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Sequential Signal Encoding from Noisy
Measurements Using Quantizers with Dynamic Bias
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Abstract—Signal estimation from a sequential encoding in the
form of quantized noisy measurements is considered. As an ex-
ample context, this problem arises in a number of remote sensing
applications, where a central site estimates an information-bearing
signal from low-bandwidth digitized information received from re-
mote sensors, and may or may not broadcast feedback informa-
tion to the sensors. We demonstrate that the use of an appropri-
ately designed and often easily implemented additive control input
before signal quantization at the sensor can significantly enhance
overall system performance. In particular, we develop efficient es-
timators in conjunction with optimized random, deterministic, and
feedback-based control inputs, resulting in a hierarchy of systems
that trade performance for complexity.

Index Terms—Data fusion, distributed estimation, dithering,
maximum likelihood (ML), quantization, stochastic resonance,
wireless networks.

I. INTRODUCTION

I N this paper, we consider a particular problem of estimating
an information-bearing signal from noisy measurements

where system constraints force us to rely on a quantized
description of those measurements. Problems of this kind
arise in the context of data fusion in a very broad and diverse
range of applications, including distributed sensing for military
applications [1], data-based management systems [2], target
tracking and surveillance for robot navigation [3], [4], radar
applications [5], and medical imaging [6].

Recently, data fusion has attracted considerable attention in
the context of distributed sensing problems, due to the contin-
uing reduction in the cost of sensors and computation, and the
performance improvements that inherently emanate from the
use of multiple sensors [7]. Unlike classical multisensor fusion
where the data collected by the sensors are communicated in full
to a central processor, it is often desirable to perform some form
of decentralized processing at the sensor before communicating
the acquired information to the central processor in a condensed
and often lossy form.
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Various challenging signal detection and estimation problems
that have surfaced in such distributed sensing applications have
been addressed. For instance, it is important to determine the
extent to which decentralized preprocessing limits performance
and to develop low-complexity methods for performing decen-
tralized data fusion. As Hallet al. [8] show in the context of
decentralized estimation, depending on the particular scenario,
distributed data processing may range from being optimal, in the
sense that no loss in performance is incurred by simply commu-
nicating the local estimates computed at each sensor, to being
catastrophic, in the sense that not sufficiently careful prepro-
cessing at each sensor can completely eliminate the underlying
structure in the joint set of sensor measurements. Similar perfor-
mance characteristics are exhibited in decentralized signal de-
tection problems [9], [10]. Although for many important cases
of practical interest decentralized signal detection and estima-
tion methods have been formed for locally optimized processing
at each sensor and subsequent efficient data fusion at the host
(see [8]–[18] and the references therein), a number of real-time
decentralized fusion problems are still largely unexplored.

The distributed sensing problem that is considered in this
work arises, for example, in the context of wireless sensor net-
works and involves a central site estimating a remotely acquired
analog signal from an efficiently encoded digital description
constructed at the remote sensors. In such a network, the local
measurements made at each sensor must be communicated ef-
fectively without delay to a host over a wireless channel, where
they must be effectively combined to decipher the information-
bearing signal. Since bandwidth must often be shared across
such a sensor network, the effective data rate at which each
sensor can reliably communicate to the host over the wireless
channel may be severely limited, often to a few bits of infor-
mation per each acquired sensor measurement. The need for
power-efficient design may also place constraints in the avail-
able processing complexity at each sensor, but usually not at
the host, which typically possesses more processing power than
each individual sensor. Depending upon bandwidth availability
in these wireless networks, the host may or may not broadcast
information back to the remote sensors, so as to improve the
quality of the future sensor data it receives. Finally, as delays
in transferring information across such a network may be a crit-
ical constraint, it may also be desirable to employ techniques
that provide sequences of sequentially refined signal estimates
at the host.

Similar problems arise in applications involving sensing de-
vices or measurement apparatuses intrinsically limited by de-
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Fig. 1. Block diagram of encoding the noisy measurements at the sensor and
signal estimation from these encodings at the host.

sign. In many cases, the sensing devices exhibit only a finite set
of possible outputs and there is limited flexibility in terms of af-
fecting or biasing these outputs. Networks of resolution-limited
sensors are also employed by a number of biological systems for
performing vital sensory tasks, suggesting that the type of pro-
cessing performed by these systems somehow corresponds to
an efficient use of resources [19]–[21]. For instance, it has been
conjectured that certain types of crayfish enhance the ability of
their crude sensory neurons to reliably detect weak signals sent
by their predators by exploiting remarkably simple and, at first
sight, counterintuitive preprocessing [20].

In developing methods for overcoming the power/bandwidth
constraints that may arise across a sensor network, or the dy-
namic range and resolution constraints at each sensor, it is in-
structive to first examine the single-sensor problem. In fact, this
special case captures many of the key design and performance
issues that arise in the context of networks of sensors. The block
diagram corresponding to a single sensor is shown in Fig. 1,
where denotes the information-bearing signal at time,

represents sensor noise, denotes the sensor measure-
ment sequence, and denotes the sequence of-ary sym-
bols encoded at the sensor and timeand used at the host to ob-
tain a signal estimate . In general, the task is to design the
encoder at the sensor (subject to existing available processing
power, transmit power, bandwidth, and delay constraints) and
the associated estimator from the encodings at the host so as to
optimize the host estimate quality.

This problem can be viewed as one of lossy encoding of a
noisy source where in addition to the bandwidth/rate constraints,
there exist delay and processing power constraints. Since the
end objective is to obtain an accurate signal reconstruction of the
information-bearing signal in the measurements, the metric we
employ for evaluating the encoding performance is based on the
fidelity of the underlying signal estimate resulting from the en-
coding, rather than on the quality of the approximate represen-
tation of the source (sensor) data obtained at the host from the
encoding [22, p. 78]. A number of lossy encoding methods for
noisy sources have been developed in the literature for a variety
of signal-in-noise models. These methods range from the infor-
mation-theoretic solutions for the achievable rate-distortion re-
gions in the absence of complexity constraints [22, p. 124], [23],
to more practical approaches [24], [25]. For instance, in [25],
practical solutions are developed whereby the problem of lossy
encoding of a noisy source is mapped to an equivalent standard
lossy encoding problem and modified distortion measures are
exploited to develop systems based on vector quantization. Var-
ious related decentralized detection and estimation problems in
the context of bandwidth/rate constraints have been examined
in the literature; see [26]–[31], and the references therein.

To illustrate some of the key issues that may arise in the en-
coder design, it is insightful to consider the static case, i.e., the
case where the signal is varying slowly enough that we
may view it as static over the observation interval. Given a fixed
time instant , we can easily devise a method for efficiently en-
coding the sensor measurements , into a
sequence of -ary symbols provided

is large. Specifically, consider the following algorithm:

At the sensor:

i) compute an estimate of the static

information-bearing signal using the N

sensor measurements;

ii) quantize the estimate using a uniform

quantizer with MN quantization levels;

iii) communicate to the host the quantized

level by means of the N M -ary symbols

y[1]; y[2]; . . . ; y[N ].

At the host:

reconstruct the “quantized” estimate using

y[1]; y[2]; . . . ; y[N ].

Clearly, since the number of available quantization levels in
step ii) of the encoder grows exponentially with the number of
available observations , the error between the “quantized” es-
timate used at the host and the original sensor estimate produced
in step i) of the encoder (i.e., the estimate prior to quantization)
decays exponentially fast with .

A major disadvantage of such an encoding scheme, however,
is that it is not sequentially refinable, namely, it provides an
one-shot description; no encodings are available to the host for
forming estimates before time , and no encodings are avail-
able after time to further refine the quality of the host esti-
mate. Furthermore, this encoding scheme assumes that there is
absolute freedom in designing the -level quantizer. How-
ever, this is often not the case such as in problems where the
sensors are intrinsically limited by design. For these reasons,
unlike, for instance, the work in [25] and [26], in this paper we
focus on designing sequentially refinable encoding strategies.
This design problem can be viewed, in some sense, as the analog
of the detection problem considered in [28] in the context of esti-
mation. In addition, some of the refinable strategies we develop
are shown to have interesting connections to the technique pro-
posed in [30].

One of simplest refinable encoding strategies that can be con-
structed consists of quantizing each noisy measurement at the
sensor by means of an -level quantizer. As we show, how-
ever, this simple encoding scheme can have very poor perfor-
mance characteristics, in terms of overcoming the power/band-
width constraints across the network, or the dynamic range and
resolution constraints at the sensor. As a means for improving
the effective digital encoding we may consider the use of a
control input added to the information-bearing signal prior to
quantization at the sensor. The block diagram corresponding
to a single sensor in the context of such a remote-sensing es-
timation environment is shown in Fig. 2, where denotes
the slowly varying information-bearing signal, represents
sensor noise, is a control input, and denotes the quan-
tized signal that is sent to the central site. The operation of
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Fig. 2. Signal estimation via quantized observations, in the context of
low-complexity encoding methods that are based on an additive control input.

adding a control input prior to quantization is often used in ap-
plications involving lossy compression such as video and audio
coding where it is commonly referred to as dithering [32], [33].
In some (but not all) of the cases we consider, the control input
plays a role very similar to dithering.

In this paper, we focus on the static case of the estimation
problem depicted in Fig. 2 in which , i.e., we examine
the problem of estimating a noise-corrupted unknown param-
eter via quantized observations. This case reveals several key
features of signal estimation from quantized observations ob-
tained via a system comprising a control input and a quantizer;
extensions of our analysis corresponding to the case where
corresponds to a sample path of an autoregressive moving av-
erage process are developed in [34].

Several basic variations of the estimation problem in Fig. 2
can arise in practice, which differ in the amount of informa-
tion about the control input that is available for estimation and
the associated freedom in the control input selection. In this
paper, we develop effective control input selection strategies
and associated estimators for several such important scenarios.
In particular, for random control inputs that are well modeled
as independent and identically distributed (i.i.d.) processes and
whose statistical characterization alone is exploited at the re-
ceiver, we show that there is an optimal power level for mini-
mizing the mean-square estimation error (MSE). The existence
of a nonzero optimal control input power level reveals strong
connections to the phenomenon of stochastic resonance, which
is encountered in a number of physical nonlinear systems where
thresholding occurs and is often exploited for signal enhance-
ment [20], [35], [36]. In addition, it possesses strong connec-
tions to pseudorandom dithering techniques often exploited for
image and audio compression [32]. Performance can be further
enhanced if detailed knowledge of the applied control wave-
form is exploited at the receiver. In this scenario, we develop
methods for judiciously selecting the control input from a suit-
able class of periodic waveforms for any given system. Finally,
for scenarios where feedback from the quantized output to the
control input is available, we show that, when combined with
suitably designed receivers, these signal quantizers come within
a small loss of the quantizer-free performance.1 In the process
we develop a framework for constructing the control input from
past observations and design computationally efficient estima-
tors that effectively optimize performance in terms of MSE.

The outline of the paper is as follows. In Section II, we de-
scribe the parameter estimation problem associated with the

1Although the feedback loop can be entirely implemented at the sensor, sensor
complexity is reduced by having the feedback information come from the cen-
tral site. This may be especially attractive in wireless sensor networks where
there are less stringent power resources available at the central site, provided
bandwidth is available for broadcasting high-resolution control information to
the sensors.

system depicted in Fig. 2. In Section III, we develop the esti-
mation performance limits for a number of important scenarios.
In Section IV, we design control inputs and associated estima-
tors for each of these distinct scenarios, which achieve the per-
formance limits developed in Section III. Finally, in Section V,
we examine a particular network generalization of the scenario
depicted in Fig. 2, in which signal estimation is based on quan-
tized observations collected from multiple sensors.

II. SYSTEM MODEL

As outlined in Section I, we consider the problem of esti-
mating an unknown parameterfrom observation of

(1)

where the sensor noise is an i.i.d. process, is a
control input, and the function is an -level quantizer,
with the quantized output taking distinct values

, i.e.,

if for

otherwise
(2a)

where and . We note that two sets of
encodings produced by quantizing the same sequence

via two -level quantizers with thesameset of ’s and dif-
ferent (but distinct) quantization levels are equivalent from the
point of view of signal estimation. Hence, without loss of gener-
ality, we assume that the quantizer levels are uniformly spaced,
i.e.,

(2b)

Any other set of distinct quantization levels leads to a set of
measurements that is equivalent to the one generated via
the quantization levels (2b), in the sense that the two quantized
measurement sets are related by means of an invertible transfor-
mation. For convenience, we shall often consider the interme-
diatemeasurementsequence

(3)

We shall frequently be interested in a measure of predicted
performance for a family of sensor noises parameterized by
in (3), arising from scaling an i.i.d. noise sequence . We
use the notation to denote the probability density func-
tion (pdf) of any sample of an i.i.d. sequence , and
to denote one minus the corresponding cumulative distribution,
i.e.,

For convenience, we shall refer to an i.i.d. noise process asad-
missibleif the associated pdf is nonzero and smooth (i.e.,)
almost everywhere. Throughout the paper, we assume that all
noise processes are admissible, including as well as ,
when is viewed as another random process. Furthermore,
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when referring to a Gaussian process we assume it is i.i.d. and
zero-mean, unless we specify otherwise.

III. PERFORMANCELIMITS

In this section, we quantify the performance degradation that
results from estimating based on observation of instead
of . We first introduce the concept ofinformation loss, which
we will use as a figure of merit to design quantizer systems
and evaluate the associated estimators. We then present a brief
preview of performance limits based on this notion for a number
of important scenarios and finally develop these performance
limits in Sections III-A–C.

The quality of the signal encoding is evaluated by comparing
the limits of the estimate fidelity based on the encoding to that of
the estimate based on the original measurements. Specifically,
we define the information loss of an encoder comprising a con-
trol input followed by a quantizer as the ratio of the Cramér–Rao
bounds for unbiased estimates of the parameterobtained via

and , respectively, i.e.,

(4)

where is the Cramér–Rao bound [37, p. 66] for unbi-
ased estimation of from2

(5)

where is given by (1), and where and are
defined similarly. We often consider the information loss (4) in
decibels [i.e., ]; it represents the additional MSE
in decibels that arises from observing instead of in
the context of efficient estimation of. From this perspective,
better systems achieve smaller information loss over the range
of parameter values of interest.

Taking into account the inherent dynamic range limitations
of these signal quantizers, we assume that the unknown param-
eter takes values in the range , with assumed to be
known. Often, the degradation of the estimation quality is con-
veniently characterized in terms of the ratio , which
we may view as a measure of peak signal-to-noise ratio (peak
SNR).

Given that the signal parameter is assumed to be unknown,
worst case performance is used to characterize the overall
system. Accordingly, we define the worst case Cramér–Rao
bound and worst case information loss via

(6)

and

(7)

respectively. Both the worst case Cramér–Rao bound and the
worst case information loss are functions of other system pa-
rameters, such as and , the dependence on which is sup-
pressed for convenience in the above definitions.

2Referring toL(A) in (4) as “information loss” is reasonable as (4) is also
equal to the inverse of the ratio of the associated Fisher information quantities.

TABLE I
ORDER OFGROWTH OFWORSTCASE INFORMATION LOSS AS AFUNCTION OF

PEAK SNR� = �=� FOR LARGE� AND FOR ANY M -LEVEL QUANTIZER.
THE QUANTITY � DENOTES THEDYNAMIC RANGE OF THEUNKNOWN

PARAMETER, AND � IS THE SENSORNOISE POWER LEVEL. THE GAUSSIAN

CASE REFERS TOGAUSSIAN SENSORNOISE OFVARIANCE � . THE GENERAL

CASE REFERS TOANY ADMISSIBLE SENSORNOISE

As a consequence of the linear model (3), the Cramér–Rao
bound is independent of the parameter value, i.e.,

for any . Furthermore, the bound
is proportional to ; by letting

and using (3), we obtain

(8)

where denotes the Cramér–Rao bound for estimating
based on any one sample of the i.i.d. sequence.3 Hence,
since from (8) is independent of , both
and can be used interchangeably as figures of merit
for assessing the performance of quantizer systems.

Table I summarizes the performance limits as described by
the worst case information loss for a number of important sce-
narios. As we will show, in any of these scenarios the worst case
information loss can be conveniently characterized as a func-
tion of peak SNR . According to Table I, random control in-
puts with properly chosen power levels provide performance im-
provements over control-free systems in any admissible noise.
Specifically, for random control inputs, the control input power
level can be selected so that the worst case information loss
grows only quadratically with , while it can be shown to grow
faster than quadratically in the control-free case for any admis-
sible sensor noise. When the control input is known for estima-
tion, the associated worst case loss can be made to grow as slow
as with proper control input selection. Finally, if feedback
information from the encoder output is available and properly
used in the selection of the control input, a fixed small informa-
tion loss can be achieved, which does not grow with increasing

. In the remainder of Section III, we develop the performance
limits shown in Table I, while in Section IV we develop control
selection methods and associated estimators that achieve these
limits.

3There exist i.i.d. sensor noises for which estimators based on the sensor
measurements can be constructed with MSE that decays faster than1=N .
For instance, in cases that the sensor noise is i.i.d. with uniformly distributed
marginals, by using a maximum-likelihood (ML) estimator the MSE can be
made to decay as1=N . In all these cases, the Cramér–Rao bound (8) does not
exist. These noises are nonadmissible according to the definition in Section II,
and their treatment is beyond the scope of this paper.
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A. Random Control Inputs

In this section, we consider signal quantizers with control in-
puts that correspond to sample paths of an i.i.d. process,
independent of the sensor noise process, and determine
the performance limits in estimating the unknown parameter

based on observation of from (5), by simply exploiting
the statistical characterization of at the receiver. A sim-
ilar type of control signal is often exploited in the context of
lossy compression and is commonly referred to as nonsubtrac-
tive dithering; it has been shown to provide compression/dis-
tortion improvements in the context of encoding of images [38]
and audio [32], and more generally in the context of lossy com-
pression (see [39], [40], [32] and the references therein).

In general, we may consider families of random control inputs
parameterized by means of a scale parameter, where

, and where is an admissible i.i.d. noise sequence
with pdf . Our goal is to select the random control scaling
parameter so as to optimize performance in terms of the
associated worst case information loss.4

The Cramér–Rao bound for all unbiased estimates of the pa-
rameter based on observation of the vector is defined as
[37, p. 66]

where is the associated likelihood function, denoting
the probability that the particular vector is observed from (1)
given that the unknown parameter takes the value. In partic-
ular, the log-likelihood function satisfies

(9)

where denotes the number of entries in that are
equal to . Since the aggregate noise

(10)

is an i.i.d. sequence, satisfies the condition

(11)

where corresponds to the Cramér–Rao bound for esti-
mating based on any one sample of the i.i.d. sequence.
Finally, by taking the second partial derivative of (9) with re-
spect to followed by an expectation, we obtain

(12)
For the system corresponding to the symmetric two-level

quantizer , i.e.,

(13)

4The scaling factor� can be viewed as a measure of the strength of the
control input processw[n]. For cases where the control input variance exists,
we may pick the prototype~w[n] as the unit-variance member in the family, in
which case� corresponds to the power level of the control input signal.

the Cramér–Rao bound (12) reduces to

(14)

When, in addition, the pdf is an even function of its ar-
gument, (14) further specializes to

(15)

We next consider the special case where and are
i.i.d. Gaussian processes and is the symmetric two-level
quantizer, and determine the random control power level that
minimizes the worst case information loss. We then consider
the general case, i.e., the case where and are
any i.i.d. processes.

1) Special Case—Gaussian Noises and : For the
system where and are independent i.i.d.
Gaussian noise sequences with variancesand , respec-
tively, the Cramér–Rao bound (15) reduces to

(16)

where

and

Fig. 3 depicts the associated information loss (4) as a function
of for , , and various levels. Observation
of Fig. 3 reveals several key characteristics of this type of
quantizer-based processing. Specifically, in this Gaussian
sensor noise scenario, the minimum achievable information
loss occurs for and and equals
2 dB. In addition, for any random control power level the in-
formation loss is an increasing function of . This property is
shared by many other admissible i.i.d. processes with common
marginals, such as the i.i.d. Laplacian and Cauchy random
processes. More important, as the figure reveals, proper use
of a random control input can have a major impact
on performance in terms of reducing the associated worst case
information loss.

The sensitivity of performance with respect to the optimal
control noise power level for the Gaussian noise scenario is ex-
amined in Fig. 4, where we depict the additional worst case
information loss (in decibels) due to suboptimal selection of
the control noise level versus . Note that 0-dB additional
worst case information loss corresponds to the optimal random
control power level selection. From the figure we see that the
optimal aggregate noise level is well approximated by

(17)

so that the optimal random control power level satisfies

if

otherwise.
(18)
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Fig. 3. Information loss for a system comprising a two-level quantizer and an i.i.d. Gaussian control input, for various control signal power levels� . The sensor
noise is i.i.d. Gaussian with variance� = 0:01.

Fig. 4. Additional worst case information loss (solid) due to suboptimal random control power level selection for a two-level quantizer. The net noise sequence
�[n] = v[n] + w[n] is Gaussian with variance� . The “�” marks depict the additional information loss for net noise levels5=8� and2� . The “�” mark
depicts the additional information loss at� =3.

If , Fig. 4 reveals that for the fairly wide range of control
input power levels

the associated performance is inferior to that corresponding
to the optimal random control power level by less than 3 dB.
However, the performance degrades rapidly as the control

input power level is reduced beyond . For instance, for
, there is nearly 30 dB of additional loss incurred

by the suboptimal selection of the control input power level.
The information loss associated with the optimal random con-

trol power level corresponds to the best achievable performance
by a particular family of random control inputs—in this partic-
ular example, the family of zero-mean normal distributions. For
the optimal choice of in (18), the worst case information
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loss can be completely characterized by means of peak SNR.
In particular, by using (17), (18) with (16) in (4) we obtain the
optimal worst case information loss for the Gaussian scenario
with random control, namely

if

if
(19)

where we indicate explicitly that in this case the worst case in-
formation loss is a function of .

As (19) reveals, for parameter estimation in Gaussian noise
via a two-level quantizer system, the worst case information
loss can be made to grow quadratically with peak SNR by ju-
dicious selection of a Gaussian control input. For comparison,
the worst case information loss in the absence of control input
grows exponentially with peak SNR. In particular, by substi-
tuting from (16) in (7), we obtain

(20)

which grows as for large . The results in (19) and
(20) extend to quantizers with , i.e., the worst case infor-
mation loss grows as for control-free systems, while
it can be made to grow as for appropriately chosen Gaussian
control inputs.

2) General Case: Arbitrary Admissible Noises and :
As we next show, proper use of an admissible random control

input can improve performance at high SNR over the con-
trol-free system in any (admissible) sensor noise and for
any -level quantizer. Substituting (8) and (11) in (4) reveals
that the associated information loss is independent of. Thus,
we may focus on the case without any loss of generality.
We next use to denote the worst
case Cramér–Rao bound (6), in order to make its dependence on

, , and the quantizer thresholds explicit. Also, we suppress
the dependence of on the quantizer thresholds when
there is no ambiguity.

For admissible , the Cramér–Rao bound (12) is contin-
uous in the variable, and hence so is . Thus,
given any fixed and , for small enough we have

(21)

Substituting (21) and (8) in (7) while keepingfixed and letting
reveals that is achievable for large .

Furthermore, since is also continuous in ,
for any with fixed

(22)

for any . In addition, given that the sequence does
not change if we scale both the input to the quantizer and the
quantizer thresholds by , the Cramér–Rao for estimating
based on is times the Cramér–Rao for estimating

based on the sequence generated by quantizing
via an -level quantizer with thresholds , i.e.,

(23)

which in conjunction with (8), (21), and (22) implies that the
worst case information loss cannot be made to grow slower than

for random control inputs. Therefore, at high peak SNR the
worst case information loss for random control inputs
can be made to grow at best as slow as quadratically with peak
SNR for random control inputs. In general, the sensor noise level
may be fixed, in which case we are interested in selecting the
random control level as a function of the dynamic rangeso
as to minimize the worst case information loss. From (21)–(23)
the optimal worst case information loss rate can be achieved
by selecting for some . This is in agreement
with our conclusions for the Gaussian scenario in the special
case , as (17)–(19) clearly demonstrate. For compar-
ison, in Appendix A, we show that for control-free systems cor-
responding to in (2a), (2b), and for any sensor noise the
worst case information loss grows faster than for
large . Remarkably, random control inputs with appropriately
selected power levels provide performance improvements over
the control-free systems for any admissible sensor noise at high
peak SNR.

B. Known Control Inputs

We next develop performance limits for scenarios where the
estimator can exploit detailed knowledge of a suitably designed
control waveform. In particular, we determine the minimum
possible growth rate of the worst case information loss as a
function of , and develop control input selection strategies that
achieve the minimum possible rate.

The Cramér–Rao bound for unbiased estimates ofbased on
and given knowledge of the associatedsamples of

is denoted by and satisfies

(24)

where is given by (12), with replaced by , and
where denotes the associated likelihood func-
tion. As expected, the associated worst case Cramér–Rao bound
and worst case information loss are functions of the control
waveform . In Appendix B, we show that, for any known
control waveform selection strategy, the worst case information
loss associated with any -level signal quantizer grows at least
as fast as for any sensor noise distribution. This includes the
optimal scheme, which selects the waveform that results
in minimizing the worst case information loss for any given set

.
Classes of periodic waveforms parameterized by the period
are attractive candidates for known control inputs, since they

are easy to construct and can be chosen so that the worst case
information loss grows at the minimum possible rate. In con-
structing these classes of periodic sawtooth waveforms, we will
use as a figure of merit the worst case information loss as

; extensions to the finite case are developed in Appendix
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B. From (24), the Cramér–Rao bound for estimatingbased on
, where is a multiple of the period , is given by

(25)

As we will show, in order to achieve the minimum possible
growth rate it suffices to select from properly constructed

-periodic classes for which there is a one-to-one correspon-
dence between each element in the class and the period. Op-
timal selection of the control input in this case is equivalent to
selecting the period that minimizes the associated worst case
information loss, or equivalently, the worst case Cramér–Rao
bound from (25)

(26)
where is given by (12) with replaced by . We next
develop a method for selecting the control waveform from prop-
erly constructed classes of-periodic waveforms for the case

, which results in achieving the optimal growth rate of
worst case information loss. Then, we extend our method to
quantizers with .

1) Optimized Periodic Waveforms for Signal Quantizers with
: The construction of the elements of the-periodic

class in the case is based on the observation that in the
control-free scenario the worst case information loss grows with

for fixed . This observation suggests that the information
loss is typically largest for parameter values that are furthest
from the quantizer threshold. This is strictly true, for instance,
for Gaussian sensor noise, since in (16) is an increasing
function of . Since our objective is to optimize over the worst
case performance, a potentially effective strategy is to construct
the -periodic waveform so as to minimize the largest
distance between any in and the closesteffective
quantizer threshold. For this reason, we consider-periodic
control inputs, which have the form of the sawtooth waveform

(27)

where the effective spacing between thresholds is given by
. The net effect of the periodic control input

(27) and the symmetric two-level quantizer (13) is equivalent
to a two-level quantizer with a periodically time-varying
threshold; it is important to observe that the time-varying
quantizer threshold comes within at least of any possible
parameter value once every samples.

For the system with given by (13) and given by
(27), the optimal period is completely characterized by
means of peak SNR; using (14) in (26) reveals that sat-
isfies

for any . For this reason, we will use the one-variable
function to refer to the optimal period from (26) for a
particular .

In the context of the sawtooth -periodic inputs (27), strate-
gies that select so as to keep a fixed sawtooth spacing
achieve the minimum possible growth rate. In particular, in Ap-
pendix B we show that, for any given, if we select the period

in (27) according to

(28)

where can be any positive constant, the associated worst case
information loss grows linearly with . In general, there is an
optimal for any particular noise pdf , resulting in an
optimalnormalizedsawtooth spacing. Specifically, consider the
normalized spacing between successive samples ofin (27),
namely

(29)

In addition, let denote the normalized spacing associ-
ated with the optimal period from (26), i.e.,

(30)

In Appendix B, we outline a method for finding the asymptotic
optimal normalized spacing

(31)

associated with a particular sensor noise pdf. For purposes of
illustration, we also show in Appendix B that in the special case
that the sensor noise is Gaussian with variance

(32)

while the associated worst case information loss is well approx-
imated by

(33)

for large . In this Gaussian scenario, if we select as in
(27) with , the worst case information loss
is given by (33) and achieves the optimal growth rate for known
control waveforms. We next extend the above analysis to quan-
tizers with .

2) Optimized Periodic Waveforms for Signal Quantizers with
: As we have seen in the preceding section, selection

of according to (27) for results in a two-level
quantizer with periodically time-varying thresholds uniformly
spaced in . This selection method minimizes the max-
imum distance between the parameter value and the closest of
the time-varying thresholds, over the dynamic range .
The same strategy can be used for , although the avail-
ability of multiple thresholds allows for reduction of the dy-
namic range that needs to span. We assume that all quan-
tizer thresholds are within the dynamic range, i.e.,

, for . In this case, the effective dynamic
range that needs to span is given by
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where
if

if

if

In particular, we consider using the control input (27) where the
effective spacing between thresholdsis given in terms of
and the quantizer thresholds as follows:

(34a)

where

if

if .

(34b)

For any in , this selection guarantees that at least
one of the time-varying quantizer thresholds is within

of the parameter, where is given by (34a). One can, in
principle, perform the optimization (26) to obtain
for any with . We should emphasize, however, that
at high SNR we may often obtain an approximate estimate of
performance via our results for the case . For instance,
for large and small enough in (28), the optimal nor-
malized spacing and the corresponding worst case information
loss for a quantizer with are approximately given by
the respective quantities for the symmetric two-level quantizer,
with replaced by .

If, in addition, there is freedom in selecting the quan-
tizer thresholds, these can be selected so that for all
and in (34b) which implies that . This
selection guarantees that for everysuccessive observations,
the collection of all associated quantizer thresholds form
a uniformly spaced collection in . For instance, in the
special case that the sensor noise is Gaussian, the optimal nor-
malized spacing and the worst case loss for largeare given by
(32) and (33), respectively, with replacing on the
left-hand side of (33). In summary, simply constructed classes
of periodic control waveforms achieve the optimal information
loss growth rate with peak SNR.

C. Control Inputs in the Presence of Feedback

In this section, we consider the scenario where, in addition
to knowing the control waveform, the estimator has the option
of using feedback from past output observations in the selec-
tion of the present control input. Specifically, we develop per-
formance bounds for the problem of estimation ofbased on

, where the control input sequence is a function of all
past quantized observations . This scenario is depicted in
Fig. 5 where .

We next show that the worst case information loss for
any feedback-based control input strategy is lower-bounded
by the minimum possible information loss for the same
quantizer system with ; in Section IV, we develop
feedback-based control selection algorithms that effectively
achieve this lower bound. Examination of the Cramér–Rao
bound (24) reveals that for any in we can obtain
information loss equal to by selecting .

Fig. 5. Estimation based on observations from a signal quantizer, where
feedback from the quantized output is used in the selection of the control input.

In particular, if there exists a parameter value for which
for all in and where

is given by (12) with replaced by , then using (24) we obtain

(35)

with equality achieved for for .
This control input results in

(36)

where is given by (4), and where is given by (12)
with replaced by .

The minimum information loss from (36) decreases as the
number of quantization levels increases. In Appendix C, we
show that as we would expect, the minimum information loss

tends to zero as the number of quantization levels ap-
proaches infinity for any sensor noise.

For a number of common sensor noises the control-free in-
formation loss for the system corresponding to is min-
imized at the negative of the median of the pdf , i.e.,

. The corresponding minimum information
loss (36) can be obtained by evaluating (4) at , while
employing (8) and (14) for , namely

(37)

which is independent of and , since equals the
median of the pdf of .

1) Special Case: Gaussian Sensor Noise:In the case that the
sensor noise is Gaussian, the minimum information loss (36) de-
cays rapidly to zero as more quantization levels are introduced.
In Fig. 6 we plot the minimum possible information loss through
any uniform -level quantizer for various values of , in the
presence of i.i.d. Gaussian noise. From the figure, it is apparent
that a few quantization levels suffice to effectively eliminate the
minimum information loss due to quantizer-based processing.

For the two-level quantizer (13) in this Gaussian scenario, use
of (16) for in (7) reveals that . In this case, (35)
reduces to

(38)

while from (37) the information loss for any parameter value
is lower-bounded as follows:

(39)

which corresponds to a 2-dB information loss.
Fig. 7 depicts the worst case information loss for the system

corresponding to in the context of Gaussian sensor noise
and the various control input scenarios that we have examined.
As reflected in the figure, the performance of the control-free
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Fig. 6. Minimum possible information loss as a function of quantization levels for a uniform quantizer in i.i.d. Gaussian noise. For any givenM , the threshold
spacing is selected so as to minimize this loss.

Fig. 7. Worst case information loss overjAj < � for a two-level quantizer in zero-mean i.i.d. Gaussian noise of variance� , with no control input (solid),
random control inputs (upper dashed), and known periodic control waveforms (middle dashed). The dotted curve depicts approximation (33). The lowerdashed
line depicts the minimum possible information loss (� 2 dB) for any control input scheme.

system (solid curve) degrades rapidly as the peak SNR is in-
creased. The benefits of random control inputs (upper dashed
curve) at high peak SNR are clearly evident, and known pe-
riodic control inputs provide additional performance benefits
(middle dashed curve) over random control inputs. In partic-
ular, the associated worst case information loss increases lin-

early with peak SNR as the accurate approximation (33) reveals.
Finally, in the presence of feedback from the quantized output
to the control input, the performance is lower-bounded by the
minimum possible information loss of 2 dB, which is indepen-
dent of . In Section IV, we develop control selection strategies
and associated estimators that meet all these bounds.
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IV. EFFICIENT ESTIMATION

In this section, we develop control input selection strategies
and associated estimators which achieve the performance limits
obtained in Section III. A natural measure of performance of
a specific system, comprising a control input a quantizer and a
particular estimator, is theMSE loss; it is defined as the ratio of
the actual MSE of a particular estimator ofbased on observa-
tion of , divided by the Cramér–Rao bound for estimating
from observation of . Whenever an efficient estimator of
based on exists, the notion of the MSE loss of any given es-
timator of given has an alternative, instructive interpreta-
tion: it represents the additional MSE in decibels that arises from
estimating using this particular estimator on , instead of ef-
ficiently estimating via . Analogously to in (7), the
worst case MSE loss of an estimator is defined as the supremum
of the MSE loss function over the range .

In this section, we construct estimators for which the corre-
sponding MSE loss asymptotically achieves the as-
sociated information loss, for each of the control input scenarios
of Section III. We examine the control-free and random control
scenarios first, and then develop estimators applicable to known

-periodic control inputs. Finally, in the context of feedback,
we develop control input selection strategies and associated es-
timators which achieve the minimum possible information loss
for any given scalar quantizer system.

A. Random Control Inputs

For random control inputs, the ML estimator ofbased on
and restricted over the dynamic range satisfies

(40)

where is the log-likelihood function given by (9).
We first examine ML estimation for the system with ,
and then construct estimators for signal quantizers with .
Estimators of for control-free systems can be readily obtained
as a special case of the estimators offor the associated systems
with random control inputs by setting .

1) ML Estimation for Signal Quantizers with in i.i.d.
Noise: If is given by (13) and is admissible, the ML
estimator (40) can be found in closed form, by setting to zero the
partial derivative of the log-likelihood function (9) with respect
to , viz.,

(41)

where is the following piecewise-linear limiter function:
if

otherwise.
(42)

The function denotes the ML estimate of from
when there are no restrictions imposed in the dynamic range

of the unknown parameter.5 In particular

(43)

where in (43) is the inverse of , and
denotes the number of elements in that are equal to . In

5Note that (41) does not necessarily hold forM > 2.

the special case that and are zero-mean i.i.d. Gaussian
noise sequences with variances and , respectively, (43)
reduces to

(44)

For any parameter value in the range , the
Cramér–Rao bound (14) is a reasonable predictor of the MSE
performance of the ML estimator (41)–(43) provided that the
number of observations is large enough. Indeed, as shown
in Appendix D, for any , the ML estimator
(41)–(43) is asymptotically efficient in the sense that it achieves
the Cramér–Rao bound for unbiased estimates (14) for large
enough , i.e.,

Although the ML estimate (41)–(43) is asymptotically
unbiased and efficient for any in , the associated
MSE does not converge uniformly to the Cramér–Rao bound
in the parameter with . Specifically, for any fixed , no
matter how large, there exist parameter values close enough to
the boundaries for which the ML estimator has significant
bias,6 in which case (14) should not be expected to accurately
predict the associated MSE of the ML estimator. This is clearly
reflected in Fig. 8, where the actual MSE loss for
is also depicted alongside the associated information loss for
the Gaussian noise scenario. In particular, the dashed and solid
lines depict the MSE loss from Monte Carlo simulations for
the ML estimator (41)–(43), in the absence and
presence of a random control input, respectively,
for , , and . As we can see in
Fig. 8, when the random control level is , the worst
case MSE loss is about 21 dB. However, in the absence of
a control input, the worst case MSE loss is about 36 dB for

, and 55 dB for . For both values of , the
Cramér–Rao bound (14) is applicable for only a subset of the
dynamic range, whose size increases with. In fact, since the
ML estimator is asymptotically efficient for any with
respect to the Cramér–Rao bound (14) for unbiased estimates,
the worst case MSE loss for the control-free system increases
with toward the associated worst case information loss (20),
which is approximately 211 dB.7

2) ML Estimation for Signal Quantizers with
in i.i.d. Gaussian Noise:For the estimation problem (1),
(2a), (2b), where is an -level quantizer and is
an i.i.d. sequence, the set of sufficient statistics reduces to

[see (9)]. For the special case that
is Gaussian with variance , we develop in Appendix

E an expectation–maximization (EM) algorithm [41] for
obtaining the ML estimate (40). This algorithm takes the form

6By incorporating the bias of the ML estimator (41)–(43) it is possible to ob-
tain a Cramér–Rao bound that directly applies to the associated MSE. An even
tighter bound is obtained by properly combining three separate Cramér–Rao
bounds, each describing the effects of a piecewise-linear region of the soft lim-
iter I ( � ) on Â (A; 1) in (41) [34]. These bounds, however, are beyond
the scope of this paper.

7Inevitably, the pseudonoise samplesw[n] generated in the computer simula-
tions are uncorrelated but not i.i.d.; the ML estimator achieves the bound (16) as
expected (see Appendix A). However, in the case thew[n]’s are uncorrelated but
not i.i.d., the actual Cramér–Rao bound may be less than the one corresponding
to the i.i.d. case (16).
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Fig. 8. MSE loss from Monte Carlo simulations for a system comprising a Gaussian control input (pseudonoise in the simulations), a two-level quantizer, and
the ML estimator (41)–(43) for� = 1,� = 0:1, and various control input power levels. The dashed curves depict the MSE loss ofÂ (yyy ; �) in the absence
of control input (i.e.,� = 0); upper curve:N = 10 , lower curve:N = 100. The solid curves depict the MSE loss ofÂ (yyy ; �) for � = 2=�, and for
N = 100; 10 . For comparison, the associated information loss functions are depicted by the dotted curves (also shown in Fig. 3).

found in (45) at the bottom of this page, where it is initialized
with . Provided that the log-likelihood function
does not possess multiple local minima, (45) provides the ML
estimate (40), i.e.,

Empirical evidence suggests that obtained via the
algorithm (45) is asymptotically efficient, i.e., it achieves (12)
for large . Consequently, use of information loss as an accu-
rate predictor of the MSE loss is also justified in this scenario.

3) Efficient Estimation for Signal Quantizers with
in i.i.d. Noise: In general, there is no computationally ef-
ficient method for obtaining the ML estimate (40) of in
non-Gaussian noise via a signal quantizer with . In
this section, we present an alternative class of elementary
estimators which can be shown to be asymptotically efficient
for any admissible noise pdf , in the sense that for any

the MSE of the estimator approaches the bound (12)
for large .

Without loss of generality we may view the output of the
quantizer in (2a) and (2b) as the collection of the outputs

of two-level quantizers generating the following observed
sequences:

where (cf. Fig. 2) and the ’s are the
thresholds of the quantizer. Consider the ML estimates of
formed from each of these binary sequences, namely

(46)
where

and where is given by (42), and is given by
(43) with replaced by . In Appendix F, we show that the joint
cumulative distribution of

(47)

approaches the cumulative distribution of a Gaussian random
vector with mean (where denotes a vector of’s) and
covariance matrix , whose inverse is given by (91). We also
show in the appendix that if we use

(48)

(45)
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where for some , the estimator is
asymptotically efficient, i.e.,

(49)

where is given by (12). In practice, in computingwe
may select the value offor which is minimum, so as
to expedite the MSE convergence to the asymptotic performance
predicted by (49). In summary, the estimator first obtains the set
(47) by means of (46) as well as (42) and (43), it then selects
the value of for which is minimized and forms

, and, finally, substitutes and in (48) to obtain
the asymptotically efficient estimate.

B. Known Control Inputs

In this section, we construct estimators that exploit detailed
knowledge of the applied control waveform. In particular, in the
context of -periodic control inputs that are known for estima-
tion, we develop estimators that are asymptotically efficient in
the sense that they asymptotically achieve (24).

For i.i.d. Gaussian sensor noise, the ML estimate offrom
given a control vector , where is a -periodic se-

quence and is a multiple of , can be obtained as a special
case of the EM algorithm presented in Appendix E. In partic-
ular, the EM algorithm takes the form of (50a) and (50b) at the
bottom of this page, where , and is the
vector comprised of the elements of theth -decimated sub-
sequence, i.e.,

(51)

Empirical evidence suggests that the estimate resulting from the
EM algorithm (50) is asymptotically efficient, i.e., it achieves
the Cramér–Rao bound (25) for large enough.

Asymptotically efficient estimators in the context of
non-Gaussian sensor noises can be obtained in a fashion similar
to those developed in Appendix F. Specifically, in the case

, we may consider the vector in (47) where we
use for the ML estimate of given the th -decimated
subsequence from (51), i.e.,

(52)
and where and are given by (42) and (43),
respectively. The ’s from (52) are independent random vari-

ables, since for any , and are independent
random vectors. Therefore, the corresponding vectorfrom
(47) is asymptotically Gaussian (in terms of its cumulative dis-
tribution), with diagonal covariance matrix ; the th
entry of the matrix equals , where
is given by (12) with replaced by . Consequently, an asymp-
totically efficient estimate is provided by from (48); the esti-
mate covariance matrix that is used for faster MSE convergence
to the asymptotic performance is given by where
is the index that minimizes .

Asymptotically efficient estimators can also be constructed
for signal quantizers with and known -periodic in-
puts in non-Gaussian sensor noise. Specifically, for each-ary
subsequence from (51) we may first apply the algorithm
(46)–(48) to obtain statistically independent estimates of.
By combining these estimates in a fashion similar to the
method used in the case for combining the estimates
(52), we obtain an asymptotically efficient estimator ofbased
on given .

C. Control Inputs in the Presence of Feedback

In Section III-C, we have shown that the worst case informa-
tion loss of a system composed of a signal quantizer and an ad-
ditive control input is lower-bounded by the minimum possible
information loss of the same system in the control-free case. In
this section, we develop control input selection strategies based
on past quantized output samples and construct associated esti-
mators which effectively achieve this bound.

1) Feedback Control and Estimation for Signal Quantizers
with : We first examine the Gaussian sensor noise sce-
nario with in detail. As (39) reveals, the associated
control-free information loss is minimized for . Al-
though this control input selection is not permissible, it suggests
a viable control input selection method based on past quantized
observations. Specifically, if is any consistent estimator of

based on , a reasonable choice for the control input se-
quence is as follows:

(53)

Assuming the control sequence is selected according to (53),
the ML estimator at time satisfies

(50a)

and

(50b)
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In Appendix E, we show that in the Gaussian scenario, the ML
estimate of based on for can be obtained
using the following EM algorithm:

(54a)

initialized with and , where
for any

(54b)

Although empirical evidence suggests that the ML estimator ob-
tained by means of the EM algorithm in (54a) and (54b) achieves
the 2-dB information loss bound (39) for anyin for
a moderate number of observations,8 it is rather computationally
intensive; for any additional observed sample an EM algorithm
has to be employed. In addition, even though the number of iter-
ations necessary for adequate convergence of the EM algorithm
appears to be small for large, the algorithm may still be im-
practical.

We next develop algorithms that achieve the bound (39) and
have the additional advantage that they can be implemented
very efficiently. These are based on the observation that once
the estimate is not changing significantly with (i.e.,
the changes are small with respect to) we may assume that

is in the regime where the information loss is
small, and a low-complexity estimator can be constructed that
approaches the 2-dB bound (39). Specifically, let
and assume that . In this regime, the truncated
power series expansion provides a reasonable approximation for

, i.e.,

(55)

We can use (55) to form a linear estimator as follows. Assuming
that the estimation error is inversely proportional to the mea-
surements (which, for admissible sensor noises, implies that the
asymptotic MSE loss is not infinite), the estimate at timeis
given as a weighted sum of the estimate at time and an es-
timate arising from using theth measurement alone, i.e.,

(56)

8There are a number of other control input selection methods and associated
estimators which can approach arbitrarily close to the 2-dB bound; the systems
developed in this paper for the caseM > 2 and non-Gaussian noise are such
an example. However, the associated MSE of these algorithms converges to the
bound (39) considerably slower than the algorithms of this section. In fact, the
number of samples required so that the MSE of (54a) and (54b) withw[n] as in
(53) effectively achieves the 2-dB bound (39) increases linearly withln(�).

where the estimate based on theth measurement alone is given
by using (55) in (54), (54b) (by setting to ), and the fact that

, i.e.,

(57)

By incorporating (57) in (56) this linear estimator takes the fol-
lowing iterative form:

(58)

In order to obtain an algorithm that converges much faster than
(58) to the 2-dB bound (39), we employ the EM algorithm (54a),
(54b) for and the recursive algorithm (58) for ,
i.e.,

from (54) if

if

(59)
where the control input is given by (53) provided that we
substitute for , and where we also incorporated
the dynamic range information by means of .

Selection of an appropriate value for is related to the peak
SNR . Since, in principle, the larger the peak SNR, the longer
(in terms of the number of observations) it takes
to reach the linear regime (55), we consider the case .
For instance, assume we are interested in selectingso that
the in is less than a given fraction of (so that
the truncated series approximation is valid), for example, .
For small enough , the maximum MSE from observa-
tions is roughly given as the square of . In summary,
this crude-MSE-based rule of thumb for selectingreduces
to .

The solid and dashed curves in Fig. 9 depict the MSE of the
ML estimator obtained by means of the EM algorithm in (54a),
(54b) and of the computationally efficient estimator (59) with

, respectively, based on Monte Carlo simulations. The
system parameters for this simulation are , ,
resulting in , while . In both cases,
the control sequence is selected according to (53). The lower
and upper dotted lines depict and the right-hand side
of (38), respectively. As we can see in this figure, both esti-
mates effectively achieve the 2-dB loss bound (39) for a mod-
erate number of observations.

In terms of the actual implementation of the estimator (59),
for a given there are possible values of . These

estimate values can be precomputed and stored in a lookup
table. This results in a computationally efficient implementa-
tion, whereby given or fewer observations the estimate is
obtained from a lookup table, while once the number of obser-
vations exceeds , a recursive linear estimator is employed.
Since grows logarithmically with , the number of lookup
table entries for storing all possible values of grows
only linearly with peak SNR .

A similar strategy can be used in the context of quantizer
systems using feedback in any sensor noise. In the general case,

in (36) may not equal zero. A reasonable extension of the
control input selection method (53) for nonzerois as follows:

(60)
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Fig. 9. MSE from Monte Carlo simulations for̂A [n] (solid) and �A[n] with n = 10 (dashed), based on observations from a signal quantizer withM = 2
exploiting feedback according to (53). The lower dotted line represents the Cramér–Rao bound for estimatingA based ons[n], while the upper dotted line is the
2-dB bound (39); Parameters:� = 0:1, � = 1, andA = 0:4.

An estimator similar to (59) can be used to estimatein this
case. Specifically, for the estimator may consist of a
precomputed lookup table, while for a recursive es-
timator resulting from a truncated series expansion of
around can be employed, namely

In particular, if is the median of , in which case
is given by (37), we have

for

In general, empirical evidence suggests that the MSE loss of
these algorithms practically achieves the associated for
a moderate number of observations.

2) Feedback Control and Estimation for Signal Quantizers
with : For the Gaussian sensor noise scenario, the EM
algorithm (54a), (54b) can be extended to with ;
the resulting algorithm is a special case of the one presented in
Appendix E. Empirical evidence suggests that it is also asymp-
totically efficient. Assuming flexibility in selecting the thresh-
olds of the -level quantizer, the corresponding information
loss (36) can be obtained from Fig. 6. For instance, for the op-
timal selection of the quantizer thresholds for we have

; if the control input is selected according to (60), the
EM algorithm in Appendix E yields a worst case MSE loss of
about 0.25 dB. Similarly to , the asymptotic MSE loss is
independent of and .

For signal quantizers with , where is any non-
Gaussian noise, we may use the following two-stage approach
that effectively achieves . For the first observations,

we may employ any consistent estimator of . For in-
stance, we may use one of the feedback-based algorithms cor-
responding to the system by ignoring all but two of the

levels of the quantized output. In the second stage, we fix
for all . The number deter-

mines the accuracy of the approximation

For any given , we can then obtain an estimate of
from

by means of (46)–(48), which is asymptotically efficient with
respect to . For faster convergence,
the overall estimate can be a weighed sum of the estimates

and . Although the associated asymptotic MSE
loss can be made to approach arbitrarily closely, these
algorithms typically require significantly larger data sets to
effectively achieve the desired information loss, as compared
to the algorithms for of the previous section.

The estimators developed in this section possess close con-
nections to a well-known class of oversampled analog-to-digital
(A/D) converters. Specifically, for large and for small ,
these estimators can be effectively viewed as generalized ver-
sions of successive approximation A/D converters, which take
into account the sensor noise characteristics. Unlike the conven-
tional successive-approximation A/D converters, once the suc-
cessive approximation step is small enough as compared to the
noise level (i.e., for large enough), these estimators also in-
corporate the noise characteristics in obtaining their running es-
timate.
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Fig. 10. Block diagram of a network of distributed signal quantizers using feedback in the context of signal estimation.

V. MULTIPLE SENSORS

In this section, we examine a network generalization of the
estimation problem (1), (2a), and (2b), namely, estimating an
unknown parameter from observation of

for and and where
is given by (2a), (2b), the ’s are i.i.d. processes, and the

’s denote the applied control input sequences. For sim-
plicity, we assume that the noise processes are independent of
one another.9 Such networks may provide reasonably accurate
models for a number of distributed estimation problems that in-
volve possibly remote sensors that are not colocated. In Fig. 10,
for instance, we show the block diagram of a special case of
such distributed estimation network, which uses feedback in the
selection of the control inputs; however, distributed estimation
networks without feedback are also considered.

Straightforward extensions of the single-sensor systems de-
veloped in Sections III and IV yield network generalizations
that can be analyzed by means of the tools developed for the
single-sensor case. For the remainder of this section, we restrict
our attention to two-level quantizers in i.i.d. Gaussian sensor
noise, which we use as a representative example to illustrate the

9The most interesting case in which the sensor noises are correlated condi-
tioned in the signal component is not considered in this paper; the caseL = 2

with correlated sensor noises is considered in [26] in the context of encodings
in the form of vector quantization.

extensions of the single-sensor results to the associated mul-
tisensor settings. Similar extensions can be derived for all the
other scenarios we developed in Sections III and IV.

A. Random Control Inputs

We may consider, for instance, a network of signal quantizers
for which the control inputs are i.i.d. sequences with known sta-
tistical description, such that , and which can
be adequately modeled as statistically independent of one an-
other and of the sensor noises. In the case that all sensor noises
have equal strength , the collection of observation
vectors can be viewed as a single observation
vector collected from a single sensor, in which case all the anal-
ysis of Sections III-A and IV-A applies.

If the overall noise levels (summarizing the effects of the
sensor noise and the random control component) have variable
strengths, Cramér–Rao bounds and corresponding ML estima-
tors can be formed with minor modifications of the single-sensor
problem. In general, for random control inputs at high peak SNR
(i.e., for ) the worst case informa-
tion loss still grows quadratically with dynamic range for any
fixed-length network with a fixed number of quantization levels
and sensor noise components with fixed power levels.

B. Control Inputs in the Presence of Feedback

Networks exploiting feedback from the quantized outputs to
the control inputs can also be analyzed using the associated
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Fig. 11. MSE forÂ [N ] and �A[N ] for a network ofL = 5 two-level quantizers, using feedback in the selection of the control input, and associated Cramér–Rao
bounds (see also caption of Fig. 9). The sensor noise levels are 0.08, 0.08 0.08, 0.2, and 0.4, whileA = 0:4 and� = 1.

single-sensor principles. Specifically, the control input can be
selected using (53), where denotes the estimate of
based on observations collected from allsensors up to and in-
cluding time . It is worth noting that this type of feedback
is analogous to case explored in [28] in the context of decentral-
ized detection.

In Fig. 11, we show the MSE performance of the network
extensions of the ML estimator (54a), (54b) and given by
(59) for a network of sensors and where the sensor noises
are independent i.i.d. Gaussian random processes with spatially
nonuniform sensor noise power levels. As in the single-sensor
case, the MSE of each estimator practically achieves the bound
corresponding to a 2-dB information loss for moderate.

In the Gaussian scenario, for networks of two-level signal
quantizers with feedback, the associated information loss can
be directly obtained using appropriate interpretation of Fig. 7
describing the single-sensor case. Similar extensions of the as-
sociated single-sensor problem can be obtained for any set of
sensor noises for . For instance, if feedback is available
and properly used in the multisensor setting shown in Fig. 10, a
small worst case information (and MSE) loss can be achieved,
independent of the dynamic range and the noise power levels.

There exist certain interesting connections between our
strategies and the one considered in [30]. In [30] Grayet al.
consider the estimator arising for in the limit
and in the case where both and the sensor noises are both
nonnegative. For a given fixed , the authors construct
a sequence of quantizers for with

and employ it in conjunction with a simple
decoding rule whose MSE is shown to tend to zero as .
The resulting decoder exploits only knowledge of ,
unlike our strategies which exploit knowledge of . The

strategy used in [30] is analogous to one of our strategies,
namely, one using symmetric binary quantizers (i.e., with

) with known control inputs, where denotes one
period of a sawtooth waveform (in) spanning
with spacing . It can easily be verified that the resulting
encoded sequences are the same in both cases. Consistent with
our analysis, our estimator (a variant of the one described in
Appendix E) would exploit knowledge of the but also of

to also result in MSE that tends toas . In fact,
is also achieved with properly designed

random control inputs in (with a simple variation of our
algorithm in Section V-A); however, the information loss in
that case is greater, implying that a largerwould be required
to achieve the same MSE performance as we would with a
sequence of known sawtooth (in) waveform.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, we have examined the problem of parameter
estimation based on observations from an-level quantizer in
the context of additive controlled perturbation of the quantizer
thresholds. We have developed a methodology for evaluating
these sequential quantization-based systems by means of a
figure of merit which we refer to as the information loss; it
is defined as the increase in decibels that is incurred in the
Cramér–Rao bound for unbiased estimates by a particular
combination of control input and -level quantizer. In general,
for control-free systems the performance rapidly degrades
with peak SNR , where is defined as the ratio of the
parameter dynamic range to the sensor noise power level.
In particular, for a wide class of i.i.d. sensor noises, the worst
case information loss grows faster than if no control input
is used.
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A number of important scenarios may arise in practice which
differ in terms of the available knowledge about the control
waveform for estimation and the associated freedom in the con-
trol input selection. For scenarios where only the statistical char-
acterization of the control input can be exploited for estimation,
we have shown that random control inputs can provide signifi-
cant performance benefits, in the sense that the worst case infor-
mation loss grows quadratically with peak SNR. If knowledge
of the particular control input is exploited for estimation, even
higher performance can be achieved. In particular, we devel-
oped methods for selecting the control input from a suitably de-
signed class of periodic waveforms, for which the worst case in-
formation loss grows linearly with peak SNR. Finally, for cases
where feedback is available we developed control waveform se-
lection strategies and corresponding computationally efficient
estimators that asymptotically achieve the best possible perfor-
mance for quantizer-based systems with additive control inputs.
Specifically, these estimators achieve the minimum possible in-
formation loss for the associated quantizer-based system, which
is independent of peak SNR. We should emphasize that the pre-
ceding discussion applies to any-level quantizer and a wide
class of i.i.d. sensor noises. Furthermore, our methodology can
be generalized to scenarios involving networks of these quan-
tizer-based systems.

Complementary to this work, performance analysis and
system design in [34] reveals the performance rates in Table I
remain unaffected if system design is based onaveragerather
worst case performance criteria, whenis a normally dis-
tributed random variable. In addition, in this work we have
assumed that the sequence used at the host for estimation is
the same as the one encoded at the sensor. The case where the
sensor encodings are observed at the host through a discrete
memoryless channel (DMC) is examined in [42], where it
is shown that, given any fixed (nonpathological) DMC, the
performance rates in Table I also remain unaffected. As is also
shown in [42], however, the performance-optimizing encoders
and estimators in each case do depend on the DMC quality.

This preliminary work suggests a number of important and
practical extensions for further investigation. As one example,
it is important to study the performance that is achievable based
on (short) finite-length observation windows. Such analysis can
potentially be beneficial for a number of applications involving
signal quantizers, such as various distributed estimation prob-
lems that arise in practical settings, reliable sensing of sub-
threshold signals such as those encountered in cellular systems,
and design of oversampled A/D converters and coupled A/D
converter arrays. In the context of A/D conversion in partic-
ular, it is noteworthy that, besides the interesting connections be-
tween the feedback schemes to successive approximation A/D
converters, all the control input encoding techniques we have
considered have similarities to nonsubtractive and subtractive
dithering techniques [32], [33], [38], [43], [44]. For instance,
in both the known control input case and the feedback case,
knowledge of the control input is exploited by the estimator
and compensated after quantization, although, unlike subtrac-
tive dithering, the control input isnot simply subtracted off the
quantized signal, as the associated estimators (49), (53), and
(58) reveal.

APPENDIX A
WORST CASE INFORMATION LOSS FOR

CONTROL-FREE SIGNAL QUANTIZERS

In this appendix, we show that the worst case information loss
of any signal quantizer grows faster than for large in the
absence of a control input. We first consider the case
and show by contradiction that as ,
i.e., we show that

(61)

cannot be true. Letting is equivalent to fixing and
letting , since the control-free information loss for

is completely characterized by. Let
denote the worst case Cramér–Rao bound for estimatingfrom
one sample of the i.i.d. sequence , for , and noise
level . Then, (61) implies that

(62)

where we used (4), (7), and (8). However, (62) suggests that,
as , we can estimateany in with infinite
accuracy from a 1-bit observation , which is not possible.
Thus, (61) is false, i.e., has to grow at least as fast as

.
Similarly, we can also show that grows faster that
, in the sense that . We show this by first

assuming that , i.e., that we can find
and , such that for we have , and
arriving to a contradiction. The condition is
equivalent to the statement that there exists such that

(63)

Again using (4) as well as (7) and (8) in (63) we obtain the
following equivalent statement:

(64)

where . Since the sequence is i.i.d., (64) implies
that as , the Cramér–Rao bound is upper-
bounded by , which goes to as . However, for
any , in the limit we have with
probability for all , which, in turn, implies that
cannot go to as . Thus, we must have in
(64), which proves that the control-free worst case information
loss is not .

We can show that for signal quantizers
with , by using our results for . Specifically, if

is fixed, in which case is equivalent to ,
the arguments used for the case still apply with mi-
nor modifications. Next consider fixing , in which case

is equivalent to . As usual, let
denote the quantizer thresholds. By rescaling by , this
problem can be mapped to an equivalent one where ,

, and where the new quantizer thresholds are
. The arguments used to show that

in the case are still valid in this case
with minor modifications.
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APPENDIX B
WORST CASE INFORMATION LOSS FORKNOWN

CONTROL INPUTS

We first show that for any known control input scenario, the
worst case information loss grows at least as fast as. This is
true for any admissible sensor noise distribution and for any

. For convenience, we denote by the type (empir-
ical probability distribution) of the known sequence [45, p.
279]. The associated Cramér–Rao bound for estimatingbased
on for a particular is given by

(65)

where the expectation is with respect to . For instance, if
the periodic sequence (27) is represented by an empirical pdf
consisting of Kronecker delta functions located at for

and each with area , then (65) and
(25) are equivalent.

For convenience, we consider the inverse of the Cramér–Rao
bound in (65), namely, the Fisher information ofgiven .
We denote the Fisher information in the control-free case by

. The worst case Fisher information
for a control input with an empirical pdf is defined
as

where the expectation is with respect to . Consider
the optimal selection of , which results in maximizing

, i.e.,

The growth of the optimal worst case (i.e., the minimized max-
imum) information loss equals the decrease of the inverse of the
optimal worst case (i.e., the maximized minimum) Fisher infor-
mation defined above.

We will make use of the fact that the control-free worst case
information loss grows strictly faster than for [cf. the
generalization of (63) to quantizers with ]. Without loss
of generality, we may set , in which case . Since

is independent of (and thus ), the control-free worst
case Fisher information of based on decays faster than

with increasing for any . Thus, there exist
and , such that for any

(66)

for any given . For convenience, we pick so that
. Also, let

For any empirical pdf and any satisfying , we
must have

(67)

We can establish (67) via proof by contradiction; if the in-
equality in (67) is reversed, for any in we have

(68)

Let for where is the largest
index satisfying . Note that . Applying
(68) for , and summing over all yields

(69)

which is a contradiction since the left-hand size of (69) is upper-
bounded by , while . We
can similarly derive the following generalization of (67):

(70)

where and at least one of the ’s is nonzero. We have

(71a)

(71b)

(71c)

where , since is a convergent series for
To obtain (71a) and (71b) we used (66) and (70), respectively.
As (71c) reveals, for large the optimal worst case information
loss grows at least as fast as(since for ).

We next show that simple periodic control input schemes can
be constructed for which the worst case information loss (for

) grows linearly with . It suffices to consider signal
quantizers with , since signal quantizer with
provide additional information and would thus perform at least
as well. In particular, we next show that-periodic waveforms
given by (27), where is given by (28) for a fixed ,
achieve the optimal growth rate for any admissible sensor noise
and a symmetric two-level quantizer. Let denote the
Cramér–Rao bound (14) with replaced by . Note that since

(72)

we also have

which in conjunction with (8) reveals that the associated infor-
mation loss is completely characterized by the ratio .
Since also solely depends on, we may fix without
loss of generality. Note that the class (27) remains invariant
to changes in . Hence, we may use to denote the
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unique -periodic sequence from the class (27) corresponding
to . For , we have , and

(73a)

(73b)

(73c)

(73d)

where

and where we used (72) to obtain (73c) from (73b). To verify
(73d) from (73c), note that for any fixed in ,
the minimum of over is upper-bounded
by , where is the value of for which

is the smallest. Since the spacing of the
sawtooth waveform satisfies ,

is upper-bounded by for any
, verifying (73d). Since from (8) and

by using (73d), the worst case information loss for known
given by (27) with given by (28) is inversely proportional to

for small . Hence, this control selection method achieves
the optimal worst case information loss growth rate.

We next determine the optimal in (28) for the case where
is Gaussian with variance . We use to de-

note the Cramér–Rao bound (25) for in order to make
its dependence onand on the period in (27) explicit. The op-
timality of (28) suggests that from (26) is a nondecreasing
function of for large . Indeed, there is a sequencewhere

, such that, , if . If ,
both and minimize (26), i.e.,

(74)

For large the left-hand side of (74) is maximized at
[i.e., in (25)], while the right-hand side is maximized
at with given by (29). Assuming
that in (30) converges for large to a limit, i.e., that

exists, (74) reduces to

(75)

where denotes for Gaussian, and is
given by (16) for . Both infinite series in (75) are conver-
gent; in fact, only a few terms from each series are required to
obtain an accurate estimate of such as the one given in (32).
Using from (32) in conjunction with (74) and (25) yields
(33). Similar results hold for non-Gaussian sensor noise pdfs.
Specifically, a relation of the form (75) holds for defined in
(31), where is replaced by the associated . The

resulting infinite series in (75) are both convergent since their
terms decay faster than for [recall that
grows faster than for the control-free scenario]. Clearly, the
value of depends on the particular noise pdf.

Extensions of the preceding control selection strategies can
be developed, which achieve the optimal growth rate of the
worst case information loss for finite . Let denote the
control vector associated with the finite-strategy, which is
assumed known for estimation. Given a set of and se-
lected according to the infinite- scheme, a finite- method
that achieves the same information loss for anyselects
randomly from a set of equally likely vectors

where the th element of the vector
is given by .

APPENDIX C
INFORMATION LOSS FORSIGNAL QUANTIZERS WITH

We consider a uniform quantizer with levels.
Given , we select the quantizer thresholds as ,
where and . For convenience, we
let and . We next examine the
Cramér–Rao bound (12) for , where is admis-
sible. We may rewrite (12) as

(76a)

where

(76b)

Note that as , both and . By letting

for large and for we have

which imply that

(77)

Approximation (77) becomes an equality as . Letting
in (76a), (76b), and using (77) yields
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APPENDIX D
ASYMPTOTICEFFICIENCY OFML ESTIMATOR FORCASE

In this appendix, we show that given
by (41)–(43) achieves (14) for large, if is admissible. Let

denote the binomial random variable .
Then

if

if

if

For large , the following approximation is valid in the cumu-
lative sense [46, p. 214]:

(78)

where and . Since is
invertible [ is strictly monotone almost everywhere], the
pdfs of and are related as follows [46, p. 93]:

if

if

if
(79)

where

(80)

Note that the pdf of in (79) consists of a sum of Kronecker
delta functions.

We first consider for . If is large enough,
so that (78) is valid and also , the following approx-
imations for are valid in the regime , in the
sense that for any in the values of the corresponding
cumulative distribution functions are approximately equal (and
where the approximation generally improves asincreases):

(81a)

(81b)

(81c)

(81d)

where

Approximation (81a) results from using (78) in (79). To verify
(81b) note that in the region that

is essentially nonzero, we have

For , the following approximation is valid for the
exponent in (81b):

which when substituted in (81b) results in (81c), and (81d).
From (81d), for large we have in
the regime . Provided is large enough,

, in which case the MSE term contributed from
approaches the Cramér–Rao bound . Next, con-

sider the two other regimes, where . Let

and

where and are given by (80). For large enough

and

Since , , the corresponding MSE terms go to
zero much faster than for large , so their contribution to
the MSE becomes negligible for largeas compared to .
Hence, achieves the Cramér–Rao bound (12) for large.

APPENDIX E
EM ALGORITHM FOR PARAMETER ESTIMATION IN GAUSSIAN

NOISE VIA SIGNAL QUANTIZERS

In this appendix, we present the derivation of an EM algo-
rithm that can be used to obtain the ML estimator offrom a
network of signal quantizers. Theth observation is given by

where

(82)

is the unknown parameter of interest, , is
the selected (known) control input, and is the th quan-
tizer and is given by (2a) and (2b). We use and
to denote the functions mapping each quantizer levelof the
th quantizer to the associated lower and upper thresholds

and , respectively.
We select as the complete set of data the setin (82). For

convenience, let

and

The EM algorithm selects , the st estimate of
based on and , according to

(83)
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where

(84)

The log-likelihood function satisfies

(85)

If we substitute (85) for in (84) we obtain

(86)

where , and

Substituting in (83) the expression for in (86) we
obtain

(87)

Let and . Using

we obtain for the first expression shown at the bottom of
this page, which when substituted in (87) results in (88), also
shown at the bottom of this page. Several special cases of (88)
are of interest. In particular, if , (88)
reduces to

of which (54a), (54b) is a special case. Next, consider the special
case where observations are collected from a single-level
quantizer [i.e., and ]. If, in addition,

and for all , (88) reduces to (89) found
at the bottom of the page; note that only the sufficient statis-
tics are used in (89) to obtain

.

APPENDIX F
ASYMPTOTICALLY EFFICIENT ESTIMATION FOR RANDOM

CONTROL INPUTS

We develop a class of asymptotically efficient estimators of
the parameter , based on observation of (1) where is

(88)

(89)
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given by (2a) and (2b), and where in (10) is an i.i.d. admis-
sible noise process. In the absence of a control input,equals

. Consider the following collection of binary sequences:

for . The observed output is equivalent
to the collection , since
and . The ML estimate of based on

is given by in (46). We have

(90)

where

The estimators we develop next are based on the vectorde-
fined in (47). Note that, although the collection of’s is a set of
sufficient statistics for the problem, is not, in general, a suf-
ficient statistic due to the limiting operation in (47). As a first
step in obtaining the distribution of for large , we obtain the
distribution of the vector

For convenience, let

and

First note that the distribution of the vector

is multinomial, and approaches a Gaussian vector in the cumu-
lative sense [46, p. 214]. The’s are linear combinations of the

’s, since

Consequently, also approaches a Gaussian vector in the cu-
mulative sense, i.e., , where

, and

...
...

.. .
...

In a manner analogous to the case described in Ap-
pendix E, by using the theorem for the pdf of transformation of
variables [46, p. 93], and in the limit as (where we in-
voke the central limit theorem and ignore the boundary effects

due to ), we have in the cumula-
tive sense, where , and

It can be readily verified that

...
...

.. .
...

. ..
. . .

. . .

(91)

where

and

If were available, then the optimal estimate (in terms of min-
imizing the MSE) would be

while the associated MSE would satisfy

i.e., this estimator would be asymptotically efficient. However,
is a function of the unknown parameter. Instead, note that

approaches for large for any . Specifically,
is a consistent estimate since it is an asymptotically efficient
estimate with respect to the Cramér–Rao bound for a two-level
quantizer with threshold . Hence, set and consider

where . Let ,
, and . Also, let ,

and denote by the th element of . Then

(92)

where

and

Note that in Appendix E we have shown that

Since is admissible, for large we have
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Also, since is Gaussian for large (see Appendix E),
so is . In addition, there exists for all , which
implies that , and . There
also exists such that for all , for large
enough. Finally, let . Repeated applications
of the Schwarz inequality yield

and

which, when substituted in (92), result in

(93)

Since is asymptotically unbiased (as a sum of asymptotically
unbiased estimates), for large we have

which in conjunction with (93) yields the desired (49).
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