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Sequential Signal Encoding from Noisy
Measurements Using Quantizers with Dynamic Bias
Control

Haralabos C. Papadopoulos, Gregory W. Wornditmber, IEEEand Alan V. Oppenheintfellow, IEEE

Abstract—Signal estimation from a sequential encoding in the  Various challenging signal detection and estimation problems
form of quantized noisy measurements is considered. As an ex-that have surfaced in such distributed sensing applications have
ample context, this problem arises in a number of remote sensing een gddressed. For instance, it is important to determine the

applications, where a central site estimates an information-bearing tent to which d tralized ing limit f
signal from low-bandwidth digitized information received from re- extent to which decentralized preprocessing imits periormance

mote sensors, and may or may not broadcast feedback informa- and to develop low-complexity methods for performing decen-
tion to the sensors. We demonstrate that the use of an appropri- tralized data fusion. As Haltt al. [8] show in the context of

ately designed and often easily implemented additive control input decentralized estimation, depending on the particular scenario,
before signal quantization at the sensor can significantly enhance distributed data processing may range from being optimal, in the

overall system performance. In particular, we develop efficient es- sense that no loss in performance is incurred by simoly commu
timators in conjunction with optimized random, deterministic, and p Yy ply

feedback-based control inputs, resulting in a hierarchy of systems Nicating the local estimates computed at each sensor, to being
that trade performance for complexity. catastrophic, in the sense that not sufficiently careful prepro-
Index Terms—Data fusion, distributed estimation, dithering, C€SSing at each sensor can completely eliminate the underlying
maximum likelihood (ML), quantization, stochastic resonance, structure inthe joint set of sensor measurements. Similar perfor-
wireless networks. mance characteristics are exhibited in decentralized signal de-
tection problems [9], [10]. Although for many important cases
of practical interest decentralized signal detection and estima-
tion methods have been formed for locally optimized processing
I N this paper, we consider a particular problem of estimating each sensor and subsequent efficient data fusion at the host
an information-bearing signal from noisy measuremenisee [8]-[18] and the references therein), a number of real-time
where system constraints force us to rely on a quantizggcentralized fusion problems are still largely unexplored.
de.scrl_ptlon of those measurements. Problems of th's_ klr‘dThe distributed sensing problem that is considered in this
arise in the c_ont(_ext of_data TUS'O_” In a very bro_ad and d_“_’eraﬁ)rk arises, for example, in the context of wireless sensor net-
range of applications, including distributed sensing for military,, s and involves a central site estimating a remotely acquired
applications [1], data-based management systems [2], targgl g signal from an efficiently encoded digital description
tracking and surveillance for robot navigation [3], [4], radagy sty cted at the remote sensors. In such a network, the local
applications [5], and medical imaging [6]. _measurements made at each sensor must be communicated ef-
Recently, dat".’l qu'on has at_tracted considerable attent'Or]‘é'atively without delay to a host over a wireless channel, where
the context of distributed sensing problems, due to the contiey, st be effectively combined to decipher the information-

uing reduction in the cost of sensors and computation, and aring signal. Since bandwidth must often be shared across

performance improvements that inherently emanate from tjé‘@ch a sensor network, the effective data rate at which each
use of multiple sensors [7]. Unlike classical multisensor fusi

; >sensor can reliably communicate to the host over the wireless
where the data collected by the sensors are communicated in fll, | may be severely limited, often to a few bits of infor-

to a central processor, it is often desirable to perform somefom}iﬂon per each acquired sensor measurement. The need for

Olj: decenj[ra(ljlz_e;j proc_essmgr?t the ser:sor before QOmmug'Ca%ver-eﬁicient design may also place constraints in the avail-
the acquired information to the central processor in a condensgfie rocessing complexity at each sensor, but usually not at

and often lossy form. the host, which typically possesses more processing power than
each individual sensor. Depending upon bandwidth availability
Manuscript received November 1, 1997; revised August 1, 2000. The maja-these wireless networks, the host may or may not broadcast

rial in this paper was presented in part at the the International Conference; ; ;
Acoustics, Speech and Signal Processing, Seattle, WA, May 1998. |ﬂ?or.mat|on back to the remote s_ensor;, SO a_s to improve the
H. C. Papadopoulos is with the Department of Electrical and Comput@tiality of the future sensor data it receives. Finally, as delays

Eng_inéering. Ur&iver;ty of Maryland, College Park, MD 20742 USA (e-mailin transferring information across such a network may be a crit-

abis@eng.umd.edu). : i ; :

G. W. Wornell and A. V. Oppenheim are with the Department of Electric:allf"'al Cons_tramt’ it may also be de5|rable to, empl'oy tEChn,lques

Engineering and Computer Science, Massachusetts Institute of Technoldg@t provide sequences of sequentially refined signal estimates

(MIT), Cambridge, MA 02139 USA (e-mail: gww@allegro.mit.edu; avo@alat the host.

legro.mit.edu). . L L . . .
Communicated by R. Laroia, Associate Editor for Source Coding. Similar problems arise in applications involving sensing de-
Publisher Item Identifier S 0018-9448(01)01345-1. vices or measurement apparatuses intrinsically limited by de-

I. INTRODUCTION

0018-9448/01$10.00 © 2001 IEEE



PAPADOPOULOSet al. SEQUENTIAL SIGNAL ENCODING FROM NOISY MEASUREMENTS 979

sln] ylnl

Aln] Encoder Estimator ——»  A[n] To illustrate some of the key issues that may arise in the en-
signal % digital signal coder design, it is insightful to consider the static case, i.e., the
o] eneodng simete case where the signal[n] is varying slowly enough that we
sensor noise may view it as static over the observation interval. Given a fixed
time instantV, we can easily devise a method for efficiently en-
Fig. 1. Block diagram of encoding the noisy measurements at the sensor grg)adlng thelV sensor measurement ], s[2], ..., s[V], m.to a
signal estimation from these encodings at the host. sequence ofV M-ary symbolsy([1], y[2], ..., y[NV] provided

N is large. Specifically, consider the following algorithm:

sign. In many cases, the sensing devices exhibit only a finite sefAt the sensor:
of possible outputs and there is limited flexibility in terms of af- i) compute an estimate of the static
fecting or biasing these outputs. Networks of resolution-limited information-bearing signal using the N
sensors are also employed by a number of biological systems fggensor measurements;
performing vital sensory tasks, suggesting that the type of prodi) quantize the estimate using a uniform
cessing performed by these systems somehow corresponds eiantizer with M* quantization levels;
an efficient use of resources [19]-[21]. For instance, it has beerii) communicate to the host the quantized
conjectured that certain types of crayfish enhance the ability ofevel by means of the N M-ary symbols
their crude sensory neurons to reliably detect weak signals sentl1]. (2], ..., y[N].
by their predators by exploiting remarkably simple and, at first ¢ 1o host:
sight, counterintuitive preprocessing [20]. reconstruct the “quantized” estimate using
In developing methods for overcoming the power/bandwidth 4[1], y[2], ..., y[N].
constraints that may arise across a sensor network, or the dyciearly, since the number of available quantization levels in
namic range and resolution constraints at each sensor, it isdfisp ii) of the encoder grows exponentially with the number of
structive to first examine the single-sensor problem. In fact, thigajlable observation®, the error between the “quantized” es-
special case captures many of the key design and performagitfite used at the host and the original sensor estimate produced
issues that arise in the context of networks of sensors. The biggktep i) of the encoder (i.e., the estimate prior to quantization)
diagram corresponding to a single sensor is shown in Fig. dacays exponentially fast with.
where A[n] denotes the information-bearing signal at time A major disadvantage of such an encoding scheme, however,
v[n] represents sensor noisgy] denotes the sensor measure that it is not sequentially refinable, namely, it provides an
ment sequence, angn| denotes the sequence bf-ary sym-  gne-shot description; no encodings are available to the host for
bols encoded at the sensor and timend used at the host to ob-forming estimates before tim&, and no encodings are avail-
tain a signal estimatel[r]. In general, the task is to design theypje after timeV to further refine the quality of the host esti-
encoder at the sensor (subject to existing available processipgte. Furthermore, this encoding scheme assumes that there is
power, transmit power, bandwidth, and delay constraints) aggsojute freedom in designing tié” -level quantizer. How-
the associated estimator from the encodings at the host so ag\ig, this is often not the case such as in problems where the
optimize the host estimate quality. sensors are intrinsically limited by design. For these reasons,
This problem can be viewed as one of lossy encoding ofualike, for instance, the work in [25] and [26], in this paper we
noisy source where in addition to the bandwidth/rate constrainfiscus on designing sequentially refinable encoding strategies.
there exist delay and processing power constraints. Since Thes design problem can be viewed, in some sense, as the analog
end objective is to obtain an accurate signal reconstruction of ihfehe detection problem considered in [28] in the context of esti-
information-bearing signal in the measurements, the metric weation. In addition, some of the refinable strategies we develop
employ for evaluating the encoding performance is based on tire shown to have interesting connections to the technique pro-
fidelity of the underlying signal estimate resulting from the erposed in [30].
coding, rather than on the quality of the approximate represen-One of simplest refinable encoding strategies that can be con-
tation of the source (sensor) data obtained at the host from #tmucted consists of quantizing each noisy measurement at the
encoding [22, p. 78]. A number of lossy encoding methods feensor by means of al/-level quantizer. As we show, how-
noisy sources have been developed in the literature for a varietser, this simple encoding scheme can have very poor perfor-
of signal-in-noise models. These methods range from the inforance characteristics, in terms of overcoming the power/band-
mation-theoretic solutions for the achievable rate-distortion reddth constraints across the network, or the dynamic range and
gions in the absence of complexity constraints [22, p. 124], [23ksolution constraints at the sensor. As a means for improving
to more practical approaches [24], [25]. For instance, in [28]e effective digital encoding we may consider the use of a
practical solutions are developed whereby the problem of lossyntrol input added to the information-bearing signal prior to
encoding of a noisy source is mapped to an equivalent standguantization at the sensor. The block diagram corresponding
lossy encoding problem and modified distortion measures deea single sensor in the context of such a remote-sensing es-
exploited to develop systems based on vector quantization. Vamation environment is shown in Fig. 2, wherdn] denotes
ious related decentralized detection and estimation problemshe slowly varying information-bearing signaij»] represents
the context of bandwidth/rate constraints have been examirshsor noisey[n] is a control input, ang[»] denotes the quan-
in the literature; see [26]-[31], and the references therein. tized signal that is sent to the central site. The operation of
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A r skl alnl IF ylnd - Al system depicted in Fig. 2. In Section Ill, we develop the esti-
Low-bandwigiih f f Observed st Mation performance limits for a number of important scenarios.
U e eauenee =™ In Section IV, we design control inputs and associated estima-
sensornoise  Control input tors for each of these distinct scenarios, which achieve the per-
(Quentizerbios formance limits developed in Section lIl. Finally, in Section V,
Fig. 2. Signal estimation via quantized observations, in the context ¥{€ €xamine a particular network generalization of the scenario
low-complexity encoding methods that are based on an additive control inpuepicted in Fig. 2, in which signal estimation is based on quan-
tized observations collected from multiple sensors.
adding a control input prior to quantization is often used in ap-
plications involving lossy compression such as video and audio Il. SYSTEM MODEL

coding where it is commonly referred to as dithering [32], [33]. . . : . :
In some (but not all) of the cases we consider, the control inputAS outlined in Section |, we consider the problem of esti-

plays a role very similar to dithering. mating an unknown parametedrfrom observation of

In this paper, we chus on the static case of the estimation y[n] = F(A + v[n] + wln)), n=1,2...,N (1
problem depicted in Fig. 2 in whicA[n] = A, i.e., we examine
the problem of estimating a noise-corrupted unknown paramvhere the sensor noiseln] is an i.i.d. processw[n] is a
eterA via quantized observations. This case reveals several k@yntrol input, and the functiod’( - ) is an M -level quantizer,
features of signal estimation from gquantized observations alith the quantized outpu[n] taking M distinct values
tained via a system comprising a control input and a quantiz&f;, s, ..., Yu, i.e.,
extensions of our analysis corresponding to the case whiefe
corresponds to a sample path of an autoregressive moving avE ()
erage process are developed in [34].

Sevgral _basic vgriation; of t_he e;timation problem.in Fig'\)@hereXo — —soand Xy = oo. We note that two sets of
can arise in practice, which differ in the amount of 'n,formaédwcodings produced by quantizing the same sequence
tion about the control input that is available for estimation an
the associated freedom in the control input selection. In this z[n] = A+ v[n] + wn]
paper, we develop effective control input selection strategies
and associated estimators for several such important scenani two A/ -level quantizers with theameset of X;’s and dif-
In particular, for random control inputs that are well modeletgrent (but distinct) quantization levels are equivalent from the
as independent and identically distributed (i.i.d.) processes grrint of view of signal estimation. Hence, without loss of gener-
whose statistical characterization alone is exploited at the adity, we assume that the quantizer levels are uniformly spaced,
ceiver, we show that there is an optimal power level for mini-e.,
mizing the mean-square estimation error (MSE). The existence
of a nonzero optimal control input power level reveals strong
connections to the phenomenon of stochastic resonance, wr}j\

. . i . W other set of distinct quantization levels leads to a set of
is encountered in a number of physical nonlinear systems wh gé

thresholdi dis oft loited for sianal enh surementg[n] that is equivalent to the one generated via
resholding occurs and IS often explorted for signal ennangge, guantization levels (2b), in the sense that the two quantized
ment [20], [35], [36]. In addition, it possesses strong conneg-

. . : . X easurement sets are related by means of an invertible transfor-
tions to pseudorandom dithering techniques often exploited @r

. . . ation. For convenience, we shall often consider the interme-
image and audio compression [32]. Performance can be furt ?a(temeasurememaquence
enhanced if detailed knowledge of the applied control wave-
form is exploited at the receiver. In this scenario, we develop s[n] Ey o[n] = A + o,d[n]. 3)
methods for judiciously selecting the control input from a suit-
able class of periodic waveforms for any given system. Finally, We shall frequently be interested in a measure of predicted
for scenarios where feedback from the quantized output to therformance for a family of sensor noises parameterizeg,by
control input is available, we show that, when combined witin (3), arising from scaling an i.i.d. noise sequerige]. We
suitably designed receivers, these signal quantizers come with#e the notatiom. ( - ) to denote the probability density func-
a small loss of the quantizer-free performahde.the process tion (pdf) of any sample of an i.i.d. sequende], andC.( -)
we develop a framework for constructing the control input frond denote one minus the corresponding cumulative distribution,
past observations and design computationally efficient estimae.,
tors that effectively optimize performance in terms of MSE. oo

The outline of the paper is as follows. In Section Il, we de- C.(z) = / p-(t) dt.
scribe the parameter estimation problem associated with the x

1Although the feedback loop can be entirely implemented at the sensor, serEQ_tr c_on\{emence, W_e shall ref_er to an i.i.d. noise proce_mjas
complexity is reduced by having the feedback information come from the cemtissibleif the associated pdf is nonzero and smooth ((&)

tral site. This may be especially attractive in wireless sensor networks whe{gmost everywhere. Throughout the paper, we assume that all
there are less stringent power resources available at the central site, provided ’

bandwidth is available for broadcasting high-resolution control information f301S€ ProCesses are admissible, includifig as well asw[r],
the sensors. whenw[n] is viewed as another random process. Furthermore,

Y; if X; 1 <z<X;for2<i<M
:{ (22)

Y1, otherwise

Yi=—(M+1)+2i, i=1,2...,M. (2b)
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when referring to a Gaussian process we assume it is i.i.d. and TABLE |
_ ; ; ORDER OFGROWTH OF WORST CASE INFORMATION LOSS AS AFUNCTION OF
zero-mean, unless we specify otherwise. PEAK SNRY = A/o, FORLARGE \x AND FOR ANY M -LEVEL QUANTIZER.
THE QUANTITY A DENOTES THEDYNAMIC RANGE OF THE UNKNOWN

I1l. PEREFORMANCELIMITS PARAMETER, AND o, IS THE SENSORNOISE POWER LEVEL. THE GAUSSIAN
CASE REFERS TOGAUSSIAN SENSORNOISE OFVARIANCE o2, THE GENERAL
In this section, we quantify the performance degradation that CASE REFERS TOANY ADMISSIBLE SENSORNOISE
results from estimatingt based on observation gfr] instead :
of s[n]. We firstintroduce the concept mfformation losswhich Information loss growth order
we will use as a figure of merit to design quantizer systems Confrol Input Gaussfn case| General case
and evaluate the associated estimators. We then present a brief Control-free case eX'/? > x°
preview of performance limits based on this notion for a number Random input X X
of important scenarios and finally develop these performance Known input X X
limits in Sections I1I-A—C. Feedback control 1 1

The quality of the signal encoding is evaluated by comparing
the limits of the estimate fidelity based on the encoding to that of
the estimate based on the original measurements. SpecificallyAS @ consequence of the linear model (3), the Cramér-Rao
we define the information loss of an encoder comprising a coBoundB(4; s¥) is independent of the parameter valdei.e.,
trol input followed by a quantizer as the ratio of the Cramér—Rd¥(4; 8") = B(0; 8") for any A. Furthermore, the bound
bounds for unbiased estimates of the paramdtebtained via B(4; ") is proportional tos7; by letting

y[n] ands[n], respectively, i.e.,
" " 3n] = A+ 9n]

a B4; ¢™)
LA = B ) and using (3), we obtain
whereB(A; y) is the Cramér—Rao bound [37, p. 66] for unbi- B(A; V) = 02B(0; 5)/N (8)

ased estimation aft from?

N A T whereB(0; 5) denotes the Cramér—Rao bound for estimating
y =[] w2l - yIN] () pased on any one sample of the i.i.d. sequeifag3 Hence,
sinceB(4; 8V) from (8) is independent aft, both B, (A)
ﬁnd[,maX(A) can be used interchangeably as figures of merit
for assessing the performance of quantizer systems.

Table | summarizes the performance limits as described by

the context of efficient estimation of. From this perspective, the worst case information loss for a number of important sce-

better systems achieve smaller information loss over the rar{éaé 10S. A.S we will show, in any of.these scenarios the worst case
of parameter values of interest. Information loss can be conveniently characterized as a func-
Taking into account the inherent dynamic range limitatiorf" of_peak SNRy. According to Table |, rgndom control in-
of these signal quantizers, we assume that the unknown parz?rll’]t-s with properly chosen power levels provide performance im-
eter takes values in the ra’ngeA A), with A assumed to be provements over control-free systems in any admissible noise.
bl 1

known. Often, the degradation of the estimation quality is co pecifically, for random control inputs, the control input power
veniently characterized in terms of the raio= A /a,, which evel can be selected so that the worst case information loss

we may view as a measure of peak signal-to-noise ratio (pe%ﬂ?ws only quadrat_lcally W'tb(’ while it can be shown to grow .
SNR). faster than quadratically in the control-free case for any admis-

Given that the signal parameter is assumed to be unknov?.fp,le sensor noise. When the control input is known for estima-

worst case performance is used to characterize the ovel QM the associated worst case loss can be made to grow as slow

system. Accordingly, we define the worst case Cramér—R&3 X with proper control input selection. Finally, if feedback
bound and worst cas’e information loss via Information from the encoder output is available and properly

used in the selection of the control input, a fixed small informa-

wherey[n] is given by (1), and wher8(4; sV) ands” are
defined similarly. We often consider the information loss (4) i
decibels [i.e.10log,, L{A)]; it represents the additional MSE
in decibels that arises from observipfn| instead ofs[n] in

Binax(A) 2 sup B(4; yV) (6) tion loss can be achieved, which does not grow with increasing
l[Al<A x. In the remainder of Section IIl, we develop the performance
and limits shown in Table I, while in Section IV we develop control
Liax(A) 2 sup L(A) @) Is_,el_ection methods and associated estimators that achieve these
[Al<A imits.

respectively. Both the worst case Cramér—Rao bound and the

worst case information loss are functions of other system pa§There exist i.i.d. sensor noises for which estimators based on the sensor
L measurements can be constructed with MSE that decays fasterl ff¥an
rameters, such as, {f_’-ndF(_' )’ the depender_lge_ onwhichis SUPEr instance, in cases that the sensor noise is i.i.d. with uniformly distributed
pressed for convenience in the above definitions. marginals, by using a maximum-likelihood (ML) estimator the MSE can be
made to decay ak/N2. In all these cases, the Cramér—Rao bound (8) does not
2Referring toL£(A) in (4) as “information loss” is reasonable as (4) is als@xist. These noises are nonadmissible according to the definition in Section I,
equal to the inverse of the ratio of the associated Fisher information quantitiasd their treatment is beyond the scope of this paper.
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A. Random Control Inputs the Cramér—Rao bound (12) reduces to

In this section, we consider signal quantizers with control in- o
putsw[n] that correspond to sample paths of an i.i.d. process, B(4; y) = Ca(-A)[1 = Cal(=Allpa(-4)] " (14)
independent of the sensor noise procegg, and determine When, in addition, the pdf.( )
the performance limits in estimating the unknown paramet
A based on observation gf¥ from (5), by simply exploiting
the statistical characterization affn] at the receiver. A sim- B( 4. ) = B(=A; y) = Ca(—A)Ca(A)[palA)]2.  (15)
ilar type of control signal is often exploited in the context of
lossy compression and is commonly referred to as nonsubtracwe next consider the special case whefe| andw[n] are
tive dithering; it has been shown to provide compression/diskd. Gaussian processes afid- ) is the symmetric two-level
tortion improvements in the context of encoding of images [3guantizer, and determine the random control power level that
and audio [32], and more generally in the context of lossy cominimizes the worst case information loss. We then consider
pression (see [39], [40], [32] and the references therein).  the general case, i.e., the cage> 2 wherev[n] andw|n] are

In general, we may consider families of random control inputgy i.i.d. processes.
parameterized by means of a scale parameiewherew(n| = 1) Special Case—Gaussian Noises alid = 2: For the
oww[n], and wheres[n] is an admissible i.i.d. noise sequencgystemA = 2 wherev[n] and w[n] are independent i.i.d.
with pdf pg (- ). Our goal is to select the random control scalingaussian noise sequences with varianggsnd o2, respec-
parameters,, SO as to optimize performance in terms of thévely, the Cramér—Rao bound (15) reduces to
associated worst case information léss.

The Cramér—Rao bound for all unbiased estimates of the pa- B(A; y) = 2102 Q < A ) 0 <_£> exp <A2> (16)
] @ o

is an even function of its ar-
§lment, (14) further specializes to

rameterA based on observation of the vecigl is defined as U_a « E
[37. p. 66] where
. P2 PyY; AT\
Ay =—_ (B |Z—— & 7/ — 2 2
B( Y ) < |: aAQ :|> T O',w+0'b
and

the probability that the particular vectg? is observed from (1)

given that the unknown parameter takes the valuén partic- ] ) ] ] ]
ular, the log-likelihood function satisfies Fig. 3 depicts the associated information loss (4) as a function

of Afor A =1, 0, = 0.1, and variousr,, levels. Observation
. M . of Fig. 3 reveals several key characteristics of this type of
InPy"; A) = Ky, (") InPr(yln] =Yi; A) (9 quantizer-based processing. Specifically, in this Gaussian
=1 sensor noise scenario, the minimum achievable information

whereKy- (y") denotes the number of entries4 that are 0SS occurs fort = 0 ando,, = 0 and equald0log 10(r/2) ~

N. AVj i ikeli i i oo 2
whereP(y"; A)is the associated likelihood function, denoting Q(x) :/ (1/@)@4 /2 gt

equal toY;. Since the aggregate noise 2dB. In additio_n, for_any ran_dom con_trol power levé| the in_—
formation loss is an increasing function|cf|. This property is
afn] = v[n] +wn] (10) shared by many other admissible i.i.d. processes with common
] o N marginals, such as the i.i.d. Laplacian and Cauchy random
is an i.i.d. sequencéi(4; y") satisfies the condition processes. More important, as the figure reveals, proper use
) 1 of a random control inpufe,, # 0) can have a major impact
B(A; yV) = ~ B ) (11) on performance in terms of reducing the associated worst case

information loss.
whereB(A; y) corresponds to the Cramér—Rao bound for esti- The sensitivity of performance with respect to the optimal
mating A based on any one sample of the i.i.d. sequejisg  control noise power level for the Gaussian noise scenario is ex-
Finally, by taking the second partial derivative of (9) with réamined in Fig. 4, where we depict the additional worst case

spect toA followed by an expectation, we obtain information loss (in decibels) due to suboptimal selection of
M } i N the control noise level versus, /A. Note that 0-dB additional

B(A; y) = Z [pa(Xi—1 — A) — pa(Xi — 4)] . worst case information loss corresponds to the optimal random

’ — Ca(Xim1 —A) — Co(Xi — 4) control power level selection. From the figure we see that the

(12) optimal aggregate noise level is well approximated by
For the system corresponding to the symmetric two-level 9
quantizerlM = 2, X; = 0), i.e., o S A @an

T

F(x) = sgu (x) (13) 5o that the optimal random control power level satisfies
4The scaling factor,, can be viewed as a measure of the strength of the

control input process[n]. For cases where the control input variance exists, /(P82 _ 52 if o, < oopt

we may pick the prototyp&[n] as the unit-variance member in the family, in oot = (oa) v v @ (18)

which caserZ, corresponds to the power level of the control input signal. 0, otherwise.
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Fig. 3. Information loss for a system comprising a two-level quantizer and an i.i.d. Gaussian control input, for various control signal powr [Eelsensor
noise is i.i.d. Gaussian with varianeé = 0.01.
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Fig. 4. Additional worst case information loss (solid) due to suboptimal random control power level selection for a two-level quantizer. The sejumise
aln] = v[n] + wln] is Gaussian with variance? . The “x” marks depict the additional information loss for net noise leégldo Pt and202rt. The “” mark
depicts the additional information loss&tP*/3.

If o, < A, Fig. 4 reveals that for the fairly wide range of controlnput power level is reduced beyosd?P® /8. For instance, for
input power levels ow = oSP' /3, there is nearly 30 dB of additional loss incurred
by the suboptimal selection of the control input power level.
S0P <oy < 2090 The information loss associated with the optimal random con-
trol power level corresponds to the best achievable performance
the associated performance is inferior to that correspondibg a particular family of random control inputs—in this partic-
to the optimal random control power level by less than 3 dBilar example, the family of zero-mean normal distributions. For
However, the performance degrades rapidly as the conttié optimal choice of,, in (18), the worst case information
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loss can be completely characterized by means of peak,xgNRwhich in conjunction with (8), (21), and (22) implies that the
In particular, by using (17), (18) with (16) in (4) we obtain thevorst case information loss cannot be made to grow slower than
optimal worst case information loss for the Gaussian scenaé for random control inputs. Therefore, at high peak SNR the

with random control, namely worst case information loss for random control inpGEd(x)
¥ . N can be made to grow at best as slow as quadratically with peak
Lramd(yy = 2nQ()Q(=x)e* if0<X=<35  SNRforrandom controlinputs. In general, the sensor noise level
o 3Q(3)Q(-3) 6§X2, if T < x may be fixed, in which case we are interested in selecting the

(19) random control levet,, as a function of the dynamic rangeso

where we indicate explicitly that in this case the worst case i {0 minimize the worst case information loss. From (21)—(23)
formation loss is a function of. the optimal worst case information loss rate can be achieved
As (19) reveals, for parameter estimation in Gaussian not¥ S€lectingr,, = AA for someA > 0. This is in agreement
via a two-level quantizer system, the worst case informatidi§th our conclusions for the Gaussian scenario in the special
loss can be made to grow quadratically with peak SNR by jG@seM = 2, as (17)~(19) clearly demonstrate. For compar-
dicious selection of a Gaussian control input. For comparisdf©n: in Appendix A, we show that for control-free systems cor-
the worst case information loss in the absence of control ing@SPonding ta’(-) in (2a), (igg and for any sensor noise the

grows exponentially with peak SNR. In particular, by substivorst case information los8,;% (x) grows faster thary* for

tuting B(A; y) from (16) in (7), we obtain large x. Remarkably, rando_m control inputs yvith appropriately
) selected power levels provide performance improvements over
L () = 2rQ(x)Q(—x)eX (20) the control-free systems for any admissible sensor noise at high

which grows as:xp(x?/2) for largex. The results in (19) and peak SNR.

(20) extend to quantizers withf > 2, i.e., the worst case infor-

mation loss grows asp(x*/2) for control-free systems, while B, Known Control Inputs

it can be made to grow ag for appropriately chosen Gaussian

control inputs. We next develop performance limits for scenarios where the
2) General Case: Arbitrary Admissible Noises ahi> 2: estimator can exploit detailed knowledge of a suitably designed
As we next show, proper use of an admissible random contasintrol waveform. In particular, we determine the minimum

inputw[n] can improve performance at high SNR over the compossible growth rate of the worst case information loss as a

trol-free system in any (admissible) sensor naife and for function ofy, and develop control input selection strategies that

any M -level quantizer. Substituting (8) and (11) in (4) revealgchieve the minimum possible rate.

that the associated information loss is independeni of hus, The Cramér—Rao bound for unbiased estimateslofised on

we may focus on the cagé = 1 without any loss of generality. %™ and given knowledge of the associat¥dsamples ofu[n]

We next uséBuax(A; o4, 04, {X; 124 1) to denote the worst is denoted by3(A; ¥~; w”) and satisfies

case Cramér—Rao bound (6), in order to make its dependence on

ow, 0wy, @nd the quantizer thresholds explicit. Also, we suppress

the dependence d#,,..(-) on the quantizer thresholds when — B(A; ¥, w") = — <E [

there is no ambiguity.
For admissibles[n], the Cramér—Rao bound (12) is contin-

uous inther, variable, and hence soli, . (A; oy, 04). Thus, =

given any fixeds,, > 0 andA, for small enouglyr,, we have

PPy, A, w¥)]\
9A2
N

> [B(A +wln]; y)]_ll (24)

n=1

Bunax(D; 04, 0w) R Buax(A; 0, o). (21)  where B(4; y) is given by (12), witha replaced byv, and

Substituting (21) and (8) in (7) while keepidgfixed and letting WhereP(y™; A, w™) denotes the associated likelihood func-
o2 — 0 reveals thal™d(y) ~ x? is achievable for large. tion. As expected, the associated worst case Cramér—Rao bound

v max

Furthermore, sincB,,ax(A; o, o) is also continuous inr, and worst case information loss are functions of the control

for any F( - ) with fixed M < oo waveformw® . In Appen_dix B, we show that, for any knowq
control waveform selection strategy, the worst case information
e%f )Bmax(A; 0, o) >0 (22) loss associated with anyf -level signal quantizer grows at least

- _ as fast ag for any sensor noise distribution. This includes the
for any A > 0. In addition, given that the sequeng@:] does gptimal scheme, which selects the wavefarin] that results

not change if we scale both the input to the quantizer and tfieminimizing the worst case information loss for any given set
quantizer thresholds hy/ A, the Cramér—Rao for estimating {A, oy, ps(-), F()}.

based ony[n] is A? times the Cramér—Rao for estimatidg=  Classes of periodic waveforms parameterized by the period
A/A based on the sequence generated by quantiziny A K are attractive candidates for known control inputs, since they
via anM-level quantizer with thresholds; = X, /A, i.e., are easy to construct and can be chosen so that the worst case
Bunax(A; 00, 0w, {1 information loss grows at the minimum possible rate. In con-

M1 structing these classes of periodic sawtooth waveforms, we will
(23) . . : :
oo; extensions to the finitév case are developed in Appendix

— A2B <1_ 1 oy {&} use as a figure of merit the worst case information los¥ as
max bl I ?
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B. From (24), the Cramér—Rao bound for estimatingased on  In the context of the sawtoothi -periodic inputs (27), strate-

™, wherel is a multiple of the period{, is given by gies that selecK so as to keep a fixed sawtooth spacifg
) ) 1 K achieve the minimum possible growth rate. In particular, in Ap-
B(A; yN, wh) = N (25) pendix B we show that, for any givep if we select the period
ST B(A +wn]; »)] 1 K in (27) according to
n=1
As we will show, in order to achieve the minimum possible K =[x +1] (28)

growth rate it suffices to seleet[n| from properly constructed - .
oo : . whereX can be any positive constant, the associated worst case
K -periodic classes for which there is a one-to-one correspaon:

. ) information loss grows linearly witly. In general, there is an
dence between each element in the class and the p&ri@p- . 9 . y h-Ing S

. : . S . ; optimal A for any particular noise pdp;( - ), resulting in an
timal selection of the control input in this case is equivalent to .. . . o .

. . LT . optimalnormalizedsawtooth spacing. Specifically, consider the
selecting the perio&” that minimizes the associated worst casg

; ? . .~ —normaliz in ween ive sam fin (27),
information loss, or equivalently, the worst case Cramér—Rag o ed spacing between successive samplegdin (27)

bound from (25) namely

2x

K A Oy
dix; K) = = .
(X7 ) OVU K _ 1

(29)

A .
Kopi (A, 0,) = argmin  sup

PSR B+ wlnl; )
n=1 7 In addition, letd,,;.(x) denote the normalized spacing associ-

(26)  4ted with the optimal perio.,: (x) from (26), i
whereB(A; ) is given by (12) witho replaced bys. We next ated with the optimal perioflo,. (x) from (26), i.e.,
develop a method for selecting the control waveform from prop- dopi(%) A d(x; Kopi(x)) (30)
op - 9 op

erly constructed classes &f-periodic waveforms for the case
M = 2, which results in achieving the optimal growth rate ofy Appendix B, we outline a method for finding the asymptotic
worst case information loss. Then, we extend our method d@timal normalized spacing
guantizers withM > 2.
1) Optimized Periodic Waveforms for Signal Quantizers with deo 2 lim dopt(X) (31)
M = 2: The construction of the elements of th&periodic XTreo

class in the casé/ = 2 is based on the observation that in th@ssociated with a particular sensor noise pdf. For purposes of
control-free scenario the worst case information loss grows wiffystration, we also show in Appendix B that in the special case

A for fixed o,.. This observation suggests that the informatioghat the sensor noise is Gaussian with variante
loss is typically largest for parameter values that are furthest

from the quantizer threshold. This is strictly true, for instance, dooe = 2.5851 (32)

for Gaussian sensor noise, sifgd; y) in (16) is an increasing

function of| A|. Since our objective is to optimize over the worswhile the associated worst case information loss is well approx-
case performance, a potentially effective strategy is to constriated by

the K -periodic waveformw[n] so as to minimize the largest

distance between anyt in (—A, A) and the closestffective LP (x) ~ 1.4754 <2_X + 1) (33)
quantizer threshold. For this reason, we consideperiodic d

control inputs, which have the form of the sawtooth waveforrtgOr large x. In this Gaussian scenario, if we seleen] as in

B K-1 (27) with K = [2x/d + 1], the worst case information loss
wln] = éu <_ 5 tnmodK ) (27) s given by (33) and achieves the optimal growth rate for known

e o}

. . o ontrol waveforms. We next extend the above analysis to quan-
where the effective spacing between thresholds is given ﬁ

L . Yers withM > 2.
6, = 20/(K — 1). The net effect of the periodic control input 2) Optimized Periodic Waveforms for Signal Quantizers with

(27) and the symmetric two-level quantizer (13) is equivaleﬂ;[ > 2: As we have seen in the preceding section, selection

to a two-level quantizer with a periodically time-varying,s w[n] according to (27) forM = 2 results in a two-level
threshold, It is Important to. o_bserve that the t'me'v_arymguantizer with periodically time-varying thresholds uniformly
quantizer threshold comes within at ledg/2 of any possible spaced ifi—A, Al. This selection method minimizes the max-
parameter value once eveRj samples. imum distance between the parameter value and the closest of

For the sy_stem with( ) giyen by (13) andu[n] givgn by the time-varying thresholds, over the dynamic rafig&\, A).
(27), the optimal period<,, is completely characterized byThe same strategy can be used fér>> 2, although the avail-

means of peak SNR; using (14) in (26) reveals thalo, sat- ability of multiple thresholds allows for reduction of the dy-

isfies namic range thaiw[n] needs to span. We assume that all quan-
Kopt (A, 04) = Kope(ud, 1) tizer thresholds are within the dynamic range, I—QA < X; < _
A, fori =1, 2,..., M—1.Inthis case, the effective dynamic
for any ;. > 0. For this reason, we will use the one-variablgangeA.; thatw[r] needs to span is given by
function K, (x) to refer to the optimal period from (26) for a
particulary. Aep = max bz
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where [n] xln] yln]
. A ot g) f Estimator —— A[n]
Xi+A, if i =1 f oln]
br; = ¢ Xi — X1, f2<i<M-2 vln]
e . Strictly Causal
A — X]w_l, if i =M —1. Processing

In particular, we consider using the control input (27) where tr'L_e I . . .

. . L . 1g. 5. Estimation based on observations from a signal quantizer, where
effective spacing between thresholdsis given in terms oA feedback from the quantized output is used in the selection of the control input.
and the quantizer thresholds , X5, ..., X1 as follows:

8 = max dw; (34a) In particular, if there exists a parameter valde for which
i B(A; y) > B(A,; y) forall Ain (—o0, 00) and where3(A4; y)
where is given by (12) witho replaced by, then using (24) we obtain
Dt =1, M1 B4 9V, wY) 2 B(Au; )/N (35)
b = 261 (34b) it equality achieved fow[n] = A, —Aforn=1,2, ..., N.

K’ f2<i<M-2. This control input results in

For any A in (—A, A), this selection guarantees that at least L(A; wN) > L(A; A, — A) = L(A,) (36)

one of theM — 1 time-varying quantizer thresholds is within

8., /2 of the parameter, whe&, is given by (34a). One can, in WhereL(A) is given by (4), and wherB(4; y) is given by (12)
principle, perform the optimization (26) to obtalfi, (A, o,)  With « replaced by.

forany F( - ) with M > 2. We should emphasize, however, that The minimum information loss from (36) decreases as the
at high SNR we may often obtain an approximate estimate i#mber of quantization levels increases. In Appendix C, we
performance via our results for the cake = 2. For instance, show that as we would expect, the minimum information loss
for A.q /o, large and small enoughin (28), the optimal nor- £(4.) tends to zero as the number of quantization levels ap-
malized spacing and the corresponding worst case informati@i®aches infinity for any sensor noise.

loss for a quantizer withl/ > 2 are approximately given by For a number of common sensor noises the control-free in-
the respective quantities for the symmetric two-level quantizégrmation loss for the system correspondingifo= 2 is min-
with x replaced byyeg = Acg/0s. imized at the negative of the median of the pdf - ), i.e.,

If, in addition, there is freedom in selecting thé — 1 quan- C.(—4.) = 1/2. The corresponding minimum information
tizer thresholds, these can be selected softhat= 6w, forall¢ 10ss (36) can be obtained by evaluating (4Mat= A., while
andj in (34b) which implies that,, = A/[(M —1) K —1]. This employing (8) and (14) fos,, = 0, namely
selection guarantees that for evetysuccessive observations, taia =1
the collection of allM K associated quantizer thresholds form £(A) = [4p5(=As/00)B(0; 5)] (37)
a uniformly spaced collection ir-A, A]. For instance, in the which is independent of, and A, since—A, /o, equals the
special case that the sensor noise is Gaussian, the optimal negdian of the pdf ofi[n].
malized spacing and the worst case loss for largee givenby 1) Special Case: Gaussian Sensor Noisethe case that the
(32) and (33), respectively, with/(M — 1) replacingy on the sensor noise is Gaussian, the minimum information loss (36) de-
left-hand side of (33). In summary, simply constructed classeays rapidly to zero as more quantization levels are introduced.
of periodic control waveforms achieve the optimal informatiom Fig. 6 we plot the minimum possible information loss through
loss growth rate with peak SNR. any uniform{-level quantizer for various values 8{, in the
presence of i.i.d. Gaussian noise. From the figure, it is apparent
that a few quantization levels suffice to effectively eliminate the

In this section, we consider the scenario where, in additioninimum information loss due to quantizer-based processing.
to knowing the control waveform, the estimator has the option For the two-level quantizer (13) in this Gaussian scenario, use
of using feedback from past output observations in the selegd<(16) foro, = o, in (7) reveals thatl, = 0. In this case, (35)
tion of the present control input. Specifically, we develop pereduces to

C. Control Inputs in the Presence of Feedback

formance bounds for the problem of estimationtobased on N ro2
y", where the control input sequenaén] is a function of all B4 w™, ") 2 B y)/N = 5+ (38)

past quantized observatiops—!. This scenario is depicted in
Fig. 5 wherew[n] = g(y™ ).

We next show that the worst case information loss f
any feedback-based control input strategy is lower-bounded L(A; wa) > £(0) = . (39)

while from (37) the information loss for any parameter value
Js lower-bounded as follows:

by the minimum possible information loss for the same 2

quantizer system witw[n] = 0; in Section IV, we develop which corresponds to a 2-dB information loss.

feedback-based control selection algorithms that effectivelyFig. 7 depicts the worst case information loss for the system
achieve this lower bound. Examination of the Cramér—Ramrrespondingtd/ = 2in the context of Gaussian sensor noise
bound (24) reveals that for ang in (—A, A) we can obtain and the various control input scenarios that we have examined.
information loss equal t&( A, ) by selectingw[n] = A, — A. As reflected in the figure, the performance of the control-free
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Fig. 7. Worst case information loss ovet| < A for a two-level quantizer in zero-mean i.i.d. Gaussian noise of variaficaith no control input (solid),

random control inputs (upper dashed), and known periodic control waveforms (middle dashed). The dotted curve depicts approximation (33)ddsteeidwer
line depicts the minimum possible information loss 2 dB) for any control input scheme.

system (solid curve) degrades rapidly as the peak SNR is @arly with peak SNR as the accurate approximation (33) reveals

creased. The benefits of random control inputs (upper dashédally, in the presence of feedback from the quantized output

curve) at high peak SNR are clearly evident, and known pt& the control input, the performance is lower-bounded by the
riodic control inputs provide additional performance benefit:inimum possible information loss of 2 dB, which is indepen-

(middle dashed curve) over random control inputs. In partident ofy. In Section IV, we develop control selection strategies
ular, the associated worst case information loss increases hnd associated estimators that meet all these bounds.
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IV. EFFICIENT ESTIMATION the special case that[n| andv[n] are zero-mean i.i.d. Gaussian
ggise sequences with variance§ and o2, respectively, (43)

In this section, we develop control input selection strategi
ﬁguces to

and associated estimators which achieve the performance lirh N
obtained in Section IIl. A natural measure of performance of fll\qL(yN; ) = —, Q7 <M) . (44)
a specific system, comprising a control input a quantizer and a N

particular estimator, is theISE lossit is defined as the ratio of ~ For any parameter valuel in the range(—A, A), the

the actual MSE of a particular estimator.4based on observa- Cramér—Rao bound (14) is a reasonable predictor of the MSE
tion of ¥, divided by the Cramér—Rao bound for estimatihg Performance of the ML estimator (41)—(43) provided that the
from observation 08" . Whenever an efficient estimator gf number of observationd’ is large enough. Indeed, as shown
based ors" exists, the notion of the MSE loss of any given esh Appendix D, for any4 € (—A, A), the ML estimator
timator of A giveny™ has an alternative, instructive interpreta(41)—(43) is asymptotically efficient in the sense that it achieves
tion: it represents the additional MSE in decibels that arises frdf Cramér—Rao bound for unbiased estimates (14) for large
estimating4 using this particular estimator g, instead of ef- €noughiV, i.e.,

ficiently estimatingA via s” . Analogously toL,uax in (7), the Alifio NE[(AuL(™; A) — A)?] = B(A; y).

worst case MSE loss of an estimator is defined as the supremuri&Ithough the ML estimate (41)—(43) is asymptotically

of the MSE loss function over the range] < A. inbiased and efficient for ang in (—A, A), the associated

In this section, we construct estimators for which the corr SE d i i I to the C \r—Ra0 b d
sponding MSE loss asymptoticalyn — o) achieves the as- . 0€s not converge uniformly 1o e Lramer—ao boun

sociated information loss, for each of the control input scenari'(psthe parameter with . _Spemflcally, for any fixed, no
of Section Ill. We examine the control-free and random contr atter how large, there exist parameter values close enough to

scenarios first, and then develop estimators applicable to kno 5 k;o_unda_ne&A for which the ML estimator has significant
K-periodic control inputs. Finally, in the context of feedbac las? in which case (14) should not be expected to accurately

we develop control input selection strategies and associated %rﬁgclz?e:jhﬁ?:Sizoglavtviderlﬁfr?eoa:é?uea:vllvlf;étlgzgj&r T(h;i,'_SACI)early
. O, 1. ’

timators \.NhiCh achieve th? minimum possible information Io§|§ also depicted alongside the associated information loss for

for any given scalar quantizer system. the Gaussian noise scenario. In particular, the dashed and solid

A. Random Control Inputs lines depict the MSE loss from Monte Carlo simulations for

the ML estimator (41)—(43), in the absente, = 0) and

presencéo,, = 2/m) of a random control input, respectively,

X . - for o, = 0.1, A = 1, andN = 100, 10*. As we can see in

Ay A) = arg max In P(y"™; 6) (40)  Fig. 8, when the random control levelds, = 2/, the worst

N case MSE loss is about 21 dB. However, in the absence of

a control input, the worst case MSE loss is about 36 dB for

N = 100, and 55 dB forV = 10*. For both values ofV, the

§ramér—Rao bound (14) is applicable for only a subset of the
ynamic range, whose size increases viNthin fact, since the

SML estimator is asymptotically efficient for anyl| < A with

1) ML Estimation for Signal Quantizers wild = 2in i.i.d. respect to the Cramér—Rao bound (14) for unbiased (_astlmates,

the worst case MSE loss for the control-free system increases

N0|_se: If £°(- ) is given by (1.3) andk{n] is adm|35|b_|e, the ML With N toward the associated worst case information loss (20),
estimator (40) can be found in closed form, by setting to zero t £ich is approximately 211 dB

partial derivative of the log-likelihood function (9) with respec¥v 2) ML Estimation for Signal Quantizers withf > 2

For random control inputs, the ML estimator dfbased on
y" and restricted over the dynamic rangg < A satisfies

whereln P(y"; 6) is the log-likelihood function given by (9).
We first examine ML estimation for the system with = 2,
and then construct estimators for signal quantizers fdth- 2.
Estimators of4 for control-free systems can be readily obtaine
as a special case of the estimatora dér the associated system
with random control inputs by setting, = 0.

to 4, viz., . ~ . ~ in i.i.d. Gaussian Noise:For the estimation problem (1),
Avr(y; A) = Za(Av(y 5 00)) (41) (2a), (2b), whereF( -) is an M-level quantizer and[n] is
whereZa( - ) is the following piecewise-linear limiter function: an i.i.d. sequence, the set of sufficient statistics reduces to
T, if 2] <A Ky, @™, ..., Kv,,_, (@) [see (9)]. For the special case that
Ia(x) = {Asgn(x), otherwise. (42) a[n] is Gaussian with variance?, we develop in Appendix

E an expectation—maximization (EM) algorithm [41] for

B I ]\r. .
T]Qe functionAny(y”; co) denotes the ML estimate of from obtaining the ML estimate (40). This algorithm takes the form
y" when there are no restrictions imposed in the dynamic range

of the unknown parameteatﬁ In particular 6By incorporating the bias of the ML estimator (41)—(43) it is possible to ob-
~ I I tain a Cramér—Rao bound that directly applies to the associated MSE. An even
AuL(y™; o0) = arg ngLX In P(y™; 0) tighter bound is obtained by properly combining three separate Cramér—Rao
N bounds, each describing the effects of a piecewise-linear region of the soft lim-
—_C-1! K1 (:lj ) (43) iter Za () on Aup(A; o0) in (41) [34]. These bounds, however, are beyond
- a N the scope of this paper.

_ . . . r TInevitably, the pseudonoise sampleB:] generated in the computer simula-
where Ca 1( ’ ) n (43) is the 'nverser OCa( ’ )' and ’CK' (?/A ) tions are uncorrelated but noti.i.d.; the ML estimator achieves the bound (16) as
denotes the number of elementsyfi that are equal td;. In  expected (see Appendix A). However, in the casedfe’s are uncorrelated but
noti.i.d., the actual Cramér—Rao bound may be less than the one corresponding
SNote that (41) does not necessarily hold fidr > 2. to the i.i.d. case (16).
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Fig. 8. MSE loss from Monte Carlo simulations for a system comprising a Gaussian control input (pseudonoise in the simulations), a two-levelaqaantize
the ML estimator (41)—(43) foA = 1,0, = 0.1, and various control input power levels. The dashed curves depict the MSE ldgg ¢%™; A) in the absence

of control input (i.e.g., = 0); upper curveN = 10%, lower curve:N = 100. The solid curves depict the MSE loss&f.(y"™; A) for o, = 2/7, and for

N = 100, 10%. For comparison, the associated information loss functions are depicted by the dotted curves (also shown in Fig. 3).

found in (45) at the bottom of this page, where it is initializedf A —1 two-level quantizers generating the following observed

with Agﬁi = 0. Provided that the log-likelihood function sequences:
does not possess multiple local minima, (45) provides the ML . i;)] — sen(a[n] — X;), i=1,2 ..., M—1

estimate (40), i.e., wherex[n] = s[n] + «[n] (cf. Fig. 2) and theX;'s are the

A (@™; A) = lim Ag&&. thresholds of the quantizer. Consider the ML estimatesi of
k—oo formed from each of these binary sequences, namely

Empirical evidence suggests thiaiy_., A%, obtainedviathe ~ 4i = Za(Avn(y 3 00) +X3),  i=1,2,... M ~1
algorithm (45) is asymptotically efficient, i.e., it achieves (12) (46)
for large N'. Consequently, use of information loss as an accihere
rate predictor of the MSE loss is also justified in this scenario. N A T

3) Efficient Estimation for Signal Quantizers witd > 2 vo = lwilll wl2] - wlN]]
in i.i.d. Noise: In general, there is no computationally efang whereZ( - ) is given by (42), andiy ( -; o0) is given by

ficient method for obtaining the ML estimate (40) of in  (43) with « replaced by. In Appendix F, we show that the joint
non-Gaussian noise via a signal quantizer with > 2. In cymulative distribution of

this section, we present an alternative class of elementary A= [A A . A ]T 47)
estimators which can be shown to be asymptotically efficient - ] 2 o .M_l )
for any admissible noise pdf.(-), in the sense that for anyapproaches the cumulative distribution of a Gaussian random

|A| < A the MSE of the estimator approaches the bound (1%§ctor with meanA1 (where1 denotes a vector of’s) and

for large N. covariance matriX’/N, whose inverse is given by (91). We also
Without loss of generality we may view the output of th&how in the appendix that if we use
quantizerF( - ) in (2a) and (2b) as the collection of the outputs A=@aTc 1y 1tctA (48)

(Xm—lfA}(vﬁ\?r)z (Xm*A%.]\xr)z
M exp i — 202 —exXpi - 202
A(T. AL g, T
A;Ekl\-ril—l) =1a A;E?I + /—(y Ky.. (y]\) - -
2nN rgz:l Q <Xm‘_A1(~:ki\>1> _ Q <Xm'_A§2k13[>

(45)
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whereC' = C(4;) for somel < i < M —1, the estimatord is ~ ables, since for any # j, ¥™[i] andy™[j] are independent

asymptotically efficient, i.e., random vectors. Therefore, the corresponding vedidrom
lim NEA— A)2: Al — B(A: 49) (47)is asymptotically Gaussian (in terms of its cumulative dis-
N I )5 Al (45 v) (49) tribution), with diagonal covariance matriX/N; the (, ¢)th

whereB(4; ) is given by (12). In practice, in computigwe  &ntry of the matrbC equalsB(A +wli; y[i]), whereB(A4; y)

may selectthe value éfor whichB(4;; y) is minimum, soas IS given by (12) withx replaced by. Consequently, an asymp-

to expedite the MSE convergence to the asymptotic performarigtically efficient estimate is provided by from (48); the esti-
predicted by (49). In summary, the estimator first obtains the $B@€ covariance matrix that is used for faster MSE convergence
(47) by means of (46) as well as (42) and (43), it then seledfsthe asymptotic performance is given 6y= C'(4;) where:

the value ofi for which B(A;; y) is minimized and forms is the index that minimize8(A; + w(i]; y™ [i]).

C = C(4;), and, finally, substitutes; andC in (48) to obtain Asymptotically efficient estimators can also be constructed

the asymptotically efficient estimaté. for signal quantizers withl/ > 2 and knownK -periodic in-
puts in non-Gaussian sensor noise. Specifically, for édeary
B. Known Control Inputs subsequencg” [¢] from (51) we may first apply the algorithm

In this section, we construct estimators that exploit detail - . . . o
P y combining thesei estimates in a fashion similar to the

knowledge of the applied control waveform. In particular, in th thod din th 9 — 2 f bining th timat
context of K -periodic control inputsthatareknownforestima[ne od usedin the casd = 2 for comoining the estimates

tion, we develop estimators that are asymptotically efficient &?2),]\)/velobta|rj1van asymptotically efficient estimatorbbased
the sense that they asymptotically achieve (24). ony” givenw-.

For i.i.d. Gaussian sensor noise, the ML estimatel dfom
y¥ given a control vectow”, wherew|[n] is a K -periodic se-
guence andV is a multiple of K, can be obtained as a special In Section IlI-C, we have shown that the worst case informa-
case of the EM algorithm presented in Appendix E. In parti¢ion loss of a system composed of a signal quantizer and an ad-
ular, the EM algorithm takes the form of (50a) and (50b) at thaitive control input is lower-bounded by the minimum possible
bottom of this page, whe® = N/K, andy™[¢] istheN x 1 information loss of the same system in the control-free case. In
vector comprised of the elements of thth K -decimated sub- this section, we develop control input selection strategies based

?6)—(48) to obtaink statistically independent estimates.f

C. Control Inputs in the Presence of Feedback

sequence, i.e., on past quantized output samples and construct associated esti-
N A T mators which effectively achieve this bound.
y U= [ull] YK+ - yIN- K], 1) Feedback Control and Estimation for Signal Quantizers
£=1,2,..., K. (51) with M =2: We first examine the Gaussian sensor noise sce-
Empirical evidence suggests that the estimate resulting from fifo with M =2 n detail. .AS (3'9).reveals, the associated
ontrol-free information loss is minimized fat[n] = —A. Al-

EM algorithm (50) is asymptotically efficient, i.e., it achieve
the Cramér—Rao bound (25) for large enough

Asymptotically efficient estimators in the context o
non-Gaussian sensor noises can be obtained in a fashion sinfl
to those developed in Appendix F. Specifically, in the ca
M = 2, we may consider the vectad in (47) where we
use for A; the ML estimate of4 given theith K-decimated wln] = —An — 1]. (53)
subsequence from (51), i.e.,

though this control input selection is not permissible, it suggests
A viable control input selection method based on past quantized
§ervations. Specifically, ii[n] is any consistent estimator of

ased ony™, a reasonable choice for the control input se-
guence is as follows:

Assuming the control sequence is selected according to (53),

A = Ta(Ae @i 00) —wld]),  i=1,2, ..., f((52) the ML estimator at time: satisfies
and whereZ (- ) and Ay;.( -; o) are given by (42) and (43), At In] = are max - In Q(y[m](An[m — 1] — 6)).
respectively. Thed;’s from (52) are independent random vari- (7] |(§|§A ;::1 Qulml(a] =)

(Xm, 1_‘;4;2];)1‘“) [Z}) 2 (Xm—Ag;el—w [Z]) 2
o\ )
A(k',H) N A(k) + TvI\NY,,
EM EM 1;1( V21N 0 <Xm1—A;k§I~w[e1> 0 <XM—A§E"'B?I—LU[@1>

1<m<M T T

(50a)

and

AML = inIn Ag& (50b)
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In Appendix E, we show that in the Gaussian scenario, the Mihere the estimate based on tith measurement alone is given
estimate ofA based ory™ for » = 1, 2, ... can be obtained by using (55) in (54), (54b) (by setting, to 0), and the fact that

using the following EM algorithm: wln] = —Arn — 1], i.e,
Alnlyinll = Auln — 11 +ouy (5ol 67
A0+ (0] = Ia AW [n] By incorporating (57) in (56) this linear estimator takes the fol-
EM EM lowing iterative form:
Arln] = Arfn — 1] + o g % (58)
i 40 1)
exp <_ (AML["’_QH_ZAEM in]) ) In order to obtain an algorithm that converges much faster than
Oy " 7 (58) to the 2-dB bound (39), we employ the EM algorithm (54a),
t o > ulm] A LA [ (542) (54b) forn < n, and the recursive algorithm (58) far> n,,
=1 ML[ 1 EM[ 1
m Q y[m] [ i.e.,
An[n] from (54), if n < n,
initialized with A%, [n] = Ay [n— 1] and Ay [0] = 0, where  A[n] = ; T yln _
for anyn EM I <A[n — 1]+ oy 5 %) , if n > n,
X R (59)
Amrln] = klggo Ag‘i\)q [n]. (54b) where the control inpui[n] is given by (53) provided that we

substituted[n— 1] for A[n— 1], and where we also incorporated

Although empirical evidence suggests that the ML estimator offte dynamic range information by meanszof( - ).
tained by means of the EM algorithm in (54a) and (54b) achievesSelection of an appropriate value foy is related to the peak
the 2-dB information loss bound (39) for arlyin (—A, A) for  SNRx. Since, in principle, the larger the peak SNR, the longer
amoderate number of observatidrisis rather computationally (in terms of the number of observations) it takés- An[r]
intensive; for any additional observed sample an EM algoritht@ reach the linear regime (55), we consider the case- .
has to be employed. In addition, even though the number of itéir instance, assume we are interested in seleetingo that
ations necessary for adequate convergence of the EM algorithid VMSE in A[n,] is less than a given fraction of, (so that
appears to be small for large the algorithm may still be im- the truncated series approximation is valid), for exampl¢s.
practical. For small enough,, the maximum MSE from, observa-
We next develop algorithms that achieve the bound (39) afi@ns is roughly given as the square aR™"<. In summary,
have the additional advantage that they can be implementBi$ crude-MSE-based rule of thumb for selectingreduces
very efficiently. These are based on the observation that orf€g? 2 logy(A/0y) + 3.
the estimatefl[n — 1] is not changing significantly with (i.e., The solid and dashed curves in Fig. 9 depict the MSE of the
the changes are small with respecttg we may assume that ML estimator obtained by means of the EM algorithm in (54a),
s[n] — A[n — 1] is in the regime where the information loss ig54b) and of the computationally efficient estimator (59) with
small, and a low-complexity estimator can be constructed that = 10, respectively, based on Monte Carlo simulations. The
approaches the 2-dB bound (39). Specificallyzlet Q(A/c,,) System parameters for this simulation ake= 1, o, = 0.1,
and assume thati/o,| < 0.1. In this regime, the truncated resulting inlog,(A/o.) ~ 6.6, while A = 0.4. In both cases,
power series expansion provides a reasonable approximatiortfg control sequence is selected according to (53). The lower
Q (2), ie., and upper dotted lines depit A; sV) and the right-hand side
of (38), respectively. As we can see in this figure, both esti-
. T mates effectively achieve the 2-dB loss bound (39) for a mod-
Q™ (7)) ~ \/;(1 —22). (55)  erate number of observations.
In terms of the actual implementation of the estimator (59),
We can use (55) to form a linear estimator as follows. Assumitfigr a givenn,, there are2™- possible values aftyr, [n,]. These
that the estimation error is inversely proportional to the mea?- estimate values can be precomputed and stored in a lookup
surements (which, for admissible sensor noises, implies that thble. This results in a computationally efficient implementa-
asymptotic MSE loss is not infinite), the estimate at time tion, whereby givem,, or fewer observations the estimate is
given as a weighted sum of the estimate at time1 and an es- obtained from a lookup table, while once the number of obser-
timate arising from using theth measurement[] alone, i.e., vations exceeds,, a recursive linear estimator is employed.
. n—1 - 1. Sincen, grows logarithmically withy, the number of lookup
Arp[n] = —— AL[n] + — Aln|y[n]] (56) table entries for storing all possible values . [n,] grows
n n only linearly with peak SNR.

8There are a number of other control input selection methods and associatedh similar strategy can be used in the context of quantizer
estimators which can approach arbitrarily close to the 2-dB bound; the systems

developed in this paper for the ca& > 2 and non-Gaussian noise are sucrﬁysFems using feedback in any sensor noise. In the ge_neral case,
an example. However, the associated MSE of these algorithms converges tadhein (36) may not equal zero. A reasonable extension of the

bound (39) considerably slower than the algorithms of this section. In fact, th¢)ntrol input selection method (53) for nonzetois as follows:
number of samples required so that the MSE of (54a) and (54b)wjithas in P (53) o ’

(53) effectively achieves the 2-dB bound (39) increases linearly hwith). wln] = A, — /Al[n —1]. (60)
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Mean-square estimation error

Fig. 9. MSE from Monte Carlo simulations fohlL[n] (solid) andA[n] with n, = 10 (dashed), based on observations from a signal quantizeridits 2
exploiting feedback according to (53). The lower dotted line represents the Cramér—Rao bound for estinhatsieg ons[n], while the upper dotted line is the
2-dB bound (39); Parameters, = 0.1, A = 1, andA = 0.4.

An estimator similar to (59) can be used to estimdten this we may employ any consistent estimaﬁ)f[n] of A. For in-
case. Specifically, fon < n, the estimator may consist of astance, we may use one of the feedback-based algorithms cor-
precomputed lookup table, while fer > =, a recursive es- responding to the systeid = 2 by ignoring all but two of the
timator resulting from a truncated series expansio@pf(z) M levels of the quantized output. In the second stage, we fix
aroundz = A, can be employed, namely wln] = Ay — Ay [V:] for all » > Ni. The numberV; deter-
Lyl 41— ZCU(—A*)) mines the accuracy of the approximation

An] =Za <A[n e 2po(—Ay)

In particular, ifA, is the median of,,( - ), in which caseC(A.)
is given by (37), we have

L(A, + A— A [N1]) = L(A,).

For any givem. > N, we can then obtain an estimateg[n] of
A from

O N O e ) L WiV 1] 9N+ ol

In general, empirical evidence suggests that the MSE losshyf means of (46)—(48), which is asymptotically efficient with
these algorithms practically achieves the associétetl,) for respect to£(A, + A — A;[Ni]). For faster convergence,
a moderate number of observations. the overall estimate can be a weighed sum of the estimates
2) Feedback Control and Estimation for Signal Quantizers; [V:] and 212[71]. Although the associated asymptotic MSE
with M > 2: For the Gaussian sensor noise scenario, the Bbks can be made to approatlA..) arbitrarily closely, these
algorithm (54a), (54b) can be extendedH¢- ) with M > 2; algorithms typically require significantly larger data sets to
the resulting algorithm is a special case of the one presentecffectively achieve the desired information loss, as compared
Appendix E. Empirical evidence suggests that it is also asymjp-the algorithms fol = 2 of the previous section.
totically efficient. Assuming flexibility in selecting the thresh- The estimators developed in this section possess close con-
olds of the M -level quantizer, the corresponding informatiomections to a well-known class of oversampled analog-to-digital
loss (36) can be obtained from Fig. 6. For instance, for the of®/D) converters. Specifically, for largA /o, and for small,
timal selection of the quantizer thresholds fdr = 6 we have these estimators can be effectively viewed as generalized ver-
A, = 0; if the control input is selected according to (60), theions of successive approximation A/D converters, which take
EM algorithm in Appendix E yields a worst case MSE loss dghto account the sensor noise characteristics. Unlike the conven-
about 0.25 dB. Similarly ta,,,.x, the asymptotic MSE loss is tional successive-approximation A/D converters, once the suc-
independent of,, and A. cessive approximation step is small enough as compared to the
For signal quantizers withi/ > 2, wherewv[n] is any non- noise level (i.e., for large enougt), these estimators also in-
Gaussian noise, we may use the following two-stage approarporate the noise characteristics in obtaining their running es-
that effectively achieve£(A,). For the firstV; observations, timate.
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Central processing unit

Causal

Delay < Processing Aln]

Control inputs

v,[n]

Distributed sensors

Sensor noise

Aln]

Low-bandwidth signal

Fig. 10. Block diagram of a network of distributed signal quantizers using feedback in the context of signal estimation.

V. MULTIPLE SENSORS extensions of the single-sensor results to the associated mul-

In this section, we examine a network generalization of tﬁ'@ensor settings. Similar extensions can be derived for all the
estimation problem (1), (2a), and (2b), namely, estimating Qﬁher scenarios we developed in Sections Il and IV.

unknown parameted from observation of A. Random Control Inputs

yi[n] = F(A + vi[n] + wi[n]) We may consider, for instance, a network of signal quantizers
. L y forwhich the control inputs are i.i.d. sequences with known sta-
by s b e cescnpan, s ] <071 o
wifn]'s denote t’he a ’ Iiec; control ir; .u:[ e uenceé For si??u? adequately modeled as statistically independent of one an-
. bp P 9 : ?tg]er and of the sensor noises. In the case that all sensor noises

licity, we assume that the noise processes are independe : :
plcity proc P rbave equal strength?, the collection ofL. N x 1 observation
one anothet. Such networks may provide reasonably accurate v

N : - .
models for a number of distributed estimation problems that iX?Ctors{yi } can be viewed as a singléV L) x 1 observation

volve possibly remote sensors that are not colocated. In Fig. Ysctor collected from a single sensor, in which case all the anal-

for instance, we show the block diagram of a special caseyosfi? ?r:esi\(;g?:”s rllltla_i,:ealr:;/é\l/s-?si?rﬁ)::]easr.izin the effects of the
such distributed estimation network, which uses feedback in tgeensor noise and the random control comg onent) have variable
selection of the control inputs; however, distributed estimation . P . .
networks without feedback are also considered. strengths, Cramér—Rao bounds and corresponding ML estima-

Straightforward extensions of the single-sensor systems a%r_s can be formed with minor modifications of the single-sensor

veloped in Sections IIl and IV yield network generalizationé‘mblem' In general, for random control inputs at high peak SNR

that can be analyzed by means of the tools developed for S A > T fori =1,2, S L) _the worst case informa
. : . . Ion loss still grows quadratically with dynamic range for any
single-sensor case. For the remainder of this section, we restict . : o=
: . L ; ixed-length network with a fixed number of quantization levels
our attention to two-level quantizers in i.i.d. Gaussian sensor sensor noise comnonents with fixed power levels
noise, which we use as a representative example to illustrate ‘?ﬁg P P '

9The most interesting case in which the sensor noises are correlated coRi- Control Inputs in the Presence of Feedback

tioned in the signal component is not considered in this paper; thelcase " .
with correlated sensor noises is considered in [26] in the context of encodingsNetworks exploiting feedback from the quantized outputs to

in the form of vector quantization. the control inputs can also be analyzed using the associated
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Mean-square estimation error

Fig.11. MSE forA y; [N] andA[V] for a network off. = 5 two-level quantizers, using feedback in the selection of the control input, and associated Cramér—Rao
bounds (see also caption of Fig. 9). The sensor noise levels are 0.08, 0.08 0.08, 0.2, and 04 ~whikkandA = 1.

single-sensor principles. Specifically, the control input can kstrategy used in [30] is analogous to one of our strategies,
selected using (53), whecé[n — 1] denotes the estimate éf namely, one using symmetric binary quantizers (i.e., with
based on observations collected fromiaensors up to and in- X; = 0) with known control inputs, wherey;[1] denotes one
cluding timen — 1. It is worth noting that this type of feedbackperiod of a sawtooth waveform (i) spanning[1/v/L, v/L]

is analogous to case explored in [28] in the context of decentralith spacingl /v/L. It can easily be verified that the resulting
ized detection. encoded sequences are the same in both cases. Consistent with

In Fig. 11, we show the MSE performance of the networRUr analysis, our estimator (a variant of the one described in
extensions of the ML estimator (54a), (54b) a@dV] given by Appendix E) would exploit knowledge of the;[] but also of
(59) for a network ofL = 5 sensors and where the sensor noisés( - ) to also result in MSE that tends @oasL — cc. In fact,
are independent i.i.d. Gaussian random processes with spatifilyz—-c MSE = 0 is also achieved with properly designed
nonuniform sensor noise power levels. As in the single-seng@hdom control inputsu;[1] in ¢ (with a simple variation of our
case, the MSE of each estimator practically achieves the boigdorithm in Section V-A); however, the information loss in
corresponding to a 2-dB information loss for moderate that case is greater, implying that a lardewould be required

In the Gaussian scenario, for networks of two-level sign:tﬁ achieve the same MSE pe’rformance as we would with a
guantizers with feedback, the associated information loss cHrfluence of known sawtooth @hwaveform.
be directly obtained using appropriate interpretation of Fig. 7
describing the single-sensor case. Similar extensions of the as-
sociated single-sensor problem can be obtained for any set oln this paper, we have examined the problem of parameter
sensor noises fat/ > 2. For instance, if feedback is availableestimation based on observations fromidrlevel quantizer in
and properly used in the multisensor setting shown in Fig. 10tlee context of additive controlled perturbation of the quantizer
small worst case information (and MSE) loss can be achievelresholds. We have developed a methodology for evaluating
independent of the dynamic range and the noise power levelthese sequential quantization-based systems by means of a

There exist certain interesting connections between digure of merit which we refer to as the information loss; it
strategies and the one considered in [30]. In [30] Geawl. is defined as the increase in decibels that is incurred in the
consider the estimator arising far= 1 in the limit . — oo Cramér—Rao bound for unbiased estimates by a particular
and in the case where both and the sensor noises are botltombination of control input and/ -level quantizer. In general,
nonnegative. For a given fixel = N2, the authors construct for control-free systems the performance rapidly degrades
a sequence of quantizeds(-) for ¢ = 1,2,..., L with with peak SNRy, where x is defined as the ratio of the
X; = 4/v/L and employ it in conjunction with a simple parameter dynamic rangk to the sensor noise power levg).
decoding rule whose MSE is shown to tend to zerd.as oc. In particular, for a wide class of i.i.d. sensor noises, the worst
The resulting decoder exploits only knowledge Bfv;[n]), case information loss grows faster thgh if no control input
unlike our strategies which exploit knowledge Bf( - ). The is used.

VI. SUMMARY AND CONCLUDING REMARKS
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A number of important scenarios may arise in practice which APPENDIX A
differ in terms of the available knowledge about the control WORST CASE INFORMATION LOSS FOR
waveform for estimation and the associated freedom in the con- CONTROL-FREE SIGNAL QUANTIZERS

trol input selection. For scenarios where only the statistical char—In this appendix, we show that the worst case information loss
acterization of the control input can be exploited for estimatio f any signal quar;tizer grows faster thgh for largey in the
we have shown that random control inputs can provide signi hsence of a control input. We first consider the chbe= 2
cant performance benefits, in the sense that the worst case in A show by contradiction thalf<e (y) o+ o(x2) asy — o
mation loss grows quadratically with peak SNR. If knowledgf'ae. we show that nax '

of the particular control input is exploited for estimation, even ;

higher performance can be achieved. In particular, we devel- lim LX) _ 0 (61)
oped methods for selecting the control input from a suitably de- x—oo X2

signed class of periodic waveforms, for which the worst case igannot be true. Letting — oc is equivalent to fixingA and
formation loss grows linearly with peak SNR. Finally, for casegtting o, — 0%, since the control-free information loss for
where feedback is available we developed control waveform sgr — 2 is completely characterized by Let Boax(A, ou; )
lection strategies and corresponding computationally efficieignote the worst case Cramér—Rao bound for estimaitiingm

estimators that asymptotically achieve the best possible perfgire sample of the i.i.d. sequengie], for |A| < A, and noise
mance for quantizer-based systems with additive control inpuisyel .. Then, (61) implies that

Specifically, these estimators achieve the minimum possible in- ]

formation loss for the associated quantizer-based system, which Uh_{% " Bunax (A, 005 y) =0 (62)

is independent of peak SNR. We should emphasize that the pre- ’

ceding discussion applies to afy-level quantizer and a wide w%ere we used (4), (7), and (8). However, (62) suggests that,

n . L R
class of i.i.d. sensor noises. Furthermore, our methodology » — 07, we can estimatany 4 in (-4, A) with infinite

be generalized to scenarios involving networks of these qufrﬁcuracy from a 1-bit observatigsin], which is not possible.

H H free
tizer-based systems. T2 us, (61) is false, i.e£ e () has to grow at least as fast as

Complementary to this work, performance analysis an)fj Similarly, we can also show that™e () grows faster that
system design in [34] reveals the performance rates in Tabled . ' o . )
rgmain unaffgected[ if lystem desigE is basechwaragerather XQI’ n the sense that iz (x) 7 O-(XQ)' We show §h|s by first
worst case performance criteria, whehis a normally dis assuming that;i5(x) ~ O(x*), ., that we can find) < oo

A X R " andy,, such that fory > x, we havefee < Dy2, and
tributed random variable. In addition, in this work we hav X X~ X max(X) < Dx
assumed that the sequence used at the host for estimatiog
the same as the one encoded at the sensor. The case where
sensor encodings are observed at the host through a discrete L (0

rriving to a contradiction. The conditiaff*ec (x) ~ O(x?) is
lim sup

({ﬁigalent to the statement that there exists oo such that
memoryless channel (DMC) is examined in [42], where it X—00 X2
is shown that, given any fixed (nonpathological) DMC, th
performance rates in Table | also remain unaffected. As is a
shown in [42], however, the performance-optimizing encoders
and estimators in each case do depend on the DMC quality. limsup Buax(4Q, 0v; y) = D’ (64)

This preliminary work suggests a nhumber of important and Te0F

practical extensions for further investigation. As one examplhereD’ < oo. Since the sequeneagn] is i.i.d., (64) implies
it is important to study the performance that is achievable basbat ass, — 0%, the Cramér—Rao boun8(4; ™) is upper-
on (short) finite-length observation windows. Such analysis caounded byD’ /N, which goes td) asN — oo. However, for
potentially be beneficial for a number of applications involvingny A # 0, in the limit s, — 0 we havey[n] = sgn(A) with
signal quantizers, such as various distributed estimation prgebability 1 for all », which, in turn, implies thaB(A4; y™)
lems that arise in practical settings, reliable sensing of sutennot go td) asN — oo. Thus, we must hav®’ = oo in
threshold signals such as those encountered in cellular systef@4), which proves that the control-free worst case information
and design of oversampled A/D converters and coupled AlBss is notO(x?).
converter arrays. In the context of A/D conversion in partic- We can show that e (y) ~ O(x?) for signal quantizers
ular, itis noteworthy that, besides the interesting connections lvath A/ > 2, by using our results for/ = 2. Specifically, if
tween the feedback schemes to successive approximation A%0s fixed, in which casey — oo is equivalent tar,, — 0,
converters, all the control input encoding techniques we hatree arguments used for the = 2 case still apply with mi-
considered have similarities to nonsubtractive and subtractiver modifications. Next consider fixing,, in which case
dithering techniques [32], [33], [38], [43], [44]. For instancey — oo is equivalent taA — oo. As usual, letX1, X5, X1
in both the known control input case and the feedback caskenote the quantizer thresholds. By rescaling 1B\, this
knowledge of the control input is exploited by the estimatgroblem can be mapped to an equivalent one whkre- 1,
and compensated after quantization, although, unlike subtra¢-= o,,/A — 0%, and where the new quantizer thresholds are
tive dithering, the control input isot simply subtracted off the X; /A, Xo/A, X1 /A. The arguments used to show that
quantized signal, as the associated estimators (49), (53), @ (x) # O(x?) inthe M = 2 case are still valid in this case
(58) reveal. with minor modifications.

- D. (63)

%ain using (4) as well as (7) and (8) in (63) we obtain the
owing equivalent statement:
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APPENDIX B We can establish (67) via proof by contradiction; if the in-
WORST CASE INFORMATION LOSS FORKNOWN equality in (67) is reversed, for anyin (—A, A) we have
CONTROL INPUTS 26

We first show that for any known control input scenario, the Prldipu()) 2 - (68)
worst case information loss grows at least as fast.abhisis | ot 4. — jéforj =0, +1 +3j,, wherej, is the largest
] — Y [ AR 09 4

true for any admissible sensor noise distribution and for afdex j satisfying4; < A. Note thatj, > A/(26). Applying
M > 2. For convenience, we denote py( - ) the type (empir- (68) for A = A;, and summing over ajl yields
ical probability distribution) of the known sequeneg:] [45, p.

279]. The associated Cramér—Rao bound for estimatibgsed Jo ) 2§
ony[n] for a particulanp,,( - ) is given by > P4 pol( ) Z (240 + NN (69)
J=—Jo
B(A; ¥, po()) = e (E[{BA+w; »)} D~ (65) whichis acontradiction since the left-hand size of (69) is upper-
N bounded by2 [, p,,(w) dw, while (2j, + 1)(26)/A > 2. We
where the expectation is with respectig( - ). For instance, if can similarly derive the following generalization of (67):
the periodic sequence (27) is represented by an empirical pdf

. . . 26
consisting ofK’ Kronecker delta functions located afn] for inf > BPu(4; pu(-)) < N > b (70)
n=20,1,..., K —1and each with ared/ K, then (65) and l4l<a 7 k
(25) are equivalent. whereg; > 0 and at least one of th&,’s is nonzero. We have

For convenience, we consider the inverse of the Cramér—Rao -
bound in (65), namely, the Fisher information4fgiveny[n]. (A) = max inf Z/
We denote the Fisher information in the control-free case by > Pl 1A1<A £ Jys<uwt al<(ha1)s
F(A; y). The worst case Fisher informatiofiin(A; pw(-))

pw(w)

. - o Fwk FA+w; y)d
for a control inputw? with an empirical pdf,,( -) is defined (At w; ) duw
as : -1 .
< max inf [ [B(0; s)]7 " PolA4; puw(-
. max il ([ (0: )] Pol: pu ()
f‘min(A; p'w( . )) = inf E[-’T(A + w; y)] oo
lAl<A D
+>° Gy DA pw(~))> (712)
where the expectation is with respect tQ,(-). Consider k=1
the optimal selection op,,(-), which results in maximizing 28 . D&
Funin(: pul-)). i€ <A (BOTHE Y (71b)
k=1
Fopt (A) 2 ;H?X) f‘min(A; pw( : )) < g (71c)

The growth of the optimal worst case (i.e., the minimized maxvhereC < cc, since} ;- k~* is a convergent series fpr> 1.
imum) information loss equals the decrease of the inverse of ffie obtain (71a) and (71b) we used (66) and (70), respectively.
optimal worst case (i.e., the maximized minimum) Fisher infoAs (71c) reveals, for larga the optimal worst case information
mation defined above. loss grows at least as fast ggsincex = A for o, = 1).

We will make use of the fact that the control-free worst case We next show that simple periodic control input schemes can
information loss grows strictly faster thas for p < 2 [cf. the be constructed for which the worst case information loss (for
generalization of (63) to quantizers willd > 2]. Without loss N — o) grows linearly withy. It suffices to consider signal
of generality, we may set,, = 1, in which caseA = y. Since quantizers withM = 2, since signal quantizer with/ > 2
B(A; s)isindependent afi (and thusA), the control-free worst provide additional information and would thus perform at least
case Fisher information of based ony[n] decays faster than as well. In particular, we next show that-periodic waveforms
1/A* with increasingA for anyp < 2. Thus, there exisb > 0  given by (27), whereX is given by (28) for a fixedh > 0,
andé > 0, such that for anyA4| > ¢ achieve the optimal growth rate for any admissible sensor noise

and a symmetric two-level quantizer. LB(A; o,,) denote the

F(A; y)=[B(4; v)]* <min{ D|A|~”, [B(4; s)| "'} (66) Cramér—Rao bound (14) wita replaced by. Note that since

for any givenp < 2. For convenience, we pick so thatl < B(A; 0,) = 02B(AJoy; 1) (72)

p < 2. Also, let
we also have

A

Pk(A’ p“’( : )) = p“’(w) dw. Bmax(A; U'v) = O—gBmax(A/o—'ﬁ 1)

/k5§|w+,4|<(k+1)5
which in conjunction with (8) reveals that the associated infor-
mation loss is completely characterized by the ratie A/,
SinceK also solely depends opn, we may fixA = 1 without
26 loss of generality. Note that the class (27) remains invariant

|,;|n<fg7)k(A; pu()) < A (67) to changes irv,. Hence, we may usen; K] to denote the

For any empirical pdp,,(-) and anyA satisfyingA > §, we
must have
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unique K -periodic sequence from the class (27) correspondingsulting infinite series in (75) are both convergent since their

toA =1.Foro, < A, we have3)/o,, > K, and terms decay faster thdnin” for 1 < p < 2 [recall thatB(A4; v)
grows faster thanl” for the control-free scenario]. Clearly, the
Buax(1; 0v) value ofd., depends on the particular noise pdf.
= sup K (73a)  Extensions of the preceding control selection strategies can
Ag(—1,1) E[ (A +w[n; KJ; o)1 be developed, which achieve the optimal growth rate of the

worst case information loss for finitd’. Let w" denote the

3 ) — control vector associated with the finifé-strategy, which is
< oy ACS(EII’ 0 nC(l 2 ) B(A+wn; Kl;0u)  (73b) - a55umed known for estimation. Given a seudh] and K se-
<3 ’ ) BA ' n: K- lected according to the infinité¢ scheme, a finite¥ method
S Aoy A,e(_ls}fi’ Ve nella . K) (A'+w'[n; K| 1) that achieves the same information loss for ahgelectsw’

(73c) randomly from a set of{ equally likely vectordV(N, K) =

< B, sup BA: 1) (73d) ;{Uw]\f\lslgiéngbf;i, [\/;?e_rewt[r;%tiilrment of theV x 1 vector
AC(—=1/A,1/X) i 7 = .
where APPENDIX C
o[ K] = wln; K]/ow INFORMATION LOSS FORSIGNAL QUANTIZERS WITH M — oo

We consider a uniform quantizer wifll = 2(K + 1) levels.
and where we used (72) to obtain (73c) from (73b). To verif@iven K, we select the quantizer thresholds¥s= k/v/ Kz,
(73d) from (73c), note that for any fixed’ in (-1/0,, 1/0,,), wherek = —K, ..., K, andz > 0. For convenience, we
the minimum ofB(A’ + w/[n; K|; 1) overn is upper-bounded let X_;_; = —oc and Xx,; = oo. We next examine the
by B(A" + w'[n’; K]; 1), wheren' is the value ofr for which  Cramér-Rao bound (12) far[n] = 0, wherev[n] is admis-
|A” + w'[n; K]| is the smallest. Since the spacifig: of the sible. We may rewrite (12) as
sawtooth waveformu'[n; K] satisfiesé,, = 6, /cn < 2/,

- —1
|A” + w'[n/; K]| is upper-bounded by, /2 < 1/ for any v 1 [
|4'| < 1/o,, verifying (73d). Sincé3(A4; s) ~ o2 from (8) and BAy") =+ Z &k (76a)
by using (73d), the worst case information loss for knawn| k=—K
given by (27) withK given by (28) is inversely proportional towhere
o, for smalls,,. Hence, this control selection method achieves
h imal inf ion | h [po(Xx —A4) — po(Xp—1 — A)]2
the optimal worst case information loss growth rate. & = (76b)
We next determine the optimalin (28) for the case where Co(Xp—1 — A) = Cy(Xx — A4)

v[n] is Gaussian with variance?. We useBx(z; x, K) to de-

Note that ag( ,bothé_x — 0andéx 0. By lettin
note the Cramér—Rao bound (25) fér= xA in order to make > -k — EK+1 — y g

its dependence opand on the period in (27) explicit. The op- mp = (Xp +Xp_1)/2— A

timality of (28) suggests thdt,,; from (26) is a nondecreasing

function of  for largey. Indeed, there is a sequenggwhere for largeK and fork = —K +1, ..., K we have

k > 3, such thatK . (x) =k, if x < x < xa+41- If x = xa, . . ,

bothK = k andK = k + 1 minimize (26), i.e., oKk = A) = po( Ximy = A) mpl, (ma)z/ VE

) ] Co(Xpo1 — A) = Cu( Xy — A) mpu(mr)z/VE
sup By (z; xw, k) = sup  Bu(z; xu, k+1). (74)

@e(—1,1) @e(—1,1) which imply that
For largek the left-hand side of (74) is maximized at= 1 P (m)] @
i — A i ight- ide i imi SR S 77
[i.e., A = Ain (25)], while the right-hand side is maximized &k o (my) VK (77)

atz = 1 — d(xx; k)/2 with d( -; -) given by (29). Assuming
that dop: (x) in (30) converges for largg to a limit, i.e., that Approximation (77) becomes an equality &s— oc. Letting

doo = lim, o, dopi(x) eXists, (74) reduces to K — ocin (76a), (76b), and using (77) yields
o0 o) . N

S Balin+1/2)ds D7 = 3 (B D) 79) 0B 1

n=-—1 n=0 1 r —
where By (A; o) denotesB(4; o) for v[n] Gaussian, and is TN |1 o (5 K&k + Py o0 z; lgk]
given by (16) fors,, = ¢. Bothinfinite series in (75) are conver- e , ) o o
gent; in fact, only a few terms from each series are requiredto ~ _ 1 / [P, (t = A)] dt}
obtain an accurate estimatedy, such as the one givenin (32). N [Jie—oo pu(t—A4)
Using d~. from (32) in conjunction with (74) and (25) yields 1 [ = Olup,(t — A) 2 -1
(33). Similar results hold for non-Gaussian sensor noise pdfs. = N / <'8—A> pu(t — A)dt
Specifically, a relation of the form (75) holds fdg, defined in t=—o0
(31), whereBx/( -; - ) is replaced by the associat8d-; - ). The = B(A; s"™).
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APPENDIX D
ASYMPTOTICEFFICIENCY OFML ESTIMATOR FORCASE M = 2

In this appendix, we show thaty; = Ay (yY; A) given

by (41)—(43) achieves (14) fa¥ large, ifa[n] is adm|SS|bIe Let

k denote the binomial random variabitéy™) = Ky (y™)/N.
Then

—A, if k< Co(A)
AL = Q g(B) = —C7U k), if Ca(D) < < Ca(—A)

A, if k> Cu(—A).

For large/, the following approximation is valid in the cumu-which when substituted in (81b) results in (81c), and (81d).

lative sense [46, p. 214]:
k ~ N(p7 &A’)

Vp(l —p)/N. Sincey( -

(78)

wherep = C,(—A) andéy =

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 3, MARCH 2001

Approximation (81a) results from using (78) in (79). To verify

(81b) note that in the region that

exp(—[Ca(—A4) = Ca(-A)*/[26%))
is essentially nonzero, we have
Pal(—A) &= pa(—A).

Forony < 0., the following approximation is valid for the
exponent in (81b):

[Ca(=4) = Ca(=A))* = (pa(~A)* (A~ A)*

From (81d), for largeN we haveAy ~ N(A4, v2/N) in
the regime(—A, A). ProvidedN is large enoughfy?/AN <
A — |4, in which case the MSE term contributed frof,;, €
(—A, A) approaches the Cramér—Rao boyAd/N . Next, con-

invertible [C,,( - ) is strlctly monotone aImost everywhere] th(é?Ider the two other regimes, wherg;, = £A. Let

pdfs of Ay and are related as follows [46, p. 93]:

8(A - 2)Q (VNS ).
#(Ca(=A)pa(—A), if—A<A<A
6(A+2)Q(VNE), itAd=-A

if A=A
pAML(A) ~ p

(79)
where

Co(=A)—p

V(1 —p)

P Ca(A)

= T B

Note that the pdf ofiy. in (79) consists of a sum of Kronecker.

delta functions.
We firstconsidep 4

imations forp 3 (A) are valid in the regimé—A, A), in the

sense that for anL)ﬁ in(—A, A)the values of the corresponding
cumulative distribution functions are approximately equal (and

where the approximation generally improveshaéncreases):

S (Ca(—A) — Cu(~A))? :
Py, (A) = NoTEN eXP(‘ 252, )p +(=4)
(81a)
N 1
V2752 (pa(—A)) 2
e <— (Col=d) ff“(_A))2> 81b)
205
1 (A—4)?
~ €X —\Pa _A 2 ~92
(o)
(81c)
~ 1 (A_A) . (81d)
Var (v/VN) (+/VN)
where
= [1 = Ca(=A)]Ca(—A)(pal(—A4))~?

. (A)for |A] < A.If N islarge enough,
so that (78) is valid and alsby < o,, the following approx-

p— = exp(—B2/2)
and
P+ = eXP(—/342./2)
where/s_ andg,. are given by (80). For large enough
QWNBy) = crpf VN
and

Q(VNB_) =~ copl /VN.

Since0 < p4, p— < 1, the corresponding MSE terms go to

zero much faster thaty NV for large NV, so their contribution to
the MSE becomes negligible for largéas compared t92/N.
Hence, A1 achieves the Cramér—Rao bound (12) for lakge

APPENDIX E
EM ALGORITHM FOR PARAMETER ESTIMATION IN GAUSSIAN
NOISE VIA SIGNAL QUANTIZERS

In this appendix, we present the derivation of an EM algo-

rithm that can be used to obtain the ML estimatordofrom a
network of signal quantizers. Thth observationy; is given by
Y = Fi(zs), 1=1,2,...,1

where

A is the unknown parameter of interest,~ A(0, 7), w; is
the selected (known) control input, a#¢l( - ) is theith quan-
tizer and is given by (2a) and (2b). We uXg(-) and X;( )
to denote the functions mapping each quantizer l&ygbf the

¢th quantized;( - ) to the associated lower and upper thresholds

X,n_1 and X,,,, respectively.

We select as the complete set of data thersén (82). For
convenience, let
and y=[y1 w - wl -

T
w:[a:l T2 37[]

The EM algorithm selectsig‘ﬁl) the k + 1st estimate ofA

based om( av andy, according to

Agﬂl) = arg max U (9; flg&)
8] <A

(83)
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where we obtain forE;[k] the first expression shown at the bottom of
Ule: AY = B 1 Oy AP | 84 this page, which when substituted in (87) results in (88), also
( ’ EM) [np(w’ Iy EM} (84) shown at the bottom of this page. Several special cases of (88)
The log-likelihood functiorlnp(:r:; 6) satisfies are of interest. In particular, if;(z) = F(z) = sgn(z), (88)
reduces to
1 ) =C— ; — 0)?
n p(x; Z 307 —w )
I ARD 7 | 4%
1 EM A EM
2 I
)+6 Z —w) =62 5. (89) 35 o2
i=1 i=1
If we substitute (85) fotnp(:c, 6) in (84) we obtain (A% )
. . 02 exp _%
U (6 AR = B [p@)lys AlR| - 0B+ S 1 (86) N < ? )
< 3
I I
E[k] = Z % Eilk] = Z % (E [$i|y; Agﬁ\ﬂ — wz) . of which (54a), (54b) is a special case. Next, consider the special
izl Oi =1 71 case wheréV observations are collected from a singlelevel

quantizer [i.e..[;(z) = F(z) andl = NJ]. If, in addition,

S . . B
Substituting in (83) the expression fof(#; Ay, ) in (86) we wi = wando; = o for all i, (88) reduces to (89) found

obtain at the bottom of the page; note that only the sufficient statis-
AETD = 7, (E[k]/p). @87) ticsKy, (), Ky, (¥), - -, Kyy,_, (y) are used in (89) to obtain
ML-
Letz; = X<(ui) andz; = X, (y;). Using
( | )) APPENDIX F
wily; Apn ASYMPTOTICALLY EFFICIENT ESTIMATION FOR RANDOM
=p (a:i|ui; Agj\)i) CONTROL INPUTS
Ak e e N1 We develop a class of asymptotically efficient estimators of
— e A 200 AW AW . .
p (?Jz|$w EM)p( i AEM | [P\ Y SEM the parameterd, based on observation of (1) whef ) is

e
1 T 7AF‘.I\'I —Wq A(k) . z°

A( ) w; EZ—A(k> —Ww;
@ (—:}‘ )-o(mthe

2 — ~(k 2
( Al(zklgl | i) (l‘i—Ag&—wi)
exXp T — exp _T
~(L o
=AW 4 % '
2 i A —w; 7 — A —w;
Q + -Q +

, exp <_ (’I‘ —A;Eleé—w )2> — exp < (’I‘ —A;Eleé—w )2>
o 1 o o’
AWFD — 7, = . (88)

EM

(o ima)’ (i

Mo W) EXpl\ 2 | TP |~
A+ 7 | am o Ky : 89
EM A EM Tg::l V21N o) <)(vn1——f41(a11\>1—w> e <L§;&_w> o
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given by (2a) and (2b), and wherén] in (10) is an i.i.d. admis- due to|4;] < A), we haveA ~ N(A1, C/N) in the cumula-
sible noise process. In the absence of a control indui,equals tive sense, wher€ = F~1RF~1, and
v[n]. Consider the following collection of binary sequences:

P =diag(f1, fo, -5 fau-1)-

yiln] = F;(A+ an]) = sgn(4 + a|n] — X;
2 ( ) ( g ) It can be readily verified that

fori =1, 2, ..., M—1.The observed outpytn] is equivalent
to the collectiony; [n], . .., yar—1[n], sincey[n] = 3, v;[n] ap by 0 .- 0
andy;[n] = sgn(y[n] — Y;). The ML estimate ofd based on by as b :
. -1 _ .
v =[wlll wl - wNT e o)
is given by A, in (46). We have oo e b
R X 0 -+ 0 by amu—
Ai =IA(-C, (1)) (90)  ihere
where 2 2 f
1 1 a; = fl + fl and b, = M
A v i—1 — Di i — Di i+1 — Di
n If C were available, then the optimal estimate (in terms of min-

) N imizing the MSE) would be
The estimators we develop next are based on the vettie-

fined in (47). Note that, although the collectionfs is a set of A=ATA=(Tc 1) 11'Cc*A
sufficient statistics for the problend is not, in general, a suf- _ _

ficient statistic due to the limiting operation in (47). As a firstvhile the associated MSE would satisfy

step in obtaining the distribution of for large N, we obtain the . — 2 AT relqr—l )
distribution of the vector M NE[(A=A)T]=7C71)™ = B4 v)

T=[Ty T, - Ty_1]". i.e., this estimator would be asymptotically efficient. However,
C'is a function of the unknown parametér Instead, note that
For convenience, let C(A;) approacheg’(A) for large N for any:. Specifically,A4;

A is a consistent estimate since it is an asymptotically efficient
pi = Ca(Xi — A) estimate with respect to the Cramér—Rao bound for a two-level
and guantizer with threshol&’;. Hence, set = 1 and consider

A 7
f7_p(y(A7_A) A:A(Al)TA
First note that the distribution of the vector whereA(®) = (17C-1(9)1)117C-1(6). Let® = A - A,
[Ky,(¥Y) Ky,(¥™) - Ky, @™]* z=4%— A and? = A— Al. Also, letAX = A(A;) — A(A4),
_ _ _ _ _ and denote byA\; theith element ofAX. Then
is multinomial, and approaches a Gaussian vector in the cumu-
lative sense [46, p. 214]. ThE's are linear combinations of the lim NE[(A-A)?; A] = A}im NE[2%; A

Ky (yN)'s, since N=
vi(y") = Alim NE[Z+ AX'2)%; A]

M
- N - . i O
T, = Z Ky, (™). = B(4; y)+A;gréoNZ(ﬁw+¢w)
j=i+1 v J
ConsequentlyZ’ also approaches a Gaussian vector in the cu- (92)
mulative sense, i.€L’ ~ N(T', Rr), where where
T = ... T
T=[p bpo pym—1] i = E[ANAN 2]
Ry = R/N, and and
pi(1-p1) p2(1=p1) - py—1(1-p1) G, = E[AXA;2:2)].
p2(l—p1)  p2l-p2) - pu-1(l-p2) _ _
= . ) ) . Note that in Appendix E we have shown that
prv—1(1=p1) py—1(1=p2) --- py—1(1—pr—1) lim NE[(A; — A)?] = B(4; ).
N—oo

In a manner analogous to the cake = 2 described in Ap-

pendix E, by using the theorem for the pdf of transformation &incep,( - ) is admissible, for largév we have
variables [46, p. 93], and in the limit & — oo (where we in-

voke the central limit theorem and ignore the boundary effects AN &= (AL — AN(A).
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Also, sinceA; — A is Gaussian for largéV (see Appendix E),
S0 isA);. In addition, there exist&' > |A;(A)| for all ¢, which
implies thatE[AN?] < G/N, and E[A)N}] < 3G?/N?. There
also existsU/ such that&[2?] < U/N for all 4, for N large
enough. Finally, leh,,,,. = max; A\;(A4). Repeated applications
of the Schwarz inequality yield

(12]

(13]

(14]

. . 3GU 15
185,51 < (EIAN] BIAX]] E[#] BlE)Y* < o5 1]
e A 3GU el
G| S Amax (B[AND) V2 (ELE] E[EDY* < 22—
NvVN (7]
which, when substituted in (92), result in
. (18]
lim NE[(A— A)% A]
N—oo [19]
< B(Aiy)+ ) lim N(I8; 51+ 6.41)
b [20]
3GU  ApaxV3GU
< B(A; y)+ li +
< B4 y) ; Nos \ TN VN [21]
< B(4; y). (93)

[22]
SinceA is asymptotically unbiased (as a sum of asymptoticallym]
unbiased estimates), fé¥ large we have

E[(A— 4)% A] > B(4; y)/N [24]

which in conjunction with (93) yields the desired (49). [25]
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