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ABSTRACT

This paper considers the environment of interleaved, multi-channel
measurements as arises for example in time-interleaved A/D con-
verters and in distributed sensor networks. Such systems take the
form of either uniform or recurrent nonuniform sampling, depend-
ing on the timing offset between the channels. Quantization in each
channel results in an effective overall signal to noise ratio in the re-
constructed output which is dependent on the quantizer step sizes,
the timing offsets between the channels and the oversampling ratio.
Appropriate choice of these parameters together with the design of
appropriate compensation filtering is discussed.

Index Terms— Multi-channel sampling, Recurrent nonuniform
sampling, Oversampling, Quantization, Interleaved samples

1. INTRODUCTION

In A/D conversion, oversampling is a well established approach to
mitigating the effects of quantization, effectively trading off between
the oversampling ratio and the required quantization step size for a
fixed signal to quantization noise ratio (SQNR). This tradeoff can be
accomplished in a direct way by following the quantizer with a low-
pass filter and downsampler or by using noise-shaping techniques
([1],[2]). With high bandwidth signals or when large oversampling
ratios are desired, time-interleaved A/D converters, using different
clock phases are often utilized [3]. With the clock phases appropri-
ately synchronized, the interleaving is equivalent to uniform sam-
pling. Otherwise, the interleaved samples correspond to recurrent
nonuniform sampling ([4],[5],[6],[7]). Similarly in a sensor network
environment, separate sensors might independently sample a shifted
version of an underlying signal with the sensor outputs then trans-
mitted to a fusion center for interleaving and processing.

In this paper we consider the effects of linear quantization in
the environment of interleaved, oversampled multi-channel measure-
ments and the design of the optimal filters for each channel prior to
combining the results. It is shown for the multi-channel case that
with equal quantizer step size in each channel, the resulting over-
all SQNR is maximized when the channels are exactly synchronized
and the system is equivalent to interleaved uniform samples. For the
case where the channels are not synchronized, resulting in recurrent
nonuniform samples, the SQNR is reduced relative to the uniform
case. However, when the quantizer step size is not constrained to
be the same in each channel, higher overall SQNR can be achieved
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by appropriate choice of the compensation filtering and the timing
offset between the channels. The concept of having different levels
of accuracies in different channels is similar to the approach in sub-
band coding ([8],[9]) which provides a way to control and reduce the
quantization noise in coding and where each sub-band is quantized
with an accuracy based upon appropriate criteria.

2. MULTI-CHANNEL INTERLEAVED SAMPLING AND
RECONSTRUCTION

In [6] Papoulis has shown that under some conditions on the multi-
channel systems, a bandlimited signal can be perfectly reconstructed
from samples of the responses of M linear time-invariant (LTI) sys-
tems with the bandlimited signal as their inputs, sampled at 1/M
times the Nyquist rate. The basic multi-channel sampling and quan-
tization structure considered in this paper is shown in Figure 1. Fig-
ure 2 represents the basic structure considered for obtaining uniform
samples at the Nyquist rate from the undersampled and quantized
multi-channel signals of Figure 1. In the system of Figure 1 the
Nyquist rate of the bandlimited signal x(t) is 1/TN and each of the
M channels is sampled at a rate of 1/T = 1/(LTN ) corresponding
to an effective oversampling factor of ρ = M/L > 1.
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Fig. 1. Multi-channel sampling and quantization

By appropriate choice of the timing offsets τm, the outputs can be
interleaved to obtain uniformly spaced samples. In the system of
Figure 2, the multi-channel outputs of Figure 1 are combined to form
uniform samples of x(t) at the Nyquist rate. The filters Gm(ejω) are
chosen to compensate for nonuniform spacing of the channel offsets
τm and for the quantization noise.
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Fig. 2. Multi-channel reconstruction of uniform samples by upsam-
pling followed with filtering

In the absence of error due to quantization, it is straightforward
to show that x̂[n] corresponds to uniform samples of x(t) at the
Nyquist rate when
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Since the sampling rate in each channel is 1/L times the Nyquist
rate of the input signal, only L shifted replicas of the spectrum of
x(t) contribute to each frequency ω in the spectrum of each chan-
nel signal xm[n] in Figure 1. Consequently, at each frequency ω
equation (1) imposes L constraints on the M reconstruction filters
Gm(ejω). L − 1 of these constraints are to remove the aliasing
components and one is to preserve X(Ω). With M > L, i.e. with
oversampling, there remain M −L degrees of freedom for design of
the reconstruction filters to minimize the output average noise power
due to quantization.

In our analysis we represent the effect of the linear quantizer in
each channel of Figure 1 through an additive noise model ([10, 11,
12]). Specifically, the quantizer output x̂m[n] in the mth channel is
represented as

x̂m[n] = xm[n] + qm[n] (2)

where qm[n] is assumed to be an i.i.d random process uniformly dis-
tributed between ±∆m/2 and uncorrelated with xm[n] where ∆m

denotes the quantizer step size. Correspondingly, the variance of
qm[n] is σ2

m = ∆m
2/12.

To analyze the effect of each channel of Figure 2 on the corre-
sponding quantization noise we consider the system of Figure 3.

Gm(ejω)L
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Fig. 3. Single channel in the reconstruction system of Figure 2

The output q̃m[n] of the system of Figure 3 is

q̃m[n] =

∞∑
k=−∞

qm[k]gm[n− kL] (3)

with gm[n] as the impulse response corresponds to the frequency
response Gm

(
ejω
)
.

Under the assumption that qm[n] is a zero-mean i.i.d random process
with variance σ2

m, the autocorrelation function of q̃m[n] is

Rq̃mq̃m [n, n− l] = σ2
m ·

∞∑
k=−∞

gm[n− kL]gm[n− l − kL] (4)

which is periodic in n with period L and therefore q̃m[n] is a wide-
sense cyclostationary random process. Alternatively, Rq̃mq̃m [n, n−
l] can be expressed as
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where E
(n)
m (ejω) are the discrete-time Fourier transforms of the

polyphase components e(n)
m [k] of gm[n] defined as

e(n)
m [k] = gm[n+ kL] n = 0, 1, . . . , L− 1, k = 0,±1, . . . (6)

and for which

Gm(ejω) =

L−1∑
n=0

E(n)
m (ejωL) · e−jωn. (7)

The polyphase representation of Gm(ejω) in (7) suggests an alterna-
tive implementation of the reconstruction system of Figure 2. If fi-
nite impulse response (FIR) filters are used for the impulse responses
gm[n] of the reconstruction filters, considerable gain in computa-
tional efficiency can be achieved by utilizing the polyphase decom-
position of Gm(ejω) and rearranging the operations so that the fil-
tering is done at the low sampling rate.

From (4), the ensemble average power E(q̃2m[n]) of q̃m[n] is
periodic with period L. Averaging also over time and denoting by
σ2
q̃m the time and ensemble average power of q̃m[n] we obtain
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Expressing Rq̃mq̃m [n, n] in terms of Sq̃mq̃m(ejω;n] as in (5) and
using eq. (7), eq. (8) becomes
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We denote by e[n] the total noise component in x̂[n] due to
quantization in the system of Figure 2, i.e.

e[n] =

M−1∑
m=0

q̃m[n] (10)

where as defined in Figure 3, q̃m[n] is the quantization noise out-
put in the mth channel of the reconstruction system. Then, based
on (9) and with the assumption that the quantization noise is uncor-
related between channels, the time and ensemble average power of
e[n] denoted by σ2

e , is
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We choose the optimal reconstruction filters Gm(ejω) to mini-
mize σ2

e under the following set of constraints
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k)τm/TN = L · δ[k] ω ∈ ∆ωi,
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which follows directly from equation (1) and where ∆ωi =[
π − (i+ 1) 2π

L
, π − i 2π

L

]
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where for each i = 0, 1, . . . , L − 1 the sequence {λ(i)
k }L−1−i

k=−i is
defined as the solution to the following set of equations
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An alternative representation of the optimal choice of Gm(ejω) is

Gm(ejω) = 1/σ2
m · Λ(i)(ejωm) · ejωτm/TN ω ∈ ∆ωi

i = 0, 1, . . . , L− 1, m = 0, 1, . . . ,M − 1 (17)

where Λ(i)(ejωm) is the discrete-time Fourier transform of the
finite-length sequence {λ(i)

k }L−1−i
k=−i frequency sampled at

ωm = 2πτm/(LTN ). (18)

Substituting the expression for Gm(ejω) from (17) into (11) we
obtain for the minimum achievable value of σ2
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which can be also shown to be equal to tr(A−1). Noting that the
equation corresponds to l = i in (14) is

M−1∑
m=0

1/σ2
m · Λ(i)(ejωm) = L, (20)

and applying the Cauchy-Schwartz inequality to it results in
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for each i = 0, 1, . . . , L − 1. Therefore, together with eq. (19) it
follows that
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where equality is achieved if and only if any of the following equiv-
alent conditions is satisfied
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3. UNIFORM AND RECURRENT NONUNIFORM
INTERLEAVED SAMPLING - QUANTIZATION NOISE

ANALYSIS

For the system of Figure 2 with the quantization step size the same
in each channel, we next show that equations (22) and (23) imply
that σe

2
min is minimized, i.e. equality is achieved in (22) when the

interleaved multi-channel system corresponds to uniform sampling.
In this case

σe
2
min = (L/M) · σ2 (24)

where σ2 denotes the variance of the quantization noise source in
each channel. To show this we note that with σ2

m = σ2, the condi-
tion of eq. (23b) becomes

M−1∑
m=0

ejωml = 0 l = 1, 2, . . . , L− 1, (25)

which is clearly satisfied for any L and M when the values ejωm

are uniformly spaced on the unit circle, corresponding to interleaved
uniform sampling. However many other distributions of ωm satisfy
eq. (25).

Figure 4 shows the factor γ = σ2/σe
2
min representing the re-

duction in the average noise power as a function of the delays τ1 and
τ2 as a result of the reconstruction of Figure 2 with M = 3, L = 2
and τ0 = 0. As indicated, the maximum noise reduction is achieved
for τ1 = −τ2 = ±(2/3) · TN for which σe

2
min = (2/3) · σ2.

This corresponds to interleaving of the channels resulting in uniform
sampling and an oversampling of 3/2.

Fig. 4. The reduction factor γ in the average noise power as a func-
tion of the delays τ1 and τ2 as a result of the reconstruction of Figure
2 with M = 3, L = 2 and τ0 = 0

Interestingly, for every other choice of delays for which the sampling
corresponds to recurrent nonuniform sampling, the average power of
the quantization noise is larger.



In summary, it follows from eq. (22) and illustrated in the pre-
ceding example that for the reconstruction structure suggested in
Figure 2 and with the quantization step size the same in each chan-
nel, the uniform sampling grid achieves the minimum average quan-
tization noise power (L/M) · σ2. Any other choice of τm which
corresponds to a recurrent nonuniform grid and for which (25) is not
satisfied results in a higher average quantization noise power.

However, as we next show, by allowing the quantization step size
to be chosen separately for each channel, so that quantization noise
sources qm[n] in the different channels have different variances σ2

m,
better SQNR can be achieved. For comparison purposes, we will
assume that the average power of the quantization noise sources in
all channels is equal to the quantization noise power in each channel
in our previous analysis 1 , i.e.

1

M
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m=0

σ2
m = σ2. (26)

Applying the Cauchy-Schwartz inequality into the identity
∑M−1

m=0 σm·
1/σm = M , it follows that
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and equivalently
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m

≤ (L/M) · σ2 (28)

with equality if and only if

σ2
m = σ2 m = 0, 1, . . . ,M − 1. (29)

Together with (22), we conclude that by having different levels of
accuracies in the quantizers in the different channels, it might be pos-
sible to reduce the average quantization noise power. This suggests
a way to compensate for the mismatch in the delays in the elements
of Figure 1 and increase the total SQNR. Alternatively, we can de-
liberately introduce delays in the channels so that with appropriate
design of the quantizers, we will achieve better SQNR as compared
to the equivalent uniform sampling with equal quantizer step size
in each channel. The analysis and conclusions of course depend on
the validity of the additive noise model used for the quantizer which
becomes less appropriate as the quantizer step size increases.

It can be shown by using properties of the Fourier transform
that for the case where the quantizer step size is not the same in
each channel and the oversampling ratio 1 < ρ < 2, the minimum
average quantization noise power in eq. (22) cannot be achieved
with uniform sampling. However, even when the delays correspond
to uniform sampling, it might be possible to achieve better SQNR by
not constraining the step size to be the same in each channel.

We next demonstrate that with appropriate design of the quan-
tizer in each channel we can compensate for the mismatch in the
delays in the elements of Figure 1. As an example, we consider the
system of Figure 1 with M = 3 and L = 2 corresponding to over-
sampling of 3/2. When the delay offsets are τ0 = 0, τ1 = 0.29TN

and τ2 = −0.75TN and the quantization step size is the same in each
channel (corresponding to σ2 = 1), σe

2
min = 0.734, as indicated in

Table 1. As expected, the SQNR is reduced relative to the case where
the channel offsets chosen to correspond to interleaved uniform sam-
pling for which σe

2
min = 2/3. However, when the quantizer step

1Other constraints on the total number of bits may be considered instead

size is not constrained to be the same in each channel, better SQNR
can be obtained. Specifically, choosing σ2

m to satisfy the condition
in (23b) or equivalently to achieve equality in (22) subject to the con-
straint in (26) results in σ2

0 = 2.246, σ2
1 = 0.398 and σ2

2 = 0.356
which corresponds to σe

2
min = L/(

∑M−1
m=0 1/σ2

m) = 0.347. Note
that the large offset between channel 2 and the other two channels
is compensated with better accuracy of the quantizer in this channel.
Another interesting scenario is that in which different levels of accu-
racies exist in the different channels of the multi-channel sampling
system. Setting the delays such that the interleaving is equivalent to
uniform sampling is in general not the optimal choice. Specifically,
when σ2

0 = 2.246, σ2
1 = 0.398 and σ2

2 = 0.356, the output average
noise power σe

2
min obtained for equally spaced delays is 0.408 as

compared to 0.347 which is the lower bound on σe
2
min achieved by

τ0 = 0, τ1 = 0.29TN and τ2 = −0.75TN . The following table
summarizes these four cases.

(τ0, τ1, τ2) \ (σ2
0 , σ

2
1 , σ

2
2) (1, 1, 1) (2.246, 0.398, 0.356)

(0, 2/3TN ,−2/3TN ) σe
2
min = 2/3 σe

2
min = 0.408

(0, 0.29TN ,−0.75TN ) σe
2
min = 0.734 σe

2
min = 0.347

Table 1. The output average noise power
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