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1 Introduction

Many methods exist for representing a signal f by a sequence of numbers, which can be interpreted
as measurements of f. The classical approach is to choose the measurements as samples of f. A
more recent approach [29, 22, 3, 27, 28, 12] is to consider measurements that can be expressed as
inner products of f with a set of vectors that span a subspace S, which is referred to as the sampling
space. The problem then is to reconstruct f from these measurements, using a set of vectors that
span a subspace W, which we refer to as the reconstruction space. If f does not lie in W, then it
cannot be perfectly reconstructed using only reconstruction vectors that span W. Therefore, if we
allow for signals out of W, then we must relax the requirement for perfect reconstruction.

Given a reconstruction method, we can always choose a sampling method so that the recon-
structed signal is closest to f in an [o-sense. However, this requires the sampling space S to be equal
to the reconstruction space W. If the sampling scheme is such that S # W, then the minimal-error
approximation cannot be obtained. Therefore, our problem is to construct a good approximation
of f given both a sampling method and a reconstruction method.

In [29] the authors introduce the concept of consistent reconstruction, in which the reconstructed
signal is in general not equal to f, but nonetheless yields the same measurements. Based on this
requirement, they derive a sampling procedure for the special case in which f lies in Ly, and § and
W are generated by integer translates of appropriately chosen functions.

In this paper we extend the results of [29] in several ways. First, we expand their results to a
broader framework that does not require § and W to be generated by integer translates, and does
not require f to lie in Lo, but rather can be applied to arbitrary subspaces of an arbitrary Hilbert
space. This framework leads to some new sampling theorems, as well as further insight into the re-
sults of [29]. We also develop a geometric interpretation of the sampling and reconstruction scheme
that provides further insight into the problem. Second, we develop redundant sampling procedures

in which the measurements constitute an overcomplete representation of f. These measurements



correspond to inner products of f with a frame for S, and reconstruction is obtained using a frame
for W. To obtain a consistent reconstruction of f in this case, we develop a generalization of the
well known dual frame operator [6], which we refer to as an oblique dual frame operator. The
corresponding frame vectors are referred to as the oblique dual frame vectors. As we show, these
frame vectors have properties that are very similar to those of the conventional dual frame vectors.
However, in contrast with the dual frame vectors, they are not constrained to lie in the same space
as the original frame vectors. Thus, using oblique dual frame vectors we can extend the notion of a
frame expansion to include redundant expansions in which the analysis and synthesis frame vectors
lie in different spaces.

By allowing for arbitrary sampling and reconstruction spaces, the sampling algorithms can be
greatly simplified in many cases with only a minor increase in approximation error [29, 27, 28, 30,
4, 5]. Using oblique dual frame vectors we can further simplify the sampling and reconstruction
processes while still retaining the flexibility of choosing the spaces almost arbitrarily, due to the
extra degrees of freedom offered by the use of frames that allow us to construct frames with pre-
scribed properties [15, 1]. Furthermore, if the measurements are quantized prior to reconstruction,
then as we show the average power of the reconstruction error using this redundant procedure can
be reduced by the redundancy of the frame in comparison with the nonredundant procedure.

For simplicity of exposition the results in this paper are derived for the finite-dimensional case;
however, the results can be extended to include the infinite-dimensional case as well.

This paper is organized as follows. In Section 2 we consider the consistency requirement in
detail, and develop a geometric interpretation of the sampling and reconstruction scheme. Section 3
considers explicit reconstruction methods. The aliasing and reconstruction error resulting from
our general scheme are analyzed in Section 4. Section 5 considers nonredundant sampling. An
example illustrating the reconstruction is given in Section 6. Section 7 considers redundant sampling

procedures. In Section 8 we introduce the notion of oblique dual frame vectors and discuss their



key properties, and in Section 10 we develop a redundant sampling procedure that can be used to

reduce the quantization error.

2 Consistent Reconstruction

We denote vectors in an arbitrary Hilbert space H by lowercase letters, and the elements of a vector
c € CN by c[k]. The inner product between vectors z,y € H is denoted by (z,y). Ps denotes the
orthogonal projection operator onto the space S, Iy denotes the N X N identity matrix, and N ()

and R(-) denote the null space and range space of the corresponding operator, respectively.

2.1 Consistency Condition

Suppose we are given measurements c[k] of a signal f that lies in an arbitrary Hilbert space H.
The measurements c[k] = (s, f) are obtained by taking the inner products of f with a set of N
sampling vectors {sg,1 < k < N} that span an M-dimensional subspace S C H, which is referred to
as the sampling space. We construct an approximation f of f using a given set of NV reconstruction
vectors {wg,1 < k < N} that span an M-dimensional subspace W C H, which we refer to as the
reconstruction space. In the case of nonredundant sampling N = M so that the sampling and
reconstruction vectors form a basis for S and W, respectively; in the case of redundant sampling
N > M and the sampling and reconstruction vectors form a frame for S and W, respectively. We
do not require the sampling space S and the reconstruction space W to be equal.

The reconstruction f has the form f = 21]::1 d[k]wy, for some coefficients d[k] that are a linear

transformation of the measurements c[k], so that d = Hc for some H. With W and S denoting the
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set transformations' corresponding to the vectors wy and s respectively,

dlklwy = Wd = WHc = WHS*f. (1)

—
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The sampling and reconstruction scheme is illustrated in Fig. 1.

c[k] d[k]

Figure 1: General sampling and reconstruction scheme.

Since f given by (1) always lies in W, if f ¢ W, then f # f. Because we are allowing the
space of signals H to be larger than Y/, we must replace the requirement for perfect reconstruction
of f ¢ W with a less stringent requirement. Therefore, our problem is to choose H in Fig. 1 so
that f is a good approximation of f. In particular, we require that if f € W, then f = f. To
this end we must have that W N S+ = {0}. For suppose that z is a nonzero signal in W N S+.
Then c[k] = (sg,z) = 0 for all k, and clearly = cannot be reconstructed from the measurements
c[k]. Consequently, throughout the paper we explicitly assume that W NS+ = {0}. Since W and
S have the same dimension, this implies that H = W @ S+.

The sampling procedures we develop are based on a consistency requirement, introduced by
Unser and Aldroubi in [29]. The idea is to construct a consistent reconstruction f of f that has the
property that if we measure it using the measurement vectors s, then the measurements will be

equal to the measurements c[k] of f. Thus, our problem reduces to finding H in Fig. 1 such that

S*f=S*WHS*f = §*f. (2)

YA set transformation X: C¥ — H corresponding to {zx € H,1 < k < N} is defined by Xa = Eﬁ:l a[k]zr for
any a € CV. From the definition of the adjoint X*: H — CV it follows that if a = X*y, then a[k] = (z,y)-



Theorem 1 below asserts that (2) is satisfied for all f € H with W NS+ = {0} if and only if
G = WHS* is an oblique? projection [16, 2, 20] with R(G) = W and N(G) = S+, denoted by

E\ys1. The oblique projection E), g1 is defined as the the unique operator satisfying

Eysiw = wforany weW;

Epsiv = 0forany ve S*. (3)

Theorem 1. Let {c[k] = (sg, f)} denote measurements of f € H with sampling vectors {sy} that
span an M -dimensional subspace S C H, and let the reconstruction vectors {wy} span an M-

dimensional subspace W C H such that WN S+ = {0}. Then f 18 a consistent reconstruction of f

if and only sz =Fysf.

Proof. Suppose that f = WHS*f is a consistent reconstruction of f so that (2) is satisfied, and

let G = WHS*. Then for all f € H,

G f =WHS*WHS*f =WHS*f =WHS*f =G, (4)

and G is a projection operator. Since G = WHS*, N'(G) D N(S*) = St and R(G) C R(W) = W.
Suppose that f € N(G) but S*f # 0. Then S$*f = $*Gf = 0 contradicting (2), so that N'(G) = S*.
Now, let f € W. Then from (2) we have that $*(Gf — f) = 0 so that Gf — f € N'(§*) = S*. But
we also have that Gf — f € W. Since WN S+ = {0}, Gf — f =0 for all f € W, and R(G) = W.

Next, suppose that f = Gf where G = WHS* = Eyg.. Then Gf = f for any f € W, and
S*f = S*Gf = S*f. For f € 8+, S*f = Gf = 0 so that S*f = S*f. Since H = W & S*, we

conclude that S$*f = §*f for all f € H. O

2An oblique projection is a projection operator E satisfying E? = E that is not necessarily Hermitian. The
notation E\,s1 denotes an oblique projection with range space WV and null space S L If W=S, then E, sy is an
orthogonal projection onto W which we denote by P .



As a corollary of Theorem 1 we have that if W N S+ = {0}, then a consistent reconstruction f
of a signal f € W is always equal to f.

Theorem 1 describes the form of the unique consistent reconstruction if it exists, however
it does not establish its existence. In Section 3 we show that a consistent reconstruction can
always be obtained, and we derive explicit reconstruction procedures. Before we consider the
detailed methods, in the next section we present a geometric interpretation of the sampling and

reconstruction that provide further insight into the problem.

2.2 Geometric Interpretation

Let us first consider the case of perfect reconstruction for signals in W. Thus, we would like
to determine conditions under which any f € W can be reconstructed from the measurements
clk] = (f,sk). We first note that sampling f with measurement vectors in S, is equivalent to
sampling the orthogonal projection of f onto &, denoted by fs = Psf. This follows from the

relation

(ks f) = (Pssg, f) = (s, Psf). (5)

We may therefore decompose the sampling process into two stages, as illustrated in Fig. 2. In the
first stage the signal f is (orthogonally) projected onto the sampling space S, and in the second
stage the projected signal fs is measured. Since fs € S and the vectors s; span S, fs is uniquely

determined by the measurements c[k]. Therefore, knowing c[k] is equivalent to knowing fs.

fs
f— S* |kl = f — Ps S* - c[k]

Figure 2: Decomposition of the sampling process into two stages.

In view of the interpretation of Fig. 2, our problem can be rephrased as follows. Can we



reconstruct a signal in W, given the orthogonal projection of the signal onto S, with WNS+ = {0}?
Fig. 3(a) depicts the orthogonal projection of an unknown signal f € W onto S, denoted fs. The
problem then is to determine f from this projection. Since the direction of W is known, there
is only one vector in W whose orthogonal projection onto S is fg; this vector is illustrated in
Fig. 3(b). Thus, from this geometrical interpretation we conclude that for W N S+ = {0}, perfect

reconstruction of any f € W from the measurements c[k] is always possible.
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Figure 3: Tllustration of perfect reconstruction of f € W from fs = Psf, with W N S+ = {0}
(a) orthogonal projection of unknown signal in W onto S (b) unique signal in W with the given
projection.

We now discuss consistent reconstruction for signals f € H. If f is a consistent reconstruction of
f, then f and f have the same measurements: clk] = (sk, f) = (sk, f ). From our previous discussion
it then follows that fs = fs where fs = Ps f . Thus, geometrically a consistent reconstruction f of

f is a signal in W whose orthogonal projection onto S is equal to the orthogonal projection of f



onto S, as illustrated in Fig. 4. Evidently, the consistent reconstruction is unique and always exists.
We have seen in Theorem 1 that this reconstruction has a nice geometrical interpretation: It is the
oblique projection of f onto W along S*. This interpretation is illustrated in Fig. 5, from which it
is apparent that Eyy g1 f and f have the same orthogonal projection onto § and consequently yield

the same measurements.

SJ_

Sk

Is

Figure 4: Tllustration of consistent reconstruction of an arbitrary f from fs, with W NS+ = {0}.

Egiywfy--"

Figure 5: Decomposition of f into its components in W and St given by Ey,g1f and Egiyf,
respectively.

In summary, by considering a geometric interpretation of the sampling process and the con-
sistency requirement we have demonstrated that perfect reconstruction of signals in W is always
possible as long as W N S+ = {0}, and we illustrated the reconstruction geometrically. We also
showed that under the same condition consistent reconstruction is always possible, and illustrated

the reconstruction. It is important to note that the geometric interpretation (and Theorem 1)



hold irrespective of whether the sampling process is nonredundant or redundant. In the next sec-
tion we provide mathematical proof of these results and derive an explicit reconstruction scheme.

Nonredundant procedures are considered in Section 5, and redundant procedures are considered in

Sections 7, 8 and 10.

3 Reconstruction Scheme

3.1 Reconstruction Algorithm

From Theorem 1 and the geometric interpretation of Section 2.2 it follows that to obtain a consistent
reconstruction f of f we need to determine H in Fig. 1 such that G = WHS* = Ey, 5.1, i.e., such
that G satisfies (3). We now show that with H = (S*W)', where () denotes the Moore-Penrose

pseudoinverse [13],

N
F=dkuwe =Wd=w(S"W)lc=w(SW)'ss, (6)
k=1

is a consistent reconstruction of f for all f € H. To this end we prove the following proposition.

Proposition 1. Let the vectors {sg,1 < k < N} corresponding to S span an M-dimensional
subspace S C H, and let the vectors {wg,1 < k < N} corresponding to W span an M -dimensional
subspace W C H, with W N S+ = {0}. Then the oblique projection onto W along S* can be

expressed as Eyyg1 = W(S*W)1S*.

Proof. We denote G = W (S*W)!S* and show that G satisfies (3).

First, since the vectors wy span W, any w € W can be expressed as w = Wa for some a € CV.
Then Gw = W (S*W)!$*Wa = WPa where from the properties of the pseudoinverse, P is an
orthogonal projection onto N (S*W)*. Since Wz € W for any x € C¥ and W N S+ = {0},

S*Wz = 0 if and only if Wz = 0, so that N(S*W) = N(W). Then for any w € W, Gw =

10



WPywyra = Wa = w. Next, since sy € S, §*v = 0 for any v € St, and Gv = 0 so that G

satisfies (3) and consequently G = E)yg.. O

If f €W then f = Eyys1f = f, and f can be perfectly reconstructed from the measurements
c[k] using (6). By choosing different spaces H, YW and S and using (6), we can arrive at a variety
of new and interesting perfect reconstruction sampling theorems.

From (6), f is obtained by first transforming the measurements c[k] into “corrected” measure-

ments d[k] corresponding to d = (S*W)fc = Tf, where T = (S*W)S*. As we now show, T has an

interesting interpretation: It is the obliqgue pseudoinverse of W on ¥V = N(W)+ along S+.

3.2 Oblique Pseudoinverse

Let T: K — U be a linear transformation, and let X = G @ N (T) and U = R(T) & Z. The oblique

pseudoinverse of T on G along Z, denoted Tg#z, is the unique transformation satisfying [23, 9]

TTg#Z = Er(1)z; (M)
TZ:T = Egn(ry; (8)
R(IF,) =G. (9)

As can be verified [9], (7)—(9) imply that Tg#z inverts T between G and R(T'), while nulling out any
vector in Z. This interpretation is illustrated in Fig. 6, from which it follows that the pseudoinverse

Tt is a special case of the oblique pseudoinverse Tg#z for which G = V(T)* and Z = R(T)" .

Proposition 2. Let the vectors {sg,1 < k < N} corresponding to S span an M-dimensional
subspace S C H, and let the vectors {wg,1 < k < N} corresponding to W span an M -dimensional
subspace W C H, with WN S+ = {0}. Then the oblique pseudoinverse of W on V = N (W)* along
St can be expressed as

Wi, = (S*W)ts. (10)

11



Figure 6: The action of T and sz on the subspaces G, N(T), R(T) and Z.

Proof. We need to show that Wst given by (10) satisfies (7)-(9), i.e.,

WWi, = Eyse; (11)
Wi W = Py; (12)
R(Wig.) = V. (13)

The fact that W#S . satisfies (11) follows immediately from Proposition 1. To prove that W#S n

satisfies (12) we note that from the properties of the pseudoinverse, Wfs W= (SW)IsW =

Py(s-wys- But since N(S*W) = N(W) = Vi, (S*W)IS*W = Py. Finally, R(W/5,) =

R((S*W)TS*) = R((S*W)T) since N((S*W)H+ = R(S*W) = R(S*) because for any =z € H,

S*z = S*Eyygiz and Bz € W = R(W). Thus R(W,

NW)t =V, and Wst satisfies (13). O

) = R((S*W)T) = N(SW)* =

Comparing (10) with (6) we see that f = Wd where d = Wstf. Thus d[k] = (vg, f) where vy

are the vectors corresponding to (W#

#o1)". Since R((Wi.)*) = N(W

VsJ_)J_

= §, the vectors vy

12



lie in S§. Furthermore, from (11) WWst = F))s1, so that any f € S can be expressed as

N
f=Esyif=(Byst) f= Wi W f=> blklu, (14)
k=1

where b = W* f, and the vectors vy span S.

Therefore, in the case of nonredundant sampling i.e., N = M, the vectors v, form a basis for
S, and in the case of redundant sampling, i.e., N > M, the vectors vy form a frame for S. These
basis and frame vectors have special properties which we discuss in Sections 5 and 8, respectively.
Specifically, in Section 5 we show that in the case of nonredundant sampling, the vectors vy form
a basis for S that is biorthogonal to the basis vectors wy. In Section 8 we show that in the case of
redundant sampling, the vectors vy form a frame for § which we define as the obliqgue dual frame,

which has properties analogous to the dual frame vectors.

4 Aliasing and Error Bounds

Since in general f ¢ W, the reconstruction (6) may result in aliasing in f , which occurs when
components of f that lie out of VW are aliased into f . A very nice and intuitive way to think about
aliasing was proposed in [18] in the context of multiresolution spaces in terms of the norm of the
“out-of-space” component. Let I' denote the sampling operator defined by f = I'f, which in our

case is equal to I' = Ey,,g1. Then the aliasing norm is defined as [18, 17]

r E
Ao sup WAL B ]

—re - 15
A R (15)

From (15), Ar = 0 only if E,,g. = 0 for all f € W' which implies that S = W. To avoid aliasing
when § # W, we can first orthogonally project f onto W, and then measure the projection. The

measurements are then ¢ = S*Py f, so that c[k] = (tx, f) where t; = Pysi and consequently

13



tr € W; as we expect the effective sampling space is equal to the reconstruction space.

When § # W we can obtain a bound on Ar using the fact that for any f € H [30]

1

1Bwsefl < mllfll, (16)

where the angle 6)ys between S and W is defined as [29]

cos(f = inf Psf||. 17
(Ows) feW,HfH:l” s S| (17)
Thus,
1
< — . 1
~ cos(fws) (18)

As we expect intuitively, the bound decreases as the angle between the spaces S and W decreases,
in which case § is “close” to W.
The norm of the reconstruction error f — Eyys1 f can be bounded based on results derived in
[29],
1

||f—ow||Sllf—EwstIISmllf—owlla (19)

where ||f — Py f|| is the minimal norm of the reconstruction error corresponding to the case in
which W = S. From (19) we see that there is a penalty for the flexibility offered by choosing S
(almost) arbitrarily: The norm of the reconstruction error for f ¢ W is increased. However, in

many practical applications this increase in error is very small [28, 30, 4, 5].

5 Reconstruction From Nonredundant Measurements

Suppose that the sampling vectors {sx,1 < k < M} form a basis for S and the reconstruction

vectors {wy, 1 < k < M} form a basis for W. Then, as we now show, S*W is invertible so that the

14



general reconstruction formula (6) reduces to

~

= dEw, =Wd=W(S*W)"'S*f. (20)

M=

B
Il

1

Proposition 3. Let the vectors {sx,1 < k < M} corresponding to S denote a basis for an M-
dimensional subspace S of H, and let the vectors {wg,1 < k < M} corresponding to W denote a

basis for an M-dimensional subspace W of H. Then S*W is invertible if and only if WNS+ = {0}.

Proof. Suppose that S*W is invertible, and let z € W N S*. Since z € S+, §*z = 0. But since
z €W, z = Wa for some a € CM. Thus, S*z = S*Wa = 0. Because S*W is invertible, we must
have a = 0 so that x = Wa = 0.

Conversely, suppose that W NS+ = {0}. Let = # 0 be a vector in N'(S*W) so that S*Wx = 0.
Since the vectors wy, are linearly independent, y = Wz # 0 and therefore y € N'(S*) = R(S)*+ =
S*. In addition, y € R(W) = W. Therefore y = 0, which in turn implies that = = 0 contradicting

our assumption. Thus, S*W is invertible. O

The resulting measurement and reconstruction scheme is depicted in Fig. 7. Note, that since f is

unique and the vectors wy are linearly independent, the coefficients d[k] are also unique.

c[k] d[k] )
fr— 5 | (ST "W f=Epysef

Figure 7: Consistent reconstruction of f using nonredundant sampling vectors s and nonredundant
reconstruction vectors wy, with W NS+ = {0}.

We may interpret the reconstruction scheme of Fig. 7 in terms of a basis expansion for signals
in W. Since for f € W, f = f, any f € W can be represented as f = Zkle d[k]wy where

d[k] = (v, f) and the vectors v, € S correspond to V = (W

VSL)* = S(W*S)~L. We have already

15



seen in Section 3.2 that these vectors form a basis for S. Since V*W = (S*W)"1S*W = Iy,
these basis vectors have the property that they are biorthogonal to wy: (vk,ws,) = dgm- Therefore
Fig. 7 provides an explicit method for constructing basis vectors for an arbitrary space S with

WnN St = {0}, that are biorthogonal to the basis vectors wy,.

6 Bandlimited Sampling of Time-Limited Sequences

To illustrate the details of the sampling and reconstruction scheme of Fig. 7, we now consider an
example in which H is the space of sequences z[n] such that z[n] = 0 for n < 0,n > N, W is
the space of sequences z[n] such that z[n] = 0 for n < 0,n > M where M = 2M' +1 < N,
and § is the space of “bandlimited” sequences x[n] such that X[k] = 0 for M/ < k < N — M’,
where X[k],0 < k < N — 1 denotes the N point DFT of z[n]. The bases for S and W are
chosen as the sequences sg[n],0 < k < M — 1 and wg[n],0 < k < M — 1 respectively, given by
si[n] = e k=Mn/N for 0 <n < N —1 and 0 otherwise, and wi[n] = 6[k — n).

Consider an arbitrary sequence f[n] in H. The measurements c[k],0 < k < M — 1 of f[n] are

N-1

okl = (38, £) = Y splnlf[n] = Z fln)e 2NN = B((k — M")w], (21)

n=0

where F[k],0 < k < N — 1 is the N point DFT of f[n], and ((p))n = p mod N. Thus, the
measurements c[k| are the M lowpass DFT coefficients of the N point DFT of f[n]. To obtain a

consistent reconstruction of f[n] we need to determine (S*W) 1. The kmth element of S*W is

N-1

(sk,wm) = > sklnlwm[n] = si[m] = Z¥™B™, (22)
n=0

16



where Z = e7927/N and B = ¢/27M'/N We can therefore express S*W in the form

1 1 1 1
1 Z 72 cee ZMA

S*W = D. (23)
1 zM-1 p2(M-1) ... z(M-1)

Eq. (23) is the product of a Vandermonde matrix and a diagonal matrix D with nonzero diagonal
elements B™. 0 < m < M — 1. Therefore, S*W is always invertible which implies by Proposition 3
that WN S+ = {0}. We can compute the inverse of $*W using any of the formulas for the inverse
of a Vandermonde matrix (see e.g., [21, 25]). The corrected measurements d[k] are then given
by the elements of d = (S*W)~lc where c is the vector with elements c[k] given by (21), and
fn] = Z,]CV:_OI wg[n]d[k] = d,, for 0 < n < M — 1 and 0 otherwise. The consistency requirement
implies that F[((k—M"))n] = F[((k — M'))n] for 0 < k < M — 1, where F[k] is the N point DFT
of f[n]. Thus f[n] is a “time-limited” sequence that has the same lowpass DFT coefficients as f[n].

In [9, 7] we develop a systematic method for constructing signals with prescribed properties. In
particular, we consider constructing a signal in ‘H with specified properties in both W and §. Using
these methods we can generalize our construction here to produce a signal with specified lowpass
coefficients and specified values on a given time interval.

Now, suppose that f[n] is a length M sequence in W, and we are given M lowpass DFT
coefficients F[((k — M"))n], 0 < k < M — 1. We can then perfectly reconstruct f[n] from these
coeflicients using the method described above. This implies the intuitive result that a time-limited
discrete-time sequence can be reconstructed from a lowpass segment of its DFT transform. This
result is the analogue for the finite length discrete-time case of Papoulis’ theorem [24], which implies
that a time-limited function can be recovered from a lowpass segment of its Fourier transform. The

reconstruction based on Papoulis’ theorem is typically obtained using iterative algorithms such as

17



those discussed in [24, 26]. By choosing appropriate sampling and reconstruction vectors in the
general scheme of Fig. 7, we obtained a finite length discrete-time version of this theorem together
with a simple non-iterative reconstruction method. This example illustrates the type of procedure

that might be followed in using our framework to generate new sampling theorems.

7 Reconstruction From Redundant Measurements

Suppose now that we are given a set of redundant measurements ¢[k] = (zg, f) of a signal f € H,
where the vectors {zx,1 < k < N} form a frame for § and reconstruction is obtained using the
reconstruction vectors {yg,1 < k < N} which form a frame for W: A set of vectors {y, € W,1 <

k < N} forms a frame for W if there exists constants A > 0 and B < oo such that

N
Allz|* <Y (@ o) < Blja|%, (24)
k=1

for all z € W [6]. Although in principle N maybe infinite, we assume throughout that N is finite.
The lower bound in (24) ensures that the vectors yi span W; thus we must have N > M. If
N < o0, then the right hand inequality of (24) is always satisfied with B = Z,chzl (yk, yk)- Thus,
any finite set of vectors that spans W is a frame for W. If the bounds A = B in (24), then the
frame is called a tight frame. If in addition A = B = 1, then we call the frame a normalized tight
frame. The redundancy of the frame is defined as r = N/M.

From the general reconstruction formula (6), f is obtained using the frame vectors gy by trans-
forming the measurements k] into corrected measurements d = (X*Y)!é¢, as depicted in Fig. 8.
An alternative form of Fig. 8, that will be used in Section 10, can be obtained by noting that any
frame Y for W can be expressed as Y = W Z where W corresponds to an arbitrary basis for W,

and Z: CM — CN has rank M, i.e., ZZ1 = I};. Similarly, any frame X for S can be expressed as

X = ST where S corresponds to an arbitrary basis for S, and T: CM — CN satisfies TTT = Iy;.
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clk] d[k] R
[ — X* (X*Y)t Y ~ f=Eps.f

Figure 8: Consistent reconstruction of f using redundant sampling vectors zj and redundant
reconstruction vectors yy, with W N S+ = {0}.

Then
(X*V) X* = (T*S*W2Z)IT*S*. (25)
To simplify (25) we rely on the following lemma.

Lemma 1. Let A be an m x n matriz and let B be an n x k matriz. If R(B) = N(A)*, N(AB) =
N(B) and R(AB) = R(A), then

(AB)t = BTAT. (26)
In particular if A and B both have rank n, then (26) is satisfied.

Proof. The lemma is proven in a straightforward manner by showing that under the conditions of

the lemma, Bt At satisfies the Moore-Penrose conditions [13]. O

Since T* and Z both have rank M and from Proposition 3, S*W is invertible, it follows from
Lemma 1 that

(T*S$* W Z)t = Zt(s*W) (11" (27)

Substituting into (25),

(xX*)Ix* = ZU(s*w) Y (T)y*T*Ss* = ZT(S*W) LS8, (28)

where we used the fact that (TT)*T* = I;. From (28) it follows that we can obtain the re-

dundant corrected measurements d[k] directly from the nonredundant corrected measurements
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d = (S*W)"18*f = (8*W) l¢, via d = Z'd, where c[k] = (s, f) are the nonredundant mea-

surements obtained using the vectors si. This interpretation is illustrated in Fig. 9.

c[k] d[k] d[k]
f S* (S*w)~t 7t z W — f

Figure 9: Equivalent representation of Fig. 8.

We have seen that the nonredundant sampling scheme of Fig. 7 can be interpreted as a basis
expansion of f € W in terms of a biorthogonal basis for S. We now show that the redundant
sampling scheme of Fig. 8 can be interpreted as a frame expansion of f € W in terms of the oblique
dual frame vectors on §. Furthermore, although the redundant coefficients J[k] are not unique,
based on the properties of the oblique dual frame vectors we will show that the sampling scheme
of Fig. 8 results in coefficients d[k] with minimal ly-norm.

In the next section we introduce the oblique dual frame vectors and discuss their key properties.

8 Oblique Dual Frame Vectors

8.1 Definition of the oblique dual frame vectors

Definition 1. Let the vectors {yy € W,1 < k < N} corresponding to Y denote a frame for an M-
dimensional subspace W of H, and let S be an M-dimensional subspace of H with WN S+ = {0}.
Then the oblique dual frame vectors of yr on S are the frame wvectors {3],‘95 € §,1 <k <N}

corresponding to the oblique dual frame operator (Y# )* where V = N(Y)L.

Vst

Note that from the discussion following Proposition 2, the vectors g},‘g form a frame for S. As we
show in the next section, these frame vectors have properties which are analogous to the properties

of the conventional dual frame vectors [19, 6], and therefore justify our choice of terminology.
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From (6) and Proposition 2 we have that the corrected measurement d[k] in Fig. 8 are the inner
products of f with the oblique dual frame vectors of y; on S: d[k] = (G5, f)- Since YY;AJE,’,L = Eyysi1,

any f € W can be expressed as

N
f=Bysef = (U6 )k (29)

k=1

Eq. (29) is just a frame expansion of a signal f € W. However, in contrast with conventional frame
expansions, here the synthesis frame vectors lie in VW, while the analysis frame vectors g;j lie in an
arbitrary space S, such that W N S+ = {0}.

In the special case in which S =W, Yj; . = YT and the oblique dual frame operator reduces to
the conventional dual frame operator [6]. Then any f € W can be expressed as f = Zivzl (k> )Yk,

where §; € W are the dual frame vectors [6] of y;, in W, corresponding to (Y'1)*.

8.2 Properties of the Oblique Dual Frame Vectors

Given a frame yj, for W, there are many choices of coefficients d[k] that correspond to measurements
of f using a frame for S, and such that Eyy g1 f = 3, d[k]yx. The particular choice d[k] = (j, f)

has some desirable properties which we now discuss.

Proposition 4. Let {yy,1 < k < N} denote a frame for an M-dimensional subspace W C H, and
let S C H denote an M-dimensional subspace such that W NS+ = {0}. Then from all possible

coefficients d[k] that satisfy

N
Eysif =Y dkly (30)
k=1

for all f € H, the coefficients d[k] corresponding to d = Yj;f with ¥V = N(Y)* have minimal
lo-norm.

Proof. From (6) and Proposition 2 it follows that the coefficients d[k] satisfy (30). Now, let d

denote an arbitrary sequence satisfying (30). Then Y, (d[k] — d[k])yx = 0, which implies that
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d—de N(Y). Since J:Yj;Lf, de R(stl) = N(Y)L. Thus d = d +y where y € N'(Y) so that

(d,y) = 0. Then, ||d|[? = ||d||* + ||y||> > ||d||?, with equality if and only if d = d. O

Since in Fig. 8, J[k] = (Ji, f), it follows from Proposition 4 that these coefficients have minimal
lo-norm from all possible coefficients leading to consistent reconstruction.

We can consider the property stated in Proposition 4 from a slightly different point of view.
Since the vectors y; form a frame for W, any f € W can be expressed as f = Yd for some
d. However, since the vectors y; are linearly dependent, d is not unique. The minimal norm
coefficients are the unique coefficients that lie in AN (Y)+ = V. We may express these coefficients
asd=Y'f; indeed Yd = YY'f = Py f = f. Alternatively, d = ijg . f where St is an arbitrary
subspace of H such that W N S+ = {0}; indeed Yd = Yijst = E\ys1f = f. Thus, although the
minimal norm coefficients d[k| are unique, the resulting sampling vectors ¢, such that d[k] = (¢, f)
are not unique. If in addition we impose the constraint that ¢, € S, then the unique sampling

vectors that result in coeflicients with minimal norm correspond to (Y# )*. This interpretation is

yst

useful in applications in which a signal f € W is corrupted by noise that is known to lie in some
subspace S*. By using appropriate sampling vectors in S, we can totally eliminate this noise and

at the same time recover the minimal norm coefficients.

Proposition 5. Let f = 25:1 blk|wg, for some vectors {wg,1 < k < N} that form a frame for W,
and are to be determined. Let {tx,1 < k < N} denote a given set of sampling vectors corresponding

to T. Then the vectors wy corresponding to the set transformation (T# )* result in f with

N(T)E W

measurements (tx, f) that are as close as possible to blk] in a least-squares sense.

Proof. Let z denote the measurements of f with sampling vectors t, so that z = T*Wb. Then
z € R(T*) = N(T)*. To minimize ||z — b|| we need to choose a W such that z = Pyrery1b, i.e.,

such that T*W = Pyr ). In addition we must have that R(W) = W. Let W = (TA#fE(T)lWl)*'

Then from (8), T*W = (T T)* = Py ry, and R(W) = N(T7 > =w. O

N(T)Lwi (T)Lwt
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We conclude that the oblique dual frame vectors are very similar to the conventional dual frame
vectors: Given a frame {yx} for W, the dual frame vectors {gi} are the unique vectors in W such
that any f € W can be expressed as f = ), (Uk, f)yk, and the coefficients (g, f) have minimal
norm. Similarly, the oblique dual frame vectors of wy on S, with W N S+ = {0}, are the unique
vectors in S such that any f € W can be expressed as f = ), @f, f)yk, and the coefficients
(g,f, f) have minimal norm. Thus, using the concept of oblique dual frame vectors we can extend
the notion of a frame expansion to the case in which the analysis frame vectors are not constrained
to lie in W, but rather may lie in an arbitrary subspace S C H, with WN S+ = {0}.

It is interesting to note that the oblique dual frame vectors of g;f on W are the vectors yi. Thus

not only do we have f = Z,?;l (T3, f)yx for any f € W but also f = Zszl (y, )75 for any f € S.

Proposition 6. Let T = (Y7,

VSJ-)* denote the set transformation corresponding to frame vectors

{ﬂ,‘f € §,1 < k < N}, where Y is a set transformation corresponding to frame vectors {y, €

W,1 <k < N}. Then the oblique dual frame vectors of g;f on W are the vectors y.

Proof. By definition the oblique dual frame vectors of gj,f on W are the vectors corresponding to

(T}

L) where U = N (T)*. Thus we need to show that Y = (Tij)*, or equivalently Y* = T

qu_’

which based on (7)—(9) reduces to proving that

TY" = Eprywe; (31)
Y*T = Py; (32)
R(Y*) = U. (33)
First, we note that « = V(T)* = ./\f((l/';{?fy)*)L = R(Yj‘;) = V. Now, R(Y*) = N(Y)!' =V so

. . * # * * #
that (33) is satisfied. Next, TY* = (Yo, )" Y™ = (YY),

Vst ) = (Eyyst)® = Egypy1. Furthermore,

R(T) = R((Vs)®) = N(Y])t = S so (31) is also satisfied. Finally, V*T = Y*(¥}f,)* =
(YstY)* = Py completing the proof. O
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9 Summary of Consistent Sampling and Reconstruction

We summarize our results regarding consistent reconstruction in the following theorem:

Theorem 2 (Consistent sampling and reconstruction). Let {c[k] = (zg, f),1 < k < N} de-
note measurements of a signal f € H with sampling vectors {zx,1 < k < N} that form a frame
for an M-dimensional subspace S C H. Let {yr,1 < k < N} denote a set of reconstruction vectors
that form a frame for an M-dimensional subspace W C H, with WN S+ = {0}. Then any f € H

can be consistently reconstructed from the measurements c[k] using the reconstruction vectors yy as

f= Zszl dk]yr with d = (X*Y)'c, and the consistent reconstruction is unique. In addition,

1. d= Yj’;Lf where ijgL is the oblique pseudoinverse on V = N (Y )L along S* so that d[k] =

(G5, ) where the vectors {§5,1 < k < N} are the oblique dual frame vectors of yi, on S and

correspond to X (Y*X)1.
2. If M = N, then

(a) the coefficients d[k] are unique;

(b) {45,1 <k < M} are the unique vectors in S biorthogonal to {wy,1 < k < M}.
3. If M < N, then

(a) the coefficients d[k] are not unique;

(b) the coefficients d[k] have minimal la-norm among all possible coefficients e[k] such that
10 Reducing Quantization Error

One of the reasons for using redundant measurements is to reduce the average power of the quan-

tization error, when quantizing the corrected measurements prior to reconstruction. If § = W,
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then it is well known that using a redundant procedure the quantization error can be reduced by
the redundancy of the frame [6, 14]. We now extend this result to the case in which § # W.
In particular, we show that we can choose a normalized tight frame gy, for W such that when
using the redundant sampling procedure of Figs. 8 and 9 we can reduce the average power of the
reconstruction error by the redundancy, in comparison with the nonredundant scheme of Fig. 7.

Let {wg,1 < k < M} denote reconstruction vectors that form an orthonormal basis for W,
and let {sx,1 < k < M} denote sampling vectors that form a basis for S. From Theorem 2,
f = X, diklwy, where d[k] = (v, f), and {v,1 < k < M} are the vectors corresponding to
V =8§(W*S)~L. Thus,

. M M
F=" ok, HHrwr = qlk] (O, )%, (34)

k=1 k=1
where g[k] = /a[k]bk], alk] = (wg, wg) = 1, blk] = (vk, ve), W = wy/\/a[k], and T = v/ /B[K].
Assume we quantize the normalized measurements d[k] = (v, f) prior to reconstruction, and
model the quantization error as an additive zero-mean white noise source, so that the quantized
measurements are given by d[k]' = d[k] + e[k] where E(e[k]e[j]) = 02k;. The reconstruction error

is then € = Zkle g|k]e[k]w), and the average power of the reconstruction error, denoted by D, is

M M
D =E((e,e)) =0 _q’[k] = 0> > blk]. (35)
k=1 k=1

Suppose now we use a redundant procedure so that we reconstruct the signal using a normalized
tight frame {yz, 1 < k < N} for W, with redundancy N/M. Then Y = W Z for some Z: CM — CV
such that ZZ* = Ip;. From Theorem 2, the sampling vectors leading to consistent reconstruction

correspond to X = (Y.

VS-L)* — S(W*S)*IZ, so that in this case

N

N
F= Ao Hue =D dlkl(@x, £ )T, (36)

1 k=1
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where (k] = \/alk]blk], a[k] = (y, yx), bIK] = {2k, 1), T = y/+/alk], and T, = zy,/\/bk]. If we
quantize the normalized redundant measurements (Tj, f) and model the error as before, then the

average power of the reconstruction error using the redundant procedure, denoted by f), is
N N
D=0"> k] =0 a[k]b[k]. (37)
k=1 k=1

We now show that we can choose a normalized tight frame g, such that D = (M/N)D.

Let Y = WF, where F is an M x N matrix whose rows are equal to the first M rows of the
N x N Fourier matrix F with elements (1/v/N)e=72™™/N _ Since YY* = Py, the corresponding
vectors gy form a normalized tight frame for YWW. The oblique dual frame vectors x; of 35 on S are

X = (Yj‘;

) =V(W*V)'F=VF. (38)
Let fi, denote the kth column of F. From the definition of F, (fi, fr) = M/N for all k so that,

ar = Wk> Yk) = W e W) = (fr, fr) = ==» (39)

2|5

since W*W = Iy, and (37) reduces to

N
b =X S 5. (40)
v
Now,
N M
D bk] = Tr(X*X) = Te(V*V) = > b[k]. (41)
k=1 k=1

Substituting (41) into (40), and comparing with (35) we conclude that D = (M/N)D.
Therefore, to reduce the quantization error in the sampling and reconstruction scheme of Fig. 7,

we propose the following. Instead of directly quantizing the measurements d[k] in Fig. 7, we first
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take the N point DFT of the length M sequence of measurements d[k], and then quantize the DFT
coefficients. The reconstructed signal is then a linear combination of the reconstruction vectors wy,
where the coefficients are the first M values of the inverse DFT of the quantized DFT coeflicients, as
depicted in Fig. 10. If we take out the quantizer in Fig. 10, then f = Fy,s.f as in Fig. 7. However,
in the presence of the quantizer, using the redundant sampling scheme of Fig. 10 the average power

of the quantization error is reduced by a factor of N/M in comparison with a nonredundant scheme.

c[k] d[k] d[k] R
f— 5* (S*w)~! DFT Quantizer IDFT w - f

Figure 10: Reconstruction of f from quantized measurements using a redundant sampling scheme.

There are many other choices of frame vectors y; for W and oblique dual frame vectors x; on
S, that lead to a noise reduction of N/M in comparison with a basis expansion. We refer to any

such frame expansion as a ‘good’ oblique frame expansion. We then have the following theorem.

Theorem 3. Let {wg,1 < k < M} denote an orthonormal basis for W, and let {vg,1 < k < M}
denote the biorthogonal basis for S, with W NS+ = {0}. Let {yx,1 < k < N} denote a frame for
W, and let {z,1 < k < N} denote the obliqgue dual frame vectors of yx, on S. Let F denote the

N x N Fourier matriz, and let F denote the first M rows of F. Then

1. The frame vectors corresponding to Y = WF, X = VF form a good oblique frame expansion;

2. The frame vectors corresponding to Y = WFT, X = VFT where T is a unitary circulant

matriz® form a good oblique frame expansion.

Proof. We already proved the first part of the theorem; it remains to prove the second part. We can

immediately verify that X = VFT is in fact the oblique dual frame operator on S of Y = WFT.

3 A circulant matriz is a matriz where every row (or column) is obtained by a right circular shift (by one position)
of the previous row (or column).
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Since T is circulant and unitary it is diagonalized by F* [8], so we can express T as T = F*AF

where A is a diagonal matrix with diagonal elements Ay with |Agx| = 1 for all k. Then,

Y =WFT = WFFAF = WIAF, (42)

where T = [Ij; 0], and

Y'Y = F*A*T'IAF = F*I'IF = F* F. (43)

Combining (43) and (39), we have (yg,yx) = M/N for all k. From (37), the average power of the

reconstruction error using {y, zx} is D = 0>M/N 21]::1 (z, k). Now, X = VFT = VIAF so

N
> (@, wp) = Tr(X*X) = Tr(F A TVVIAF) = Te(V*V), (44)
k=1

and D = (M/N)D where D is the average power of the reconstruction error using {wg, vy }. O

Based on results derived in [8, 11, 10] we can show that Theorem 3 still holds when we replace
F by a generalized Fourier matrix defined on a direct product of cyclic groups (e.g., a Hadamard
matrix), and replace T by a unitary permuted matrix whose rows and columns are all permutations
of each other. This is because a permuted matrix is diagonalized by a generalized Fourier matrix,

and the magnitude of the elements of an N x N generalized Fourier matrix are all equal 1/v/N.
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