
(

ω
TN

)
, |ω |< π.

(2.5)

Since the sampling rate in each channel is 1/L times the Nyquist rate of the input signal,

only L shifted replicas of the spectrum of x(t) contribute to each frequency ω in the spec-

trum of each signal xm[n] in Figure 2-1. Consequently, at each frequency ω , equation (2.5)

imposes L constraints on the M reconstruction filters Gm(e jω). Of these constraints we

impose L−1 to remove the aliasing components and one to preserve X(Ω).

Rearranging eq. (2.5), we obtain

1
T

L−1

∑
k=−(L−1)

X

(
ω − 2π

L k
TN

)
·

(
M−1

∑
m=0

Gm(e jω) · e− j(ω− 2π
L k) τm

TN

)
=

1
TN

X
(

ω
TN

)
, |ω |< π, (2.6)

which results in the following set of constraints:

M−1

∑
m=0

Gm(e jω) · e− j(ω− 2π
L k)τm/TN = L ·δ [k] ω ∈ ∆ω i, (2.7)

k =−i,−i+1, . . . ,L−1− i, i = 0,1, . . . ,L−1,

where ∆ω i =
[
π − (i+1)2π

L ,π − i2π
L

]
.
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2.2.1.3 Nyquist-rate Sampling

With no oversampling, i.e, when M = L, eqs. (2.8) uniquely determine the reconstruction

filters Gm(e jω). To obtain the reconstruction filters in this case, we first write the set of

equations in (2.8) in a matrix form, i.e.,

V ·


e− jω0i ·G0(e jω) · e− jωτ0/TN

e− jω1i ·G1(e jω) · e− jωτ1/TN

. . .

e− jωM−1i ·GM−1(e jω) · e− jωτM−1/TN

= L · ei, ω ∈ ∆ωi, i = 0,1, . . . ,L−1,

(2.8)

where ei is an indicator vector whose ith entry is 1 and all other entries are zero, and V is in

general an LxM Vandermonde matrix of the form

V =



1 1 . . . 1

α1 α2 . . . αM

α2
1 α2

2 . . . α2
M

. . .
. . . . . . . . .

αL−1
1 αL−1

2 . . . αL−1
M


, (2.9)

with αm+1 = e jωm, m = 0,1, . . . ,M−1. When M = L and all αm are distinct, V is invert-

ible. Using the explicit formula in [57] for the inverse of a square Vandermonde matrix, the

solution to the set of eqs. in (2.8) for the case M = L becomes

Gm(e jω) = L · e jωmi · e jωτm/TN · (−1)L−1−i

∏L−1
l=0,l ̸=m (αm+1 −αl+1)

·σm+1
L−1−i,L−1,

ω ∈ ∆ωi, i = 0,1, . . . ,L−1, m = 0,1, . . . ,L−1, (2.10)

where the coefficients {σm+1
L−1−i,L−1}

L−1
i=0 are determined by the following expansion

L

∏
l=1,l ̸=m+1

(x−αl) =
L−1

∑
i=0

(−1)L−1−ixiσm+1
L−1−i,L−1. (2.11)
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Denoting by gm(t) the impulse response corresponding to the frequency response

Gm(Ω) =

 TN ·Gm(e jΩTN ) |Ω|< π/TN

0 otherwise
, m = 0,1, . . . ,M−1, (2.12)

it follows from eqs. (2.10) and (2.11) that

gm(t − τm) =
1

2π

∫ π/TN

−π/TN

TNGm(e jΩTN )e jΩ(t−τm)dΩ

=

(
∑L−1

i=0 (−1)L−1−i(αm+1e− j 2π
LTN

t
)i ·σm+1

L−1−i,L−1

)
∏L−1

l=0,l ̸=m(αm+1 −αl+1)
· sinc(πt/T ) · e j π

TN
( L−1

L )t

=
L−1

∏
l=0,l ̸=m

(αm+1e− j 2π
LTN

t −αl+1)

(αm+1 −αl+1)
· sinc(πt/T ) · e j π

TN
( L−1

L )t
, m = 0,1, . . . ,L−1.

(2.13)

Substituting αm+1 = e jωm in (2.13) results in

gm(t) = sinc
(π

T
(t + τm)

)
·

(
L−1

∏
l=0,l ̸=m

sin
(π

T (t + τl)
)

sin(π
T (τl − τm))

)
m = 0,1, . . . ,L−1. (2.14)

Consequently, with the reconstruction filters corresponding to gm(t) in (2.14), the output

of the system in Figure 2-4 is a perfect reconstruction of the continuous-time signal x(t).

Specifically,

x(t) =
M−1

∑
m=0

∞

∑
n=−∞

xm[n] ·gm(t −nT )

=
M−1

∑
m=0

∞

∑
n=−∞

xm[n]sinc
(π

T
(t −nT + τm)

)
·

(
L−1

∏
l=0,l ̸=m

sin
(π

T (t −nT + τl)
)

sin(π
T (τl − τm))

)
.

(2.15)

The reconstruction formula in (2.15) is consistent with [100] and [23]. While the derivation

in [23] is based on the Lagrange interpolation formula, the derivation here is carried out by

forcing the conditions for perfect reconstruction.
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2.2.2 Optimal Reconstruction in the Presence of Quantization Error

In this section we consider uniform quantization applied to the multi-channel output sam-

ples of Figure 2-1, i.e., x̃m[n] = Q(xm[n]), and we analyze its effect on the reconstructed

signal at the output of the system in Figure 2-4. With M > L, i.e., with oversampling, and

with L constraints for perfect reconstruction, there remain M −L degrees of freedom for

the design of the reconstruction filters. These degrees of freedom can be used to minimize

the average noise power at the output of the reconstruction system due to quantization of

the multi-channel output samples, as shown in Figure 2-7.

x(t)

x0[n] x̃0[n]
QuantizerC/D

nT − τ0

C/D
x1[n] x̃1[n]

Quantizer

nT − τ1

xM−1[n] x̃M−1[n]
QuantizerC/D

nT − τM−1

Figure 2-7: Multi-channel sampling and quantization.

2.2.2.1 Quantization Noise Analysis

In our analysis we represent the error due to the uniform quantizer in each channel of Figure

2-7 through an additive noise model [4, 81, 95, 96]. Specifically, the quantizer output x̃m[n]

in the mth channel is represented as

x̃m[n] = xm[n]+qm[n], (2.16)

where qm[n] is assumed to be a white-noise process uniformly distributed between ±∆m/2

and uncorrelated with xm[n], where ∆m denotes the quantizer step size. Correspondingly,

the variance of qm[n] is σ2
m = ∆m

2/12.
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To analyze the effect of each channel of Figure 2-4 on the corresponding quantization

noise we consider the system of Figure 2-8 whose output q̃m(t) is

q̃m(t) =
∞

∑
k=−∞

q̃m[k]sinc
(

π
TN

(t − kTN)

)

=
∞

∑
k=−∞

(
∞

∑
n=−∞

qm[n]gm[k−nL]

)
sinc

(
π
TN

(t − kTN)

)

=
∞

∑
n=−∞

qm[n]

(
∞

∑
k=−∞

gm[k−nL]sinc
(

π
TN

(t − kTN)

))

=
∞

∑
n=−∞

qm[n]

(
∞

∑
k=−∞

gm[k]sinc
(

π
TN

(t −n(LTN)− kTN)

))

=
∞

∑
n=−∞

qm[n]gm(t −nT ). (2.17)

Gm(ejω)L
q̃m[n]qm[n]

TN

q̃m(t)

Ω

TN

−

π

TN

π

TN

Sample
to

Impulse

Figure 2-8: Single channel in the reconstruction system of Figure 2-4.

Under the assumption that qm[n] is a zero-mean white-noise process with variance σ2
m,

the autocorrelation function of q̃m(t) is

Rq̃mq̃m(t, t − τ) = σ2
m ·

∞

∑
k=−∞

gm(t − kT )gm(t − τ − kT ), (2.18)

which is periodic in t with period T = LTN , and q̃m(t) is therefore a wide-sense cyclo-

stationary random process. Alternatively, Rq̃mq̃m(t, t − τ) can be expressed as

Rq̃mq̃m(t, t − τ) =
1

2π

∫ π/TN

−π/TN

Sq̃mq̃m(Ω; t) · e jΩτdΩ, (2.19)
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where

Sq̃mq̃m(Ω; t) =
∫ ∞

−∞
Rq̃mq̃m(t, t − τ) · e− jΩτdτ

= σ2
m ·

∞

∑
k=−∞

gm(t − kT )
∫ ∞

−∞
gm(t − τ − kT ) · e− jΩτdτ

= σ2
m ·G∗

m(Ω) ·
∞

∑
k=−∞

gm(t − kT )e− jΩ(t−kT )

=

 σ2
m ·TNGm

∗(e jΩTN ) ·∑∞
k=−∞ gm(t − kT )e− jΩ(t−kT ) |Ω|< π

TN

0 otherwise
.

(2.20)

We denote by e(t) the total noise component due to quantization in the system of Figure

2-4, i.e.,

e(t) =
M−1

∑
m=0

q̃m(t). (2.21)

With the assumption that the quantization noise is uncorrelated between channels,

Ree(t, t − τ) =
M−1

∑
m=0

Rq̃mq̃m(t, t − τ), (2.22)

from which it follows that e(t) is also a wide-sense cyclo-stationary random process. Thus,

the ensemble average power E(e2(t)) of e(t) is periodic with period T . Averaging also over

time and denoting by σ2
e the time and ensemble average power of e(t), we obtain

σ2
e =

1
T

∫ T

0
E(e2(t))dt =

1
T

∫ T

0
Ree(t, t)dt =

M−1

∑
m=0

1
T

∫ T

0
Rq̃mq̃m(t, t)dt. (2.23)

Expressing Rq̃mq̃m(t, t) in terms of Sq̃mq̃m(Ω; t) as in (2.20), eq. (2.23) becomes

σ2
e =

M−1

∑
m=0

σ2
m

2πL
·
∫ π/TN

−π/TN

Gm
∗(e jΩTN ) ·

(
∞

∑
k=−∞

∫ T

0
gm(t − kT )e− jΩ(t−kT )dt

)
dΩ

=
1

2π

∫ π

−π

M−1

∑
m=0

(σ2
m/L) · |Gm(e jω)|2dω. (2.24)
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2.2.2.2 Optimal reconstruction filters

In general, the design of Gm(e jω) can be formulated in a variety of ways, one of which is

to use all degrees of freedom to minimize the reconstruction error (Chapter 3). However,

in the specific approach taken in this chapter, the only characteristic of the signal assumed

to be known is its bandwidth. Consequently, we choose the optimal reconstruction filters

Gm(e jω) to minimize σ2
e under the set of constraints in (2.8), which guarantees perfect

reconstruction in the absence of error due to quantization. As shown in Appendix A, the

reconstruction filters Gm(e jω) that minimize σ2
e under the set of constraints in (2.8) are

Gm(e jω) = 1/σ2
m · e jωτm/TN

(
L−1−i

∑
l=−i

λ (i)
l · e− j2π(τm/LTN)l

)
= 1/σ2

m · e jωτm/TN ·Λ(i)(e jωm) (2.25a)

= 1/σ2
m · e jωτm/TN ·

(
vm

Hλ (i)
)

e jωmi, ω ∈ ∆ω i (2.25b)

i = 0,1, . . . ,L−1, m = 0,1, . . . ,M−1,

where Λ(i)(e jωm) is the discrete-time Fourier transform of the finite-length sequence {λ (i)
k }L−1−i

k=−i
sampled in frequency at

ωm = 2πτm/(LTN), (2.26)

and

vm
H =

[
1,e− j2π τm

LTN , . . . ,e− j2π τm
LTN

(L−1)
]
. (2.27)

For each i = 0,1, . . . ,L− 1, the sequence λ (i) = {λ (i)
k }L−1−i

k=−i is defined as the solution to
the following set of equations:

AM ·λ (i) = L · ei, (2.28)

with ei an indicator vector whose ith entry is 1 and all other entries are zeros, and AM is an

LxL Hermitian Toeplitz matrix such that

AM =
M−1

∑
m=0

(vm · vm
H)/σ2

m. (2.29)
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2.2.2.3 Polyphase Implementation of the reconstruction filters

If the reconstruction filters in Figure 2-4 are designed as finite impulse response (FIR) fil-

ters, considerable gain in computational efficiency can be achieved by utilizing a polyphase

decomposition of Gm(e jω) and rearranging the operations so that the filtering is done at the

low sampling rate. Specifically, Gm(e jω) can be expressed as

Gm(e jω) =
L−1

∑
n=0

E(n)
m (e jωL) · e− jωn, (2.30)

where E(n)
m (e jω) are the discrete-time Fourier transforms of the polyphase components

e(n)m [k] of gm[n] defined as

e(n)m [k] = gm[n+ kL] n = 0,1, . . . ,L−1, k = 0,±1, . . . (2.31)

Interchanging filtering with the sampling rate expanders using the noble identity [69],

x̃[n] is obtained from a superposition of L sub-systems of the form of Figure 2-9 in which

the filters are implemented at the low sampling rate.

L e
−jωk

E
(k)
0 (ejω)

E
(k)
1 (ejω)

E
(k)
M−1(e

jω)

x̃0[n]

x̃M−1[n]

x̃1[n]

x̃
(k)[n]

Figure 2-9: The kth branch of the polyphase implementation of the system in Figure 2-4.
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2.2.2.4 Minimum average quantization noise power

Substituting the expression for Gm(e jω) from (2.25a) into (2.24) we obtain for the mini-

mum achievable value of σ2
e

σe
2
min =

1
L

L−1

∑
i=0

1
2π

∫ π−i 2π
L

π−(i+1) 2π
L

M−1

∑
m=0

(1/σ2
m) · |Λ(i)(e jωm)|2dω

=
1
L

L−1

∑
i=0

(
1
L

M−1

∑
m=0

|Λ(i)(e jωm)|2/σ2
m

)
. (2.32)

Alternatively, using the expression for Gm(e jω) from (2.25b), the integrand in eq. (2.24)

can be expressed as

M−1

∑
m=0

(σ2
m/L) · |Gm(e jω)|2 =

1
L
·
(

λ (i)
)H
(

M−1

∑
m=0

(
vm · vH

m
)
/σ2

m

)
λ (i)

=
1
L
·
(

λ (i)
)H

AMλ (i)

=
(

λ (i)
)H

· ei, ω ∈ ∆ωi, i = 0,1, . . . ,L−1. (2.33)

Since V = [v1,v2, . . . ,vM−1] is a full-rank matrix, it follows from (2.29) that

cHAMc =
M−1

∑
m=0

|vH
mc|2

σ2
m

> 0, ∀c ̸= 0, (2.34)

and thus AM is a positive-definite matrix. Using (2.33) together with (2.34), an equivalent

expression for the minimum value of σ2
e follows

σe
2
min =

1
L

L−1

∑
i=0

(
λ (i)
)H

· ei =
L−1

∑
i=0

ei
HA−1

M ei = tr(A−1
M ). (2.35)

With no oversampling, i.e., when M = L, it is intuitively reasonable and straight forward

to show that the optimal filters in (2.25) are consistent with gm(t) in (2.14). In addition, AL

can be represented as

AL =V Σ−1V H , (2.36)
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where V is given by (2.9) and Σ = diag[σ2
0 ,σ

2
1 , . . . ,σ

2
L−1]. Since V is invertible, the mini-

mum achieved output average noise power can be written as

σ2
e,L = tr(A−1

L ) = tr(UΣUH) =
L−1

∑
m=0

σ2
m|um|2, (2.37)

where UH = V−1 and um denotes the mth column of U . Using the formula in [57] for the

inverse of V in calculating the norm of um, we obtain

|um|2 =
L−1

∑
i=0

|ui,m|2 =
∑L−1

i=0

∣∣∣(−1)L−1−i ·σm+1
L−1−i,L−1

∣∣∣2
∏L−1

l=0,l ̸=m(αm+1 −αl+1)
. (2.38)

Substituting x = e− j 2π
L k in (2.11) results in the Discrete Fourier Transform of the sequence

{(−1)L−1−i ·σm+1
L−1−i,L−1}

L−1
i=0 . Specifically,

L−1

∑
i=0

(−1)L−1−i ·σm+1
L−1−i,L−1e− j 2π

L ki =
L−1

∏
l=0,l ̸=m

(
e− j 2π

L k −αl+1

)
, k = 0,1, . . . ,L−1,

(2.39)

from which the numerator of the expression in (2.38) can be calculated using Parseval

relation and the output average noise power in eq. (2.37) becomes

σ2
e,L =

L−1

∑
m=0

σ2
m ·

1
2π
∫ π
−π ∏L−1

l=0,l ̸=M sin2(ωl−ω
2 )dω

∏L−1
l=0,l ̸=M sin2(ωm−ωl

2 )
. (2.40)

When M > L, eq. (2.35) together with the Woodbury matrix identity [97] suggest a

simple recursive formula for the update of the output average noise power σe
2
min. Specifi-

cally,

A−1
n = A−1

n−1 −A−1
n−1vnvH

n A−1
n−1/(σ

2
n + vH

n A−1
n−1vn), n = L+1, . . . ,M, (2.41)

σ2
e,n = tr(A−1

n ) = σ2
e,n−1 −

vH
n A−2

n−1vn

σ2
n + vH

n A−1
n−1vn

, n = L+1, . . . ,M. (2.42)
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2.2.3 Optimal Signal-to-Quantization-Noise Ratio (SQNR)

In previous sections, the effects of quantization in the multi-channel sampling system of

Figure 2-7 were analyzed, and optimal reconstruction filters were designed to compensate

for the nonuniform spacing of the channel offsets and for the quantization error. It was

shown that the effective overall signal-to-noise ratio in the reconstructed output depends

on the quantizer step size, the relative timing between the channels and the oversampling

ratio. We next discuss how to appropriately choose these parameters for optimal overall

SQNR.

Noting that the ith equation in (2.28) corresponds to

M−1

∑
m=0

1/σ2
m ·Λ(i)(e jωm) = L, (2.43)

and applying the Cauchy-Schwartz inequality to (2.43) results in

M−1

∑
n=0

1/σ2
n ·

M−1

∑
m=0

|Λ(i)(e jωm)|2/σ2
m ≥ L2, (2.44)

for each i = 0,1, . . . ,L−1. Combining eqs. (2.32) and (2.44) it follows that

σe
2
min ≥

L

∑M−1
m=0 1/σ2

m
, (2.45)

where equality is achieved if and only if the following condition is satisfied

M−1

∑
m=0

1/σ2
m · e jωml = 0 l = 1,2, . . . ,L−1. (2.46a)

This condition is equivalent to each of the following conditions:

Λ(i)(e jωm) =
L

∑M−1
n=0 1/σ2

n

i = 0,1, . . . ,L−1

m = 0,1, , . . . ,M−1,
(2.46b)

λ (i)
k =

L

∑M−1
m=0 1/σ2

m
δ [k] k =−i,−i+1, . . . ,L−1− i. (2.46c)
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To show the equivalence between the conditions in (2.46), we first show that (2.46a) im-

plies (2.46c). The condition in (2.46c) is then shown to imply (2.46b), from which (2.46a)

is implied. To show that (2.46a) implies (2.46c), we note that when ∑M−1
m=0 1/σ2

m · e jωml =

0 l = 1,2, . . . ,L−1, the matrix AM in (2.29) becomes

AM =

(
M−1

∑
m=0

1/σ2
m

)
· ILxL, (2.47)

and (2.46c) follows from (2.28) together with (2.47). Using the equality in (2.46c) in the

definition of Λ(i)(e jωm), we obtain (2.46b), i.e.,

Λ(i)(e jωm) =
L−1−i

∑
l=−i

(
L

∑M−1
m=0 1/σ2

m
δ [l]

)
· e− jωml

=
L

∑M−1
n=0 1/σ2

n
, i = 0,1, . . . ,L−1, m = 0,1, , . . . ,M−1. (2.48)

Finally, it follows from (2.28) together with (2.46b) that

L · ei =

(
M−1

∑
m=0

1/σ2
m · vmvH

m

)
·λ (i) =

M−1

∑
m=0

1/σ2
m · vm · (vH

m ·λ (i)) = (2.49)

=
M−1

∑
m=0

1/σ2
m · vm ·Λ(i)(e jωm)e− jωmi =

L ·
(
∑M−1

m=0 1/σ2
me− jωmi · vm

)
∑M−1

m=0 1/σ2
m

, i = 0,1, . . . ,L−1,

from which (2.46a) follows.

2.2.3.1 Optimal time delays with uniform quantization step size

When the quantizers in Figure 2-7 all have the same step size, we next show that τm as given

by eq. (2.1) is optimal, i.e., the relative timing between adjacent channels is a constant. The

optimal reconstruction filters in (2.25) then reduce to the noninteger delays in (2.3). Also

in this case,

σe
2
min = (L/M) ·σ2, (2.50)
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where σ2 denotes the variance of the quantization noise source in each channel. To show

this, we note that with σ2
m = σ2, the condition of eq. (2.46a) becomes

M−1

∑
m=0

e jωml = 0 l = 1,2, . . . ,L−1, (2.51)

which is clearly satisfied for any L and M when the values e jωm are uniformly spaced on

the unit circle, corresponding to uniform sampling. However, this is in general not a unique

solution as there are other distributions of ωm which satisfy eq. (2.51).

In summary, it follows from eq. (2.45) that for the reconstruction structure suggested

in Figure 2-4 and with the quantization step size the same in each channel, the uniform

sampling grid achieves the minimum average quantization noise power (L/M) ·σ2. Any

other choice of τm, for which (2.51) is not satisfied, results in a higher average quantization

noise power.

2.2.3.2 Optimal time delays with nonuniform quantization step size

As we next show, by allowing the quantization step size to be chosen separately for each

channel, so that quantization noise sources qm[n] in the different channels have different

variances σ2
m, better SQNR can often be achieved. For comparison purposes, we will as-

sume that the quantization noise power averaged over all channels is equal to a pre-specified

fixed value σ2, i.e.,

1
M

M−1

∑
m=0

σ2
m = σ2. (2.52)

Applying the Cauchy-Schwartz inequality to the identity ∑M−1
m=0 σm · 1/σm = M, it follows

that

M−1

∑
n=0

σ2
n ·

M−1

∑
m=0

1/σ2
m ≥ M2, (2.53)
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and equivalently

L

∑M−1
m=0 1/σ2

m
≤ (L/M) ·σ2, (2.54)

with equality if and only if

σ2
m = σ2, m = 0,1, . . . ,M−1. (2.55)

Together with (2.45), we conclude that by having different levels of accuracy in the quan-

tizers in the different channels, there is the possibility of reducing the average quantization

noise power. This suggests a way to compensate for the mismatched timing in the channels

of Figure 2-7 and increase the total SQNR. Alternatively, we can deliberately introduce

timing mismatch so that with appropriate design of the quantizers, we will achieve better

SQNR as compared to the equivalent uniform sampling with equal quantizer step size in

each channel. The analysis and conclusions of course rely on the validity of the additive

noise model used for the quantizer, which becomes less appropriate as the quantizer step

size increases or the relative timing between adjacent channels decreases.

A similar result to that in (2.54) can be shown under other normalizations. Specifi-

cally, instead of fixing the average power of the quantization noise sources in each of the

channels, we now fix the total number of bits used to quantize the samples, i.e.,

NT =
M−1

∑
m=0

Nm,

where Nm represents the number of bits allocated in channel m. Consequently,

∆m =
2X
2Nm

(2.56)

and

σ2
m =

∆2
m

12
= (X2/3)︸ ︷︷ ︸

α

(
1
4

)Nm

, (2.57)

where X represents the full scale level of the A/D converter. It then follows from (2.57)
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that

L

∑M−1
m=0 1/σ2

m
=

L
(1/α) ·∑M−1

m=0 4Nm
. (2.58)

Using convexity arguments to show 1
M ∑M−1

m=0 4Nm ≥ 4NT /M, it follows that

L

∑M−1
m=0 1/σ2

m
≤ (L/M) ·σ2, (2.59)

where σ2 = α ·
(1

4

)NT /M
represents the variance of the quantization error of an NT

M -bit quan-

tizer, based on the additive noise model.

Another important aspect in comparing systems is the total number of comperators used

in the implementation of the A/D converters. With flash architecture used for the design

of the converters, 2n −1 comperators are required for an n-bit quantizer. With M channels

and an Nm-bit quantizer in the mth channel, the total number of comperators Nc in the

multi-channel system is

Nc =
M−1

∑
m=0

(
2Nm −1

)
. (2.60)

The number of bits NAve allocated to each of the channels in an equivalent system, all of

whose quantizers are the same and whose total number of comperators is identical to Nc in

(2.60), is obtained by solving

2NAve −1 =
1
M

M−1

∑
m=0

(
2Nm −1

)
, (2.61)

which results in NAve = log2
( 1

M ∑M−1
m=0 2Nm

)
. Using the following inequality,

1
M

M−1

∑
m=0

4Nm ≥

(
1
M

M−1

∑
m=0

2NM

)2

, (2.62)
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which follows from Cauchy-Schwartz inequality, or the equivalent form of (2.62)

1
M

M−1

∑
m=0

4Nm ≥ 2log2( 1
M ∑M−1

m=0 2Nm)
2

= 4NAve, (2.63)

we obtain

L

∑M−1
m=0 1/σ2

m
=

L/M
1
α ·
( 1

M ∑M−1
m=0 4Nm

) ≤ (L/M) ·σ2, (2.64)

where σ2 = α ·
(1

4

)NAve .

2.2.4 Simulations

In this section, we consider the multi-channel sampling system of Figure 2-7 with M = 3

and L = 2. Following a derivation of the mean squared error for this special case, we

then consider four cases, each corresponding to a different assumption with respect to the

relative timing between the channels and the quantization step size in each channel. In the

first case, the quantization step size in each channel is fixed and equal in all channels, and

the relative timing between channels is optimized. In the second case, the relative timing

between the channels is specified, and the bit allocation is optimized subject to a bit-budget

constraint. In the third case, each channel is allocated a different number of bits, and the

relative timing between channels is optimized to maximize the SQNR. In the fourth case,

we fix the number of bits in channel 0 and channel 1 and analyze the behavior of the optimal

relative timing between the channels as the number of bits allocated to channel 2 varies.

To obtain the expression for the minimum mean square error for the case of M = 3 and

L = 2, we first note that

A3 =

 ∑2
m=0 1/σ2

m ∑2
m=0 e− jωm/σ2

m

∑2
m=0 e jωm/σ2

m ∑2
m=0 1/σ2

m

 . (2.65)

Assuming without loss of generality that τ0 = 0 (ω0 = 0), it then follows from (2.35) and
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(2.65) that

σe
2
min = tr(A−1

3 ) =

(
σ2

0 σ2
1 +σ2

0 σ2
2 +σ2

1 σ2
2
)
/2

σ2
0 sin2 (ω1−ω2

2

)
+σ2

1 sin2 (ω1
2

)
+σ2

2 sin2 (ω2
2

) . (2.66)

When σ2
0 = σ2

1 = σ2
2 = σ2, the minimum mean squared error in (2.66) reduces to

σe
2
min =

(3/2)σ2

sin2 (ω1−ω2
2

)
+ sin2 (ω1

2

)
+ sin2 (ω2

2

) . (2.67)

Figure 2-10 shows the factor γ = σ2/σe
2
min representing the reduction in the average noise

power at the output of the reconstruction of Figure 2-4 with M = 3, L = 2, and τ0 = 0, for

the case of σ2
0 = σ2

1 = σ2
2 = σ2. As follows from eq. (2.67) and is indicated in Figure

2-10, the maximum noise reduction is achieved for τ1 = −τ2 = ±(2/3) · TN , for which

σe
2
min = (2/3) ·σ2.

Figure 2-10: The reduction factor γ in the average noise power at the output of the recon-
struction of Figure 2-4 achieves its maximum value at τ1 = −τ2 = ±(2/3) ·TN , i.e., when
the multi-channel sampling is equivalent to uniform sampling. Since this curve is based on
the additive noise model of the quantization error, which assumes uncorrelated errors, it is
less accurate in the vicinity of τ1 = 0, τ2 = 0, and τ1 = τ2.

To verify the analysis based on the additive noise model of the quantization error, a

simulation of the multi-channel sampling and reconstruction system was obtained in [62],

in which actual quantizers were applied to the multi-channel output samples. Figure 2-11

shows the reduction factor γ obtained from simulation for which a 10-bit quantizer is used

in each of the channels. Comparing Figure 2-10 which corresponds to the additive noise
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Figure 2-11: The reduction factor γ in the average noise power at the output of the re-
construction system of Figure 2-4 where actual quantizers are applied to the multi-channel
output samples with accuracy of 10 bits.

model with Figure 2-11 obtained from simulations, we conclude that the analysis based on

the additive noise model is valid except in the vicinity of τ1 = τ2, τ1 = 0, and τ2 = 0, where

discrepancies occur. Figure 2-11 indicates performance degradation in the vicinity of these

lines, which is not predicted with the analysis based on the additive noise model. These

discrepancies between the analysis and the simulations occur when the sampling instants of

two channels or more fall quite close to each other or exactly on the same grid and the un-

correlated assumption of the additive noise model is no longer reasonable. As analyzed in

[62], when the relative timing between adjacent channels is small and the same number of

bits is allocated to each of the channels, a positive correlation between the corresponding

quantization errors occurs. The positive correlation between the errors results in perfor-

mance degradation as compared to the performance predicted with the analysis based on

the additive noise model.

It follows from eq. (2.45) and as illustrated in the preceding example, for the recon-

struction structure suggested in Figure 2-4 and with the quantization step size the same in

each channel, the uniform sampling grid achieves the minimum average quantization noise

power (L/M) ·σ2. Any other choice of τm for which (2.51) is not satisfied results in a

higher average quantization noise power.

We next illustrate with an example that with appropriate design of the quantizer in each
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channel we can compensate for the mismatched timing in the channels of Figure 2-7. With

4-bit uniform quantizers in each of the channels, it follows from eq. (2.66) that when the

time delays are τ0 = 0, τ1 = TN/8 and τ2 = −(3/4)TN , the output average noise power is

increased by approximately 20% relative to the case in which {τm} are chosen according

to (2.1). However, when the quantizer step size is not constrained to be the same in each

channel, the reconstruction error variance can be reduced.

Table 2.1 shows the performance gain for different bit allocations as compared to the

case in which each channel is allocated 4 bits. The results are sorted from the most to the

least preferable where in each choice only 1 bit is shifted from one channel to another,

keeping the total number of bits the same.

N0 N1 N2 (σe
2
min)(4,4,4)/(σe

2
min)(N0,N1,N2)

3 4 5 1.46
4 3 5 1.36
3 5 4 1.26
5 3 4 1.14
4 5 3 0.41
5 4 3 0.38

Table 2.1: The performance gain for different bit allocations.

In general, we might intuitively expect that since the sampling instants of channel 2

are relatively far from those of the other two channels, it should be allocated more bits in

compensation. Also, the relative timing between channel 0 and channel 2 is smaller than

the relative timing between channel 2 and channel 1, suggesting allocation of more bits

to channel 1 as compared to channel 0. This intuition of bit allocation according to the

relative timing between adjacent channels is consistent with the results in Table 2.1 and in

particular with the optimal choice shown in Figure 2-12, which suggests allocating 3 bits

to channel 0, 4 bits to channel 1, and 5 bits to channel 2. The same results are obtained in

[62] in simulating the system using actual quantizers. Once again, the simulations confirm

the error analysis based on the additive noise model.

We next fix the number of bits in channel 0 to 3, channel 1 to 4, and channel 2 to 4,

and without loss of generality set τ0 = 0. The values of τ1 and τ2 are chosen to minimize

the output average noise power. Note that when τ1 =−τ2 =±(2/3)TN , the multi-channel

53



ℑ(z)

ℜ(z)

(4)

(3)

(5)

e
jω2

e
jω1

e
jω0

π

8

π

4

Figure 2-12: Each vector represents a channel whose time delay τm is determined by the
vector’s phase ωm according to the transformation ωm = 2πτm/(LTN), which maps the
region τm ∈ [−TN ,TN ] into the region ωm ∈ [−π,π]. The numbers associated with each
of the vectors are the optimal bit allocations for the case of τ0 = 0, τ1 = TN/8, and τ2 =
−3TN/4.

sampling is equivalent to uniform sampling. More generally, the minimum in (2.66) occurs

when τ1 and τ2 are chosen according to (2.46). Specifically,

64+256e jω1 +256e jω2 = 0, (2.68)

for which ω1 = −ω2 = ±0.54π (corresponding to τ1 = −τ2 = ±0.54TN) is a solution, as

Figure 2-13 illustrates. Consistent with the intuition expressed earlier, since channels 1 and

ℑ(z)

ℜ(z)

(4)

(3)

(4)

e
jω2

e
jω1

e
jω0

0.54π

Figure 2-13: With bit allocation N0 = 3, N1 = 4, and N2 = 4, the optimal choice of time
delays is τ1 =−τ2 =±0.54TN , for which the multi-channel sampling system is equivalent
to recurrent nonuniform sampling.

2 are both allocated 4 bits and channel 0 is allocated only 3 bits, the optimal choice of τ1

and τ2 is such that the relative timing between channel 1 and channel 0, which is equal to
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the relative timing between channel 0 and channel 2, is much smaller than that between

channel 2 and channel 1, compensating for the low accuracy in channel 0. If channel 0

were allocated 4 bits as the other two channels are, the optimal choice of the time delays

would have been τ1 = −τ2 = ±(2/3)TN , corresponding to uniform sampling; however,

since channel 0 is allocated fewer bits than the other two channels, the sampling instants of

the other two channels are getting closer to that of channel 0 in compensation. Since this

choice of time delays provides the solution to (2.46), the output average noise power σ2
e

achieves the lower bound in (2.45).

Figure 2-14 shows the relative gain with respect to output average noise power for all

values of τ1 and τ2 in the range [−TN ,TN ], as compared to the case of uniform sampling.

As indicated, an improvement of 12.5% relative to the uniform sampling case is achieved

for the optimal choice τ1 =−τ2 =±0.54TN .

Figure 2-14: The relative performance compared to uniform sampling as a function of τ1
and τ2 when τ0 = 0, N0 = 3, N1 = 4, and N2 = 4. Since this curve is based on the additive
noise model of the quantization error, which assumes uncorrelated errors, it is less accurate
in the vicinity of τ1 = 0, τ2 = 0, and τ1 = τ2.

In the fourth case, we allocate 10 bits to channel 0 and 10 bits to channel 1. The number

of bits allocated to channel 2 varies between 9 and 11. For each of these cases, we optimize

the time delays to minimize the mean square error given in (2.66). This optimization results

in the configurations illustrated in Figure 2-15(a). As indicated in this figure, the relative

timing between channel 0 and channel 2 increases as channel 2 is allocated more bits. In the
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same time, the relative timing between channel 1 and channel 0 decreases, in compensation.

(10)

ℑ(z)

ℜ(z)
(10)(11) ω2 = π ω1 = 0

ω0 = 0

N2 = 11

(10)

ℑ(z)

ℜ(z)

(10)

(10)

ω2 = −

2π

3

ω1 =
2π

3

ω0 = 0

N2 = 10

(10)

ℑ(z)

ℜ(z)
(10)

(9)

ω2 = −0.54π

ω1 = 0.92π

ω0 = 0

N2 = 9

(a)

(10)

ℑ(z)

ℜ(z)
(10)

(11)
ω2 = −0.95π

ω1 = 0.1π

ω0 = 0

N2 = 11

(10)

ℑ(z)

ℜ(z)

(10)

(10)

ω2 = −

2π

3

ω1 =
2π

3

ω0 = 0

N2 = 10

(10)

ℑ(z)

ℜ(z)
(10) (9)ω2 = 0ω1 = π

ω0 = 0

N2 = 9

(b)

Figure 2-15: Optimal time delays for different choices of N2 (a) based on the additive noise
model, (b) based on simulations with actual quantizers.

As Figure 2-15(b) illustrates, when N2 = 10 the optimal time delays resulting from

simulations with actual quantizers, obtained in [62], are consistent with the optimal time

delays derived from the analysis based on the additive noise model. However, for N2 = 9

or N2 = 11, the optimal configurations from the simulations are different than those based

on the additive noise model. Specifically, for optimal performance, the simulation with

N2 = 11 suggests separating channel 0 from channel 1. In addition, due to symmetry, the

simulation also suggests setting the time delay of channel 2 to space its sampling instants

equidistant from the sampling instants of the other two channels. This nonzero gap be-

tween channel 0 and channel 1 is intuitively reasonable since positive correlation between

the quantization errors in adjacent channels occurs when the channels are allocated the

same number of bits and their relative timing is getting small. As mentioned earlier, this

positive correlation results in degradation in performance. For the case of N2 = 9, optimal

performance based on simulations is achieved when both a) the sampling instants of chan-

56



nel 0 are maximally separated from those of channel 1, i.e., the relative timing between the

channels is TN , and b) the time delay of channel 2 is chosen equal to that of either channel

0 or channel 1. This optimal configuration is significantly different from the one based on

the analysis with the additive noise model. This discrepancy occurs due to the occurrence

of negative correlation between quantization errors of adjacent channels with different bit

allocation as their relative timing approaches 0. The negative correlation between the quan-

tization errors together with the optimal reconstruction filters which were designed under

the assumption of uncorrelated quantization errors, results in an overall improvement in

performance, which is not predicted by the additive noise model.

In summary, we have illustrated that with nonuniform spacing of the time delays, for

which the interleaved multi-channel outputs correspond to recurrent nonuniform sampling,

equal quantization step size in each channel is not optimal. Allowing different levels of ac-

curacy in the quantizers in the different channels achieves a reduction in the noise variance.

Alternatively, when the quantization step size in each of the channels is fixed and varies

among channels, choosing the relative timing between adjacent channels to be the same is

not optimal, and lower average noise power is achieved with nonuniform spacing of the

time delays.

2.3 Differential Uniform Quantization

In this section, differential uniform quantization [20, 24, 40, 68] which is based on the no-

tion of quantizing a prediction error signal rather than the signal itself is incorporated into

the multi-channel sampling system of Figure 2-7. By exploiting redundancies in the cor-

related input signal and representing it in terms of prediction error samples, an increased

SQNR can be achieved for a given bit rate or equivalently, a reduction of bit rate for a given

SQNR. It is shown that replacing uniform quantization with differential uniform quantiza-

tion in the multi-channel system of Figure 2-7 results in a higher performance gain when

the channel offsets are nonuniformly spaced. It is also shown that with differential quanti-

zation, uniform sampling is not necessarily optimal even when using the same number of

bits in the quantizers of the different channels.
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Uniform quantization can be applied to deterministic signals and does not require the

use of a stochastic model, but can also be applied to stochastic signals. The analysis of

differential uniform quantization specifically requires stochastic modeling. We therefore

assume in this section that x(t) is a realization of a zero-mean stationary Gaussian ran-

dom process whose autocorrelation function is Rxx(τ), its power spectrum Sxx(Ω) = 0 for

|Ω| ≥ Ωc, and its variance is denoted by σ2
x . The basic differential quantization system we

consider is shown in Figure 2-16 where x̂[n] = ∑N
j=1 h jx̃[n− j] is a linear predictor of x[n]

based on the quantized values x̃[n].

Q(·)

h

x[n]

x̂[n]
x̃[n]

u[n]
d[n]

y[n] = x̃[n]

x̂[n] h

v[n] = u[n]

Figure 2-16: Block diagram of differential quantization: coder and decoder.

An important property of the ”closed-loop” structure in Figure 2-16 is that quantization

error does not accumulate, i.e., with error free transmission of u[n], the reconstruction error

r[n] = y[n]− x[n] is equal to the quantization error q[n] = u[n]−d[n]. With optimal predic-

tion and adequately fine quantization, modeling the quantization error as an uncorrelated

random process is well justified. Also, in the case of fine quantization, x̂[n] can be well

approximated as

x̂[n] =
N

∑
j=1

h jx̃[n− j] =
N

∑
j=1

h jx[n− j]+
N

∑
j=1

h jq[n− j]≈
N

∑
j=1

h jx[n− j], (2.69)

and the quantization error feedback is therefore not considered [40]. The optimal predictor

coefficients {h j}N
j=1 are then chosen to minimize the mean square prediction error based

on previous unquantized samples, i.e., E
{(

x[n]−∑N
j=1 h jx[n− j]

)2
}

.

Note that when the relative timing between adjacent channels in the system of Figure 2-

7 are not equal, the optimal choice for the predictor coefficients will in general be different

for each of the outputs of the multi-channel sampling system, resulting in a periodic lin-
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ear time-varying FIR system and a wide-sense cyclo-stationary prediction error sequence.

Consequently, both the quantization error q[n] and the reconstruction error r[n] will be

wide-sense cyclo-stationary uncorrelated sequences, and the noise analysis of section 2.2

will remain valid.

To relate the quantization error variance σ2
q to the quantizer input signal variance σ2

i ,

we define as in [40] the quantizer performance factor, i.e.,

ε2
q = σ2

q/σ2
i , (2.70)

which depends on the type of quantizer used, the number of quantization levels, and the

pdf of the quantizer input. With differential uniform quantization incorporated into the

multi-channel system of Figure 2-7, the variance of the reconstruction error for each of the

channels outputs is given by

σ2
r [m] = σ2

q [m] = ε2
q [m]

(D) ·σ2
d [m] m = 0,1, . . . ,M−1, (2.71)

where σ2
d [m] and ε2

q [m]
(D) are the variance of the prediction error and the quantizer perfor-

mance factor corresponding to channel m.

As follows from (2.70) and (2.71), replacing uniform quantization by differential uni-

form quantization results in a reduction in reconstruction error in each channel by a factor

of

ε2
q [m] ·σ2

x

ε2
q [m]

(D) ·σ2
d [m]

= (ε2
q [m]/ε2

q [m]
(D)

) · (σ2
x /σ2

d [m]) m = 0,1, . . . ,M−1. (2.72)

The ratio ε2
q [m]/ε2

q [m]
(D) is in general not equal to unity. However, it tends to be close

to unity in several cases one of which is the case of Gaussian sources [40] for which the

prediction error is also Gaussian and we therefore consider only the performance gain due

to the linear predictor. With that assumption and when the same type of quantizer with

the same number of levels is used for all channels, it follows from eqs. (2.35), (2.70) and

(2.71) that when replacing uniform quantization with differential uniform quantization, the
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overall improvement in SQNR at the output of the reconstruction system of Figure 2-4 is

σ2
e min

σ2
e
(D)
min

=
tr
((

∑M−1
m=0 (vm · vH

m)/σ2
x
)−1
)

tr
((

∑M−1
m=0 (vm · vH

m)/σ2
d [m]

)−1
) , (2.73)

with vm as defined in (2.27).

To illustrate, we consider again the case of M = 3 and L = 2, where the time delays

are now fixed to τ0 = 0, τ1 = 0.9TN , and τ2 = 1.1TN . The output samples are quantized

according to the system of Figure 2-16 where a first-order predictor is used, and 4 bits

uniform quantization is applied to the prediction error samples, satisfying the assumption of

fine quantization. Assuming τ0 < τ1 < τ2, the optimum value of h1[m] and its corresponding

minimum prediction variance are

h1[m] =
Rxx(τm+1 − τm)

Rxx(0)
, σ2

d [m] =
(
1−h2

1[m]
)

σ2
x m = 0,1,2, (2.74)

where τ3 = τ0 +T > τ2.

As follows from eq. (2.35), with uniform quantization and with τ0 = 0, τ1 = 0.9TN ,

and τ2 = 1.1TN for which the interleaved multi-channel outputs corresponds to recurrent

nonuniform samples, there is a degradation in performance by approximately 10% relative

to the case of uniform sampling. However, as illustrated in Table 2.2, eq. (2.73) implies that

when replacing uniform quantization with differential uniform quantization a higher per-

formance gain in SQNR is achieved in this case as compared to that achieved with uniform

sampling. It is also indicated that the relative improvement in SQNR due to differential

uniform quantization in uniform and recurrent nonuniform sampling is dependent on the

power spectrum of the input signal. Specifically, when the signal’s energy is mostly concen-

trated at high frequencies, the improvement achieved with differential uniform quantization

applied in recurrent nonuniform sampling is much more significant than that achieved in

uniform sampling.

To summarize, with the same number of bits in each channel, and with uniform quan-

tization, uniform sampling is optimal. When differential uniform quantization is incorpo-

rated in the multi-channel sampling system, nonuniform spacing of the channel offsets can
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Rxx(τ)↔ Sxx(Ω) (τ0 = 0,τ1 =
2
3TN ,τ2 =

4
3TN) (τ0 = 0,τ1 = 0.9TN ,τ2 = 1.1TN)

σ2
d [0] = σ2

d [1] = σ2
d [2] = 0.53 σ2

d [0] = σ2
d [1] = 0.76

sinc
2
(

τ

2TN

) 2TN

π

TN
−

π

TN

Ω σe
2
min/σe

2(D)
min = 1.88 σ2

d [2] = 0.064,σe
2
min/σe

2(D)
min = 1.9

σ2
d [0] = σ2

d [1] = σ2
d [2] = 0.83 σ2

d [0] = σ2
d [1] = 0.99

sinc

(

τ

TN

)

TN

π

TN

−

π

TN

Ω σe
2
min/σe

2(D)
min = 1.21 σ2

d [2] = 0.12,σe
2
min/σe

2(D)
min = 1.41

σ2
d [0] = σ2

d [1] = σ2
d [2] = 0.98 σ2

d [0] = σ2
d [1] = 0.93

Ω
2sinc

(

τ

TN

)

− sinc
2
(

τ

2TN

)

2TN

π

TN
−

π

TN σe
2
min/σe

2(D)
min = 1.02 σ2

d [2] = 0.18,σe
2
min/σe

2(D)
min = 1.43

Table 2.2: Examples of overall improvement in SQNR when replacing uniform quantiza-
tion with differential uniform quantization

result in a higher SQNR.
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CHAPTER 3

MMSE RECONSTRUCTION IN

MULTI-CHANNEL NONUNIFORM

SAMPLING

In Chapter 2 we considered the environment of interleaved multi-channel measurements

and the design of optimal reconstruction filters from multi-channel measurements. We de-

signed the reconstruction filters to minimize the averaged noise power at the output of the

reconstruction system due to quantization error, under the constraints for perfect recon-

struction in the absence of quantization error. In this chapter, we relax the constraints for

perfect reconstruction and take an alternative approach to the design of the reconstruction

filters, for which the mean squared reconstruction error is reduced.

3.1 Reconstruction Error

We consider the multi-channel sampling and quantization system shown in Figure 2-7,

whose input x(t) is now treated as a realization of a bandlimited wide-sense stationary

stochastic process. We assume that the random process x(t) is zero-mean, with its autocor-

relation function denoted as Rxx(τ), and that its power spectrum Sxx(Ω) vanishes outside

the region |Ω|< Ωc = π/TN .

Similar to the analysis in Chapter 2, we use the additive noise model for the quantization
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error and represent the output samples of the multi-channel system as

x̃m[n] = xm[n]+qm[n], m = 0,1, . . . ,M−1, (3.1)

where xm[n] = x(nT − τm) are uniform samples of x(t) at a rate 1/T = 1/(LTN), and

qm[n] is assumed to be a white-noise random process, uniformly distributed over the range

[−∆m,∆m], where ∆m is the step-size level of the quantizer in the m-th channel. The model

also assumes that the sequences qm[n] are uncorrelated among themselves and uncorrelated

with samples of x(t).

For the reconstruction of the Nyquist-rate samples of x(t) from the multi-channel mea-

surements x̃m[n], we consider the same structure used in Chapter 2, which is shown in

Figure 2-4. The signal x̂[n] at the output of the reconstruction system can be represented as

x̂[n] =
M−1

∑
m=0

∞

∑
k=−∞

x̃m[k]gm[n− kL], (3.2)

where gm[n] denotes the impulse response corresponding to the frequency response Gm(e jω).

Denoting e[n] = x̂[n]− x[n] as the reconstruction error, we obtain

e[n] =

(
M−1

∑
m=0

∞

∑
k=−∞

xm[k]gm[n− kL]− x[n]

)
+

M−1

∑
m=0

∞

∑
k=−∞

qm[k]gm[n− kL], (3.3)

which is a zero-mean random process whose autocorrelation function Ree[n,n− l] is

Ree[n,n− l] = Rexex [n,n− l]+Reqeq [n,n− l], (3.4)

where

Rexex [n,n− l] = E

{(
M−1

∑
m1=0

∞

∑
k1=−∞

xm1[k1]gm1[n− k1L]− x[n]

)
·

·

(
M−1

∑
m2=0

∞

∑
k2=−∞

xm2 [k2]gm2[n− l − k2L]− x[n− l]

)}
(3.5)
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and

Reqeq[n,n− l] = E

{
M−1

∑
m1=0

∞

∑
k1=−∞

qm1[k1]gm1[n− k1L]
M−1

∑
m2=0

∞

∑
k2=−∞

qm2[k2]gm2[n− l − k2L]

}
.

(3.6)

We denote by σ2
e the time and ensemble average of the noise power, i.e.,

σ2
e =

1
L

L−1

∑
n=0

Ree[n,n] =
1

2π

∫ π

−π
See(e jω)dω, (3.7)

where See(e jω) is treated as the power spectrum of the random process e[n] as if it were

stationary. We show in Appendix B that

See(e jω) =
L−1

∑
k=−(L−1)

1
TN

Sxx

(
ω − 2π

L k
TN

)∣∣∣∣∣1L M−1

∑
m=0

Gm(e jω)e− j(ω− 2π
L k)τm/TN −δ [k]

∣∣∣∣∣
2

+
M−1

∑
m=0

(σ2
m/L) · |Gm(e jω)|2. (3.8)

Note that in the absence of error due to quantization, i.e., when σ2
m = 0, ∀m, and indepen-

dent of the signal’s characteristics, zero mean-squared reconstruction error is achieved in

the system of Figure 2-4 when

M−1

∑
m=0

Gm(e jω)e− j(ω− 2π
L k)τm/TN = Lδ [k], ω ∈ ∆ωi,

k =−i,−i+1 . . . ,L−1− i, i = 0,1, . . . ,L−1. (3.9)

These conditions in (3.9) are consistent with the constraints imposed in (2.8) with the de-

terministic model for perfect reconstruction in the absence of quantization error. Note that

using the optimal reconstruction filters that were obtained in Chapter 2 and which satisfy

the constraints for perfect reconstruction, makes the first term in (3.8) vanish. Note also

that in the design of the reconstruction filters, the remaining degrees of freedom were used

to minimize the output average noise power due to quantization error, which is identical

to the second term in (3.8). Therefore, by not restricting the filters Gm(e jω) to satisfy the
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constraints in (3.9), and instead utilizing all degrees of freedom in the filters’ design to min-

imize the overall mean-squared error, we can achieve lower mean-squared reconstruction

error. As the next section shows, this reduction in the mean-squared reconstruction error

comes at the expense of requiring more information about the input signal x(t).

3.2 Optimal Reconstruction Filters

This section considers the design of the reconstruction filters Gm(e jω) in the multi-channel

reconstruction system of Figure 2-4. The optimal filters Gm(e jω) are chosen to min-

imize the mean-squared reconstruction error in (3.7). These filters can be obtained by

differentiating See(e jω) in (3.8) with respect to GR
m(e

jω) = ℜ
{

Gm(e jω)
}

and GI
m(e

jω) =

ℑ
{

Gm(e jω)
}

, as shown in Appendix C. Alternatively, as we next show, the filters can be

achieved by expanding (3.8) as a quadratic form of Gm(e jω). Specifically, it follows from

(3.8) that

See(e jω) =
1
L

{
M−1

∑
m1=0

Gm1(e
jω)e− jωτm1/TN

M−1

∑
m2=0

G∗
m2
(e jω)e jωτm2/TN ·

·

(
1
L

L−1

∑
k=−(L−1)

1
TN

Sxx

(
ω − 2π

L k
TN

)
e j 2π

L

( τm1−τm2
TN

)
k
+σ2

mδ [m1 −m2]

)

− 1
TN

Sxx

(
ω
TN

)(M−1

∑
m=0

Gm(e jω)e− jωτm/TN

)

− 1
TN

Sxx

(
ω
TN

)(M−1

∑
m=0

Gm(e jω)e− jωτm/TN

)∗}
+

1
TN

Sxx

(
ω
TN

)
. (3.10)

To simplify, we introduce the following notation:

G̃ = [G0(e jω) · e− jωτ0/TN , . . . ,GM−1(e jω) · e− jωτM−1/TN ]T , (3.11a)

Σ = diagonal[σ2
0 ,σ

2
1 , . . . ,σ

2
M−1], (3.11b)
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and

Sm,l
(i) =

1
L

L−1

∑
k=−(L−1)

(
1

TN
Sxx

(
ω − 2π

L k
TN

))
e j 2π

L (
τm−τl

TN
)k

=
1
L

L−1−i

∑
k=−i

Sxx

(
e j(ω− 2π

L k)
)

e j 2π
L (

τm−τl
TN

)k
, ω ∈ ∆ωi i = 0,1, . . . ,L−1

m = 0,1, . . . ,M−1, l = 0,1, . . . ,M−1, (3.11c)

which are the elements of an MxL Hermitian matrix S(i). An alternative representation of

S(i) is

S(i) = Ṽ (i)SD
(i)(Ṽ (i))H , ω ∈ ∆ωi, i = 0,1, . . . ,L−1, (3.12)

where SD
(i) is a diagonal matrix whose elements on the main diagonal are

{
Sxx

(
e j(ω− 2π

L l)
)}L−1−i

l=−i
,

and Ṽ (i) = (1/
√

L) ·V (i) where V (i) is an MxL matrix whose elements are

Vm,l
(i) = e j 2π

L (τm/TN)(l−i), m = 0,1, . . . ,M−1, l = 0,1, . . . ,L−1. (3.13)

Using the notations defined in (3.11), See(e jω) in (3.10) can be written as

See(e jω) =
1
L

(
G̃H

(S(i)+Σ)G̃−Sxx(e jω)(1T G̃)−Sxx(e jω)(G̃H ·1)
)
+Sxx(e jω),

ω ∈ ∆ωi, i = 0,1, . . . ,L−1, (3.14)

or equivalently as

See(e jω) =
1
L

∣∣∣(S(i)+Σ)1/2G̃−Sxx(e jω)(S(i)+Σ)−1/2 ·1
∣∣∣2

+ Sxx
(
e jω)(1−Sxx

(
e jω) · 1T (S(i)+Σ)−11

L

)
,

ω ∈ ∆ωi, i = 0,1, . . . ,L−1, (3.15)

provided that the inverse involved exists, where for the case M > L it is true only if σ2
m ̸=
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0 ∀m. It then follows from (3.15) that the choice of G̃ that minimizes See(e jω) is

G̃opt
= Sxx(e jω)(S(i)+Σ)−1 ·1, ω ∈ ∆ωi, i = 0,1, . . . ,L−1, (3.16)

for which the first term in (3.15) is vanished, and See(e jω) becomes

See
min(e jω) = Sxx

(
e jω)(1−Sxx

(
e jω) · 1T (S(i)+Σ)−11

L

)
, ω ∈ ∆ωi, i = 0,1, . . . ,L−1.

(3.17)

3.2.1 Optimal Reconstruction for the Case of Uniform Sampling

We now consider the special case of M = L where τm = mTN , i.e., the case of uniform

sampling at the Nyquist rate. When in addition σ2
m = σ2 ∀m, eq. (3.16) reduces to

G̃opt
= Sxx(e jω)

(
Ṽ (i)SD

(i)(Ṽ (i))H +σ2I
)−1

·1, ω ∈ ∆ωi, i = 0,1, . . . ,L−1. (3.18)

Noting that Ṽ (i) in this case is a unitary matrix, i.e., (Ṽ (i))HṼ (i) = Ṽ (i)(Ṽ (i))H = I, it follows

that

G̃opt
= Sxx

(
e jω)(Ṽ (i)(SD

(i)+σ2I)(Ṽ (i))H
)−1

·1

= Sxx
(
e jω)Ṽ (i)(SD

(i)+σ2I)−1(Ṽ (i))H ·1, ω ∈ ∆ωi, i = 0,1, . . . ,L−1.

(3.19)

Using the identity

(
(Ṽ (i))H ·1

)
m
=

1√
L

(
L−1

∑
l=0

e− j 2π
L l(m−i)

)
=
√

L ·δ [m− i], m = 0,1, . . . ,L−1, (3.20)

eq. (3.19) reduces to

G̃opt
=

Sxx
(
e jω)

Sxx (e jω)+σ2 ·1, (3.21)
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which is equivalent to

Gm
opt(e jω) =

Sxx
(
e jω)

Sxx (e jω)+σ2 · e
jωm, m = 0,1, . . . ,L−1. (3.22)

Similarly, it can be shown that

See
min(e jω) = Sxx

(
e jω)(1−Sxx

(
e jω) · 1TṼ (i)(SD

(i)+σ2I)−1(Ṽ (i))H1
L

)

= Sxx
(
e jω)(1−

Sxx
(
e jω)

Sxx (e jω)+σ2

)
=

Sxx
(
e jω) ·σ2

Sxx (e jω)+σ2 . (3.23)

As expected, for the case of uniform sampling at the Nyquist rate and where the quantizers

in the different channels are the same, the optimal reconstruction filters Gm
opt(e jω) in

(3.22) suggest that optimal reconstruction is achieved with interleaving of the multi-channel

samples x̃m[n] followed by Wiener filtering, as illustrated in Figure 3-1.

ejω

1

L

x̃0[n]

x̃1[n]

L ejω(L−1)
x̃L−1[n]

+
x̃[n]

L

Sxx(e
jω)

Sxx(ejω)+σ2

x̂[n]

Figure 3-1: Optimal reconstruction is equivalent to interleaving of the multi-channel sam-
ples followed by Wiener filtering.

3.3 Illustrative Examples & Simulations

This section discusses and illustrates with examples the design of the quantizers and of the

relative timing between the channels in the multi-channel system of Figure 2-7. It considers

two cases. The first case illustrates the multi-channel sampling system with two channels,
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i.e., M = 2, where the sampling rate in each channel is 1/T = 1/(2TN), resulting in an

overall sampling rate that is equal to the Nyquist rate of the input signal. The second case

illustrates the multi-channel sampling system with M = 3 and L = 2, corresponding to an

oversampling ratio of M/L = 3/2. In both cases we develop the optimal reconstruction

filters and the corresponding minimum mean-squared reconstruction error.

For the first case, the multi-channel sampling system of Figure 2-7 is considered, where

M = L = 2, and without loss of generality the time delay τ0 = 0. We assume that the

quantizer step size is the same in both channels, corresponding to σ2
0 = σ2

1 = σ2. The

matrix S(0) in (3.12) then becomes

S(0) =
1
2
·

 1 1

1 e jω1

 ·
 Sxx(e jω) 0

0 Sxx(e j(ω−π))

 ·
 1 1

1 e− jω1

 (3.24)

=
1
2

 Sxx(e jω)+Sxx(e j(ω−π)) Sxx(e jω)+ e− jω1Sxx(e j(ω−π))

Sxx(e jω)+ e jω1Sxx(e j(ω−π)) Sxx(e jω)+Sxx(e j(ω−π))

 , ω ∈ [0,π],

where ω1 = π · (τ1/TN). Substituting (3.24) into (3.16) and into (3.17), we obtain for the

optimal reconstruction filters

G̃opt
(e jω) =

Sxx(e jω) ·

 σ2

σ2

+Sxx(e j(ω−π)) ·

 (1− e− jω1)/2

(1− e jω1)/2


(Sxx(e jω)+σ2) ·

(
Sxx(e j(ω−π))+σ2

)
−Sxx(e jω)Sxx(e j(ω−π))cos2(ω1

2 )
,

ω ∈ [0,π], (3.25)

and for the minimum achievable See(e jω)

See
min(e jω) =

σ2Sxx(e jω) ·
(

Sxx(e j(ω−π))+σ2
)

(Sxx(e jω)+σ2) ·
(
Sxx(e j(ω−π))+σ2

)
−Sxx(e jω)Sxx(e j(ω−π))cos2(ω1

2 )
.

(3.26)

It is clear from eq. (3.26) that the choice of ω1 that minimizes the mean squared reconstruc-

tion error is ω1 = π , which corresponds to τ1 = TN , i.e., uniform sampling. This observation

is consistent with the conclusions obtained with the deterministic model in which the re-
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construction filters were constrained. Specifically, when the quantizer step size is the same

for all channels, an optimal choice of the relative timing between the channels is such that

the multi-channel sampling is equivalent to uniform sampling. For this optimal choice of

τ1, the reconstruction filters become

G̃opt
(e jω) =

Sxx(e jω) ·
(

σ2 +Sxx(e j(ω−π))
)

(Sxx(e jω)+σ2) ·
(
Sxx(e j(ω−π))+σ2

) ·1 =
Sxx(e jω)

(Sxx(e jω)+σ2)
·1, (3.27)

and the minimum achievable See(e jω) reduces to

See
min(e jω) =

σ2Sxx(e jω) ·
(

Sxx(e j(ω−π))+σ2
)

(Sxx(e jω)+σ2) ·
(
Sxx(e j(ω−π))+σ2

) = Sxx(e jω) ·σ2

(Sxx(e jω)+σ2)
. (3.28)

For the second case, we consider the multi-channel sampling system where M = 3,

L = 2, and τ0 = 0. The matrix S(0) in this case gets the form

S(0) =
1
2


1 1

1 e jω1

1 e jω2

 ·
 Sxx(e jω) 0

0 Sxx(e j(ω−π))

 ·
 1 1 1

1 e− jω1 e− jω2

=


(Sxx(e jω)+Sxx(e j(ω−π)))/2 (Sxx(e jω)+Sxx(e j(ω−π))e− jω1)/2 (Sxx(e jω)+Sxx(e j(ω−π))e− jω2)/2

(Sxx(e jω)+Sxx(e j(ω−π))e jω1)/2 (Sxx(e jω)+Sxx(e j(ω−π)))/2 (Sxx(e jω)+Sxx(e j(ω−π))e j(ω1−ω2))/2

(Sxx(e jω)+Sxx(e j(ω−π))e jω2)/2 (Sxx(e jω)+Sxx(e j(ω−π))e j(ω2−ω1))/2 (Sxx(e jω)+Sxx(e j(ω−π)))/2

 ,
ω ∈ [0,π]. (3.29)

Consequently,

1T · (S(0)+Σ)−1 ·1 =
2Sxx(e j(ω−π)) ·

(
σ2

0 sin2 (ω1−ω2
2

)
+σ2

1 sin2 (ω2
2

)
+σ2

2 sin2 (ω1
2

))
det(S(0)+Σ)

+
σ2

0 σ2
1 +σ2

0 σ2
2 +σ2

1 σ2
2

det(S(0)+Σ)
, ω ∈ [0,π] (3.30)
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where

det(S(0)+Σ) = Sxx(e jω) ·Sxx(e j(ω−π)) ·
(

σ2
0 sin2

(
ω1 −ω2

2

)
+σ2

1 sin2
(ω2

2

)
+σ2

2 sin2
(ω1

2

))

+

(
Sxx(e jω)+Sxx(e j(ω−π))

)
2

·
(
σ2

0 σ2
1 +σ2

0 σ2
2 +σ2

1 σ2
2
)
+σ2

0 σ2
1 σ2

2 , ω ∈ [0,π].

(3.31)

It then follows from (3.16) and (3.17) that

G̃0(e jω) =
Sxx(e jω) ·

[
Sxx(e j(ω−π)) ·

(
σ2

1

(
1−e− jω2

2

)
+σ2

2

(
1−e− jω1

2

))
+σ2

1 σ2
2

]
det(S(0)+Σ)

G̃1(e jω) =
Sxx(e jω) ·

[
Sxx(e j(ω−π)) ·

(
σ2

0

(
1−e j(ω1−ω2)

2

)
+σ2

2

(
1−e jω1

2

))
+σ2

0 σ2
2

]
det(S(0)+Σ)

G̃2(e jω) =
Sxx(e jω) ·

[
Sxx(e j(ω−π)) ·

(
σ2

0

(
1−e j(ω2−ω1)

2

)
+σ2

2

(
1−e jω2

2

))
+σ2

0 σ2
1

]
det(S(0)+Σ)

ω ∈ [0,π], (3.32)

and that

See
min(e jω) =

Sxx(e jω)
(

Sxx(e j(ω−π)) · (σ2
0 σ2

1 +σ2
0 σ2

2 +σ2
1 σ2

2 )/2+σ2
0 σ2

1 σ2
2

)
det(S(0)+Σ)

. (3.33)

Thus, the optimal choice of ω1 and ω2 that achieves the lowest possible See
min(e jω) is

also the one that maximizes det(S(0)+Σ). Since Sxx(e jω) is non-negative, the optimization

reduces to maximizing the function d(ω1,ω2) introduced in (3.34) with respect to ω1 and

ω2.

d(ω1,ω2) = σ2
0 sin2

(
ω1 −ω2

2

)
+σ2

1 sin2
(ω2

2

)
+σ2

2 sin2
(ω1

2

)
. (3.34)

Differentiating (3.34) with respect to ω1 and ω2, we obtain

1
2
(
σ2

2 · sin(ω1)+σ2
0 · sin(ω1 −ω2)

)
= 0 (3.35a)
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1
2
(
σ2

1 · sin(ω2)−σ2
0 · sin(ω1 −ω2)

)
= 0. (3.35b)

Note that eqs. (3.35a) and (3.35b) are equivalent to the equations in (2.46a) which set the

conditions to achieve the lower bound on the mean squared reconstruction error, i.e., to

achieve equality in (2.45).

When the quantizer step size is the same in all channels, i.e., when σ2
0 = σ2

1 = σ2
2 = σ2,

eqs. (3.35) are solved for ω1 =−ω2 =±2π/3, corresponding to τ1 =−τ2 =±2/3TN , i.e.,

uniform sampling. In that case, the optimal reconstruction filters are

G̃m(e jω) =
2
3

Sxx(e jω)

Sxx(e jω)+ 2
3σ2

, (3.36)

with which the multi-channel reconstruction is equivalent to interleaving the multi-channel

output samples followed by sampling rate conversion and Wiener filtering, as illustrated in

Figure 3-2.

x̃[n]
2 3

ω
π

3
π

3
−

2 Sxx(e
jω)

Sxx(ejω)+
2
3σ

2

x̂[n]
+

x̃3/2[n]

1
x̃0[n]

3
x̃2[n]

3

x̃1[n]
ejω3

ej2ω

Figure 3-2: Interleaving followed by sampling rate converter and Wiener filtering.

Correspondingly,

See
min(e jω) =

σ2 ·Sxx(e jω)
3
2Sxx(e jω)+σ2

≤ σ2 ·Sxx(e jω)

Sxx(e jω)+σ2 , (3.37)

where the right side of the inequality is achieved with uniform sampling at the Nyquist rate.

73



Note also that by writing See
min(e jω) from (3.37) as

See
min(e jω) =

1
1

2
3 σ2 +

1
Sxx(e jω )

, (3.38)

we conclude that See
min(e jω) ≤ 2

3σ2, from which it follows that σ2
e

min ≤ 2
3σ2. In other

words, the minimum mean squared reconstruction error achieved with this approach is

lower than 2
3σ2, corresponding to the minimum mean squared reconstruction error achieved

with the constrained reconstruction filters.

However, when the quantizer step size is not the same for all channels, the choice of

τ1 = −τ2 = ±2/3TN , which corresponds to uniform sampling, is no longer optimal, and

better performance can be achieved with a different choice of the time delays τ1 and τ2, for

which the multi-channel sampling is equivalent to recurrent nonuniform sampling. Figure

3-3 illustrates the relative gain of d(ω1,ω2) over the case of uniform sampling when 3 bits

are allocated to channel 0, 4 bits to channel 1, and 4 bits to channel 2. As illustrated, the

optimal time delays are τ1/TN =−τ2/TN =±0.54, which are identical to those obtained in

(2.68) where the filters are constrained, and correspond to recurrent nonuniform sampling.

Figure 3-3: The relative gain of d(ω1,ω2) as compared to the case of uniform sampling
when N0 = 3, N1 = 4, N2 = 4.
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CHAPTER 4

SINC INTERPOLATION OF

NONUNIFORM SAMPLES

It is well known that a bandlimited signal can be uniquely recovered from nonuniformly

spaced samples under certain conditions on the nonuniform grid and provided that the

average sampling rate meets or exceeds the Nyquist rate. However, reconstruction of the

continuous-time signal from nonuniform samples is typically more difficult to implement

than from uniform samples. Motivated by the fact that sinc interpolation results in perfect

reconstruction for uniform sampling, we develop a class of approximate reconstruction

methods from nonuniform samples based on the use of time-invariant lowpass filtering,

i.e., sinc interpolation. The methods discussed consist of four cases incorporated in a single

framework.

4.1 Introduction

Discrete-time signals can arise in many ways, but they most commonly occur as repre-

sentations of sampled continuous-time signals. The most common form of sampling used

in the context of discrete-time processing of continuous-time signals is uniform sampling

corresponding to samples of continuous-time signals obtained at equally spaced time inter-

vals. Under certain conditions, specified by the Nyquist-Shannon sampling theorem, the

original signal can be reconstructed from this set of equally-spaced samples. The recon-

struction is done through sinc interpolation1 corresponding to the impulse response of a

1Throughout the thesis we refer to convolution of an impulse train of samples with the function
h(t) = sinc( π

T t) as sinc interpolation and use the historical unnormalized definition of the sinc function,
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linear time-invariant ideal lowpass filter.

In a variety of contexts, nonuniform sampling naturally arises or is preferable to uni-

form sampling. For example, some biomedical devices utilize low-power sensors that use

self-timed circuits, thus removing the need for power-intensive clock buffers and clock

distribution. However, these self-timed circuits tend to introduce nonuniformity in the

sampling clock [1]. Nonuniform sampling also often arises in time-interleaved analog-to-

digital converters, where a signal is passed through multiple parallel channels, each uni-

formly sampling the signal at the same rate. The output samples of the channels are then

multiplexed to obtain a full discrete-time representation of the signal. For the case in which

the clock phases of these channels are asynchronous, interleaving samples from each chan-

nel leads to recurrent nonuniform sampling [100]. Recurrent nonuniform sampling also

often arises in sensor networks in which each sensor uniformly samples the environment

asynchronously and transmits to a main base station, where the samples are interleaved.

In many cases nonuniform sampling is deliberate and advantageous. In the spatial

domain, non-uniformity of the spacing of the array elements in an antenna or acoustic

sensor array is often part of the array design as a trade off between the length of the array

and the number of elements. In ray traced computer graphics, it has been shown that

nonuniform sampling yields aliasing that is less conspicuous to the observer [65].

Exact reconstruction of a bandlimited continuous-time signal from nonuniform samples

is based on Lagrange interpolation. For the case of uniform sampling, Lagrange interpo-

lation reduces to sinc interpolation and can be approximated with well designed low pass

filtering. When the sampling grid is not uniform, Lagrange interpolation is more difficult

as discussed in section 4.2. In this chapter we consider sinc interpolation of nonuniform

samples as a way to approximately reconstruct the continuous-time signal. A class of

approximate reconstruction methods is proposed in which each method corresponds to a

different assumption with respect to the knowledge of the exact sampling times and of the

probability distribution of their deviation from a uniform sampling grid.

i.e., sinc(x), sin(x)
x
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4.2 Reconstruction of Bandlimited Signals from Nonuni-

form Samples

A variety of approaches to reconstruction of signals from nonuniform samples have been

previously proposed and discussed. In a classic paper on nonuniform sampling of bandlim-

ited signals [100], Yen introduced several reconstruction theorems to address the cases of a

finite number of nonuniform samples on an otherwise uniform grid, a single gap in uniform

sampling and recurrent nonuniform sampling. Other reconstruction approaches, specific to

recurrent nonuniform sampling have also been proposed [71], [43], [61], [23], [82]. In the

work of Yao and Thomas [98], the Lagrange interpolation functions were applied to the

reconstruction of bandlimited signals from nonuniform samples. It is shown there that a

finite-energy signal x(t) bandlimited to ±π/TN can be reconstructed from its nonuniform

samples x(tn) using Lagrange interpolation when the sampling instants tn do not deviate by

more than TN/4 from a uniform grid with spacing of TN . Specifically, if

|tn −nTN | ≤ d < TN/4, ∀n ∈ Z , (4.1)

then

x(t) =
∞

∑
n=−∞

x(tn)ln(t) , (4.2a)

where

ln(t) =
G(t)

G′(tn)(t − tn)
, (4.2b)

G(t) = (t − t0)
∞

∏
k=−∞
k ̸=0

(
1− t

tk

)
, (4.2c)

and G′(t)=̂dG(t)
dt . Interpolation using eqs. (4.2) is referred to as Lagrange interpolation.

This theorem is based on a theorem proved by Levinson [53] which states that the functions

{Ln(Ω)}, defined as the Fourier transform of {ln(t)}, are bandlimited and form a sequence

biorthogonal to {e jΩtn} over [− π
TN
, π

TN
] given that the condition of eq. (4.1) is satisfied.
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Specifically,

Ln(Ω) =
∫ ∞

−∞
ln(t)e− jΩtdt = 0, |Ω|> π

TN
, (4.3)

and

1
2π

∫ π
TN

− π
TN

Ln(Ω)e jΩtkdΩ = ln(tk) = δ [n− k]. (4.4)

Eq. (4.4) utilizes the interpolation condition of the Lagrange kernel which ensures that the

property of consistent resampling is upheld, i.e., that sampling the reconstructed signal on

the nonuniform grid {tn} yields the original samples {x(tn)}. Note that expressing Ln(Ω)

as the Fourier transform of ln(t) in (4.4) results in biorthogonality of the sequences {ln(t)}

and {sinc(π/TN(t − tn))}, i.e.,

∫ ∞

−∞
ln(t)sinc(π/TN(t − tk))/TNdt = δ [n− k], (4.5)

from which the expansion in (4.2) for bandlimited signals is clearly followed.

The difficulty of exact reconstruction of bandlimited signals from nonuniform samples

through Lagrange interpolation is partly due to the fact that the interpolating functions

at different sampling times do not have the same form except in special cases. Also, each

interpolating function depends on all sampling instants. The complexity of the implementa-

tion motivates the need for simpler approximate approaches to reconstruction and a variety

of methods has previously been proposed. One practical approach to recovering a signal

from its nonuniform samples has been the use of nonuniform splines [10]. Iterative re-

construction methods for nonuniform sampling which are computationally demanding and

have potential issues of convergence have also been previously proposed [25], [26], [30].

In a different approach, time-warping methods were applied by Papoulis in [70] to recon-

struct bandlimited signals from jittered samples. In [17] and [103], time-warping was used

for reconstruction from samples of signals with time-varying frequency content. A method

of designing FIR filters in such a way that the effect of input clock jitter is diminished is

discussed in [84]. In [60] several approaches are suggested and analyzed for approximate
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reconstruction from jittered samples. Mean-square comparison of various interpolators is

done in [52] for the case of uniform sampling, uniform sampling with skips, and Poisson

sampling. A modification of the conventional Lagrange interpolator is proposed in [77]

which allows approximating a bandlimited signal from its nonuniform samples with high

accuracy. A comprehensive review of literature concerning other techniques in nonuniform

sampling can be found in [33] and [58].

4.3 Sinc Interpolation of Nonuniform Samples

With uniform sampling, i.e., when tn = nT , G(t) of eq. (4.2c) reduces to

G(t) =
sin(π

T )t
π
T

, (4.6)

and Lagrange interpolation reduces to sinc interpolation. In this section we restrict ln(t)

in eq. (4.2a) to be of the form ln(t) = (T/TN)sinc(π/TN · (t − t̃n)) corresponding to sinc

interpolation. Note that since the kernel used in this framework is time-invariant, the exact

sampling instants are not needed in designing the reconstruction filter. This is in contrast

to Lagrange interpolation in which this knowledge is required in forming the interpolating

functions since these functions do not have the same form at each sampling instant and

each interpolating function depends on all sampling instants, i.e., it is not a time-invariant

convolution. It will be assumed throughout this section that the average sampling rate

meets or exceeds the Nyquist rate, or equivalently that T ≤ TN where T denotes the nominal

sampling interval.

We consider and analyze four cases incorporated in a single framework where the

choice for the values t̃n differs for each of the methods discussed below. In the first case,

it is assumed that both the exact sampling instants and the probability distribution of their

deviation from a uniform sampling grid are known. As we will see in section 4.3.6, even

with the knowledge of the exact sampling instants, it can sometimes be beneficial to place

the samples on a grid other than the actual nonuniform grid corresponding to the sampling

instants. In determining this grid we utilize the probability distribution of the deviation of
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the sampling instants from a uniform sampling grid. In the second case, sinc interpolation

is applied to the samples placed on a uniform grid with spacing corresponding to the av-

erage or nominal spacing of the nonuniform sampling grid. In that approximation it is not

necessary to know the exact sampling instants since they are not used. This may occur in

situations where the samples are stored in memory and their exact timing information is

lost. The third case consists of applying sinc interpolation to the samples located at the ac-

tual nonuniform sampling times. This method requires knowledge of the nonuniform grid.

However, as opposed to Lagrange interpolation where the sampling instants are needed

in advance to generate the interpolating functions, the sinc interpolation function requires

only knowledge of the nominal sample spacing. In the fourth case, it is assumed that the

exact sampling times are not known but that the probability distribution of their deviation

from a uniform sampling grid is known.

4.3.1 Mathematical Formulation

To have a common framework that incorporates these four cases, we denote by x[n] a se-

quence of nonuniform samples of x(t), i.e.,

x[n] = x(tn) (4.7)

where {tn} represent a nonuniform grid which we model as a perturbation of a uniform grid

with spacing T , i.e.,

tn = nT +ξn. (4.8)

For analysis purposes, we consider x(t) to be a continuous-time zero-mean wide-sense

stationary random process with autocorrelation function Rxx(τ) and power spectral density

(PSD) Sxx(Ω) which is zero for |Ω| ≥ Ωc = π/TN . ξn is characterized as an i.i.d. sequence

of zero-mean random variables independent of x(t) with probability density function (pdf)

fξ (ξ ) and characteristic function Φξ (Ω) =
∫ ∞
−∞ fξ (ξ ′)e jΩξ ′

dξ ′.

For the reconstruction of x(t) from its nonuniform samples x[n], we apply sinc interpo-

lation to the samples placed on a second nonuniform grid t̃n = nT + ζn that in general is
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not restricted to the nonuniform grid on which the samples were originally acquired, i.e.,

ζn and ξn are not necessarily equal. The reconstruction takes the form

x̂(t) =
∞

∑
n=−∞

(T/TN) · x(tn) ·h(t − t̃n), (4.9)

with h(t) = sinc( π
TN

t) as illustrated in Figure 4-1, where π
TN

is the highest frequency in x(t).

T

π

TN

x̂(t)

−

π

TN

∑
n
x[n]δ(t− t̃n)x[n]

t̃n = n · T + ζn

Sample
to

Impulse

Figure 4-1: Reconstruction using sinc interpolation.

The four cases outlined above are incorporated into this general framework as follows:

For the first case, we characterize ζn as another i.i.d sequence of random variables indepen-

dent of x(t) and for which ζn is independent of ξk when n ̸= k. This case will be referred to

as Randomized Sinc Interpolation (RSI) and is the most general case we consider, since the

other three cases can be treated as special cases of it. In the second case, we assume that

only the average spacing of the nonuniform grid is known rather than the exact location of

the sampling times. This corresponds to choosing ζn = 0 and applying sinc interpolation to

the samples placed on a uniform grid. We refer to this case as Uniform Sinc Interpolation

(USI). The third case referred to as Nonuniform Sinc Interpolation (NSI) corresponds to

choosing ζn = ξn, i.e., the reconstruction is carried out on the nonuniform grid correspond-

ing to the sampling instants. In the fourth case, we assume that the deviations ξn of the

sampling instants from a uniform grid are not known but their probability distribution is

known. Therefore, ζn is characterized as an i.i.d sequence of random variables independent

of x(t) and for which ζn is independent of ξk for all n,k. This case will be referred to as

Independent Sinc Interpolation (ISI). Table 4.1 summarizes these four cases.
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Table 4.1: Sinc Interpolation Reconstruction Methods
Randomized Sinc Interpolation (RSI) Nonuniform Sinc Interpolation (NSI)

Sinc interpolation is applied to the samples Sinc interpolation is applied to the samples
placed on a grid determined by both the placed on the nonuniform grid corresponding
exact sampling instants and the pdf of their to the sampling instants
deviation from a uniform sampling grid

Independent Sinc Interpolation (ISI) Uniform Sinc Interpolation (USI)
Sinc interpolation is applied to the samples Sinc interpolation is applied to the samples
located on a grid independent of the actual placed on a uniform grid
nonuniform grid

4.3.2 Randomized Sinc Interpolation

Appendix D shows an equivalence with respect to second-order statistics2 between the

nonuniform sampling discussed above when followed by Randomized Sinc Interpolation

and the system in Figure 4-2.

Φξζ(Ω,−Ω)
y(t)

v(t)

z(t)x(t)

Figure 4-2: A second-order statistics model for nonuniform sampling followed by Ran-
domized Sinc Interpolation for the case where T ≤ TN .

The frequency response of the LTI system in Figure 4-2 is the joint characteristic func-

tion Φξ ζ (Ω1,Ω2) of ξn and ζn, defined as the Fourier transform of their joint pdf fξ ζ (ξ ,ζ ).

In the same figure, v(t) is zero-mean additive colored noise, uncorrelated with x(t), with

PSD as follows:

Svv(Ω) =

 T
2π
∫ Ωc
−Ωc

Sxx(Ω
′
)(1−|Φξ ζ (Ω

′
,−Ω)|2)dΩ′ |Ω|< Ωc

0 |Ω| ≥ Ωc

. (4.10)

Thus, with respect to second-order statistics, x̂(t) can equivalently be represented by the

signal z(t) in Figure 4-2.

2Throughout the thesis we use the terminology of equivalence between two systems with respect to
second-order statistics to mean that for the same input, the output means, auto-correlation functions, and
cross-correlation functions are identical.
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We denote eR(t) = x̂(t)− x(t) as the error between x(t) and its approximation x̂(t)

obtained by RSI. Then, as shown in Appendix D, the corresponding mean square error

(MSE) is given by

σ2
eR =

1
2π

∫ Ωc

−Ωc

Sxx(Ω) ·Q(Ω)dΩ, (4.11)

where

Q(Ω) =
∣∣1−Φξ ζ (Ω,−Ω)

∣∣2 + 1
r
·
∫ Ωc

−Ωc

1−|Φξ ζ (Ω,−Ω1)|2

2Ωc
dΩ1, (4.12)

and r = TN/T ≥ 1 denotes the oversampling ratio.

4.3.3 Uniform Sinc Interpolation

In the case where neither the sampling instants nor their distribution is known, we set the

perturbations ζn in the reconstruction of Figure 4-1 to zero. This results in

x̂(t) =
∞

∑
n=−∞

(T/TN) · x(tn) ·h(t −nT ), (4.13)

which corresponds to treating the nonuniform samples as being on a uniform grid and

reconstructing x(t) with sinc interpolation of these samples as though the sampling was

uniform, corresponding to USI. Note that when USI is used for reconstruction, the signal

x(t) in the equivalent system of Figure 4-2 is in effect pre-filtered by the characteristic

function Φξ (Ω) of ξn, and the additive uncorrelated noise v(t) is white. Since |Φξ (Ω)| ≤

Φξ (Ω)|Ω=0 = 1, the characteristic function has in general the behavior of a lowpass filter

when viewed as a frequency response of an LTI system3.

The error between x(t) and its approximation x̂(t) obtained by USI is denoted by eU(t)

and the corresponding MSE follows directly from (4.11) by replacing Φξ ζ (Ω1,Ω2) with

3Note that when ξn is symmetrically distributed on (−T/2,T/2), the characteristic function Φξ (Ω) is real
and symmetric. In addition, in the region Ω ∈ (−π/T,π/T ) Φξ (Ω) is non-negative, concave and bounded
from below by cos(ΩT/2), as elaborated in Appendix E. Its radius of curvature at Ω = 0 is also shown to be
inversely proportional to the variance σ2

ξ of ξn.
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Φξ (Ω1), i.e.,

σ2
eU =

1
2π

∫ Ωc

−Ωc

Sxx(Ω) ·
{
|1−Φξ (Ω)|2 + 1

r
·
(
1−|Φξ (Ω)|2

)}
dΩ . (4.14)

For the case of no oversampling, i.e., when the oversampling factor r = 1, the MSE in

eq. (4.14) reduces to

σ2
eU = 2 · 1

2π

∫ Ωc

−Ωc

Sxx(Ω) ·
(
1−ℜ(Φξ (Ω))

)
dΩ

= 2 ·
(

Rxx(0)−
1

2π

∫ Ωc

−Ωc

Sxx(Ω) ·ℜ(Φξ (Ω))dΩ
)

= 2 ·
(

Rxx(0)−
∫ ∞

−∞
Rxx(τ) · f (even)

ξ (τ)dτ
)
, (4.15)

where f (even)
ξ (τ) = ( fξ (τ)+ fξ (−τ))/2 is the even part of fξ (τ). When in addition, ξn is

symmetrically distributed on (−TN/2,TN/2), the following inequalities on the mean square

reconstruction error follow by utilizing the properties of Rxx(τ) and Φξ (Ω) given in Ap-

pendix E,

1−min
(
ρxx(ξ0),Φξ (Ω0)

)
≤

σ2
eU

2Rxx(0)
≤ 1−max

(
ρxx(TN/2),Φξ (π/TN)

)
, (4.16)

where ρxx(τ) = Rxx(τ)/Rxx(0), ξ0 = E(|ξ |) and Ω0 =
∫ Ωc
−Ωc

|Ω| · Sxx(Ω)∫Ωc
−Ωc Sxx(Ω′)dΩ′ dΩ. The fact

that Rxx(τ) is monotonically decreasing in (0,TN/2) and Φξ (Ω) is monotonically decreas-

ing in (0,π/TN) leads to

∫ TN/2

−TN/2
Rxx(τ) fξ (τ)dτ ≥ Rxx(TN/2)

∫ TN/2

−TN/2
fξ (τ)dτ = Rxx(TN/2), (4.17)

1
2π

∫ Ωc

−Ωc

Sxx(Ω) ·Φξ (Ω)dΩ ≥ 1
2π

∫ Ωc

−Ωc

Sxx(Ω)dΩ ·Φξ (π/TN) = Rxx(0) ·Φξ (π/TN),

(4.18)

from which the upper bound in (4.16) clearly follows. To obtain the lower bound in (4.16)

84



we use the concavity of Rxx(τ) and Φξ (Ω) in the appropriate regions. Specifically,

∫ TN/2

−TN/2
Rxx(τ) fξ (τ)dτ =

∫ TN/2

0
Rxx(τ) ·2 fξ (τ)dτ ≤ Rxx

(∫ TN/2

0
τ ·2 fξ (τ)dτ

)
=

Rxx

(∫ TN/2

0
τ · ( fξ (τ)+ fξ (−τ))dτ

)
= Rxx(E(|ξ |)), (4.19)

and

1
2π

∫ Ωc

−Ωc

Sxx(Ω) ·Φξ (Ω)dΩ = Rxx(0) ·
1

2π

∫ Ωc

−Ωc

Sxx(Ω)
1

2π
∫ Ωc
−Ωc

Sxx(Ω′)dΩ′
·Φξ (Ω)dΩ =

Rxx(0) ·
∫ Ωc

0

2Sxx(Ω)∫ Ωc
−Ωc

Sxx(Ω′)dΩ′
·Φξ (Ω)dΩ ≤ Rxx(0) ·Φξ

(∫ Ωc

0
Ω · 2Sxx(Ω)∫ Ωc

−Ωc
Sxx(Ω′)dΩ′

dΩ

)
=

Rxx(0) ·Φξ

(∫ Ωc

−Ωc

|Ω| · Sxx(Ω)∫Ωc
−Ωc

Sxx(Ω′)dΩ′
dΩ

)
. (4.20)

Note that the inequality in (4.19) suggests that when E(|ξ |) = ξ0 < TN/2 is fixed, mini-

mum mean square reconstruction error of USI is achieved when ξn takes the values ±ξ0

with equal probabilities, i.e., when Φξ (Ω) = cos(ξ0Ω). Alternatively, when
∫ Ωc
−Ωc

|Ω| ·
Sxx(Ω)∫Ωc

−Ωc Sxx(Ω′)dΩ′ dΩ = Ω0 < π/TN is fixed, it follows from (4.20) that minimum mean square

reconstruction error of USI is achieved when ρxx(τ)= cos(Ω0τ). The lower bound in (4.16)

together with the fact that when a lower bound is achieved it is the greatest lower bound

results in the following upper bounds on ρxx(τ) and Φξ (Ω),

ρxx(τ) ≤ cos(Ω0τ) |τ|< TN/2,

Φξ (Ω) ≤ cos(ξ0Ω) |Ω|< π/TN . (4.21)

We would expect the performance of USI to be inversely proportional to the signal’s

bandwidth Bx, as defined in (4.31). This is intuitively reasonable since with slow variations

of the signal, the uniform samples x(nTN) are accurately approximated by the nonuniform

samples x(tn). The upper bound on σ2
eU seems to agree with this intuition since it decreases

as Rxx(TN/2) increases, and Rxx(TN/2) is expected to increases as the radius of curvature

of Rxx(τ) at τ = 0 increases or equivalently as the bandwidth Bx of x(t) decreases.
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4.3.4 Nonuniform Sinc Interpolation

When the sampling instants tn are known, we can alternatively set the reconstruction per-

turbations ζn to be equal to the sampling perturbations ξn so that the impulses in Figure

4-1 are located on the correct grid. This is another special case of eq. (4.9) for which the

reconstruction takes the form

x̂(t) =
∞

∑
n=−∞

(T/TN) · x(tn) ·h(t − tn). (4.22)

Note that for this approximation, referred to as Nonuniform Sinc Interpolation, the dis-

tribution of the perturbations is not needed. The corresponding MSE of the reconstruction

error eN(t) follows directly from eq. (4.11) by replacing Φξ ζ (Ω1,Ω2) with Φξ (Ω1 −Ω2),

i.e.,

σ2
eN =

1
r
·
(

Rxx(0)−
1

2Ωc

∫ Ωc

−Ωc

(
Sxx(Ω)∗ |Φξ (Ω)|2

)
dΩ
)

=
1
r
· 1

2π

∫ Ωc

−Ωc

Sxx(Ω) ·

(∫ Ω+Ωc

Ω−Ωc

1−|Φξ (Ω
′
)|2

2Ωc
dΩ

′

)
dΩ. (4.23)

4.3.5 Independent Sinc Interpolation

When the exact sampling times are not known but the probability distribution fξ (ξ ) of their

deviation from a uniform sampling grid is known, and choosing ζn in the reconstruction of

Figure 4-1 to be independent of ξk for all n, k, we obtain

σ2
eI =

1
2π

∫ Ωc

−Ωc

Sxx(Ω) ·
∣∣1−Φξ (Ω)Φζ (−Ω)

∣∣2 dΩ+

+
1
r
· 1

2π

∫ Ωc

−Ωc

Sxx(Ω) ·
(

1−|Φξ (Ω)|2 · 1
2Ωc

∫ Ωc

−Ωc

|Φζ (Ω1)|2dΩ1

)
dΩ. (4.24)

As with any characteristic function, |Φζ (Ω)| ≤ 1 for all Ω. Consequently, the second term

in eq. (4.24) is minimized when Φζ (Ω) = 1, corresponding to ζn = 0, i.e., Uniform Sinc

Interpolation. In minimizing the first term in eq. (4.24) we restrict fξ (ξ ) to be symmet-

ric. Furthermore, the deviation from the uniform grid is restricted to be less than T/2, i.e.,

fξ (ξ ) = 0 for |ξ | ≥ T/2. From this it follows that the Fourier transform of fξ (ξ ), i.e.,
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Φξ (Ω) is guaranteed to be real and non-negative for |Ω| ≤ π/T (see Appendix E). Since

the average sampling rate is at or above the Nyquist rate, i.e., π
T ≥ Ωc, Φξ (Ω) will always

be real and non-negative in the interval of integration for the first term in eq. (4.24). Con-

sequently, to minimize that term we again choose Φζ (Ω) = 1, corresponding to Uniform

Sinc Interpolation.

In summary, when the probability density function of ξn is symmetric and has bounded

support, Uniform Sinc Interpolation is an optimal reconstruction within this framework.

More generally, the optimal choice for fζ (ζ ) may not correspond to Uniform Sinc Interpo-

lation and lower MSE may be achieved with Φζ (Ω) = e− jζ0Ω corresponding to ζn =−ζ0,

i.e., Uniform Sinc Interpolation with an offset of the uniform grid. The offset ζ0 can be

optimized to minimize σ2
eI in (4.24). Specifically,

ζ opt
0 = argmin

ζ0
ℜ
{

1
2π

∫ Ωc

−Ωc

Sxx(Ω) ·
∣∣∣1−Φξ (Ω)e jζ0Ω

∣∣∣2 dΩ

+
1
r
· 1

2π

∫ Ωc

−Ωc

Sxx(Ω) ·
(
1−|Φξ (Ω)|2

)
dΩ
}

= argmax
ζ0

ℜ
{

1
2π

∫ Ωc

−Ωc

Sxx(Ω)Φξ (Ω)e jζ0ΩdΩ
}
, (4.25)

or equivalently,

ζ opt
0 = argmax

ζ0

Rxx(τ)∗ fξ (τ)|τ=ζ0

= argmax
ζ0

∫ ∞

−∞
Rxx(τ −ζ0) fξ (τ)dτ

= argmax
ζ0

Eξ (Rxx(ξ −ζ0)) . (4.26)

Note that when fξ (ξ ) is symmetric and the deviation from the uniform grid is less

than T/2, ζ opt
0 = 0 consistent with the observation that the optimal reconstruction in this

case does not depend on the specific shape of the pdf and corresponds to Uniform Sinc
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Interpolation. This follows by noting that

∫ T/2

−T/2
Rxx(τ −ζ0) fξ (τ)dτ =

∫ T/2

0
[Rxx(τ −ζ0)+Rxx(τ +ζ0)] fξ (τ)dτ ≤

∫ T/2

−T/2
Rxx(τ) fξ (τ)dτ,

(4.27)

where we used the symmetry of the pdf fξ (ξ ) and of Rxx(τ), and the property that

Rxx(τ)≥
1
2
(Rxx(τ −ζ0)+Rxx(τ +ζ0)) ∀ |τ|< T/2, ζ0, (4.28)

which is shown to be true in Appendix E for the autocorrelation function of a bandlimited

signal.

4.3.6 RSI - Minimum Mean Square Reconstruction Error

As eq. (4.11) shows, the performance of RSI depends on the power spectrum Sxx(Ω) of

the continuous-time signal x(t) as well as on the joint characteristic function Φξ ζ (Ω1,Ω2)

of the perturbations, which can be designed to reduce the MSE. In order to formulate the

optimal reconstruction within the framework of RSI, i.e., to design ζn in the reconstruc-

tion method of Figure 4-1 to achieve minimum MSE, eq. (4.11) should be optimized with

respect to Φξ ζ (Ω1,Ω2) subject to the constraint Φξ ζ (Ω,0) = Φξ (Ω). This optimization

requires in general the knowledge of both the exact sampling instants and the probability

distribution of their deviation from a uniform sampling grid. As we will next see, even

though the exact sampling instants are known, the optimal reconstruction may not corre-

spond to NSI, i.e., the optimal grid on which the samples are placed in reconstruction prior

to sinc interpolation may possibly be different than the actual nonuniform sampling grid.

In minimizing the MSE we consider two cases. The first is the case of small, zero-

mean perturbations from a uniform grid, for which in the region |Ω1|< Ωc and |Ω2|< Ωc,

Φξ ζ (Ω1,Ω2) can be approximated well by the second-order Taylor expansion

Φξ ζ (Ω1,Ω2)≈ 1−σξ ζ Ω1Ω2 −
1
2

σ2
ξ Ω2

1 −
1
2

σ2
ζ Ω2

2, (4.29)
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with the corresponding standard deviations σξ and σζ of ξn and ζn assumed to be small

enough relative to T so that (4.29) holds. Substituting (4.29) into (4.11) for the case r = 1

yields

σ2
eR ≈ Rxx(0) ·

(
σ2

ξ ·Bx +1/3 ·σ2
ζ ·Ωc

2
)
, (4.30)

where Bx is a measure of the signal’s bandwidth defined as

Bx =
∫ Ωc

−Ωc

Ω2 ·

(
Sxx(Ω)∫ Ωc

−Ωc
Sxx(Ω

′
)dΩ′

)
dΩ. (4.31)

From (4.30) we see that independent of the detailed characteristics of the perturbation or

the signal spectrum, as long as the perturbations around the uniform grid are small enough

so that (4.29) holds, it is preferable to reconstruct the signal using USI, corresponding to

ζn = 0. This is despite the fact that USI uses only the nominal rather than actual sampling

times.

We next consider the case in which the sampling perturbation errors are uniformly dis-

tributed over the range
(
−T

2 ,
T
2

)
. As previously mentioned, the optimal perturbations ζn in

the reconstruction of Figure 4-1 are chosen to minimize (4.11) with respect to Φξ ζ (Ω1,Ω2).

One interesting case is when the joint characteristic function Φξ ζ (Ω1,Ω2) is characterized

by a finite set of parameters, and the optimization of the MSE in (4.11) reduces to opti-

mization over those parameters. Consider as an example the case when ζn is a kth-order

polynomial of ξn whose coefficients are to be designed. For simplicity, we will consider

here only the linear case, i.e., ζn = βξn with β ∈ [0,1] for which the case of β = 0 corre-

sponds to USI and the case of β = 1 corresponds to NSI. It then follows that the Fourier

transform of the joint pdf fξ ζ (ξ ,ζ ) is

Φξ ζ (Ω1,Ω2) = Φξ (Ω1 +βΩ2) , (4.32)
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and Q(Ω) as defined in (4.12) reduces to

Q(Ω) =
∣∣1−Φξ ((1−β )Ω)

∣∣2 + 1
r
·
∫ Ωc

−Ωc

1−|Φξ (Ω−βΩ1)|2

2Ωc
dΩ1, (4.33)

where Φξ (Ω) = sinc(T
2 Ω).

Figure 4-3 shows Q(Ω) for different values of β with no oversampling, i.e., when the

oversampling factor r = 1. As indicated, at low frequencies Q(Ω) is minimized when β is

close to 0, whereas at high frequencies it is minimized when β is close to 1. More generally,

the optimal choice of β that minimizes the reconstruction MSE will depend on the specific

shape of the power spectrum Sxx(Ω) of the input signal x(t). As Figure 4-3 suggests, it will

tend to be small for signals that vary slowly, i.e., when Bx as defined in (4.31) is small.

As an illustration, Figure 4-4 demonstrates this behavior of the optimal choice of β as a

function of Bx for an example in which Sxx(Ω) is of the form

Sxx(Ω) =


π

d tan(Ωc/d) ·
1

1+(Ω/d)2 |Ω|< Ωc

0 |Ω| ≥ Ωc

(4.34)

in which case

Bx =
Ωcd

arctan(Ωc/d)
−d2, (4.35)

and

1
2π

∫ Ωc

−Ωc

Sxx(Ω)dΩ = 1. (4.36)

As indicated, when the bandwidth Bx of the input signal is small, the samples are positioned

close to the uniform sampling grid. As Bx is increased, β is increased and as a result the

samples are positioned closer to their original locations but still with a tendency towards

the uniform grid due to the optimality of USI.
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Figure 4-3: Q(Ω) for the case where ξn ∼ u[−T/2,T/2] and T = TN = 1.
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Figure 4-4: The optimal choice of β that minimizes σ2
eR as a function of Bx for the case

where T = TN = 1.

4.3.7 Discussion

While USI uses only the zero-mean assumption of the perturbation error and does not re-

quire the knowledge of the exact sampling instants, this knowledge is necessary for NSI.

Comparing USI with NSI with respect to mean square reconstruction error, it is in general

not possible to claim which of these methods is preferable. Their relative performance is

dependent on the power spectrum Sxx(Ω) of the continuous-time signal, the distribution

fξ (ξ ) of the sampling perturbations and the oversampling ratio r. For ISI, not only the

mean but the entire probability distribution function of the deviation from a uniform sam-

pling grid is needed in general. Since USI can be viewed as a special case of ISI for which
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fζ (ζ ) = δ (ζ ), it might be possible in general to obtain a lower MSE with ISI than with

USI. As previously discussed, there are cases in which even though the entire probability

distribution of the sampling perturbations is known, the mean square reconstruction error

of ISI is minimized when fζ (ζ ) = δ (ζ ), corresponding to USI. USI, NSI and ISI can all be

formulated as special cases of RSI, which is more general. With an appropriate choice of

fξ ζ (ξ ,ζ ), it might be possible in general to obtain a lower MSE with RSI than with USI,

NSI or ISI.

In the problem formulation, the samples were taken on a nonuniform grid that is a

perturbation of a uniform grid, and the objective was to design the grid on which to locate

the samples in reconstruction prior to sinc interpolation. Nevertheless, this framework can

handle other cases of interest as well. Consider for example the case in which the samples

are taken on an accurate uniform grid, but there are timing inaccuracies in the discrete-to-

continuous processing. This case can be formed as a special case of the general framework

for which Φξ ζ (Ω1,Ω2) = Φζ (Ω2).
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CHAPTER 5

TIMING ERRORS IN DISCRETE-TIME

PROCESSING OF CONTINUOUS-TIME

SIGNALS

A major application of discrete-time systems occurs in the processing of continuous-time

signals. When timing errors arise in the conversion from continuous to discrete time and

from discrete to continuous, discrepancies between the desired continuous-time system and

its implementation by a discrete-time system occur. This chapter explores these discrep-

ancies and proposes a method of designing the discrete-time system to compensate for the

timing errors.

5.1 Introduction

In an ideal scenario, the system of Figure 5-1, which consists of sampling followed by an

LTI discrete-time system and discrete-to-continuous conversion, is equivalent under certain

conditions [69], to continuous-time LTI processing of the bandlimited input signal.

C/D D/CG(ejω)
x[n] y[n] y(t)x(t)

T T

Figure 5-1: Discrete-time processing of continuous-time signals.

In particular, when the input signal x(t) is bandlimited and the sampling interval T

satisfies the Nyquist condition, the overall system in Figure 5-1 has an effective frequency
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response of the form

Ge f f (Ω) =

 G(e jΩT ) |Ω|< π
T

0 |Ω| ≥ π
T .

(5.1)

Thus, for the system in Figure 5-1 to correspond, in the absence of errors, to a specified

continuous-time LTI system whose frequency response is

Ge f f (Ω) =

 G(Ω) |Ω|< π
T

0 |Ω| ≥ π
T ,

(5.2)

the frequency response of the discrete-time LTI system should satisfy the following condi-

tion:

G(e jω) = G
(ω

T

)
, |ω|< π. (5.3)

We next discuss the effects of timing errors in the conversion from continuous to dis-

crete time and from discrete to continuous in the system of Figure 5.1 and the design of

an optimal discrete-time LTI system G(e jω), which compensates for these timing errors.

The time jitter problem was first considered in 1962 by Balakrishnan [3], who studied

the properties of the jittered samples and proposed an explicit solution for optimal (in the

mean-square sense) linear operation of these samples. Independently, in 1963 Brown [11]

provided optimum interpolation of sampled data when various types of jitter are present.

Tarczynski [84] presents a method of designing FIR filters whose input signals are sampled

irregularly due to clock jitter. These filters which were designed to diminish the input clock

jitter are claimed to perform better than traditional filters, for which the effect of jitter is

ignored at the designing stage. Similar to [84], we consider in this chapter the design of a

discrete-time system that compensates for the time jitter errors for the more general case in

which time jitter occurs both in acquiring the samples and in forming the interpolation.

94



5.2 The Effects of Timing Errors in Discrete-time Process-

ing of Continuous-time Signals

To analyze the effects of timing errors in discrete-time processing of continuous-time sig-

nals, we consider the system of Figure 5-2. The input signal x(t) is assumed to be a realiza-

tion of a zero-mean wide-sense stationary random process with an autocorrelation function

Rxx(τ) and power spectrum Sxx(Ω) = 0 for Ω ≥ π/T . Due to timing imperfections, the

sampling instants do not form an exact uniform grid. The sampling grid is modeled as a

perturbation of a uniform grid with spacing T , i.e.,

tn = nT +ξn, (5.4)

where ξn is characterized as an i.i.d sequence of zero-mean random variables, independent

of x(t) with pdf fξ (ξ ) and characteristic function Φξ (Ω). The sequence y[n] is obtained

from processing x[n] = x(tn) with a discrete-time LTI system whose frequency response

is G(e jω). The grid on which the samples are placed prior to sinc interpolation in the

conversion from discrete to continuous is modeled as another perturbation of a uniform

grid with spacing T , i.e.,

t̃n = nT +ζn, (5.5)

where ζn is an i.i.d sequence of random variables independent of x(t) and of ξk for all n,k.

C/D D/CG(ejω)
x[n] y[n] y(t)x(t)

tn = nT + ξn t̃n = nT + ζn

Figure 5-2: Time jitter in discrete-time processing of continuous-time signals.

With respect to second-order statistics, the system of Figure 5-2 is shown in Appendix

F to be equivalent to the continuous-time system of Figure 5-3. In this system, the signals

x(t), vξ (t), vζ (t), and vξ ζ (t) are zero-mean, uncorrelated, wide-sense stationary random

processes. vξ (t) is a white-noise process whose power spectrum Svξ vξ =
T
2π
∫ π/T
−π/T Sxx(Ω′)(1−
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|Φξ (Ω′)|2)dΩ′. The power spectrums of vζ (t) and vξ ζ (t) are

Svζ vζ (Ω) =

 (1−|Φζ (−Ω)|2) T
2π
∫ π/T
−π/T Sxx(Ω′)|Φξ (Ω

′
)|2|G(e jΩ′

T )|2dΩ′ |Ω|< π
T

0 |Ω| ≥ π
T ,

(5.6)

and

Svξ ζ vξ ζ (Ω) =

 (1−|Φζ (−Ω)|2) · T
2π
∫ π/T
−π/T Sxx(Ω′)(1−|Φξ (Ω

′
)|2)dΩ′ · 1

2π
∫ π
−π |G(e jω)|2dω |Ω|< π

T

0 |Ω| ≥ π
T ,

(5.7)

Φξ(Ω)
x(t)

G(ejΩT ) Φζ(−Ω)
z(t)

vξ(t) vζ(t) + vξζ(t)

Figure 5-3: A second-order statistics model for the system of Figure 5-2.

To show the equivalence between the systems, we first show that the cross-spectrum

between the output y(t) of the system in Figure 5-2 and its input is

Syx(Ω) =

 Sxx(Ω)Φξ (Ω)Φζ (−Ω)G(e jΩT ) |Ω|< π
T

0 |Ω| ≥ π
T ,

(5.8)

and the power spectrum of y(t) is

Syy(Ω) =


(

Sxx(Ω) · |Φξ (Ω)|2 +Svξ vξ

)
|Φζ (−Ω)|2|G(e jΩT )|2 ++Svζ vζ (Ω)+Svξ ζ vξ ζ (Ω) |Ω|< π

T

0 |Ω| ≥ π
T

.(5.9)

We then note that the power spectrum Szz(Ω) of the output z(t) in the system of Figure 5-3

is identical to Syy(Ω) in (5.9) and the cross-spectrum Szx(Ω) is identical to Syx(Ω) in (5.8).

Thus, as a result of the timing errors in sampling and in reconstruction, the signal x(t) in

the equivalent system of Figure 5-3 is filtered by the LTI system whose frequency response

is Φξ (Ω)Φζ (−Ω), and additive zero-mean uncorrelated noise components occur.
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For comparison purposes, we denote e(t) = y(t)− x(t) ∗ g(t) as the error between the

output of processing x(t) with a continuous-time LTI system whose impulse response is

g(t) and the output y(t) of the system in Figure 5-2 to an input x(t). It then follows from

eqs. (5.8) and (5.9) that the power spectrum See(Ω) of e(t) is

See(Ω) = Syy(Ω)−Syx(Ω)G∗(Ω)−Sxy(Ω)G(Ω)+Sxx(Ω)|G(Ω)|2 (5.10)

= Sxx(Ω) ·
(
|Φξ (Ω)|2|Φζ (−Ω)|2|G(e jΩT )|2 −Φξ (Ω)Φζ (−Ω)G(e jΩT )G∗(Ω)

− Φ∗
ξ (Ω)Φ∗

ζ (−Ω)G∗(e jΩT )G(Ω)+ |G(Ω)|2
)

+ |G(e jΩT )|2|Φζ (−Ω)|2 · T
2π

∫ π/T

−π/T
Sxx(Ω′)(1−|Φξ (Ω′)|2)dΩ′

+ (1−|Φζ (−Ω)|2) · T
2π

∫ π/T

−π/T
Sxx(Ω′)(1−|Φξ (Ω

′
)|2)dΩ

′
· 1

2π

∫ π

−π
|G(e jω)|2dω

+ (1−|Φζ (−Ω)|2) · T
2π

∫ π/T

−π/T
Sxx(Ω′)|Φξ (Ω

′
)|2|G(e jΩ′

T )|2dΩ
′
|Ω|< π

T
.

As expected, in the absence of timing errors, i.e., when ξn = 0 and ζn = 0, the choice of

G(e jω) as in (5.3) results in zero mean-squared error. More generally, the power spectrum

See(Ω) of eq. (5.11) for the case in which G(e jω) is specified in (5.3) becomes

See(Ω) = Sxx(Ω) · |G(Ω)|2 ·
∣∣1−Φξ (Ω)Φζ (−Ω)

∣∣2
+ |G(Ω)|2|Φζ (−Ω)|2 · T

2π

∫ π/T

−π/T
Sxx(Ω′)(1−|Φξ (Ω′)|2)dΩ′

+ (1−|Φζ (−Ω)|2) · T
2π

∫ π/T

−π/T
Sxx(Ω′)(1−|Φξ (Ω

′
)|2)dΩ

′
· T

2π

∫ π/T

−π/T
|G(Ω

′
)|2dΩ

′

+ (1−|Φζ (−Ω)|2) · T
2π

∫ π/T

−π/T
Sxx(Ω′)|Φξ (Ω

′
)|2|G(Ω

′
)|2dΩ

′
, |Ω|< π

T
. (5.11)

With ideal uniform sampling, i.e., when ξn = 0, the second-order statistics modeling

of Figure 5-3 reduces to that shown in Figure 5-4, and the power-spectrum See(Ω) in eq.

(5.11) reduces to

See(Ω) = Sxx(Ω) · |G(Ω)|2 ·
∣∣1−Φζ (−Ω)

∣∣2
+ (1−|Φζ (−Ω)|2) · T

2π

∫ π/T

−π/T
Sxx(Ω′)|G(Ω

′
)|2dΩ

′
, |Ω|< π

T
. (5.12)
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Φζ(−Ω)
z(t)

vζ(t)

x(t)
G(Ω)

Figure 5-4: A second-order statistics model for the system of Figure 5-2 with G(e jω) =
G(ω

T ), |ω|< π and where ξn = 0.

Alternatively, if there are no timing errors in reconstruction, i.e., ζn = 0, the second-

order statistics modeling of Figure 5-3 reduces to that shown in Figure 5-5, and

See(Ω) = Sxx(Ω) · |G(Ω)|2 ·
∣∣1−Φξ (Ω)

∣∣2
+ |G(Ω)|2 · T

2π

∫ π/T

−π/T
Sxx(Ω′)(1−|Φξ (Ω′)|2)dΩ′, |Ω|< π

T
. (5.13)

Φξ(Ω)
x(t) z(t)

vξ(t)

G(Ω)

Figure 5-5: A second-order statistics model for the system of Figure 5-2 with G(e jω) =
G(ω

T ), |ω|< π and where ζn = 0.

With respect to second-order statistics, the effect of timing errors is similar in both

cases, i.e., lowpass filtering of x(t) and the occurrence of additive uncorrelated noise. Fig-

ure 5-4 and eq. (5.12) suggest that with ideal uniform sampling, the effect of the additive

uncorrelated noise due to timing errors in reconstruction is more significant at high fre-

quencies. This severity in high frequencies contrasts with the case of ideal reconstruction,

in which the additive uncorrelated noise component due to perturbations in sampling is

shaped according to the frequency response G(Ω) of the desired system, as Figure 5-5 and

eq. (5.13) show.

The next section discusses the design of the discrete-time system G(e jω) to compensate

for the timing errors in the implementation of the continuous-time system.

98



5.3 Jitter Compensation

The previous section discusses the effects of timing errors on the overall system of Figure

5-1. Specifically, we show that the system of Figure 5-2 with G(e jω) = G(ω
T ), |ω |< π/T

is no longer equivalent to the desired continuous-time system represented by Ge f f (Ω) in

(5.2). In this section, we design the discrete-time system G(e jω) to mitigate the effects

of the timing errors by reducing the mean-squared error between the output of the desired

continuous-time system and the output of its implementation by a discrete-time system.

Optimizing See(Ω) in (5.11) with respect to G(e jΩT ) is analytically difficult. How-

ever, since the mean-squared error can be expressed as an integral of a quadratic form of

G(e jΩT ), the optimization becomes much easier. Specifically, integrating See(Ω) in (5.11),

we obtain the following mean-squared error

σ2
e =

1
2π

∫ π/T

−π/T
A(Ω) · |G(e jΩT )|2 −G(e jΩT ) ·Sxx(Ω)Φξ (Ω)Φζ (−Ω)G∗(Ω)

− G∗(e jΩT ) ·Sxx(Ω)Φ∗
ξ (Ω)Φ∗

ζ (−Ω)G(Ω)+Sxx(Ω)|G(Ω)|2dΩ, (5.14)

where

A(Ω) = Sxx(Ω) · |Φξ (Ω)|2|Φζ (−Ω)|2 + |Φζ (−Ω)|2 T
2π

∫ π/T

−π/T
Sxx(Ω′)(1−|Φξ (Ω

′
)|2)dΩ

′

+
T
2π

∫ π/T

−π/T
Sxx(Ω′)(1−|Φξ (Ω

′
)|2)dΩ

′
· T

2π

∫ π/T

−π/T
(1−|Φζ (−Ω

′
)|2)dΩ

′

+ Sxx(Ω)|Φξ (Ω)|2 · T
2π

∫ π/T

−π/T
(1−|Φζ (−Ω

′
)|2)dΩ

′
, |Ω|< π

T
. (5.15)

Then, the optimal filter G(e jΩT ) that minimizes the mean-squared error σ2
e is obtained

by differentiating the integrand in (5.14) with respect to G(e jΩT ), which results in

Gopt(e jΩT ) =
Φ∗

ξ (Ω)Φζ (Ω)Sxx(Ω)

A(Ω)
·G(Ω), |Ω|< π

T
. (5.16)

Substituting Gopt(e jΩT ) from (5.16) into (5.14), the minimum mean-squared error (MMSE)
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is obtained

σ2
e min =

1
2π

∫ π/T

−π/T
Sxx(Ω)|G(Ω)|2

(
1−

Sxx(Ω)|Φξ (Ω)|2|Φζ (−Ω)|2

A(Ω)

)
dΩ. (5.17)

When ξn = 0, the optimal filter Gopt(e jΩT ) reduces to

Gopt(e jΩT ) =
Φζ (Ω)

|Φζ (−Ω)|2 + T
2π
∫ π/T
−π/T (1−|Φζ (−Ω′

)|2)dΩ′
·G(Ω), |Ω|< π

T
, (5.18)

and its corresponding MMSE is

σ2
e min =

1
2π

∫ π/T

−π/T
Sxx(Ω)|G(Ω)|2

 T
2π
∫ π/T
−π/T (1−|Φζ (−Ω′

)|2)dΩ′

|Φζ (−Ω)|2 + T
2π
∫ π/T
−π/T (1−|Φζ (−Ω′

)|2)dΩ′

dΩ.

(5.19)

Interestingly, when ξn = 0, the characteristics of the input signal x(t) are not needed in the

design of the optimal discrete-time filter G(e jω). Alternatively, when ζn = 0, Gopt(e jΩT )

reduces to

Gopt(e jΩT ) =
Φ∗

ξ (Ω)Sxx(Ω)

Sxx(Ω) · |Φξ (Ω)|2 + T
2π
∫ π/T
−π/T Sxx(Ω′)(1−|Φξ (Ω

′
)|2)dΩ′

·G(Ω), |Ω|< π
T
,

(5.20)

and the corresponding MMSE is

σ2
e min =

1
2π

∫ π/T

−π/T
Sxx(Ω)|G(Ω)|2

 T
2π
∫ π/T
−π/T Sxx(Ω′)(1−|Φξ (Ω

′
)|2)dΩ′

Sxx(Ω) · |Φξ (Ω)|2 + T
2π
∫ π/T
−π/T Sxx(Ω′)(1−|Φξ (Ω

′
)|2)dΩ′

dΩ.

(5.21)

When both ξn = 0 and ζn = 0, it follows that

Gopt(e jΩT ) = G(Ω), |Ω|< π
T
, (5.22)

and σ2
e min = 0.
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CHAPTER 6

SUB-NYQUIST SAMPLING - ALIASING

MITIGATION

The Nyquist-Shannon sampling theorem provides a sufficient condition for perfect recon-

struction of a bandlimited signal from its equally spaced samples. When the Nyquist con-

dition is not satisfied, frequency components of the original signal that are higher than half

the sampling rate are then folded into lower frequencies resulting in aliasing. The common

approach to avoid aliasing in sampling is pre-filtering of the continuous-time signal, prior

to sampling, with an LTI low-pass filter, whose cut-off frequency is lower than half the

sampling rate. This processing is referred to as anti-aliasing. For certain applications such

as ray-traced computer graphics, anti-aliasing filters are either not possible or not prefer-

able to implement, and non-uniform sampling is used as an effective technique to mitigate

the impact of aliasing. By appropriate design of the non-uniform sampling grid and of

the reconstruction method, we show in this chapter that aliasing can be traded off with

uncorrelated noise, which may be preferable in some circumstances.

6.1 Introduction

In Chapter 4 we considered the case where the sampling interval T is less or equal to

the Nyquist interval TN for which, under certain conditions, perfect reconstruction of a

continuous-time bandlimited signal from its nonuniform samples is possible using La-

grange interpolation. When T > TN perfect reconstruction is in general not possible. How-

ever, the biorthogonality condition in (4.4) guarantees that whether or not T ≤ TN , the
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output of the system in Figure 6-1 with ln(t) as given by eq. (4.2b) corresponds to the least

squares approximation of x(t). In other words, when the sampling instants {tn} satisfy the

condition

|tn −nT | ≤ d < T/4 ∀n ∈ Z, (6.1)

the use of an anti-aliasing LTI filter with cut-off frequency of half the average sampling

rate, followed by nonuniform sampling and Lagrange interpolation results in an orthogonal

projection from the space of finite energy signals to the subspace of finite energy bandlim-

ited signals.

|tn − nT | ≤ d <
T

4

x(t)

tn

x̃(t)

π

T
−

π

T

1

ln(t) x̂(t) =
∑

n
x̃[n]ln(t)

x̃[n]
C/D

Figure 6-1: Anti-aliasing followed by nonuniform sampling and Lagrange interpolation.

In certain applications, such as ray-traced computer graphics, it is either not possible

or not preferable to implement anti-aliasing filtering. With uniform sampling and when

the Nyquist condition is not satisfied, frequency components of the original signal that

are higher than half the sampling rate are then folded into lower frequencies resulting in

aliasing. More generally, when the sampling grid is nonuniform and satisfies the condition

of eq. (6.1), the approximation resulting from Lagrange interpolation can be viewed in

general as an oblique projection from the space of finite energy signals into the space

of finite energy bandlimited signals. This follows from noting that the composition of

sampling at times {tn} and reconstruction using the kernel ln(t) as given by eq. (4.2b) is a

linear operator f (·). Since the Lagrange kernel is bandlimited, applying the operator f (·)

to x(t) yields a bandlimited signal x̂(t) = f (x(t)). Since Lagrange interpolation results in

perfect reconstruction from nonuniform samples of bandlimited signals, f (x̂(t)) = f (x(t)),

i.e., f (·) is a projection. Consequently, aliasing with uniform or nonuniform sampling is a

projection from the space of out of band signals into the space of bandlimited signals [88].

The projection representing aliasing with nonuniform sampling is in general an oblique

rather than orthogonal projection.
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Nonuniform sampling can offer an advantage over uniform sampling when the nominal

sampling rate is less than the Nyquist rate, i.e., for undersampled signals. It has previously

been suggested by several authors [18, 65, 80] that nonuniform sampling can be utilized

to mitigate the impact of aliasing. In certain applications, particularly perceptual ones,

the distortion resulting from nonuniform sampling is often preferable to aliasing artifacts.

For example, a form of randomized sampling is used in the computer graphics community

to anti-alias ray-traced images. In this chapter, we consider the framework developed in

Chapter 4 for reconstruction from nonuniform samples for the case where T > TN , i.e., sub-

Nyquist sampling, and discuss the second-order statistics characteristics and the aliasing

behavior of these methods.

6.2 Sinc Interpolation of sub-Nyquist Samples

In this section, we consider the reconstruction methods developed in Chapter 4 for the case

of sub-Nyquist sampling, i.e., T > TN . Specifically, we consider the reconstruction system

of Figure 6-2, where the cut-off frequency of the ideal low-pass filter is π
T and the choice

of ζn differs for each of the reconstruction methods.

T

π

T

x̂(t)

−

π

T

∑
n
x[n]δ(t− t̃n)x[n]

t̃n = n · T + ζn

Sample
to

Impulse

Figure 6-2: Reconstruction from nonuniform samples for the case T > TN using sinc inter-
polation.

6.2.1 Randomized Sinc Interpolation

Applying Randomized Sinc Interpolation to the nonuniform samples {x(tn)} as shown in

Figure 6-2, results in x̂(t) whose power spectrum and cross-correlation with x(t) are shown
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in Appendix G to be

Sx̂x̂(Ω) =
∞

∑
n=−∞

Sxx

(
Ω− 2π

T
n
)
|Φξ ζ

(
Ω− 2π

T
n,−Ω

)
|2

+
T
2π

∫ Ωc

−Ωc

Sxx(Ω
′
)
(

1−|Φξ ζ (Ω
′
,−Ω)|2

)
dΩ

′
|Ω|< π

T
, (6.2)

and

Rx̂x(t, t − τ) =
1

2π

∫ π/T

−π/T

∞

∑
n=−∞

(
Sxx

(
Ω− 2π

T
n
)

Φξ ζ

(
Ω− 2π

T
n,−Ω

)
e j 2π

T n(t−τ)
)

e jΩτdΩ

=
∫ ∞

−∞
Rxx(t1) ·

∞

∑
n=−∞

[
fξ ζ (t1 + t −nT − τ,ζ )∗ sinc(

π
T

ζ )
]
|ζ=t−nT dt1.

(6.3)

Once again, the perturbations in sampling and reconstruction can be designed to shape

the power spectrum of the reconstructed signal through the joint characteristic function

Φξ ζ (Ω1,Ω2). Notice that in the case of T = TN , eqs. (6.2) and (6.3) coincide with the

output power spectrum and the input-output cross-correlation of the system in Figure 4-2.

6.2.2 Uniform Sinc Interpolation

In the case of Uniform Sinc Interpolation, sinc interpolation is applied to the samples placed

on a uniform grid with spacing corresponding to the average spacing of the nonuniform

sampling grid. With respect to second-order statistics, nonuniform sampling followed by

USI is equivalent to the system of Figure 6-3 where vU(t) is zero-mean additive white

noise, uncorrelated with x(t). For the system of Figure 6-3 it is straight forward to show

that

SzU zU (Ω) =
∞

∑
n=−∞

Sxx

(
Ω− 2π

T
n
)
·
∣∣∣∣Φξ

(
Ω− 2π

T
n
)∣∣∣∣2

+
T
2π

∫ Ωc

−Ωc

Sxx(Ω
′
) ·
(

1−|Φξ (Ω
′
)|2
)

dΩ
′

︸ ︷︷ ︸
T 2·SvU vU (Ω)

|Ω|< π
T
, (6.4)
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and that

RzU x(t, t − τ) =
1

2π

∫ π/T

−π/T

(
∞

∑
n=−∞

Sxx

(
Ω− 2π

T
n
)

Φξ

(
Ω− 2π

T
n
)

e j 2π
T n(t−τ)

)
e jΩτdΩ.

(6.5)

∑
n δ(t− nT )

Φξ(Ω)
x(t)

vU (t)

zU (t)
T

π

T
−

π

T

Figure 6-3: A second-order-statistics equivalent of nonuniform sampling followed by Uni-
form Sinc Interpolation for the case where T > TN .

To show the equivalence, we note that with Uniform Sinc Interpolation, i.e., when

ζn = 0, Sx̂x̂(Ω) in eq. (6.2) reduces to SzU zU (Ω) in eq. (6.4) and the cross-correlation

Rx̂x(t, t − τ) in eq. (6.3) reduces to RzU x(t, t − τ) in eq. (6.5). The structure of Figure 6-3

suggests that with respect to second-order statistics, nonuniform sampling with stochastic

perturbations can be modeled as uniform sampling of the signal pre-filtered by the Fourier

transform of the pdf of the sampling perturbation. Correspondingly, the pdf fξ (ξ ) can

be designed subject to the constraints on fξ (ξ ) as a probability density function so that

the characteristic function Φξ (Ω) acts as an equivalent anti-aliasing LPF. Of course the

stochastic perturbation still manifests itself through the additive white noise source vU(t)

in Figure 6-3. Thus, Figure 6-3 suggests that aliasing can be traded off with uncorrelated

white noise by appropriate design of the pdf of the sampling perturbation.

6.2.3 Nonuniform Sinc Interpolation

In the case of Nonuniform Sinc Interpolation, sinc interpolation is applied to the samples

located at the actual nonuniform sampling grid. With respect to second-order statistics

this is equivalent to the system in Figure 6-4 where vN(t) is zero-mean additive noise,

uncorrelated with x(t).
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p(t) =
∑

n
fξ(t− nT )

x(t)

vN (t)

zN (t)
T

π

T
−

π

T

Figure 6-4: A second-order-statistics equivalent of nonuniform sampling followed by
Nonuniform Sinc Interpolation for the case where T > TN .

For the system of Figure 6-4 it is straight forward to show that

SzNzN (Ω) =
∞

∑
n=−∞

Sxx

(
Ω− 2π

T
n
)
·
∣∣∣∣Φξ

(
2π
T

n
)∣∣∣∣2

+
T
2π

∫ Ωc

−Ωc

Sxx(Ω
′
) ·
(

1−
∣∣∣Φξ (Ω−Ω

′
)
∣∣∣2)dΩ

′

︸ ︷︷ ︸
T 2·SvN vN (Ω)

|Ω|< π
T
, (6.6)

and that

RzNx(t, t − τ) =
∫ ∞

−∞
Rxx(τ − τ

′
)p(t − τ

′
)sinc

(π
T

τ
′
)

dτ
′
, (6.7)

where p(t) =∑∞
n=−∞ fξ (t−nT ). The equivalence is shown by noting that with Nonuniform

Sinc Interpolation, i.e., when ζn = ξn, Sx̂x̂(Ω) in eq. (6.2) reduces to SzNzN (Ω) in eq. (6.6)

and Rx̂x(t, t − τ) in eq. (6.3) reduces to RzNx(t, t − τ) in eq. (6.7). Figure 6-4 suggests that

with respect to second-order statistics, nonuniform sampling followed by NSI is equivalent

to modulating the signal with a periodic signal p(t) with period T , obtained from the pdf

fξ (ξ ) of the perturbation error and adding uncorrelated noise. In the frequency domain,

this corresponds to scaling each replica of the spectrum by |Φξ (
2π
T n)|2. Correspondingly,

the components in (6.6) associated with aliasing can be eliminated by designing the pdf

fξ (ξ ) so that Φξ (
2π
T n) = 0 for all n ̸= 0, which corresponds in the time-domain to p(t) = c

where c is a nonzero constant. Of course, similar to USI, the stochastic perturbation still

manifests itself through additive uncorrelated noise, as shown in Figure 6-4. However,

as opposed to USI where the additive noise is white and the signal is pre-filtered by the

characteristic function of the perturbation, the additive noise in NSI is in general not white,

its power spectrum is determined by the convolution of Sxx(Ω) with (1− |Φξ (Ω)|2), and

the shape of the original signal is preserved in reconstruction.
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6.2.4 Independent Sinc Interpolation

With respect to second-order statistics, Independent Sinc Interpolation corresponds to the

system of Figure 6-5 where vI(t) is zero-mean additive noise, uncorrelated with both vU(t)

and x(t),

SzIzI(Ω) =


∞

∑
n=−∞

Sxx

(
Ω− 2π

T
n
)∣∣∣∣Φξ

(
Ω− 2π

T
n
)∣∣∣∣2 + T

2π

∫ Ωc

−Ωc

Sxx(Ω
′
)
(

1−|Φξ (Ω
′
)|2
)

dΩ
′

︸ ︷︷ ︸
T 2·SvU vU (Ω)


· |Φζ (−Ω)|2 +

(
1−|Φζ (−Ω)|2

)
· T

2π

∫ Ωc

−Ωc

Sxx(Ω
′
)dΩ

′

︸ ︷︷ ︸
T 2·SvIvI (Ω)

|Ω|< π
T

(6.8)

and

RzIx(t, t − τ) =
1

2π

∫ π/T

−π/T

(
∞

∑
n=−∞

Sxx

(
Ω− 2π

T
n
)

Φξ

(
Ω− 2π

T
n
)

e j 2π
T n(t−τ)

)
Φζ (−Ω)e jΩτdΩ.

(6.9)

∑
n δ(t− nT )

Φξ(Ω)
x(t)

Φζ(−Ω)

vI (t)vU (t)

zI (t)
T

π

T
−

π

T

Figure 6-5: A second-order-statistics equivalent of nonuniform sampling followed by In-
dependent Sinc Interpolation for the case where T > TN .

As Figure 6-5 suggests, perturbing the grid on which the samples are placed prior to

sinc interpolation has a similar effect to that of the stochastic perturbations in sampling, i.e.,

the characteristic function of the perturbations acts as a low-pass filter and an uncorrelated

noise is added.
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6.3 Simulations

In Figure 6-7 we illustrate the different types of artifacts resulting from sub-Nyquist sam-

pling and with each of the reconstruction methods discussed above. We choose the signal

x(t) to be the output of an LTI system driven by white noise for which the transfer function

Hc(s) has unity gain at s = 0, and as shown in Figure 6-6 its poles and zeros locations are

{0.1πe jπ(2k+9)/20}10
k=1 and {0.1π(−0.1± 5

8 j)}, respectively.
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Figure 6-6: Pole-zero diagram of the transfer function Hc(s).

To simulate a discrete-time signal whose power spectrum is consistent with the power

spectrum of x(t), we process discrete-time white noise with a discrete-time LTI system

whose impulse response h[n] is obtained using the method of impulse invariance, i.e., by

sampling the impulse response hc(t) of the continuous-time system every Td = 1 [sec].

The spacing on this grid is considered to be sufficiently dense so that aliasing is negligible

and it accurately represents the impulse response of the continuous-time system. Figure

6-7(a) shows Ŝxx(Ω), the estimated power spectrum of x(t) obtained by applying Welch’s

method [73] with Hanning window of length 6656 [sec] and with 50% overlap. 500 blocks

are averaged to obtain the estimate. This method and parameters are used for all spectral

estimates in Figure 6-7.

From the parameters used for generating x(t) and consistent with Figure 6-7(a) we

consider the bandwidth of x(t) to be approximately 0.14π [rad/sec] and the corresponding

value of TN to be approximately 7 [sec]. In the remaining simulations in Figure 6-7, the

average or nominal spacing is T = 13 [sec]≈ 1.8TN , and the power spectrum estimates are

shown over the region [−π
T ,

π
T ] as if an ideal reconstruction filter was applied.
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Figure 6-7(b) corresponds to the case of uniform sampling where reconstruction is ob-

tained by applying USI to the samples of x(t). This figure shows the estimated PSD ŜU
x̂x̂(Ω)

of the approximation obtained by simulations vs. the theoretical results of the PSD and its

components as follows from eq. (6.4) for the uniform sampling case, i.e., when ξn = 0.

As shown in this figure, aliasing occurs as a result of undersampling and the interference

is therefore correlated with the signal. (c), (d) and (e) of Figure 6-7 correspond to recon-

struction obtained by applying USI, NSI and ISI respectively to the nonuniform samples of

x(t) with T = 13 [sec], and the deviation ξn from a uniform sampling grid uniformly dis-

tributed over (−T/2,T/2). Those figures compare the estimated PSD ŜUSI
x̂x̂ (Ω), ŜNSI

x̂x̂ (Ω)

and ŜISI
x̂x̂ (Ω) obtained by simulations with the theoretical results, as follow from eqs. (6.4),

(6.6) and (6.8), respectively. As shown in (b)-(e) of Figure 6-7, the theoretical results are

consistent with those obtained by simulations.

Consistent with the fact that the characteristic function Φξ (Ω) of the sampling pertur-

bations acts as an anti-aliasing filter in the model of Figure 6-3, the aliasing produced in

USI as shown in Figure 6-7(c) is reduced relative to that produced with uniform sampling.

However, this reduced aliasing is at the expense of an additional additive uncorrelated white

noise component. Note that in Figure 6-7(d) there is no aliasing but only uncorrelated noise.

This is because the pdf fξ (ξ ) of the perturbations satisfies the following condition

Φξ

(
2π
T

n
)
= 0 ∀ n ̸= 0, (6.10)

which ensures no aliasing artifact when applying NSI to the nonuniform samples. Figure

(e) corresponds to ISI with ζn uniformly distributed over (−T/2,T/2). Comparing this fig-

ure with figure (c), we notice that due to the filtering by the characteristic function Φζ (−Ω)

of the perturbations ζn as shown in Figure 6-5, high frequency components of the signal

and its replicas are attenuated in ISI compared to USI, and the additive uncorrelated noise

is appropriately shaped. Superimposed on Ŝxx(Ω) are shown in Figure 6-7(f) the estimated

PSD of the various approximations obtained by simulations of the reconstruction methods

discussed above. As we can see from these figures, the artifacts resulting in sub-Nyquist

sampling differ in each of the reconstruction methods discussed above and can be controlled
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Figure 6-7: Artifacts with sub-Nyquist sampling. (a) The estimated power spectrum of x(t).
The estimated power spectrum vs. analytic results in the case of (b) Uniform Sampling, (c)
USI applied to nonuniform sampling, (d) NSI applied to nonuniform sampling, and (e)
ISI applied to nonuniform sampling. (f) The estimated power spectrum of x(t) and of its
approximations.

by designing the perturbations in sampling and in reconstruction to trade off aliasing with

uncorrelated noise. The artifacts correspond to uniform sampling are more severe in high

frequencies and are correlated with the signal, whereas the artifacts correspond to the re-

construction methods from nonuniform sampling have reduced or no correlation with the

signal and are more balanced across frequency.
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CHAPTER 7

SUB-NYQUIST SAMPLING & ALIASING

7.1 Introduction

This chapter explores various sampling schemes for which the sampling rate is below the

Nyquist rate, but additional information about the signal apart from its bandwidth is ex-

ploited. Specifically, in Section 7.2 we consider sampling of non-negative bandlimited

signals, in which nonlinearity is incorporated prior to sampling as a way to decrease the

signal’s bandwidth. When perfect reconstruction is not possible with this approach, the

nonlinear processing is viewed as an alternative to anti-aliasing LTI lowpass filtering. Sec-

tion 7.3 suggests a different approach, referred to as inphase-quadrature anti-aliasing, in

which a bandlimited signal is approximated by another bandlimited signal with reduced

bandwidth. In Section 7.4 we develop co-sampling which suggests exploiting dependen-

cies between signals in order to reduce their effective total sampling rate.

7.2 Sampling a Non-negative Bandlimited Signal

The Nyquist-Shannon sampling theorem provides a sufficient rate for which perfect recon-

struction of a bandlimited signal is possible from its equally spaced samples. If the only

information available about a bandlimited signal is its bandwidth, the Nyquist rate is the

minimum sampling rate for which perfect reconstruction is possible. With additional in-

formation exploited apart from the signal’s bandwidth, there is the possibility of reducing

the sampling rate below the Nyquist rate and still achieving perfect reconstruction. For

example, when a bandlimited signal is processed through a nonlinear system, the informa-
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tion about the system can sometimes be exploited to reduce the signal’s sampling rate. To

illustrate the concept, consider the following example:

y(t) = |x(t)|2 = x(t) · x∗(t), (7.1)

where x(t) is bandlimited. Utilizing the fact that the bandwidth of x(t) is half the bandwidth

of y(t), we can extract the signal x(t) and sample it at its Nyquist rate, which is half the

Nyquist rate of y(t). Provided that x(t) is real, we achieve with this approach a sampling

rate reduction by a factor of two. However, obtaining x(t) from y(t) is not a trivial task

since the absolute square root of y(t) does not yield in general a bandlimited signal. For

example, when y(t) = sinc2(π
T t), its absolute square root is clearly not bandlimited as it has

infinitely many non-differentiable points. Thus, the recovery of the signal’s phase becomes

crucial for this sampling approach. The bandlimitedness of x(t) can be exploited for this

purpose.

Figure 7-1 suggests a system for sampling and reconstruction of the bandlimited signal

y(t), in which the relation in (7.1) is utilized. The sampling system consists of bandlimited-

square-root processing, whose output is a bandlimited signal x(t) such that y(t) = |x(t)|2,

followed by uniform sampling at half the Nyquist rate of y(t). The reconstruction is ac-

complished by taking the magnitude square of the continuous-time signal obtained from

sinc interpolation of the equally-spaced samples of x(t).

Non-linear Sampling Non-linear Reconstruction

C/D
x(t) x[n]

T

BLy(t)
·

x[n]
D/C

·

x(t) y(t)2

T

Figure 7-1: A sampling-reconstruction scheme of a non-negative bandlimited signal. The
sampling system consists of non-linear pre-processing whose output signal x(t) is bandlim-
ited to ±π/T and satisfies the relation y(t) = |x(t)|2.
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7.2.1 Bandlimited Square-roots

Boas and Kak [45] have shown that for a real non-negative function y(t), integrable on

(−∞,∞), and whose spectrum has no component at or above the frequency 2π/T , there

exists a function x(t) whose spectrum X(Ω) vanishes outside (−π/T ,π/T ), and for which

Y (Ω) =
1

2π

∫ π/T

−π/T
X(ξ )X∗(ξ −Ω)dξ . (7.2)

This theorem asserts that there exists a bandlimited signal x(t) that satisfies (7.1) and whose

bandwidth is half the bandwidth of y(t). The signal x(t) will be referred to as a bandlimited

square-root of y(t).

The problem of finding bandlimited square-roots of a real non-negative bandlimited

signal is equivalent in the time-domain to the problem of finding the set of all time-limited

functions having a specified autocorrelation function, a problem which E. M. Hofstetter

considered in [34]. To explore the former problem, we take a similar approach to that

introduced in [34]. Specifically, we obtain the analytic continuation of y(t) on the complex

plane by transforming the frequency response Y (Ω) into the complex s-domain, i.e.,

y(s) =
1

2π

∫ ∞

−∞
Y (Ω) · e−sΩdΩ, (7.3)

from which y(t) is obtained along the line s =− jt.

According to the Paley-Wiener theorem [8], since y(t) is bandlimited or, equivalently,

since the support of Y (Ω) is finite, y(s) is an entire function of an exponential type, meaning

that there is a constant C such that

|y(s)| ≤Ceα|s|. (7.4)

This fact combined with Hadamard’s factorization theorem [86] implies that

y(s) = Asneas
∞

∏
k=1

(
1− s

sk

)
es/sk , (7.5)

i.e., y(s) is completely specified (up to a complex constant) by the location of its zeros.
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With (7.2) substituted into (7.3), we obtain

y(s) = x(s) · x∗(−s∗), (7.6)

from which it follows that the same spectrum Y (Ω) can correspond to two different signals

x1(s) and x2(s), provided that

x1(s) · x∗1(−s∗) = x2(s) · x∗2(−s∗). (7.7)

Specifically, if x1(t) is bandlimited and its analytic continuation on the complex plane x1(s)

satisfies (7.6), then any other signal obtained from x1(s) by replacing its zeros with their

negative conjugates will also correspond to a bandlimited signal which satisfies (7.6) [34].

The number of different bandlimited square-roots may be either finite or infinite, depending

on the signal y(t).

7.2.1.1 Min-Phase Bandlimited Square-root

As discussed in the previous section, we can replace some or all zeros of one solution of

eq. (7.6) with their negative conjugates to obtain other solutions of eq. (7.6). Provided that

y(s) has no zeros on the imaginary axis, the solution whose zeros are all located in the left

region of the complex plane is of particular interest. This solution, denoted as xmin(s), will

be referred to as the min-phase bandlimited square-root. Defining the partial energy of x(t)

as

EX(ξ ) =
1

2π

∫ ξ

−∞
|X(Ω)|2 dΩ, (7.8)

it can be shown that the energy of the min-phase signal is delayed the least of all signals

x(t) satisfying eq. (7.1), i.e.,

1
2π

∫ ξ

−∞
|Xmin(Ω)|2 dΩ ≥ 1

2π

∫ ξ

−∞
|X(Ω)|2 dΩ, ∀ξ . (7.9)

To prove the inequality in (7.9), we first note that since all solutions satisfy the relation

114



|x(t)|2 = y(t), they all have the same total energy. Therefore, equality in (7.9) is achieved

for ξ → ∞, i.e.,

1
2π

∫ ∞

−∞
|Xmin(Ω)|2dΩ =

1
2π

∫ ∞

−∞
|X(Ω)|2dΩ. (7.10)

To prove that (7.9) is true for any other ξ , we follow a similar argument to that presented

in [69] for the discrete-time case. Specifically, we assume that s0 is a zero of xmin(s) and

represent it as

xmin(s) = q(s) · (s− s0), (7.11)

where q(s) is another min-phase signal. Processing xmin(s) through an all-pass term which

moves its zero at s = s0 to its mirror image location, s =−s∗0, we obtain

x(s) = xmin(s) ·
s+ s∗0
s− s0

= q(s) · (s+ s∗0), (7.12)

which is another solution of (7.6). Denoting Q(Ω) as the frequency response correponding

to q(s), it follows from (7.11) and (7.12) that the frequency response Xmin(Ω) correspond-

ing to xmin(s) and the frequency response X(Ω) corresponding to x(s) can be represented

as follows:

Xmin(Ω) =
dQ(Ω)

dΩ
− s0 ·Q(Ω),

X(Ω) =
dQ(Ω)

dΩ
+ s∗0 ·Q(Ω), (7.13)

from which it follows that

|Xmin(Ω)|2 −|X(Ω)|2 =−4ℜ(s0) ·ℜ
(

Q(Ω) · dQ∗(Ω)

dΩ

)
=−2ℜ(s0) ·

d |Q(Ω)|2

dΩ
. (7.14)

Integrating (7.14) with respect to Ω and noting that s0 lies in the left half plane, we obtain

1
2π

∫ ξ

−∞

(
|Xmin(Ω)|2 −|X(Ω)|2

)
dΩ =−ℜ(s0)

π
· |Q(ξ )|2 ≥ 0. (7.15)
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Rearranging (7.15) completes the proof of (7.9). The minimum delay energy property will

be utilized in section 7.2.3.

7.2.1.2 Real Bandlimited Square-roots

If x(t) is real, its Fourier transform is conjugate symmetric and x(s) = x∗(−s∗). It then

follows that zeros of x(s) which are not purely imaginary occur in pairs (s0,−s∗0) and that

y(s) = x2(s). (7.16)

As suggested by eq. (7.16), a necessary condition for the existence of a real bandlimited

square root is that all zeros of y(s) will have an even order.

7.2.2 Signals with Real Bandlimited Square-roots

We next discuss some of the characteristics of a real non-negative bandlimited signal y(t)

which possess a real bandlimited square-root. Applying the Fourier transform to eq. (7.1),

we obtain

Y (Ω) =
1

2π

∫ ∞

−∞
X(ξ ) ·X∗(ξ −Ω)dξ , (7.17)

from which the following inequality clearly follows:

|Y (Ω)| ≤ Y (Ω)|Ω=0. (7.18)

Adding the fact that x(t) is bandlimited to ±π/T , it follows from (7.17) that

Y (Ω) =

 1
2π
∫ π/T
−π/T+Ω X(ξ ) ·X∗(ξ −Ω)dξ 0 ≤ Ω < 2π

T
1

2π
∫ π/T−Ω
−π/T X(ξ ) ·X∗(ξ −Ω)dξ −2π

T < Ω < 0
. (7.19)

Applying the Cauchy-Schwartz inequality to (7.19) results in the following inequality:

|Y (Ω)|2 ≤ 1
2π

∫ π/T

|Ω|−π/T
|X(ξ )|2dξ · 1

2π

∫ π/T

|Ω|−π/T
|X∗(−ξ )|2dξ 0 ≤ |Ω| ≤ 2π/T, (7.20)
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which reduces to the following inequality when x(t) is real

|Y (Ω)| ≤ 1
2π

∫ π
T

|Ω|− π
T

|X(ξ )|2 dξ , 0 ≤ |Ω|< 2π/T

=

 1
2Y (Ω)|Ω=0 +

1
2π
∫ 0
|Ω|− π

T
|X(ξ )|2 dξ , ∀ 0 ≤ |Ω| ≤ π

T ,

1
2Y (Ω)|Ω=0 − 1

2π
∫ |Ω|− π

T
0 |X(ξ )|2 dξ , ∀ π

T ≤ |Ω| ≤ 2π
T .

(7.21)

As implied from (7.21), a necessary but not sufficient condition for a non-negative ban-

dlimited signal to possess a real bandlimited square root is that

|Y (π/T −|ξ |)|+ |Y (π/T + |ξ |)| ≤ Y (Ω) |Ω=0 ∀ 0 ≤ |ξ | ≤ π/T . (7.22)

The inequality in (7.22) suggests alternative upper bounds to those implied by (7.18) on the

value of |Y (π/T )| and on the area under |Y (Ω)| . Specifically,

|Y (π/T )| ≤ (1/2) ·Y (Ω) |Ω=0 , (7.23a)

and

T
2π

∫ 2π
T

0
|Y (Ω)|dΩ ≤ (1/2) ·Y (Ω)|Ω=0. (7.23b)

Figure 7-2 specifies a region that bounds all possible |Y (Ω)| that satisfy (7.21). Indicated

within this region is the triangular-shape frequency response of y(t) = sinc2(π
T t), which

achieves (7.21) with equality. Note that a non-negative real bandlimited signal y(t) whose

absolute frequency response |Y (Ω)| violates the boundaries of this region cannot possess a

real bandlimited square-root.

− 2π

T

2π

T

π

T
− π

T

|Y (Ω)|

Ω

Y (0)

Y (0)/2

Figure 7-2: The region within which all possible |Y (Ω)| that satisfy (7.21) lie.
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7.2.3 Nonlinear Anti-aliasing

When the Nyquist condition is not satisfied and we wish to avoid aliasing in sampling, addi-

tional information about the signal apart from its bandwidth can be exploited to developing

alternative pre-processing instead of the traditional LTI anti-aliasing lowpass filter. With

these alternative approaches there is the possibility of reducing the approximation error ob-

tained with LTI anti-aliasing. In addition, when the bandlimited signal is non-negative, for

example, LTI anti-aliasing may be undesirable as it does not preserve the non-negativity

of the signal. We next address various nonlinear approaches for processing a non-negative

bandlimited signal prior to sampling it. This processing will be referred to as non-linear

anti-aliasing. The general structure of the sampling-reconstruction system that will be con-

sidered here is motivated by the system of Figure 7-1.

7.2.3.1 Complex Nonlinear Anti-aliasing

This section considers the system depicted in Figure 7-3, in which the bandlimited signal

y(t) is assumed to possess only complex bandlimited square roots. The signal x(t), rep-

resenting a complex bandlimited square-root of y(t), is processed through an LTI system,

whose impulse response, possibly complex, is h(t), to yield the following approximation:

x̂(t) = x(t)∗h(t). (7.24)

h(t)
y(t) x(t) x̂(t)

BL

·

Figure 7-3: Non-linear anti-aliasing.

Approximating the signal y(t) with ŷ(t) = |x̂(t)|2 and denoting e(t) = y(t)− ŷ(t) as the

approximation error, its energy can be represented as follows:

∫ ∞

−∞
(y(t)− ŷ(t))2 dt =

1
2π

∫ 2π
T

− 2π
T

|Y (Ω)− Ŷ (Ω)|2dΩ (7.25)

=
1

2π

∫ 2π
T

− 2π
T

∣∣∣∣ 1
2π

∫ π
T

−π
T

(
X(ξ )X∗(ξ −Ω)− X̂(ξ )X̂∗(ξ −Ω)

)
dξ
∣∣∣∣2 dΩ.
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Using the Cauchy-Schwartz inequality in (7.26), the following upper bound on the approx-

imation error is obtained

∫ ∞

−∞
(y(t)− ŷ(t))2 dt ≤ 1

T
· 1

2π

∫ 2π
T

− 2π
T

(
1

2π

∫ π
T

−π
T

∣∣X(ξ )X∗(ξ −Ω)− X̂(ξ )X̂∗(ξ −Ω)
∣∣2 dξ

)
dΩ

=
1
T

(
EX

2 −2|RXX̂ |
2 +EX̂

2) , (7.26)

in which

EX =
1

2π

∫ π
T

−π
T

|X(Ω)|2 dΩ,

EX̂ =
1

2π

∫ π
T

−π
T

∣∣X̂(Ω)
∣∣2 dΩ, (7.27)

and

RXX̂ =
1

2π

∫ π
T

−π
T

X(Ω)X̂∗(Ω)dΩ. (7.28)

We now consider the LTI system in Figure 7-3, whose impulse response is h(t), to have

the following frequency response:

H(Ω) =

 1 −π/T ≤ Ω ≤ γ < π/T

0 otherwise
, (7.29)

as depicted in Figure 7-4.

−

π

T
γ

1

Ω

H(Ω)

Figure 7-4: The frequency response H(Ω) of the LTI system in Figure 7-3.

With this choice of h(t), the bandwidth of the approximation x̂(t) is reduced relative to
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the bandwidth of x(t), and the upper bound in (7.26) satisfies the following inequalities:

1
T

(
EX̂

2 −2|RXX̂ |
2 +EX

2) ≥ 1
T

(
EX̂

2 −2EX̂ · 1
2π

∫ γ

−π/T
|X(Ω)|2dΩ+EX

2
)

≥ 1
T

(
EX

2 −
∣∣∣∣ 1
2π

∫ γ

−π/T
|X(Ω)|2dΩ

∣∣∣∣2
)

≥ 1
T

(
EX

2 −
∣∣∣∣ 1
2π

∫ γ

−π/T
|Xmin(Ω)|2dΩ

∣∣∣∣2
)
. (7.30)

The first inequality is obtained from applying the Cauchy-Schwartz inequality on RXX̂ in

(7.28), i.e.,

|RXX̂ |
2 ≤ 1

2π

∫ γ

−π/T
|X(Ω)|2dΩ · 1

2π

∫ γ

−π/T
|X̂∗(Ω)|2dΩ, (7.31)

where equality is achieved if and only if

X̂(Ω) = X(Ω), −π/T ≤ Ω ≤ γ . (7.32)

The second inequality follows by noting that with respect to EX̂ we have a quadratic form

whose minimum occurs at EX̂ = 1
2π
∫ γ
−π/T |X(Ω)|2dΩ. The last inequality exploits the min-

imum energy delay property of the min-phase solution xmin(s), as discussed in section

7.2.1.1, while taking into account the fact that the energy EX is the same for all signals

satisfying (7.1).

Thus, it follows from (7.26) together with (7.30) that the upper bound on the error in

approximating y(t) with ŷ(t) = |x̂(t)|2 is minimized when

X̂(Ω) = X̂min(Ω) = Xmin(Ω) ·H(Ω) =

 Xmin(Ω) −π/T ≤ Ω ≤ γ

0 otherwise
. (7.33)

In this case,

∫ ∞

−∞
(y(t)−|x̂min(t)|)2 dt ≤ 1

T
·

(
Ex

2 −
∣∣∣∣ 1
2π

∫ γ

−π/T
|Xmin(Ω)|2dΩ

∣∣∣∣2
)
. (7.34)
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In this approach, we first extract the min-phase bandlimited square-root xmin(t) of y(t),

and then process it through the LTI system whose impulse response is h(t). Though the

min-phase solution can be obtained from spectral decomposition of y(s), an alternative ap-

proach can be taken, in which we utilize the facts that for min-phase signals, the continuous-

time phase arg(xmin(t)) is related to log|xmin(t)| by the Hilbert transform and that the mag-

nitude |xmin(t)| is the absolute square root of y(t).

As a simple illustratation of the nonlinear anti-aliasing approach, we consider the signal

used in [34]

y(t) =
sinh2(aΩx)

π2(a2 + t2)
, (7.35)

whose frequency response is zero outside the support (−2Ωx,2Ωx), and

Y (Ω) =


sinh(a(2Ωx−Ω))

2πa 0 ≤ Ω < 2Ωx

sinh(a(2Ωx+Ω))
2πa −2Ωx < Ω < 0.

(7.36)

Transforming Y (Ω) into the complex s-domain using (7.6), we obtain

y(s) =
1

2π2 ·
cosh(2sΩx)− cosh(2aΩx)

(s−a)(s+a)

=
sinh((s−a)Ωx)

π(s−a)
· sinh((s+a)Ωx)

π(s+a)
, (7.37)

from which it follows that the zeros of y(s) are located at

s =±a+ j
π

Ωx
k, k =±1,±2, . . . (7.38)

Since the zeros of y(s) do not have an even order, y(t) does not possess a real bandlimited

square root. Instead, there are infinitely many complex solutions. One of particular interest

is the min-phase solution

xmin(s) =
sinh((s−a)Ωx)

π(s−a)
, (7.39)
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whose zeros are all located in the left half plane, i.e.,

zk = a+ j(π/Ωx)k, k =±1,±2, . . . (7.40)

and its corresponding frequency response is

Xmin(Ω) =

 eaΩ |Ω|< Ωx

0 |Ω| ≥ Ωx

. (7.41)

Other solutions may be obtained by replacing zeros of xmin(s) with their negative conju-

gates. Specifically, applying the all-pass system

H(s) =
s+(a− jπ/Ωx)

s− (a+ jπ/Ωx)
· s+(a+ jπ/Ωx)

s− (a− jπ/Ωx)

=
(s+a)2 +(π/Ωx)

2

(s−a)2 +(π/Ωx)2

= 1+4a
s−a

(s−a)2 +(π/Ωx)2 +
4a2

π/Ωx
· π/Ωx

(s−a)2 +(π/Ωx)2 (7.42)

to xmin(s) will replace its zeros located at a± jπ/Ωx with their negative conjugates −(a±

jπ/Ωx). In the frequency domain, this processing corresponds to convolving Xmin(Ω) with

H(Ω) = 2π ·
[

δ (Ω)+4aeaΩ ·
(

cos(πΩ/Ωx)+
aΩx

π
sin(πΩ/Ωx)

)
u(Ω)

]
, (7.43)

which yields

X1(Ω) =
1

2π
Xmin(Ω)∗H(Ω)

=

 eaΩ
(

1+ 4a
π/Ωx

·
(

aΩx
π + aΩx

π · cos(πΩ/Ωx)− sin(πΩ/Ωx)
))

, |Ω|< Ωx

0, |Ω| ≥ Ωx

.

(7.44)

Replacing the even index zeros of xmin(s) with their negative conjugates will obtain
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another solution, x2(s), whose frequency response is

X2(Ω) =

 ea(Ω+Ωx) −Ωx ≥ Ω < 0

ea(Ω−Ωx) 0 ≤ Ω < Ωx.
(7.45)
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Ŷmin (Ω)
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Figure 7-5: Complex anti-alising applied to y(t) from (7.35) where a = −π/2 and Ωx =
π/T . (a) The spectrums of the complex bandlimited square roots. (b) The partial energies
of the complex bandlimited square roots. (c) The frequency responses of y(t) and of its
approximations ŷ(t) = |x̂(t)|2 where the cut-off frequency of H(Ω) is γ = π/(2T ). (d)
The frequency responses of y(t) and of its approximations ŷ(t) = |x̂(t)|2 where the cut-off
frequency of H(Ω) is γ = π/(4T ).

Figure (a) of 7-5 shows the spectrums Xmin(Ω), X1(Ω) and X2(Ω), as indicated in (7.41),

(7.44) and (7.45) for the case of a =−π/2 and Ωx = π/T . In Figure (b) the partial energies

of these signals are shown and the minimum energy delay property is illustrated, i.e., the

energy of the min-phase signal is shown to be delayed the least of the other two signals

considered. (c) and (d) of Figure 7-5 show the spectrum Y (Ω) of the given signal y(t)

along with the spectrums of its approximations obtained from the system of Figure 7-3 for
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different bandlimited square roots, i.e., ŷmin(t) = |x̂min(t)|2, ŷ1(t) = |x̂1(t)|2, and ŷ2(t) =

|x̂2(t)|2. The cut-off frequency γ of H(Ω) used in the approximations of Figure (c) is

π/(2T ) and in the approximation of Figure (d) is π/(4T ). In both cases, the approximation

of y(t) obtained with the min-phase bandlimited square-root yields the lowest error.

This approach suggests a constructive procedure for obtaining a non-negative approx-

imation of y(t) whose bandwidth is reduced. In addition, the choice x(t) = xmin(t) min-

imizes, among all bandlimited square-roots, the error in approximating x(t) with x̂(t) =

x(t) ∗ h(t), where h(t) is the impulse response whose frequency response is specified in

(7.29). Note, however, that minimizing the error in approximating x(t) with x̂(t) = x(t) ∗

h(t) does not necessarily imply that the error in approximating y(t) with ŷ(t) = |x̂(t)|2 is

the minimum possible for that bandwidth constraint. In fact, a lower error may be achieved

with LTI anti-aliasing filter at the expense of not preserving the non-negativity property of

the signal.

The complex bandlimited square-root signal can be a base for a variety of other approx-

imate non-negative representations of y(t) with a reduced bandwidth. The signal y(t) can

be still approximated with |x̂(t)|2; however, we may consider other ways for approximating

x(t). For example,

x̂(t) = ℜ{x(t)}∗h1(t)+ jℑ{x(t)}∗h2(t), (7.46)

where h1(t) and h2(t) are LTI selective filters that determine the total bandwidth of the

approximate representation. Special cases of this choice are the real part xR(t) = ℜ{x(t)}

or the imaginary part xi(t) = ℑ{x(t)} of the complex bandlimited square root x(t). Note

that since with this choice of x̂(t), the actual bandwidth of ŷ(t) may be larger than its

effective bandwidth, this approximation may produce a lower error than that produced with

the appropriate LTI anti-aliasing lowpass filtering.

7.2.3.2 Bandlimited Square-root as a Nonlinear Least-squares Problem

If a real bandlimited square root does not exist, a real bandlimited signal x̂(t) can be ob-

tained whose square is closest, in the least square sense, to the non-negative bandlimited
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signal y(t). Specifically, we formulate the following nonlinear least-squares problem,

y(t)≈ x̂2(t), (7.47)

and solve for x̂(t). To restrict the solution to be bandlimited, we represent x̂(t) in (7.47)

as the sinc interpolation of its Nyquist rate samples x̂[n] = x̂(nT ). We then choose these

samples to minimize the least-squares error, i.e.,

minx̂[n]

∫ ∞

−∞

y(t)−

(
∞

∑
n=−∞

x̂[n] ·h(t −nT )

)2
2

dt, (7.48)

where h(t) = sinc(π
T t). Rather than solving the nonlinear optimization in (7.48), we will

linearize it and solve instead a linear least squares problem [6]. Linearization of x̂2(t) =

(∑∞
n=−∞ x̂[n]h(t −nT ))2 around x̂[n] = x∗[n] will obtain

x̂2(t)≈

(
∞

∑
k=−∞

x∗[k]h(t − kT )

)2

+2

(
∞

∑
k=−∞

x∗[k]h(t − kT )

)
·

∞

∑
n=−∞

h(t −nT )(x̂[n]− x∗[n]).

(7.49)

Denoting by y∗(t)= (x∗(t))
2 =
(
∑∞

k=−∞ x∗[k]h(t − kT )
)2 and by z∗(t)= (y(t)+y∗(t))/2,

the solution to the non-linear least squares problem in (7.47) can be approximated by the

solution to the following linear least-squares problem

z∗(t)≈ x∗(t) ·
∞

∑
n=−∞

x[n]h(t −nT ). (7.50)

Iteratively solving the linear least-squares problem in (7.50), we obtain

1
2π

∫ π
T

− π
T

X (l+1)(ξ ) ·Y (l)(Ω−ξ )dξ =
1

2π

∫ π
T

− π
T

X (l)(ξ ) ·Z(l)(Ω−ξ )dξ ∀ |Ω| ≤ π
T
, (7.51)

where X (l)(Ω), Y (l)(Ω) and Z(l)(Ω) are the frequency responses of x(l)(t), y(l)(t) and z(l)(t),

respectively, and where the superscripts indicate the iteration number. Note that as sug-

gested by eq. (7.51), the nonlinear deconvolution of the original problem is replaced with
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an iterative set of linear deconvolutions.

7.2.4 Generalization

Given two bandlimited signals x1(t) and x2(t) whose bandwidths are W1 and W2, the band-

width W of the signal y(t) obtained from multiplying x1(t) with x2(t) can in general be

equal, greater or lower than the sum of their bandwidths. Each of these cases is illustrated

in the examples of Figures (7-6), (7-7) and (7-8).

∗ =

1−1 Ω

X1(Ω)

1−1 Ω

X2(Ω)

2−2 Ω

Y (Ω) = X1(Ω) ∗X2(Ω)

Figure 7-6: An example for which the bandwidth of y(t) is equal to the sum of the band-
widths of x1(t) and x2(t).

−1 1 −1−2 1 2

∗ =

−3 3

X1(Ω)

Ω

X2(Ω)

Ω

Y (Ω) = X1(Ω) ∗X2(Ω)

Ω

Figure 7-7: An example for which the bandwidth of y(t) is greater than the sum of the
bandwidths of x1(t) and x2(t).

41 2

∗ =

X1(Ω)

Ω

X2(Ω)

Ω

Y (Ω) = X1(Ω) ∗X2(Ω)

Ω12 3 −6 −2−4 2 4 6

Figure 7-8: An example for which the bandwidth of y(t) is less than the sum of the band-
widths of x1(t) and x2(t).

This observation may suggest approximating a bandlimited signal as a multiplication

of two or more signals whose total bandwidth is lower than the bandwidth of the original

signal. This is a further generalization of the notion of nonlinear anti-aliasing to a broader

class of signals, not just non-negative bandlimited signals, which offers a way to optimize

the trade off between the sampling rate and the approximation error.
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7.3 Inphase and Quadrature Anti-aliasing

A straightforward generalization of anti-aliasing low pass filtering is multi-channel anti-

aliasing. In this case, the continuous-time signal is first decomposed in the frequency do-

main into sub-bands. Each sub-band is then processed according to its frequency content

through a frequency selective filter, and the outputs are finally composed to obtain the re-

duced bandwidth approximation. As a special case, the selective filters can be replaced

by multipliers with zero or one depending on the energy of the corresponding sub-band

component and the desired bandwidth with which we wish to approximate the signal. The

resulting approximation is associated with an error which is proportional to the total energy

of the sub-band components that were filtered out. Clearly, the more sub-bands we include

in the approximation, the higher its bandwidth is and the lower its corresponding error is.

In this section we introduce a different orthogonal decomposition, which suggests an

alternative anti-aliasing method referred to as inphase-quadrature (IQ) anti-aliasing. With

this method there is the possibility of reducing the approximation error as compared to

the error associated with LTI anti-aliasing filtering. Section 7.3.1 introduces the inphase-

quadrature decomposition. In section 7.3.2, we propose an anti-aliasing approach that uti-

lizes the IQ decomposition and discuss its relation to recurrent nonuniform sampling.

7.3.1 Inphase and Quadrature Decomposition

Consider a bandlimited signal y(t) whose frequency response Y (Ω) contains no component

at or above the frequency Ωc. Defining the inphase and quadrature components of y(t) as

iy(t) =
(√

2/2
)
· cos(Ωct/2) · y(t)+

(√
2/2
)
· sin(Ωct/2) · ỹ(t), (7.52a)

and

qy(t) =
(√

2/2
)
· sin(Ωct/2) · y(t)−

(√
2/2
)
· cos(Ωct/2) · ỹ(t), (7.52b)

where ỹ(t) = 1/π
∫ ∞
−∞ y(τ)/(t − τ)dτ is the Hilbert transform of y(t), we can decompose

y(t) as
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y(t) =
√

2 · cos(Ωc/2t) · iy(t)︸ ︷︷ ︸
y1(t)

+
√

2 · sin(Ωc/2t) ·qy(t)︸ ︷︷ ︸
y2(t)

. (7.53)

Since iy(t) and qy(t) are real valued signals and each is bandlimited with half the bandwidth

of y(t), the equivalent representation of y(t) in terms of the signals iy(t) and qy(t) has an

effective bandwidth equal to the bandwidth of y(t).

We next show that the signals y1(t)=
√

2·cos(Ωc/2t)·iy(t) and y2(t)=
√

2·sin(Ωc/2t)·

qy(t) are orthogonal projections of the signal y(t). Orthogonality is shown by proving that

the inner product ⟨y1(t),y2(t)⟩= 0. Specifically,

⟨y1(t),y2(t)⟩ =
∫ ∞

−∞
y1(t) · y2(t)dt =

=
∫ ∞

−∞

√
2 · cos(Ωc/2t) · iy(t) ·

√
2 · sin(Ωc/2t) ·qy(t)dt, (7.54)

from which it follows by using Parseval’s relation

⟨y1(t),y2(t)⟩ = 2 · 1
2π

∫ ∞

−∞

1
2
[Iy(Ω+Ωc/2)+ Iy(Ω−Ωc/2)]

· 1
2 j

[Qy(Ω+Ωc/2)−Qy(Ω−Ωc/2)]∗ dΩ

=
1

4π j
·
{∫ ∞

−∞
Iy(Ω+Ωc/2) ·Qy

∗(Ω+Ωc/2)dΩ

−
∫ ∞

−∞
Iy(Ω−Ωc/2) ·Qy

∗(Ω−Ωc/2)dΩ
}
= 0. (7.55)

To show that y1(t) is a projection of y(t), we note that an alternative representation of

y1(t) in terms of y(t) and ỹ(t) can be obtained by using iy(t) from (7.52a). Specifically,

y1(t) =
1
2
[y(t)+ cos(Ωct)y(t)+ sin(Ωct)ỹ(t)] , (7.56)

or in the frequency domain,

Y1(Ω) =
1
2
[Y (Ω)+Y−(Ω−Ωc)+Y+(Ω+Ωc)] , (7.57)
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where

Y−(Ω) =

 Y (Ω) −Ωc < Ω < 0

0 otherwise
, (7.58)

and

Y+(Ω) =

 Y (Ω) 0 < Ω < Ωc

0 otherwise
. (7.59)

Then, denoting by f1(·) the linear transformation from Y (Ω) to Y1(Ω) in (7.57) and apply-

ing f1(·) again on Y1(Ω), we obtain f1 (Y1(Ω)) =Y1(Ω), from which it follows that y1(t) is

an orthogonal projection of y(t). Similar to the representation in (7.57), it is straightforward

to show that the Fourier transform Y2(Ω) of y2(t) obeys

Y2(Ω) =
1
2
[Y (Ω)−Y−(Ω−Ωc)−Y+(Ω+Ωc)] , (7.60)

and that y2(t) is an orthogonal projection of y(t). Figure 7-9 illustrates the decomposition

of Y (Ω) into Y1(Ω) and Y2(Ω), as implied from (7.57) and (7.60).

Ω

Y2(Ω) =
1

2
(Y (Ω)− Y

−
(Ω− Ωc)− Y+(Ω + Ωc))

Ω Ω

Y (Ω)

Y+(Ω + Ωc)Y
−
(Ω− Ωc)

Ωc−Ωc

−Ωc
Ωc

Ωc Ωc−Ωc −Ωc

Y1(Ω) =
1

2
(Y (Ω) + Y

−
(Ω− Ωc) + Y+(Ω + Ωc))

Figure 7-9: Decomposing Y (Ω) into Y1(Ω) and Y2(Ω).
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The orthogonality in (7.55) between y1(t) and y2(t) implies that the energy Ey =
∫ ∞
−∞ y2(t)dt

of y(t) is equal to the sum of the energies E1 of y1(t) and E2 of y2(t). Using Parseval’s re-

lation, it can also be shown that E1 = Ei and E2 = Eq. Specifically,

E1 =
∫ ∞

−∞
y1

2(t)dt =
∫ ∞

−∞

(
iy(t) ·

√
2 · cos(Ωc/2t)

)2
dt

=
1
2
· 1

2π

∫ ∞

−∞

∣∣Iy(Ω+Ωc/2)+ Iy(Ω−Ωc/2)
∣∣2 dΩ

=
∫ ∞

−∞
i2y(t)dt = Ei, (7.61a)

and

E2 =
∫ ∞

−∞
y2

2(t)dt =
∫ ∞

−∞

(
qy(t) ·

√
2 · sin(Ωc/2t)

)2
dt

=
1
2
· 1

2π

∫ ∞

−∞

∣∣∣∣1j Qy(Ω+Ωc)−
1
j
Qy(Ω−Ωc)

∣∣∣∣2 dΩ

=
∫ ∞

−∞
qy

2(t)dt = Eq. (7.61b)

Note, however, that the energy Ey of y(t) is not equally distributed between y1(t) and y2(t),

or alternatively between iy(t) and qy(t). Specifically,

E1 =
1
2
·Ey +ℜ

{
1

2π

∫ Ωc

0
Y (Ω) ·Y ∗(Ω−Ωc)dΩ

}
,

E2 =
1
2
·Ey −ℜ

{
1

2π

∫ Ωc

0
Y (Ω) ·Y ∗(Ω−Ωc)dΩ

}
, (7.62)

as follows from (7.57) and (7.60). This property will be exploited in the next section in

which we discuss approximation of y(t) in terms of its IQ components.

7.3.2 IQ Anti-aliasing

As an alternative approach to LTI anti-aliasing, the IQ decomposition suggests decompos-

ing the bandlimited signal y(t) into iy(y) and qy(t) and then processing these components

through LTI selective filters to yield the approximations îy(t) and q̂y(t) from which we
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obtain

ŷ(t) =
√

2 · cos(Ωc/2t) · îy(t)+
√

2 · sin(Ωc/2t) · q̂y(t), (7.63)

whose effective bandwidth is reduced as compared to that of y(t). Denoting ey(t) = y(t)−

ŷ(t) as the error in approximating y(t) with ŷ(t), it can be shown by using Parseval’s relation

that

∫ ∞

−∞
ey

2(t)dt =
∫ ∞

−∞
ei

2(t)dt +
∫ ∞

−∞
eq

2(t)dt, (7.64)

where ei(t) and eq(t) are the errors corresponding to approximating iy(t) with îy(t) and

qy(t) with q̂y(t), respectively. As follows from (7.64), the approximation of y(t) specified

in (7.63) is improved as the individual approximations of iy(t) and qy(t) are improved.

The orthogonal decomposition in (7.53) can be iteratively applied to the resulting IQ

components so that after N iterations the original signal y(t) will be decomposed into 2N

real components, each is bandlimited with a bandwidth which is 1/2N times the bandwidth

of the original signal. Figure 7-10 illustrates the decomposition obtained after two itera-

tions, i.e., when N = 2.

y
(1)
0 (t)

y
(1)
1 (t)

Q

Q

Q

I

I

I

y(t)

y
(2)
0 (t)

y
(2)
1 (t)

y
(2)
2 (t)

y
(2)
3 (t)

Figure 7-10: Iterative decomposition of y(t) into its inpahse and quadrature components
after two iterations (N = 2).
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Clearly, perfect reconstruction of the original signal can be obtained if all IQ compo-

nents are used. However, if the desired sampling rate is lower than the Nyquist rate of

y(t), a reduced bandwidth approximation of the signal is of interest. Reducing the signal’s

bandwidth can be accomplished by processing the IQ components of the signal through

LTI selective filters, or simply by choosing a subset of IQ components for the approximate

representation. To minimize the least squares approximation error, the subset should be

chosen to contain the components with the highest energy. The approximation ŷ(t) ob-

tained from these components will be associated with an error whose energy is equal to the

total energy of the IQ components that were filtered out. Since all components have the

same bandwidth, which is 1/2N times the bandwidth of y(t), the effective bandwidth of the

approximation will be proportional to the number of components used to obtain it.

Figure 7-11 illustrates the two approaches, LTI and IQ anti-aliasing, for approximating

a bandlimited signal whose spectrum is triangular with another bandlimited signal with

reduced effective bandwidth. As indicated, when the bandwidth of the approximated sig-

nal is constrained to 0.3 the bandwidth of the original signal, LTI anti-aliasing filtering

achieves poor results as compared to the IQ-based approximation. Specifically, while LTI

anti-aliasing achieves zero error in the pass-band region and large error in the stop-band

region, the error associated with the IQ-based anti-aliasing is equally spread over the entire

spectrum of the signal and its energy is lower. Note also that the effective bandwidth of
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Figure 7-11: A comparison between LTI anti-aliasing filtering and IQ anti-aliasing applied
to a signal whose spectrum is triangular to reduce its bandwidth to 0.3 times its original
bandwidth. (a) LTI anti-aliasing (original signal dashed). (b) IQ anti-aliasing with N = 4
iterations (original signal dashed).
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the approximation in both methods is the same; however, the actual bandwidth of the ap-

proximation obtained with LTI anti-aliasing filtering is the same as the desired bandwidth,

whereas the actual bandwidth of the approximation obtained with IQ anti-aliasing is as

large as the bandwidth of the original signal. This is significant in scenarios for which all

spectrum regions are equally important and we would rather avoiding the use of LTI anti-

aliasing filtering, which completely removes components outside its pass-band region. The

IQ anti-aliasing method provides us with a way that trades off accuracy in the pass-band

with accuracy in the stop-band of the corresponding LTI anti-aliasing filter.

7.3.2.1 IQ Anti-aliasing and Recurrent Nonuniform Sampling

Eqs. (7.57) and (7.60) suggest that the signals y1(t) and y2(t) can be obtained as the outputs

of the system in Figure 7-12, which consists of sub-Nyquist sampling of y(t) followed by

lowpass filtering.

y(t) p1(t) =
∑

n δ(t− 2nTN )

TN

Ωc−Ωc

y1(t)

y2(t)

s(t) =
√

2 sin(ωct/2)

c(t) =
√

2 cos(ωct/2)

1

Ωc/2−Ωc/2

1

Ωc/2−Ωc/2

iy(t)

qy(t)

p2(t) =
∑

n δ(t− 2nTN − TN )

TN

Ωc−Ωc

Figure 7-12: Generating y1(t) and y2(t) through sub-Nyquist sampling of y(t) followed by
lowpass filtering. The Nyquist interval TN = π/Ωc.

The decomposition of y(t) into its IQ components can be interpreted as a decomposition

of a signal into two signals; one which depends only on the odd Nyquist rate samples of

y(t) and another which depends only on the even Nyquist rate samples of y(t). Since

the IQ anti-aliasing method produces the reduced bandwidth approximation by iteratively

decomposing y(t) into its IQ components and eliminating some of them, this method can

be shown to correspond in the time-domain to sampling y(t) on a recurrent nonuniform

grid.
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7.4 Co-sampling

In this section we explore sampling in a multi-input environment and exploit dependencies

between signals to reduce their overall sampling rate. Without loss of generality, we will

consider here the case of two inputs y1(t) and y2(t). The input signals are assumed to be

correlated and to satisfy the following set of equations:

y1(t) = h11(t)∗ x1(t)+h12(t)∗ x2(t),

y2(t) = h22(t)∗ x2(t)+h21(t)∗ x1(t), (7.65)

where x1(t) and x2(t) are bandlimited to Ω1 and Ω2, respectively, and Ω1 < Ω2. The multi-

channel model of eq. (7.65) is shown in Figure 7-13 where H11(Ω), H12(Ω), H21(Ω),

H22(Ω) represent the frequency responses of the LTI systems whose impulse responses are

h11(t), h12(t), h21(t), and h22(t), respectively.

x1(t)

x2(t)

H11(Ω)

H22(Ω)

H12(Ω)

H21(Ω)

y1(t)

y2(t)
+

+

Figure 7-13: The multi-channel model.

According to the Nyquist-Shannon sampling theorem, perfect reconstruction of each

of the signals y1(t) and y2(t) can be obtained from their corresponding equally-spaced

Nyquist rate samples. However, the bandwidth of both signals y1(t) and y2(t) is in general

the largest bandwidth of x1(t) and x2(t). Thus, alias-free reconstruction of y1(t) and y2(t)

is possible if each is sampled at a rate which meets or exceeds the Nyquist rate 2Ω2.

Utilizing the dependence between y1(t) and y2(t), as implied from (7.65), the signals

x1(t) and x2(t) can be extracted and sampled at their corresponding Nyquist rates. This

approach will enable us to reduce the overall sampling rate from 2(Ω2 +Ω2) to 2(Ω1 +
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Ω2). However, each signal will be sampled at a different rate corresponding to its Nyquist

rate. There are some advantages in sampling the signals at the same rate. For example, if

time-division multiplexing (TDM) of the samples is of interest, the fact that each sequence

corresponds to a different sampling rate makes the multiplexing difficult.

The signals y1(t) and y2(t) can be alternatively sampled at a unified rate equal to half

the average Nyquist rate of x1(t) and x2(t), i.e., Ωs =
2π
Ts

= Ω1+Ω2, in which case aliasing

will be in general introduced in both channels. This aliasing will be referred to as co-

aliasing. As we next show, the co-aliasing can be removed and the signals can be perfectly

reconstructed from those samples. With this approach, we reduce the sampling rate of one

signal at the expense of increasing the sampling rate of the other, thus achieving the lowest

possible overall sampling rate for which perfect reconstruction is possible.

7.4.1 Perfect Reconstruction

For the reconstruction of the signals x1(t) and x2(t) from uniform samples of y1(t) and

y2(t) at half the average Nyquist rate of x1(t) and x2(t), i.e., Ωs = Ω1 +Ω2, we consider

the following multi-channel system

y1(t)

y2(t)

x̂1(t)

x̂2(t)

G11(Ω)

G22(Ω)

G12(Ω)

G21(Ω)

+

∑
n
δ(t− nTs)

∑
n
δ(t− nTs)

ỹ1(t)

ỹ2(t)

+

Figure 7-14: Reconstruction of x1(t) and x2(t) from uniform samples of y1(t) and y2(t).

The Fourier transforms of the outputs x̂1(t) and x̂2(t) of the reconstruction system of

Figure 7-14 are given by

X̂1(Ω) = G11(Ω) · Ỹ1(Ω)+G12(Ω) · Ỹ2(Ω),

X̂2(Ω) = G21(Ω) · Ỹ1(Ω)+G22(Ω) · Ỹ2(Ω), (7.66)
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where G11(Ω), G12(Ω), G21(Ω) and G22(Ω) are the frequency responses of the LTI recon-

struction filters, and Ỹ1(Ω) and Ỹ2(Ω) represent the Fourier transforms of ỹ1(t) and ỹ2(t),

which are periodic and given by

Ỹ1(Ω) =
1
Ts

[X1(Ω) ·H11(Ω)+X2(Ω) ·H12(Ω)

+ X2(Ω−Ωs)H12(Ω−Ωs)+X2(Ω+Ωs)H12(Ω+Ωs)] |Ω|< Ωs, (7.67)

and

Ỹ2(Ω) =
1
Ts

[X1(Ω) ·H21(Ω)+X2(Ω) ·H22(Ω)

+ X2(Ω−Ωs)H22(Ω−Ωs)+X2(Ω+Ωs)H22(Ω+Ωs)] |Ω|< Ωs. (7.68)

Designing the reconstruction filters G11(Ω), G12(Ω), G21(Ω) and G22(Ω) in the system

of Figure 7-14 to cancel the co-aliasing in Ỹ1(Ω) and in Ỹ2(Ω), and to obtain X̂1(Ω)=X1(Ω)

and X̂2(Ω) = X2(Ω), results in

 G11(Ω)

G12(Ω)

 =

 H11(Ω) H21(Ω)

H12(Ω) H22(Ω)

−1

·

 Ts

0

 |Ω|< Ω1, (7.69a)

and G21(Ω)

G22(Ω)

 =

 H11(Ω) H21(Ω)

H12(Ω) H22(Ω)

−1

·

 0

Ts

 |Ω|< Ω1 (7.69b)

 G21(Ω)

G22(Ω)

 =

 H12(Ω) H22(Ω)

H12(Ω−Ωs) H22(Ω−Ωs)

−1

·

 Ts

0

 Ω1 < Ω < Ω2,

 G21(Ω)

G22(Ω)

 =

 H12(Ω) H22(Ω)

H12(Ω+Ωs) H22(Ω+Ωs)

−1

·

 Ts

0

 −Ω2 < Ω <−Ω1,

provided that the inverses involved exist. To reconstruct y1(t) and y2(t), we process x̂1(t)
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and x̂2(t) through the multi-channel system of Figure 7-13, i.e.,

ŷ1(t) = h11(t)∗ x̂1(t)+h12(t)∗ x̂2(t),

ŷ2(t) = h22(t)∗ x̂2(t)+h21(t)∗ x̂1(t). (7.70)

Sampling rate reduction is possible with this approach due to the dependency between the

signals and the knowledge of the exact model they satisfy, as specified in (7.65). In section

7.4.2 we discuss the case in which the model for generating the signals y1(t) and y2(t) is

not fully specified and only partial information is available.

7.4.2 Blind Co-sampling

We now assume that the signals y1(t) and y2(t) were generated according to the model

y1(t) = x1(t)+
l−1

∑
l=0

al · x2(t − τl),

y2(t) = x2(t), (7.71)

where {al,τl} are unknown parameters. This model corresponds to the model in eq. (7.65)

where h11(t) = h22(t) = δ (t), h21(t) = 0, and

h12(t) =
L−1

∑
l=0

al ·δ (t − τl)=̂h(t). (7.72)

Extracting the signals x1(t) and x2(t) from y1(t) and y2(t) requires the knowledge of

{al,τl}L−1
l=0 . If these parameters are not known, blind separation techniques may be incor-

porated prior to sampling to extract these signals. Alternatively, the signals y1(t) and y2(t)

can be sampled at a unified rate equal to half the average Nyquist rate of x1(t) and x2(t),

in which case x1(t) and x2(t) will be extracted in reconstruction. To extract the signals, we

use the reconstruction system of Figure 7-14 whose reconstruction filters are obtained from

eqs. (7.69) where H11(Ω) = H22(Ω) = 1, H21(Ω) = 0, and

H12(Ω) =
L−1

∑
l=0

âl · e jΩτ̂l=̂Ĥ(Ω), (7.73)
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where Ĥ(Ω) is an estimate of H(Ω). In that case, the Fourier transforms of the outputs

x̂1(t) and x̂2(t) of the reconstruction system are

X̂1(Ω) = Ts ·
(
Ỹ1(Ω)− Ĥ(Ω) · Ỹ2(Ω)

)
|Ω|< Ω1, (7.74)

and

X̂2(Ω) =


Ts ·

(Ỹ1(Ω)−Ĥ(Ω+Ωs)·Ỹ2(Ω))
(Ĥ(Ω)−Ĥ(Ω+Ωs))

−Ω2 < Ω <−Ω1,

Ts · Ỹ2(Ω) |Ω|< Ω1

Ts ·
(Ỹ1(Ω)−Ĥ(Ω−Ωs)·Ỹ2(Ω))

(Ĥ(Ω)−Ĥ(Ω−Ωs))
Ω1 < Ω < Ω2.

(7.75)

Substituting (7.67) and (7.68) into (7.74) and (7.75), we obtain

X̂1(Ω) = X1(Ω)+
(
H(Ω)− Ĥ(Ω)

)
X2(Ω), |Ω|< Ω1, (7.76)

and

X̂2(Ω) =


X2(Ω) · (H(Ω)−Ĥ(Ω+Ωs))

(Ĥ(Ω)−Ĥ(Ω+Ωs))
+X2(Ω+Ωs) ·

(H(Ω+Ωs)−Ĥ(Ω+Ωs))
(Ĥ(Ω)−Ĥ(Ω+Ωs))

−Ω2 < Ω <−Ω1,

X2(Ω) |Ω|< Ω1,

X2(Ω) · (H(Ω)−Ĥ(Ω−Ωs))
(Ĥ(Ω)−Ĥ(Ω−Ωs))

+X2(Ω−Ωs) ·
(H(Ω−Ωs)−Ĥ(Ω−Ωs))
(Ĥ(Ω)−Ĥ(Ω−Ωs))

Ω1 < Ω < Ω2.

(7.77)

As expected, when H(Ω) is known, eqs. (7.76) and (7.77) with Ĥ(Ω) = H(Ω) achieve

perfect reconstruction of x1(t) and x2(t). Otherwise, assuming that x1(t) and x2(t) are

orthogonal and choosing âl and τ̂l in Ĥ(Ω) to minimize the average power of x̂1(t) will

yield an estimate of H(Ω), which can be used in X̂1(Ω) and X̂2(Ω). There is a variety of

other methods to estimate these unknown parameters one of which is to decorrelate x̂1(t)

and x̂2(t).
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APPENDIX A

OPTIMAL CONSTRAINED

RECONSTRUCTION FILTERS

To find the filters Gm(e jω) which minimize σ2
e in (2.24) under the constraints in (2.8), we

use the Lagrange multipliers, where the Lagrangian is defined as

L =
M−1

∑
m=0

σ2
m · |Gm(e jω)|2 +

L−1−i

∑
k=−i

λ (i)
k ·

(
M−1

∑
m=0

Gm(e jω)e− j(ω− 2π
L k) τm

TN −L ·δ [k]

)
ω ∈ ∆ωi, i = 0,1, . . . ,L−1. (A-1)

Differentiating (A-1) with respect to GR
m(e

jω) = ℜ(Gm(e jω)) and GI
m(e

jω) = ℑ(Gm(e jω)),

we obtain

∂L
∂GR

m(e jω)
= 2σ2

mGR
m(e

jω)+
L−1−i

∑
k=−i

ℜ(λ (i)
k )·ℜ

(
e− j(ω− 2π

L k) τm
TN

)
+ℑ(λ (i)

k )·ℑ
(

e− j(ω− 2π
L k) τm

TN

)
∂L

∂GI
m(e jω)

= 2σ2
mGI

m(e
jω)+

L−1−i

∑
k=−i

−ℜ(λ (i)
k )·ℑ

(
e− j(ω− 2π

L k) τm
TN

)
+ℑ(λ (i)

k )·ℜ
(

e− j(ω− 2π
L k) τm

TN

)
,

ω ∈ ∆ωi, m = 0,1, . . . ,M−1. (A-2)

Solving (A-2) for Gm(e jω) results in

Gm(e jω) = 1/σ2
m · e jωτm/TN

(
L−1−i

∑
l=−i

λ (i)
l · e− j2π(τm/LTN)l

)
ω ∈ ∆ωi,

i = 0,1, . . . ,L−1, m = 0,1, . . . ,M−1, (A-3)
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where the values of λ (i)
l are determined by the constraints in (2.8), i.e.,

L−1−i

∑
k=−i

λ (i)
k ·

M−1

∑
m=0

1/σ2
m · e− j 2π

L (k−p) τm
TN = L ·δ [p] p =−i,−i+1, . . . ,L−1− i, i = 0,1, . . . ,L−1.

(A-4)

142



APPENDIX B

DERIVATION OF See(e jω)

The autocorrelation function of ex[n] is given by

Rexex [n,n− l] = E

{(
M−1

∑
m1=0

∞

∑
k1=−∞

xm1[k1]gm1[n− k1L]− x[n]

)
·

·

(
M−1

∑
m2=0

∞

∑
k2=−∞

xm2 [k2]gm2[n− l − k2L]− x[n− l]

)}
. (B-1)

To compute the first term in (B-1), we first compute

E (xm1[k1]xm2 [k2]) = E (x(k1LTN − τm1)x(k2LTN − τm2))

= Rxx((k1 − k2)LTN − τm1 + τm2)

=
1

2π

∫ Ωc

−Ωc

Sxx(Ω)e jΩ[(k1−k2)LTN−τm1+τm2]dΩ,

(B-2)

from which it follows

E

{
M−1

∑
m1=0

∞

∑
k1=−∞

xm1[k1]gm1 [n− k1L] ·
M−1

∑
m2=0

∞

∑
k2=−∞

xm2[k2]gm2[n− l − k2L]

}

=
M−1

∑
m1=0

∞

∑
k1=−∞

M−1

∑
m2=0

∞

∑
k2=−∞

gm1 [n− k1L]gm2[n− l − k2L]E (xm1[k1]xm2 [k2])

=
1

2π

∫ Ωc

−Ωc

Sxx(Ω)

[
M−1

∑
m1=0

e− jΩτm1

(
∞

∑
k1=−∞

gm1 [n− k1L]e jΩk1LTN

)]
·

·

[
M−1

∑
m2=0

e jΩτm2

(
∞

∑
k2=−∞

gm2 [n− l − k2L]e− jΩk2LTN

)]
dΩ. (B-3)
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Note also that

∞

∑
k1=−∞

gm1[n− k1L]e jΩk1LTN =
∞

∑
k1=−∞

1
2π

∫ π

−π
Gm1(e

jω)e jω(n−k1L)dωe jΩk1LTN

=
1

2π

∫ π

−π
Gm1(e

jω)

(
∞

∑
k1=−∞

e j(ΩTN−ω)k1L

)
︸ ︷︷ ︸
2π
L ∑∞

k1=−∞ δ (ΩTN−ω− 2π
L k1)

e jωndω

=
1
L ∑

k1

Gm1(e
j(ΩTN− 2π

L k1))e j(ΩTN− 2π
L k1)n, k1 : |ΩTN − 2π

L
k1| ≤ π

(B-4)

and

∞

∑
k2=−∞

gm2[n− l − k2L]e− jΩk2LTN =
∞

∑
k2=−∞

1
2π

∫ π

−π
G∗

m2
(e jω)e− jω(n−l−k2L)dωe− jΩk2LTN

=
1

2π

∫ π

−π
G∗

m2
(e jω)

(
∞

∑
k2=−∞

e− j(ΩTN−ω)k2L

)
︸ ︷︷ ︸

2π
L ∑∞

k2=−∞ δ (ΩTN−ω− 2π
L k2)

e− jω(n−l)dω

=
1
L ∑

k2

G∗
m2
(e j(ΩTN− 2π

L k2))e− j(ΩTN− 2π
L k2)(n−l),

k2 : |ΩTN − 2π
L

k2| ≤ π (B-5)

Thus,

E

{
M−1

∑
m1=0

∞

∑
k1=−∞

xm1[k1]gm1 [n− k1L] ·
M−1

∑
m2=0

∞

∑
k2=−∞

xm2[k2]gm2[n− l − k2L]

}

=
1

2π

∫ Ωc

−Ωc

Sxx(Ω)

[
M−1

∑
m1=0

e− jΩτm1
1
L ∑

k1

Gm1(e
j(ΩTN− 2π

L k1))e j(ΩTN− 2π
L k1)n

]
·

·

[
M−1

∑
m2=0

e jΩτm2
1
L ∑

k2

G∗
m2
(e j(ΩTN− 2π

L k2))e− j(ΩTN− 2π
L k2)(n−l)

]
dΩ

=
1

2π

∫ Ωc

−Ωc

Sxx(Ω)

[
M−1

∑
m1=0

e− jΩτm1
1
L ∑

k1

Gm1(e
j(ΩTN− 2π

L k1))e− j 2π
L k1n

]
·

·

[
M−1

∑
m2=0

e jΩτm2
1
L ∑

k2

G∗
m2
(e j(ΩTN− 2π

L k2))e j 2π
L k2(n−l)

]
e jΩTN ldΩ (B-6)
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To compute the second term of (B-1), we first note that

E {xm1 [k1]x[n− l]} = E (x(k1LTN − τm1)x((n− l)TN))

= Rxx((k1L−n+ l)TN − τm1) =
1

2π

∫ Ωc

−Ωc

Sxx(Ω)e jΩ((k1L−n+l)TN−τm1)dΩ.

(B-7)

Therefore,

M−1

∑
m1=0

∞

∑
k1=−∞

E {xm1[k1]x[n− l]}gm1[n− k1L]

M−1

∑
m1=0

∞

∑
k1=−∞

1
2π

∫ Ωc

−Ωc

Sxx(Ω)e jΩ((k1L−n+l)TN−τm1)dΩgm1[n− k1L]

=
M−1

∑
m1=0

1
2π

∫ Ωc

−Ωc

Sxx(Ω)e jΩ((l−n)TN−τm1)

(
∞

∑
k1=−∞

gm1 [n− k1L]e jΩk1LTN

)
dΩ.

(B-8)

Using (B-4) in (B-8), we obtain

M−1

∑
m1=0

∞

∑
k1=−∞

E {xm1 [k1]x[n− l]}gm1 [n− k1L]

=
M−1

∑
m1=0

1
2π

∫ Ωc

−Ωc

Sxx(Ω)e jΩ((l−n)TN−τm1)

(
1
L ∑

k1

Gm1(e
j(ΩTN− 2π

L k1))e j(ΩTN− 2π
L k1)n

)
dΩ

=
1

2π

∫ Ωc

−Ωc

Sxx(Ω)e jΩlTN
M−1

∑
m1=0

e− jΩτm1

(
1
L ∑

k1

Gm1(e
j(ΩTN− 2π

L k1))e− j 2π
L k1n

)
dΩ

(B-9)

Similarly, the third term of (B-1) is shown to be

M−1

∑
m2=0

∞

∑
k2=−∞

E {x[n]xm2 [k2]}gm2[n− l − k2L]

1
2π

∫ Ωc

−Ωc

Sxx(Ω)e jΩlTN
M−1

∑
m2=0

e jΩτm2

(
1
L ∑

k2

G∗
m2
(e j(ΩTN− 2π

L k2))e j 2π
L k2n

)
dΩ

(B-10)
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To obtain σ2
ex
= 1

L ∑L−1
n=0 Rexex [n,n], i.e., the time and ensemble average of e2

x [n], we

average over time each of the components of Rexex [n,n]. Averaging (B-6) over time for

l = 0, we obtain

1
2π

∫ Ωc

−Ωc

Sxx(Ω)
1
L ∑

k1

1
L ∑

k2

[
M−1

∑
m1=0

e− jΩτm1 Gm1(e
j(ΩTN− 2π

L k1))

]
·

·

[
M−1

∑
m2=0

e jΩτm2 G∗
m2
(e j(ΩTN− 2π

L k2))

]
1
L

(
L−1

∑
n=0

e j 2π
L (k2−k1)n

)
︸ ︷︷ ︸

∑∞
n=−∞ δ [k2−k1−nL]

dΩ

=
1

2π

∫ Ωc

−Ωc

Sxx(Ω)∑
k

∣∣∣∣∣1L M−1

∑
m=0

e− jΩτmGm(e j(ΩTN− 2π
L k))

∣∣∣∣∣
2

dΩ (B-11)

which can be shown to be equivalent to

L−1

∑
i=0

1
2π

∫
∆Ωi

Sxx(Ω)

(
1
L

)2 L−1−i

∑
k1=−i

L−1−i

∑
k2=−i

[
M−1

∑
m1=0

Gm1(e
j(ΩTN− 2π

L k1))e− jΩτm1

]
·

·

[
M−1

∑
m2=0

G∗
m2
(e j(ΩTN− 2π

L k2))e jΩτm2

]
1
L

(
L−1

∑
n=0

e j 2π
L (k2−k1)n

)
︸ ︷︷ ︸

∑∞
n=−∞ δ [k2−k1−nL]

dΩ

=
L−1

∑
i=0

1
2π

∫
∆Ωi

Sxx(Ω)
L−1−i

∑
k=−i

∣∣∣∣∣1L M−1

∑
m=0

Gm(e j(ΩTN− 2π
L k))e− jΩτm

∣∣∣∣∣
2

dΩ

=
L−1

∑
i=0

1
2π

∫
∆ωi

Sxx(Ω)
L−1−i

∑
k=−i

∣∣∣∣∣1L M−1

∑
m=0

Gm(e j(ΩTN− 2π
L k))e− jΩτm

∣∣∣∣∣
2

dΩ

=
1

TN

L−1

∑
i=0

1
2π

∫
∆ωi

L−1−i

∑
k=−i

Sxx

(
ω + 2π

L k
TN

)∣∣∣∣∣1L M−1

∑
m=0

Gm(e jω)e− j(ω+ 2π
L k)τm/TN

∣∣∣∣∣
2

dω

=
1

TN

1
2π

∫ π

−π

L−1

∑
k=−(L−1)

Sxx

(
ω − 2π

L k
TN

)∣∣∣∣∣1L M−1

∑
m=0

Gm(e jω)e− j(ω− 2π
L k)τm/TN

∣∣∣∣∣
2

dω

(B-12)
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Similarly, averaging over time (B-8) and (B-10) for l = 0 results in

1
2π

∫ Ωc

−Ωc

Sxx(Ω)

(
1
L

M−1

∑
m1=0

Gm1(e
jΩTN )e− jΩτm1

)
dΩ

=
1

TN

1
2π

∫ π

−π
Sxx

(
ω
TN

)(
1
L

M−1

∑
m=0

Gm(e jω)e− jωτm/TN

)
dω (B-13)

and

1
2π

∫ Ωc

−Ωc

Sxx(Ω)

(
1
L

M−1

∑
m2=0

Gm2(e
jΩTN )e− jΩτm2

)∗

dΩ

=
1

TN

1
2π

∫ π

−π
Sxx

(
ω
TN

)(
1
L

M−1

∑
m=0

Gm(e jω)e− jωτm/TN

)∗

dω (B-14)

Thus,

σ2
ex

=
1

2π

∫ π

−π

L−1

∑
k=−(L−1)

1
TN

Sxx

(
ω − 2π

L k
TN

)∣∣∣∣∣1L M−1

∑
m=0

Gm(e jω)e− j(ω− 2π
L k)τm/TN

∣∣∣∣∣
2

dω

− 1
2π

∫ π

−π

1
TN

Sxx

(
ω
TN

)(
1
L

M−1

∑
m=0

Gm(e jω)e− jωτm/TN

)
dω

− 1
2π

∫ π

−π

1
TN

Sxx

(
ω
TN

)(
1
L

M−1

∑
m=0

Gm(e jω)e− jωτm/TN

)∗

dω

+
1

2π

∫ π

−π

1
TN

Sxx

(
ω
TN

)
dω

=
1

2π

∫ π

−π

L−1

∑
k=−(L−1)

1
TN

Sxx

(
ω − 2π

L k
TN

)∣∣∣∣∣1L M−1

∑
m=0

Gm(e jω)e− j(ω− 2π
L k)τm/TN −δ [k]

∣∣∣∣∣
2

dω

(B-15)

and since σ2
eq
= 1

2π
∫ π
−π ∑M−1

m=0 (σ
2
m/L) · |Gm(e jω)|2dω , we obtain

See(e jω) =
L−1

∑
k=−(L−1)

1
TN

Sxx

(
ω − 2π

L k
TN

)∣∣∣∣∣1L M−1

∑
m=0

Gm(e jω)e− j(ω− 2π
L k)τm/TN −δ [k]

∣∣∣∣∣
2

+
M−1

∑
m=0

(σ2
m/L) · |Gm(e jω)|2 (B-16)
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APPENDIX C

OPTIMAL MMSE RECONSTRUCTION

FILTERS

Taking the derivative of See(e jω) from (3.8) with respect to GR
m(e

jω) = ℜ
{

Gm(e jω)
}

and

GI
m(e

jω) = ℑ
{

Gm(e jω)
}

, we obtain

∂See(e jω)

∂GR
l (e

jω)
=

L−1

∑
k=−(L−1)

1
TN

Sxx

(
ω − 2π

L k
TN

)
·

{(
1
L

M−1

∑
m=0

Gm(e jω)e− j(ω− 2π
L k)τm/TN −δ [k]

)
1
L

e j(ω− 2π
L k)τl/TN

+
1
L

e− j(ω− 2π
L k)τl/TN

(
1
L

M−1

∑
m=0

G∗
m(e

jω)e j(ω− 2π
L k)τm/TN −δ [k]

)}
+2

σ2
l

L
GR

l (e
jω) = 0,

l = 0,1, . . . ,M−1, ω ∈ [−π,π]

(C-1)

and

∂σ2
e

∂GI
l (e

jω)
=

L−1

∑
k=−(L−1)

1
TN

Sxx

(
ω − 2π

L k
TN

){(
1
L

M−1

∑
m=0

Gm(e jω)e− j(ω− 2π
L k)τm/TN −δ [k]

)
(− j)

1
L

e j(ω− 2π
L k)τl/TN

+ j
1
L

e− j(ω− 2π
L k)τl/TN

(
1
L

M−1

∑
m=0

G∗
m(e

jω)e j(ω− 2π
L k)τm/TN −δ [k]

)}
+2

σ2
l

L
GI

l (e
jω) = 0,

l = 0,1, . . . ,M−1, ω ∈ [−π,π], (C-2)

from which it follows that

L−1

∑
k=−(L−1)

1
TN

Sxx

(
ω − 2π

L k
TN

){(
1
L

M−1

∑
m=0

Gm(e jω)e− j(ω− 2π
L k)τm/TN −δ [k]

)
e j(ω− 2π

L k)τl/TN

}
+ σ2

l Gl(e jω) = 0, l = 0,1, . . . ,M−1, , ω ∈ [−π,π]. (C-3)
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Rearranging eq. (C-3) results in the following set of equations

M−1

∑
m=0

Gm(e jω)

{(
1
L

L−1

∑
k=−(L−1)

1
TN

Sxx

(
ω − 2π

L k
TN

)
e j 2π

L k(τm−τl)/TN

)
e− jω(τm−τl)/TN +σ2

l δ [m− l]

}

=
1

TN
Sxx

(
ω
TN

)
e jωτl/TN , l = 0,1, . . . ,M−1, ω ∈ [−π,π], (C-4)

from which the optimal reconstruction filters can be obtained.
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APPENDIX D

RANDOMIZED SINC INTERPOLATION -

MSE DERIVATION

The autocorrelation function of x̂(t) = ∑∞
n=−∞ x[n]h̃(t − t̃n) is

Rx̂x̂(t, t − τ) = E
{

∑
n

x(nT +ξn)h̃(t −nT −ζn)·

· ∑
k

x(kT +ξk)h̃(t − τ − kT −ζk)

}
(D-1)

where h̃(t) = T/TN · h(t). Using iterated expectation and representing Rxx(t) and h̃(t) in

terms of their corresponding Fourier transforms Sxx(Ω) and H̃(Ω), we obtain

Rx̂x̂(t, t − τ) =
1

2π

∫ Ωc

−Ωc

1
T 2 |H̃(Ω)|2 ·Sxx(Ω) ·

· |Φξ ζ (Ω,−Ω)|2e jΩτdΩ+
1

2π

∫ Ωc

−Ωc

1
T
|H̃(Ω)|2 ·

·
[

Rxx(0)−
1

2π

∫ Ωc

−Ωc

Sxx(Ω1) · |Φξ ζ (Ω1,−Ω)|2dΩ1

]
· e jΩτdΩ. (D-2)

Similarly, the cross correlation of x̂(t) and x(t) can be expressed as

Rx̂x(t, t − τ) =

= E
{

∑
n

x(nT +ξn)h̃(t −nT −ζn) · x(t − τ)
}
=

=
1

2π

∫ Ωc

−Ωc

1
T

Sxx(Ω)H̃(Ω) ·Φξ ζ (Ω,−Ω)e jΩτdΩ. (D-3)
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Taking the Fourier transform of (D-2) and (D-3) with respect to τ results in

Sx̂x̂(Ω) = Sxx(Ω) · |Φξ ζ (Ω,−Ω)|2 +

· T
2π

∫ Ωc

−Ωc

Sxx(Ω1) ·
[
1−|Φξ ζ (Ω1,−Ω)|2

]
dΩ1 |Ω|< Ωc (D-4)

and

Sx̂x(Ω) = Sxx(Ω) ·Φξ ζ (Ω,−Ω) |Ω|< Ωc, (D-5)

from which the second-order statistics model of Figure (4-2) clearly follows. The power

spectrum of the reconstruction error eR(t) = x̂(t)− x(t) is

SeReR(Ω) = Sx̂x̂(Ω)−Sx̂x(Ω)−

− Sxx̂(Ω)+Sxx(Ω) (D-6)

where Sx̂x̂(Ω) and Sx̂x(Ω) are given in (D-4) and (D-5) respectively, and Sxx̂(Ω) = Sx̂x
∗(Ω).

Consequently,

SeReR(Ω) = Sxx(Ω) ·
∣∣1−Φξ ζ (Ω,−Ω)

∣∣2 +
+

T
2π

∫ Ωc

−Ωc

Sxx(Ω1) ·
[
1−|Φξ ζ (Ω1,−Ω)|2

]
dΩ1 |Ω|< Ωc.

Integrating the power spectrum over frequency, we obtain the MSE

E({eR(t)}2) =
1

2π

∫ Ωc

−Ωc

SeReR(Ω)dΩ =

=
1

2π

∫ Ωc

−Ωc

Sxx(Ω) ·
∣∣1−Φξ ζ (Ω,−Ω)

∣∣2 dΩ+

+
T
TN

· 1
2π

∫ Ωc

−Ωc

Sxx(Ω) ·
[

1− 1
2Ωc

∫ Ωc

−Ωc

|Φξ ζ (Ω,−Ω1)|2dΩ1

]
dΩ. (D-7)
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APPENDIX E

THE AUTOCORRELATION FUNCTION

OF A BANDLIMITED SIGNAL

The autocorrelation function Rxx(τ) of a bandlimited signal x(t) whose spectrum Sxx(Ω) =

0 for all Ω ≥ π/TN satisfies the following properties:

1. Non-negativity -

Rxx(τ)> 0 ∀ |τ|< TN/2,

2. For all ζ0

Rxx(τ)≥
1
2
(Rxx(τ −ζo)+Rxx(τ +ζo)) ∀ |τ|< TN/2

where in general equality is achieved if and only if ζ0 = 0,

3. Strictly concave in the region (−TN/2,TN/2).

To prove the first property we first use symmetry and real arguments of the power spectrum

which results in

Rxx(τ) =
1

2π

∫ π/TN

−π/TN

Sxx(Ω)cos(Ωτ)dΩ. (E-1)

We then note that in the interval of integration cos(Ωτ) > 0 for all |τ | < TN/2, which

completes the proof since Sxx(Ω)≥ 0 for all Ω.
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The second property follows by noting that

1
2
(Rxx(τ −ζo)+Rxx(τ +ζo)) =

1
2π

∫ π/TN

−π/TN

Sxx(Ω)cos(Ωζ0)cos(Ωτ)dΩ, (E-2)

and that for every |τ|< TN/2,

1
2π

∫ π/TN

−π/TN

Sxx(Ω)cos(Ωζ0)cos(Ωτ)dΩ ≤ 1
2π

∫ π/TN

−π/TN

Sxx(Ω)cos(Ωτ)dΩ. (E-3)

To show concavity, we differentiate twice eq. (E-1) with respect to τ , i.e.

R
′′
xx(τ) =− 1

2π

∫ π/TN

−π/TN

Ω2Sxx(Ω)cos(Ωτ)dΩ (E-4)

and note that R
′′
xx(τ) is negative for all |τ| < TN/2, excluding the degenerate case where

Sxx(Ω) = 2πRxx(0)δ (Ω) in which R
′′
xx(τ) = 0.

Properties (1)-(3) are not limited to autocorrealtion functions of bandlimited signals

and hold for any function whose Fourier transform pair is real, non-negative, symmetric,

and has bounded support, e.g. the chracteristic function of a symmetric pdf whose support

is bounded.
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APPENDIX F

TIME JITTER IN DISCRETE-TIME

PROCESSING OF CONTINUOUS-TIME

SIGNALS

The cross-correlation function between y(t) and x(t) can be expressed as

Ryx(t, t − τ) = E

(
∞

∑
n=−∞

(
∞

∑
l=−∞

x((n− l)T +ξn−l) ·g[l]

)
·h(t −nT −ζn) · x(t − τ)

)
,(F-1)

where h(t) = sinc
(π

T t
)
. Using iterated expectation and representing Rxx(t) and h(t) in

terms of their corresponding Fourier transforms Sxx(Ω) and H(Ω), we obtain

Ryx(t, t − τ) =
∞

∑
n=−∞

∞

∑
l=−∞

E (Rxx((n− l)T +ξn−l − t + τ) ·g[l] ·h(t −nT −ζn))

=

(
1

2π

)2 ∫ π/T

−π/T

∫ π/T

−π/T
Sxx(Ω1)Φξ (Ω1)e jΩ1(−t+τ)H(Ω2)Φζ (−Ω2)e jΩ2t ·

·

(
∞

∑
n=−∞

e j(Ω1−Ω2)nT

)
·

(
∞

∑
l=−∞

g[l]e− j(Ω1T )l

)
dΩ1dΩ2 =

=
1

2π

∫ π/T

−π/T
Sxx(Ω)Φξ (Ω)G(e jΩT )e jΩτdΩ. (F-2)
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The autocorrelation function of y(t) can be expressed as

Ryy(t, t − τ) = E

(
∞

∑
n=−∞

y[n]h(t −nT −ζn)
∞

∑
m=−∞

y[m]h(t − τ −mT −ζm)

)
= (F-3)

E

(
∞

∑
n=−∞

∞

∑
l=−∞

x(lT +ξl)g[n− l]h(t −nT −ζn) ·
∞

∑
m=−∞

∞

∑
p=−∞

x(pT +ξp)g[m− p]h(t − τ −mT −ζm)

)
=

∞

∑
n=−∞

∞

∑
l=−∞

∞

∑
m=−∞

∞

∑
p=−∞

g[n− l]g[m− p] ·E (Rxx((l − p)T +ξl −ξp)h(t −nT −ζn)h(t − τ −mT −ζm)) .

Expressing Rxx(t), h(t) and g[n] in terms of their corresponding Fourier transforms Sxx(Ω),

H(Ω) and G(e jω), we obtain

Ryy(t, t − τ) =

(
1

2π

)5 ∫ π/T

−π/T

∫ π/T

−π/T

∫ π/T

−π/T

∫ π

−π

∫ π

−π
Sxx(Ω)H(Ω1)H∗(Ω2)e jΩ1te− jΩ2(t−τ) ·

G(e jω1)G∗(e jω2)

(
∞

∑
l=−∞

∞

∑
p=−∞

e j(ΩT )(l−p)E(e jΩ(ξl−ξp))e j(ω2 p−ω1l)

)
·(

∞

∑
n=−∞

∞

∑
m=−∞

e j(Ω2m−Ω1n)T E(e j(Ω2ζm−Ω1ζn))e j(ω1n−ω2m)

)
dw1dw2dΩ1dΩ2dΩ,

(F-4)

where

∞

∑
l=−∞

∞

∑
p=−∞

e j(ΩT )(l−p)E(e jΩ(ξl−ξp))e j(ω2 p−ω1l) =

∣∣Φξ (Ω)
∣∣2( ∞

∑
l=−∞

e j(ΩT−ω1)l

)(
∞

∑
p=−∞

e j(ω2−ΩT )p

)
+
(

1−
∣∣Φξ (Ω)

∣∣2)( ∞

∑
l=−∞

e j(ω2−ω1)l

)
(F-5)
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and

∞

∑
n=−∞

∞

∑
m=−∞

e j(Ω2m−Ω1n)T E(e j(Ω2ζm−Ω1ζn))e j(ω1n−ω2m) =

Φζ (−Ω1)Φζ (Ω2)

(
∞

∑
n=−∞

e j(ω1−Ω1T )n

)(
∞

∑
m=−∞

e j(Ω2T−ω2)m

)
+

+
(
Φζ (Ω2 −Ω1)−Φζ (−Ω1)Φζ (Ω2)

)( ∞

∑
n=−∞

e j((Ω2−Ω1)T+ω1−ω2)n

)
. (F-6)

Thus,

Ryy(t, t − τ) =
1

2π

∫ π/T

−π/T
Sxx(Ω) ·

∣∣Φξ (Ω)
∣∣2 ∣∣Φζ (Ω)

∣∣2 ∣∣∣G(e jΩT )
∣∣∣2 e jΩτdΩ+

1
2π

∫ π/T

−π/T
T
(

1−
∣∣Φζ (Ω1)

∣∣2)e jΩ1τdΩ1 ·
1

2π

∫ π/T

−π/T
Sxx(Ω)

∣∣Φξ (Ω)
∣∣2 ∣∣∣G(e jΩT )

∣∣∣2 dΩ+

T
2π

∫ π/T

−π/T
Sxx(Ω)

(
1−
∣∣Φξ (Ω)

∣∣2)dΩ · 1
2π

∫ π/T

−π/T

∣∣Φζ (Ω1)
∣∣2 ∣∣∣G(e jΩ1T )

∣∣∣2 e jΩ1τdΩ1 +

1
2π

∫ π/T

−π/T
Sxx(Ω)

(
1−
∣∣Φξ (Ω)

∣∣2)dΩ · 1
2π

∫ π/T

−π/T
T
(

1−
∣∣Φζ (Ω1)

∣∣2)e jΩ1τdΩ1 ·
1

2π

∫ π

−π

∣∣G(e jω1)
∣∣2 dω1.

(F-7)

Applying the Fourier transform to Ryx(τ) in (F-2) and to Ryy(τ) in (F-7) results in

Syx(Ω) and Syy(Ω).
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APPENDIX G

RANDOMIZED SINC INTERPOLATION -

SUB-NYQUIST SAMPLING

The autocorrelation function of x̂(t) = ∑∞
n=−∞ x(tn)hT (t − t̃n) is

Rx̂x̂(t, t − τ) = E

(
∞

∑
n=−∞

x(nT +ξn)hT (t −nT −ζn)
∞

∑
k=−∞

x(kT +ξk)hT (t − τ − kT −ζk)

)

= Rxx(0)E

(
∞

∑
n=−∞

hT (t −nT −ζn)hT (t − τ −nT −ζn)

)
+ ∑

n̸=k
E (Rxx((n− k)T +ξn −ξk)hT (t −nT −ζn)hT (t − τ − kT −ζk)) (G-1)

where hT (t) = sinc(π
T t). Representing Rxx(t) and hT (t) in terms of Sxx(Ω) and HT (Ω), we

obtain

E

(
∞

∑
n=−∞

hT (t −nT −ξn)hT (t − τ −nT −ξn)

)
= hT (τ) (G-2)

and

∑
n̸=k

E (Rxx((n− k)T +ξn −ξk)hT (t −nT −ζn)hT (t − τ − kT −ζk)) =

=
1

2π

∫ π
T

− π
T

n=∞

∑
n=−∞

Sxx(Ω− 2π
T

n) · |Φξ ζ (Ω− 2π
T

n,−Ω)|2e jΩτdΩ

+
1

2π

∫ π
T

− π
T

T
2π

∫ Ωc

−Ωc

Sxx(Ω)|Φξ ζ (Ω,−Ω1)|2dΩe jΩ1τdΩ1. (G-3)

Substituting (G-2) and (G-3) into (G-1) and taking the Fourier transform with respect
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to τ , we obtain

Sx̂x̂(Ω) =
∞

∑
n=−∞

Sxx(Ω− 2π
T

n)|Φξ ζ (Ω− 2π
T

n,−Ω)|2

+
T
2π

∫ Ωc

−Ωc

Sxx(Ω1)
(
1−|Φξ ζ (Ω1,−Ω)|2

)
dΩ1 |Ω|< π

T
. (G-4)

The cross-correlation of x̂(t) and x(t) is

Rx̂x(t, t − τ) = E

(
∞

∑
n=−∞

x(nT +ξn)hT (t −nT −ζn)x(t − τ)

)

=
∞

∑
n=−∞

E (Rxx(nT +ξn + τ − t)hT (t −nT −ζn)) (G-5)

where, again, by representing Rxx(t) and hT (t) in terms of Sxx(Ω) and HT (Ω), we obtain

Rx̂x(t, t − τ) =
1

2π

∫ π/T

−π/T

∞

∑
n=−∞

(
Sxx(Ω− 2π

T
n)Φξ ζ (Ω− 2π

T
n,−Ω)e j 2π

T n(t−τ)
)

e jΩτdΩ.

(G-6)

An alternative representation is obtained by representing Sxx(Ω) and Φξ ζ (Ω1,Ω2) in terms

of Rxx(t) and fξ ζ (ξ ,ζ ), i.e.,

Rx̂x(t, t − τ) =
∫ ∞

−∞
Rxx(t1) ·

∞

∑
n=−∞

[
fξ ζ (t1 + t −nT − τ,ζ )∗hT (

π
T

ζ )
]
|ζ=t−nT dt1. (G-7)
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