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Abstract

This thesis introduces systematic engineering principles to model, at different levels of ab-
straction the information processing in biological cells in order to understand the algorithms
implemented by the signaling pathways that perform the processing. An example of how
to emulate one of these algorithms in other signal processing contexts is also presented.
At a high modeling level, the focus is on the network topology rather than the dynamical

properties of the components of the signaling network. In this regime, we examine and
analyze the distribution and properties of the network graph. Specifically, we present a
global network investigation of the genotype/phenotype data-set recently developed for the
yeast Saccharomyces cerevisiae from exposure to DNA damaging agents, enabling explicit
study of how protein-protein interaction network characteristics may be associated with
phenotypic functional effects. The properties of several functional yeast networks are also
compared and a simple method to combine gene expression data with network information
is proposed to better predict pathophysiological behavior.
At a low level of modeling, the thesis introduces a new framework for modeling cellular

signal processing based on interacting Markov chains. This framework provides a unified
way to simultaneously capture the stochasticity of signaling networks in individual cells
while computing a deterministic solution which provides average behavior. The use of
this framework is demonstrated on two classical signaling networks: the mitogen activated
protein kinase cascade and the bacterial chemotaxis pathway.
The prospects of using cell biology as a metaphor for signal processing are also consid-

ered in a preliminary way by presenting a surface mapping algorithm based on bacterial
chemotaxis.
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Title: Ford Professor of Engineering

Thesis Supervisor: Douglas A. Lauffenbuger
Title: Whitaker Professor of Bioengineering
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Signal processing is an integral part of cell biology. The associated biological algorithms
are implemented by signaling pathways that cell biologists are just beginning to understand
and characterize. One of our long term objectives is to understand and model these biolog-
ical algorithms. Another long term objective is to emulate these processes, i.e. to use them
as metaphors in other engineered contexts such as ad-hoc wireless networks, distributed
sensor networks, and general algorithm development with the possibility of developing new,
efficient, robust signal processing systems. Toward these ends, the main focus of this thesis
is on developing new frameworks for modeling cellular signal processing. An example of
how the results obtained from the modeling can be exploited to develop a new generation
of algorithms for engineered systems is presented in the last chapter.

� 1.1 General Description

Biological signaling takes on different forms ranging from electrical signals through nerve
synapses, physical signals such as mechanical stress or pressure at the surface of cells, to
chemical signals such as hormone concentrations in the bloodstream. While some of these
signals, notably electrical and physical signals, have been historically easier to study and
control than others, the emergence of high throughput technologies for molecular biology
is making the study of biochemical signaling networks a possibility. In addition, as more
signaling networks and elements are identified, their complexities and the intricate interac-
tions among signaling molecules, or cross-talk, are quickly becoming intractable. In fact,
although the molecular components comprising cells are being cataloged, at a continually
accelerating rate, there is no effective knowledge of how these components work together as
an integrated dynamical system to yield output cell functions (e.g. survival, proliferation,
death, differentiation, migration, secretion, etc.) as responses to information (chemical,
mechanical, electrical, ...) presented in the cell environment. Understanding how cells do
signal processing therefore eventually requires models that define layers of abstraction in
order to view signaling algorithms at different resolutions.

Biology also presents a potentially very fruitful metaphor for signal processing. In
fact, there is very strong evidence of interesting sophisticated signal processing operations
performed by living systems including ones reminiscent of frequency modulation coding
[119], multi-resolution filterbanks, gradient search algorithms and many more. Historically,
nature and biology on a non-cellular level have provided the inspiration for widely exploited
signal processing methods such as neural networks, chirp signals, etc. The possibility of
exploiting cell biology to develop new signal processing algorithms is another underlying
motivation for the work presented in this thesis.

We limit our study to signaling networks within cells. The intracellular signaling net-
works we are interested in are composed of proteins and enzymes as well as other molecules
such as DNA, phosphates, and ATP. Signaling usually occurs through a series of protein
modifications such as phosphorylation (the addition of phosphate groups) and cleavage,
translocation from the cytoplasm to the nucleus, as well as control of gene expression.
Usually, signals propagate through cascades where one protein affects the activity of an-
other downstream protein. However, cross-talk also plays an important role in the signaling
mechanism where several proteins coming from different upstream signals converge onto one
single downstream signal or one upstream signal diverges to affect different downstream sig-
nals. These protein signaling networks are the focus of this thesis. Specifically, this work
presents a detailed study and exploration of protein networks from an engineering perspec-
tive and at different levels of resolution. The first part of this thesis starts by looking at
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these networks at the highest level of abstraction by focusing on the interconnectivity of
proteins rather than on their identities. We then add resolution to our model by examining
protein dynamics and how they interact. This leads to the formulation of a new stochastic
framework for modeling internal fluctuations in biological cells. Finally, using the tools
developed to understand and model biological networks, we then use these models to ex-
plore a new generation of networks where nodes are no longer biological components but
mathematical entities or engineered systems such as sensors and processors. This leads to
the formulation of a new search algorithm.

� 1.2 Summary of Contributions

The main contribution of this work is that it provides a framework for examining biological
signaling networks at different levels of abstraction and therefore presents a methodology
for addressing different biological questions. The work also includes an example of how such
a study can lead to new algorithms for engineered systems. Specifically in this thesis, we
have developed:

• A graph theoretic model of the whole-genome relationship between cell genotype
(genomic content) and phenotype (pathophysiological behavior) in response to toxic
agents (chemicals and radiation) in the environment, for yeast as the currently more
genomically-complex available experimental system.

• A unified modeling framework for simultaneously capturing the stochasticity of signal-
ing networks in individual cells and computing a deterministic solution which provides
average behavior.

• A biologically inspired surface mapping algorithm that provides an example for ex-
ploiting biological models to develop signal processing algorithms.

� 1.3 Chapter Outline

There are two main sections in this thesis. The first section presents the high-level modeling
results. Specifically, Chapter 2 provides an introduction to graph theoretic techniques and
how they have been applied to biology. The graph theoretic analysis of damage-recovery
networks is given in Chapters 3 and 4: Chapter 3 investigates the global properties of the
damage-recovery proteins in the context of the full yeast interactome while in Chapter 4 we
define newly synthesized phenotypic networks and examine their local properties. Finally
Chapter 5 extends this analysis to other functional yeast networks. The second section
presents the low-level modeling results. Chapter 6 provides the necessary background and
a survey of current low-level models for biological signaling. The general model descrip-
tion is given in Chapter 7. The model is then applied to two biological pathways: the
mitogen-activated protein kinase cascade (Chapter 8) and bacterial chemotaxis (Chapter
9). Exploiting bacterial chemotaxis to map and flatten surfaces is explored in Chapter 10.
Finally Chapter 11 concludes the thesis and outlines contributions.
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Chapter 2

Graph Theoretic Techniques Applied
to Biology
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At the highest level, biological networks (or any other network) can be viewed as con-
nected graphs of “black boxes”. From this point of view, the focus is solely on the connec-
tivity of the network rather than on the dynamical properties of the individual elements
(proteins, DNA, molecules). Using this level of abstraction, one can analyze the properties
conferred by the topology of the network independently of the dynamics of the individual
components. Specifically, there exists a rich mathematical framework for analyzing graphs
at this level, namely the field of random graph theory. In this chapter, we first give some
background on random graph theory. We then overview the current work applying this
theory to biology, and finally introduce the yeast protein-protein interactome.

� 2.1 Random Graph Theory

Random graphs have been used to model diverse complex systems such as social, biological,
and economic systems. While much is known about some random graph structures such
as uncorrelated random graphs [14] [45] [59], much less is known about real-world graphs
describing complex systems such as the Internet, metabolic pathways, networks of power
stations, etc. In this section we define random graphs and introduce some basic notions
associated with them. The reader is referred to [41] and [23] for more details.

A graph (network) is a set of vertices (nodes) connected via edges (links). If these
connections are statistically distributed, then the corresponding network is a random graph.
We restrict our attention to graphs with unit weight on all edges and that do not include
unit loops. These graphs can have non-symmetric edges with directionality in which case
they are termed directed graphs. On the other hand, undirected graphs have their nodes
simply connected via undirectional edges. In addition, there can be equilibrium graphs
and non-equilibrium graphs. Equilibrium graphs have a fixed total number of vertices and
random connections between them while in non-equilibrium graphs new vertices are added
to a network all the time and new edges emerge between the growing number of vertices.
An example of an equilibrium graph is the classical random graph introduced by Erdos
and Renyi [43] [44] where the total number of nodes are fixed and randomly chosen pairs
of nodes are connected via undirected edges. The citation graph [107], on the other hand,
represents an example of a non-equilibrium graph where at each time step a new node is
added to the graph and it is connected with some old node via an undirected edge.

There are several measures and functions associated with random graphs that allows
their characterization, we present some of the most important ones below.

� 2.1.1 Degree, loops, and degree distribution

The total number of connections of a node is called its degree k. In a directed graph, the
number of incoming edges of a node is the in-degree and denoted by ki while the number of
outgoing edges of a node is its out-degree ko. Clearly k = ko + ki. In general, the number
I of irreducible loops (i.e. loops that cannot be reduced to a combination of smaller ones)
in an arbitrary undirected connected graph is related to the number of edges, L, and the
number of nodes, N , as follows: I = L+ 1−N .
Since the degree of nodes in random graphs are statistically distributed, another property

of the graph is its degree distribution. For an undirected graph we define p(k, s,N) as
the probability that the node s in the graph of size N has k connections (i.e. k nearest
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neighbors). The total degree distribution of the graph is then given by:

p(k,N) =
1

N

N
∑

s=1

p(k, s,N) (2.1)

If all nodes of a random graph are statistically equivalent each of them has the same
degree distribution p(k,N), in this case, the degree distribution completely determines the
statistical properties of the graph. A similar set of distributions can be defined for the
in-degree and out-degree of directed graphs (see [41] for more details). Common degree
distributions are Poisson, exponential, and power-law. For example, a power-law graph is
defined as a network where the number of vertices of degree d is proportional to d−δ for
some positive constant δ. δ is usually referred to as the exponent of the power-law graph.
Such graphs have very few nodes of high degree (generally referred to as hubs) and many
nodes of low degree. They exhibit scale-free behavior, i.e. their properties or behaviors are
invariant across changes in scale. As a result, knowledge of the topology of a small part of
a network provides a reliable means of estimating the topology of the complete network.

� 2.1.2 Adjacency matrix, spectra of random graphs

A graph can be characterized by its adjacency matrix, A, which indicates which of the
vertices are connected (adjacent). A is a square N ×N matrix where N is the total number
of vertices in the graph. For directed graphs, the entries of A are such that aij = 1 if there is
a directed edge going from vertex i to vertex j. For undirected graphs, A is symmetric with
aij = aji. Since unit loops are not allowed, the diagonal elements of A are equal to zero, i.e.
aii = 0. Furthermore, since the graphs described here are random, the adjacency matrix
completely describes only one particular realization of the graph. From the adjacency
matrix, one can obtain several characteristics of an undirected graph. In particular, the
degree of a node is given by ki =

∑

j aij while the total degree of the graph, K =
∑

i ki,

is double the total number of edges L, and therefore is given by K = 2L = Trace{A2}.
The total number of loops of length three in the graph is N3 =

1
6Trace{A3} and the total

number of connected triples of vertices in the graph is T = 1
2

∑

i ki(ki − 1).
The spectrum of a random graph is the distribution of the eigenvalues of the adjacency

matrix. The spectral densities of uncorrelated random graphs, for example, follow the semi-
circle law [14] [45] [59] while it has been shown that the spectral density of the eigenvalues
of the adjacency matrix of a power-law graph approaches a triangle-like shape as the nodes
in the graph increase [45]. Further details can be found in [45].

� 2.1.3 Clustering coefficient

The clustering coefficient characterizes the ‘density’ of connections in the environment close
to a node and is only well defined for undirected graphs. It is the ratio between the total
number y of edges connecting its nearest neighbors, and the total number of all possible
edges between these nearest neighbors:

C =
2y

z(z − 1) (2.2)

where z is the number of nearest neighbors. The average value C̄ is the clustering coefficient
of the network. Intuitively, C̄ can be thought of as the probability that if a triple of vertices
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of a network is connected together by at least two edges, then the third edge is also present:
it shows the ‘density’ of small loops of length 3 in the network. For undirected graphs, the
clustering coefficient of the graph can be computed from the adjacency matrix as

C̄ =
1

9

Trace{A3}
∑

i6=j(A
2)ij
. (2.3)

� 2.1.4 Small worlds

Consider a network in which all edges are unit length. We define the distance between
two vertices of a network as the length of the shortest path between them. The distance l
between a pair of nodes of a random graph is distributed with some distribution function
p(l) which is the probability that the length of the shortest path between two randomly
chosen nodes is equal to l. p(l) describes one of the main structural characteristics of the
network. For undirected graphs, the distance l of the shortest path between nodes i and j
is equal to the minimal power of the adjacency matrix with non-zero ij element, i.e.

(Al−1)ij = 0 and (A
l)ij 6= 0 (2.4)

The average shortest path length for an uncorrelated network is small even for very
large networks. Graphs that exhibit small average shortest path lengths while being highly
clustered are termed “small-world” graphs [130] [131]. It has been further shown that the
time required for the spreading of a perturbation in a small-world network is close to the
theoretically possible minimum for any graph with the same number of nodes and edges
[130].

� 2.1.5 Betweenness

The betweenness σ(m) (also called load or betweenness centrality) of a node m is the total
number of shortest paths between all possible pairs of nodes that pass through this node.
This quantity was first introduced in sociology [49] to characterize the “social” role of a
node. It indicates whether or not a vertex is important in traffic on a network. σ(m) is
given by:

σ(m) =
∑

i6=j

B(i,m, j)

B(i, j)
(2.5)

where B(i, j) is the total number of shortest paths between i and j and B(i,m, j) is the
proportion of these shortest paths that pass through node m. The sum is over all pairs
of nodes for which at least one path exists, that is with B(i, j) > 0. The nodes with high
betweenness actually control the net. A network can also be decomposed into a pair of
separated subnets by successive deletion of the edges with maximum betweenness (note
that each deletion changes the betweenness of other edges).

� 2.1.6 The giant connected component

All the characteristics described so far are local properties of the graph; they do not give a
picture of the global topology of the networks involved. To get a global picture, one needs
a description of the percolation properties of the network. A distinct connected component
of a network is defined as the set of mutually reachable vertices. The size of a connected
component is the total number of nodes in it. When the relative sizes of all connected
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components of a network tend to zero as the number of nodes in the network tends to infinity,
the network is below the percolation threshold. If the relative size of the largest connected
component approaches a finite (non-zero) value in the limit of large networks, the network
is above the percolation threshold. In this case, the huge connected component plays the
role of a percolating cluster and is called the giant connected component (GCC). The giant
strong connected component (GSCC) is the set of nodes which are mutually reachable by
a directed path. The giant out-component (GOUT) is the set of nodes approachable from
the GSCC by a directed path while the giant in-component (GIN) contains all nodes from
which the GSCC is approachable. If the GCC is absent, an undirected graph is only a set
of separate clusters.

� 2.1.7 Methods for generating random graphs

We end this subsection with three methods for generating random graphs with different
degree distributions.

We start with an equilibrium network with attachment of edges without preference:
starting with a large number of edges, we connect their ends to randomly chosen nodes i.e.
the attachment of edges occurs without preference. The probability that an edge becomes
attached to a node is independent of the degree of the node. It can be proved that the
degree distribution of the resulting graph is a Poisson distribution.

One obtains the stationary exponential distribution as the degree distribution in the
case of a growing network with attachment of edges without preference. This network is
generated by adding at each time step a node and connecting a pair of randomly chosen
nodes.

Finally, in the growing network with preferential attachment, the probability that the
end of a new edge becomes attached to a node of degree k is proportional to k+b (linear type
of preferential linking) where b > 0 is a constant (this is a generalization of the Barabasi-
Albert model [14]). In this case, it can be shown that the degree distribution is a power-law

with p(k) ∝ k−(2+ b2 ) = k−γ . γ changes from 2 to infinity as b grows from 0 to infinity. It is
the combination of growth and linear preferential linking that naturally leads to power-law
degree distributions.

� 2.2 Random Graphs in Biology

In the past few years, scientists have conducted several empirical studies of very diverse
real world networks including electrical power grids, world wide web, the Internet back-
bone, telephone call graphs, co-authorship and citation networks of scientists, etc. Within
biology, several networks have been approached using random graph theory including neural
networks, networks of metabolic reactions, genomic and protein networks, ecological and
food webs, and world web of human language [41]. Since the thesis focus is on biochemi-
cal signaling networks, we will only give background on the approaches investigating such
types of networks, namely models of metabolic networks, genomic regulation networks, and
protein interaction networks.

� 2.2.1 Networks of metabolic reactions

In metabolic reaction networks, the nodes are substrates, i.e. molecular compounds that are
either educts (inputs) or products (outputs) in metabolic reactions. Directed edges connect
the educts and products that participate in a metabolic reaction. Jeong et al. [74] carried
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out a systematic comparative analysis of the metabolic networks of 43 organisms repre-
senting all three domains of life. The data they used was obtained from the WIT database
[101] which is an integrated pathway-genome database that predicts the existence of a given
metabolic pathway on the basis of the annotated genome of an organism combined with
firmly established data from the biochemical literature. They showed that these networks
have similar topological scaling properties, namely they exhibit a scale-free structure , i.e.
the probability that a given substrate participates in k reactions follows a power-law distri-
bution. In addition, the measured value of the average directed shortest-path length is very
close for all 43 networks: l̄ = 3.0 ∼ 3.5. This average is robust to random removal of nodes:
the random removal of 10% of the total number of nodes in the metabolic network of the
bacterium E.Coli does not produce any noticeable variation of the average shortest-path
length. However, when the most connected nodes (substrates) are removed, the average
shortest path increases rapidly, suggesting the special role of these metabolites in main-
taining constant average shortest path of the metabolic network. They also found that
practically the same substrates act as hubs in all organisms. Since only 4% of all substrates
that are found in all 43 organisms are present in all species, these substrates represent the
most highly connected substrates found in any individual organism. It implies the generic
utilization of the same substrates by each species while species-specific substrates are less
connected. As a result, these highly connected substrates may provide the connections
between modules responsible for distinct metabolic functions.

Wagner and Fell [127] also investigated the metabolic network of the bacterium E.Coli
and found that it is a small-world graph and that the connectivity of the metabolites follows
a power-law. They also suggested that the small-world architecture may serve to minimize
transition times between metabolic states, i.e. it may allow a metabolism to react rapidly
to perturbations.

� 2.2.2 Genetic regulatory networks

Genetic regulatory networks describe which genes regulate each other. They are usually in-
ferred from gene expression data sets which contain measured responses of the studied genes
to various stimuli. Specifically, a genetic network is a set of genes that interact through
directed transcriptional regulation, i.e. a set of genes that encode transcription factors
(regulating proteins) that can bind to specific DNA control regions of regulated genes to
activate or inhibit their transcription. Since regulated genes can themselves act in a regu-
latory manner, they create the genetic regulatory network. As a result, the transcriptional
regulatory network is represented by a graph where vertices are genes and directed edges
denote activating or repressing effects on transcription. It should also be noted that the
transcription regulatory network is naturally directed as opposed to the network of physical
protein interactions which we will discuss in the next section and which in principle lacks
directionality.

Guelzim et al. [62] created a graph of 909 genetically or biochemically established
interactions among 491 yeast genes. They found that the number of regulating proteins per
regulated gene (in-degree) has a narrow distribution with an exponential decay while the
number of regulated genes per regulating protein (out-degree) has a broader distribution
with a decay resembling a power-law.

Farkas et al. [46] used microarray data on 287 single gene deletion yeast Saccharomyces
cerevisiae mutant strains to elucidate generic relationships among perturbed transcrip-
tomes. They defined a similarity measure between two segments and constructed a graph
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such that two nodes were connected if the similarity score computed for the two tran-
scriptomes they represent exceeded a fixed threshold. Ultimately, they created a similarity
network in which each node represents one of the 287 deleted genes and their corresponding
transcriptional response programs.

Similarly, Rung at al. [110] built genome wide disruption networks for yeast. However,
in their graph, nodes represent genes and arcs connect nodes if the disruption of the source
gene significantly alters the expression of the target gene.

Finally, Maslov and Sneppen [89] studied the yeast genetic regulatory network formed
by 1,289 directed positive or negative direct transcriptional regulations within a set of
682 proteins. They found that links between highly connected proteins are systematically
suppressed whereas links between a highly connected protein and a lowly connected one
are favored. They concluded that the resulting topology decreases the likelihood of cross-
talk between different functional modules of the cell and as a result increases the overall
robustness of a network by localizing effects of deleterious perturbations.

� 2.2.3 Protein interaction networks

Protein interaction networks are networks whose nodes are proteins and whose edges repre-
sent pairwise direct physical protein-protein interactions. The edges of the network are gen-
erally undirected since the physical interactions among proteins lack directionality. These
edges form biochemical and signalling pathways by which in turn the production and degra-
dation of proteins is regulated.

Jeong et al. [74] studied the protein-protein interaction network of the yeast Saccha-
romyces cerevisiae based on data obtained mostly from two-hybrid analyses. Their network
consisted of 1,870 nodes (proteins) and 2,240 edges which represent direct physical protein-
protein interactions. They suggested that the probability that a given yeast protein interacts
with k other yeast proteins follows a power-law. In addition they tested the network robust-
ness to random errors by removing random nodes in the network and examining the effect
on the topology. They found that the network is robust to these random errors. This was
further checked with results from systematic mutagenesis experiments which show a striking
capacity of yeast to tolerate the deletion of a substantial number of individual proteins from
its proteome. They also ranked all interacting proteins based on the number of links they
have and correlated this with the phenotypic effect of their individual removal from the
yeast proteome. They found that the likelihood that removal of a protein will prove lethal
correlates with the number of interactions it has. As a result, they concluded that highly
connected proteins with a central role in the network’s architecture are three times more
likely to be essential than proteins with only a small number of links to other proteins.

Maslov and Sneppen [89] also analyzed the topological properties of interaction networks
in the yeast Saccharomyces cerevisiae. The interaction network they studied consisted of
4,549 physical interactions between 3,278 yeast proteins measured by two-hybrid screens.
They found that the network followed a power-law with exponent ranging from 2.2 to 2.8
and the number of neighbors ranging from 2 to 100. They further observed that direct
links between hubs are suppressed and that hubs tend to share fewer of their neighbors
with other hubs thereby extending their isolation to the level of next-nearest neighbor
connections. This reinforces the picture of functional modules clustered around individual
hubs.
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� 2.3 The Yeast Interactome

The yeast Saccharomyces cerevisiae (also abbreviated as S. cerevisiae) is currently one of
the most extensively studied eukaryotic organisms. Published data include information
about transcriptional regulation networks as well as protein interaction networks. As can
be seen from the previous section, the yeast is therefore currently the organism of choice
for applying network analysis and characterization techniques. In this thesis we also use
the yeast for our network studies and focus on the yeast protein-protein interaction graph
(also called interactome).

The yeast protein-protein interaction network used in this thesis is compiled from vari-
ous online databases including the Bimolecular Interaction Network Database (BIND) [11]
[20] and the Database of Interacting Proteins (DIP) [37]. This data is then processed in
MATLAB to create a yeast protein-protein interaction graph. The protein-protein graph
has 4,684 nodes (proteins) and 14,493 undirected edges (protein-protein interactions). The
interactome is shown in Figure 2-1. This figure was generated using the program Cytoscape
(http://www.cytoscape.org).

Figure 2-1. The yeast interactome.

Nodes in the graph correspond to proteins while edges are experimentally character-
ized physical protein-protein interactions. Some of these interactions are identified through
small-scale experiments carried out in different laboratories while the majority of these in-
teractions are identified through genome-wide experiments such as yeast two hybrid screens
[123] and mass spectrometric analysis of protein complexes [65] [54]. These genome-wide
screens carry with them sources of errors that one needs to be aware of. For example yeast
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two hybrid experiments give rise to false positives of two kinds. In one case, the interaction
between proteins is real but it never happens in the course of the normal life cycle of the
cell, due to spatial or temporal separation of participating proteins. In another case, an
indirect physical interaction is mediated by one or more unknown proteins localized in the
yeast nucleus. In addition, there are false negatives where a binding may not be observed
if the conformation of the bait or prey heterodimer block relevant interaction sites or if the
corresponding heterodimer altogether fails to fold properly. It is therefore crucial to test
for the potential effect of false positives and false negatives when analyzing the network in
order to draw meaningful, robust conclusions.
In the next three chapters, we use the yeast interactome and some of the graph theoretic

techniques presented here to investigate network properties of phenotypic effects in the yeast
S. cerevisiae.
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Chapter 3

Global Network Properties of
Damage Recovery Proteins
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Using genome-wide information to understand holistically how cells function is a major
challenge of the post-genomic era. Recent efforts to understand molecular pathway oper-
ation from a global perspective have lacked experimental data on phenotypic context, so
insights concerning biologically-relevant network characteristics of key genes or proteins have
remained largely speculative. In this and the next chapters, we present a global network
investigation of the genotype/phenotype data-set developed for the recovery of the yeast S.
cerevisiae from exposure to DNA damaging agents, enabling explicit study of how protein-
protein interaction network characteristics may be associated with phenotypic functional
effects. We show that proteins important for damage-recovery have topological properties
similar to essential proteins suggesting that cells initiate highly coordinated responses to
damage similar to those needed for vital cellular functions.

� 3.1 Introduction

Cells represent complex systems with thousands of proteins, carbohydrates, lipids, nucleic
acids and small molecules interacting to maintain growth and homeostasis. Such mainte-
nance requires that cells appropriately respond to both endogenous and exogenous envi-
ronmental cues. The recent completion of several genome projects provides us with parts
lists of genes and proteins that contribute to maintaining growth and homeostasis. Our
current challenge is to use this information to understand holistically how cells function.
This means understanding how global responses are orchestrated by communication be-
tween the components in the network that mediate responses to environmental stimuli.
Toward this goal, thousands of protein-protein interactions and genetic interactions have
been mapped into complex networks for several organisms, including the budding yeast
Saccharomyces cerevisiae [65] [123] [120] [121] [50] [71], the human gastric pathogen He-
licobacter pylori [106], the fruit fly Drosophila melanogaster [58] and the nematode worm
Caenorhabditis elegans [85] [129]. While some global network analysis has been performed
on these interacting networks as described in the previous chapter, they have rarely been
directly connected to systematic global genotype/phenotype information. We have chosen
to connect protein-protein interaction maps for S. cerevisiae with a genomic-scale dataset
describing the phenotypic role of all non-essential yeast proteins in helping cells recover after
exposure to a number of DNA damaging agents, typical of those encountered in our endoge-
nous and exogenous environment. This choice was motivated in part by the relevance of
damage-recovery processes to human diseases such as cancer, aging, and other degenerative
states.

As described in Chapter 2, graph theoretic approaches are now being used to study
global properties of biological networks. Network analyses of this kind, however, are for
the most part carried out in the abstract without any functional information, and when
functional information is present it is usually based on cataloged information assembled
from an array of unrelated experiments. Tools that allow for global systematic network
perturbations are crucial for establishing biologically meaningful network characteristics,
and the S. cerevisiae single-gene deletion library of strains provides a robust tool for such
analyses. In theory, each gene deletion strain represents an engineered cellular model in
which one node, and its corresponding edges, has been removed from the yeast genetic and
protein network. High throughput phenotypic studies that use gene deletion strains to iden-
tify the associated phenotypic effects under specific experimental conditions (a procedure
termed genomic phenotyping [18] [19]) provide biologically relevant data sets for network
characteristics studies.
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� 3.2 Phenotypic Annotation of the Yeast Interactome

For the network characteristics study presented in this chapter, we integrated the recently
generated complete genomic phenotyping data-set that catalogs the sensitivity of thousands
of mutant S. cerevisiae strains to DNA damaging agents [19], with published S. cerevisiae
protein-protein interaction data.

� 3.2.1 Genomic phenotyping

Genomic phenotyping was carried out by Begley et al [19] and is briefly described here. 4,733
haploid S. cerevisiae single gene deletion strains were used to identify deletions that affect
growth (compared to wild type) upon exposure to the simple methylating agent methyl
methanesulfonate (MMS), the bulky alkylating agent 4-nitroquinoline-N-oxide (4NQO),
the oxidizing agent tert-butyl hydroperoxide (t-BuOOH), or 254 nm UV radiation. Only
the 4,733 non-essential yeast genes could be examined since deletion of the essential genes
in haploid strains is, a priori, lethal. A highly sensitive, reproducible, multi-replicate and
multi-dose screen was developed to monitor individual strain growth after exposure to the
four DNA damaging agents; the results of this screen have been described [19]. The term
damage-recovery protein in this study corresponds to the product of the gene that was
deleted in a strain that displays significantly more growth inhibition than the wild type
strain following exposure to a DNA damaging agent. It should be stressed that damage-
recovery is a simplified label and meant to include proteins that prevent damage in addition
to proteins that contribute to the repair of macromolecular damage. Such genomic pheno-
typing data was integrated with public protein-protein interaction data as described in the
next section.

� 3.2.2 Network construction

14,493 protein-protein interactions for 4,686 S. cerevisiae proteins found in the Database
of Interacting Proteins (DIP) [135] as of November 2002 were used to build the yeast
protein interactome. Essential, damage-recovery and no-phenotype classifications were
based on results obtained by the S. cerevisiae gene deletion consortium (essential) and
the high throughput genomic phenotyping study [19]. Specific damaging agents used for
genomic phenotyping included methyl methanesulfonate (MMS), the bulky alkylating agent
4-nitroquinoline-N-oxide (4NQO), the oxidizing agent tert-butyl hydroperoxide (t-BuOOH),
and 254 nm UV radiation. MMS-, t-BuOOH-, 4NQO- and UV-recovery proteins correlate
to gene deletion strains that exhibit impaired growth, compared to wild-type, after agent
treatment, and the damage-recovery phenotype represents gene-deletion strain sensitivity to
one of these classical DNA damaging agents as compared to wild-type. The no-phenotype
classification indicates that gene deletion strains, correlating to specified proteins, had no
growth defects after agent treatment as compared to wild-type. Based on this genomic phe-
notyping data, nodes in the full network are color-coded, with essential proteins being black,
damage-recovery proteins green (for all four damaging agents) and no-phenotype proteins
red (Figure 3-1A). The resulting network structure thus represents a phenotypically anno-
tated interactome of essential, damage-recovery, and no-phenotype proteins. This structure
was analyzed using graph theoretic techniques. Each protein category, as defined by pheno-
type, was analyzed first in the context of the underlying global protein interaction network
(the full network) and then in the context of several newly defined protein networks, each
composed exclusively of proteins and edges from a particular phenotypic category. This
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latter analysis is described in the next chapter.

� 3.3 Network and Significance Measures

� 3.3.1 Network metrics

We have exploited two fundamental network metrics to extract phenotype-dependent global
network characteristics for essential, damage-recovery and no-phenotype proteins in the con-
text of the full yeast network (Figure 3-1A). We determined the degree of each node, which
details the number of interacting partners for each node in the network (Figure 3-1B), and
the shortest-path distance between pairs of nodes, which details the shortest edge distance
between similarly categorized pairs of proteins, but allowing transitions through proteins
in other categories (Figure 3-1C). From the shortest-path distance, we computed two addi-
tional measures, the characteristic path length (Figure 3-1D) defined as the shortest-path
distance averaged over all pairs of proteins, and a global centrality measure (Figure 3-1E)
which, for a given protein, computes the average shortest-path distance to every other
similarly categorized protein in the network. Each one of these measures reveals insight
into the architecture of damage-recovery pathways and, as will be seen, all measures show
that damage-recovery proteins are more similar to essential proteins than are no-phenotype
proteins as well as proteins involved in other functional yeast networks.
In order to carry out the analysis, the proteins in the network were organized into seven

different phenotypic categories: (1) essential; (2) damage-recovery (a composite of the next
four categories); (3) MMS-recovery; (4) 4NQO-recovery; (5) UV-recovery; (6) t-BuOOH-
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recovery; and finally (7) no-phenotype. The degree distribution, shortest-path distribution,
characteristic path length and global centrality distribution were determined for each of
the seven protein categories. We reasoned that the damage-recovery proteins, due to their
importance in preventing cell death (the ultimate disturbance of cellular homeostasis), might
have distinct network characteristics.

� 3.3.2 Randomizations and p-values

Controlled randomizations based on the overall network structure were performed to deter-
mine the significance of analyzed characteristics. For the essential nodes, we compared the
results dictated by the data to what would result from a corresponding number of nodes
randomly selected from the full yeast protein network. For the non-essential proteins, i.e.
the damage-recovery and no-phenotype proteins, the randomization consisted of a corre-
sponding number of proteins randomly selected from the non-essential yeast network. This
additional step was needed in order to un-bias the randomizations. Applying the random-
ization to the overall underlying structure of the yeast protein network by random selection
of nodes is in contrast to other randomization network studies [130] [117] in which networks
or sub-networks are constructed through random connections between nodes. It should
be stressed that this randomization technique preserves the underlying distribution of the
yeast interactome which is composed of mostly lowly connected proteins interfaced with a
few highly connected hubs. As a result, the probability of selecting highly connected nodes
is related to their relative abundance in the node set which is relatively low. Performing the
randomization this way is crucial in order to reveal eventual bias in proteins with a phe-
notypic connection. Our results show that such bias does not always exist among proteins
sharing a common function.

Specifically, eight sets of randomizations based on the eight phenotypic categories were
generated. In each set, 1,000 randomized networks were obtained based on 1,000 inde-
pendent experiments consisting of randomly selecting nodes from the full yeast network
using a binomial distribution with mean equal to the ratio of the total number of nodes in
that category over the total number of nodes in the full yeast network. Randomized net-
works were thus generated for the essential, non-essential, no-phenotype, damage-recovery,
MMS-recovery, 4NQO-recovery, UV-recovery, and t-BuOOH-recovery categories. In or-
der to factor out the bias introduced by essential genes, the randomizations corresponding
to the no-phenotype, damage-recovery, MMS, 4NQO, UV, and t-BuOOH categories were
generated by randomly selecting nodes from the non-essential yeast network; the essential
proteins were excluded because we only have damage-recovery phenotype information for
non-essential proteins. Based on these randomizations, p-values were computed using a two-
sided hypothesis test with a Normal distribution assumption [39]. The Normal distribution
assumption for each tested statistic was checked by generating Normal quantile-quantile
(q-q) plots in MATLAB which graphically compare the distribution of the data set to the
Normal distribution. Representative q-q plots are shown in Figure A-1 in Appendix A. Fur-
thermore, to consolidate the reported p-values, we have computed the rank of the statistic
in the tested network with respect to the values obtained in the 1,000 random sets. The
rank is shown in Table A.1 in Appendix A.
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Figure 3-2. Degree distributions of selected proteins. Black squares, green diamonds, and red triangles
represent essential, and no-phenotype proteins respectively. The solid vertical lines represent the average
degree. Blue (red italic) font in the inset indicates an average greater (smaller) than the corresponding
randomized average.
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� 3.4 Degree Distribution

We computed the degree distribution, as well as the average degree, for all of the nodes in
the full yeast interactome, and for the nodes in each one of the seven categories defined above
(Figure 3-2). These distributions have an inhomogeneous structure and are characterized
by a number of highly connected proteins, or hubs, as previously observed by Jeong et al.
and Maslov et al. for a much smaller yeast protein-protein interaction network [74] [89].
Furthermore, it has been suggested that an important consequence of this architecture is
the network’s simultaneous tolerance to random errors, and vulnerability to directed attacks
on the most connected nodes [4]. When the full network is divided into essential and non-
essential proteins, it is clear that essential proteins have a higher average degree. To assess
the significance of this difference, the average degree value was compared to values obtained
when the same number of proteins (1,180 in the essential category) was selected at random
from the full network; we performed 1,000 such randomizations and the average degree
for the 1,000 randomized networks was significantly smaller than that for the essential
protein network (p < 10−36); or, put another way, the average degree for essential proteins
is significantly higher than that expected by chance. The results illustrated in Figure 3-2
show that not only is the essential proteins distribution skewed to the right (towards a higher
degree) in agreement with previous results [74], but a similar trend is also true for damage-
recovery proteins. Among the entire set of non-essential proteins, i.e. the set for which
we have phenotypic data, it is clear that damage-recovery proteins have a higher average
degree than the entire set of non-essential proteins as well as the no-phenotype proteins.
On average each category of damage-recovery proteins, including the collective damage-
recovery category, contained significantly more direct interactions than randomly selected
proteins, (p values range from < 0.03 to < 10−7) as well as non-essential and no-phenotype
proteins. Moreover, the no-phenotype distribution shows the opposite characteristic, with
significantly fewer direct interactions than the randomly selected proteins (p < 10−6), fewer
direct interactions than the non-essential category, and fewer direct interactions than for
the full network. Note that there is an overlap of nodes among the specific agent networks
and the fact that the collective damage-recovery category has a lower average degree than
the individual agent specific categories indicates that most of the overlap is through high
degree nodes.

The extent to which the essential and damage-recovery categories have a higher average
degree can be further assessed by examining the probability of a yeast protein having a
certain phenotype given it has a high degree where high is defined as having more than 15
direct interactions. Specifically, using the distribution shown in Figure 3-2, one can show
that a protein with a high degree is two times more likely to be essential than a random
protein in the yeast network. Furthermore, a non-essential protein with a high degree is
one and a half times more likely to be important for damage recovery than a random non-
essential yeast protein. This should be contrasted with the fact that a high degree protein
is more than a third less likely to be involved in metabolism than a random protein in the
yeast network (to be discussed further in Chapter 5).

� 3.5 Shortest Path Distribution, Characteristic Path Length, and Global Cen-
trality Distribution

The existence of a few highly connected nodes (hubs) holding together a large number of
lesser connected nodes serves to add shortcuts into a network and to create a smaller average
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Figure 3-3. Shortest-path length distribution, characteristic path length (a), and global centrality distri-
bution (b) of selected proteins. Black squares, green diamonds, and red triangles represent essential, and
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shortest-path length between any two nodes in such a network. Because the essential and
damage-recovery categories display high average degree relative to non-essential and no-
phenotype proteins (respectively), it seems likely that their shortest path distribution will
have a relatively short characteristic path length. We have computed the shortest-path
length distribution, the characteristic path length, and the global centrality distribution for
the full yeast protein network, as well as for each individual protein category, as specified
by the seven phenotypic categories described above; note that in calculating the distance
between two proteins in one particular category, the shortest-path can pass through proteins
belonging to other categories (see Figure 3-1C). The results for three of the shortest-path
length and global centrality distributions are shown in Figure 3-3, the rest are in Figure
3-4. The characteristic path length for all categories is given in the Figure 3-3 inset. At first
sight, the shortest-path length distributions may not appear to be significantly different,
but upon randomization of the networks by random protein sampling as described above,
it becomes clear that the shortest path length distributions, and the characteristic path
lengths, follow exactly the same highly significant trends as for the degree distributions
and average degrees, respectively. In other words, among the proteins in the full network,
essential proteins have a significantly shorter characteristic path length than non-essential
proteins (p < 10−21), and their shortest path length distribution is skewed away from
the non-essential proteins, this time to the left (Figure 3-3 and Figure 3-4A). Among the
non-essential proteins the damage-recovery proteins follow the same trend as the essential
proteins (though less marked), in that they have a shorter characteristic path length than
both the entire set of non-essential proteins and the no-phenotype proteins with p values
ranging from < 0.01 to < 10−7 (with the exception of the t-BuOOH category), and again
their shortest-path length distributions are skewed to the left of no-phenotype proteins
which have a larger characteristic path length (p < 10−5) (Figure 3-3 and Figure 3-4A).
The characteristic path length for t-BuOOH-recovery is not significantly different from
randomized sampling, perhaps due in part to the small size of this category (159 proteins).
The results show that essential proteins are visibly more central than proteins displaying no-
phenotype, as well as being more central than non-essential proteins. Furthermore, damage-
recovery proteins are also more central than non-essential and no-phenotype proteins. In
addition, as will be shown in the next chapter, both essential and damage-recovery proteins
are more central than proteins involved in metabolism. This kind of shortest-path analysis
of the network may provide an idea of network navigability and of the efficiency with which
a perturbation can spread throughout the network. However, in analyses of this type it is
currently assumed that the connections between each node (i.e. the edges) are equivalent,
and this seems very unlikely to be true in a biological system. This would be analogous to
assuming that all edges are equal in a transportation network that contains highways and
winding country roads as edges connecting bus stations as nodes. Ultimately, some metrics
to describe the attributes of each edge in the protein-protein interaction network will be
needed in order to be quantitative with respect to network navigability.

� 3.6 The Centrality of Essential and Damage-Recovery Proteins in the Yeast
Interactome

Degree distribution, shortest-path distribution, characteristic path length and global cen-
trality distribution essentially provide different measures of centrality, and collectively these
characteristics indicate that essential, damage-recovery, and no-phenotype proteins are quite
distinguishable in the context of the yeast protein-protein interaction network. These pro-
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Table 3.1. Node degree and characteristic path length for proteins with different degrees of sensitivity.

tein categories are not only distinguishable from each other, but are also distinguishable
from similarly sized groups of proteins obtained by random selection from the full network.
Due to their phenotypic role in cell survival, it makes sense that damage-recovery proteins
might represent a middle ground between essential and no-phenotype proteins. Essential
proteins dictate cell viability under all conditions of life and their place in the network
makes them the most centralized. The centrality of essential proteins may serve to provide
facile communication between the processes vital for maintaining proper cellular function
and homeostasis. Damage-recovery proteins are less centralized compared to essential pro-
teins, perhaps because they are only required for cell viability some of the time (i.e., during
stress). It may be that damage-recovery proteins are more centralized in the network than
no-phenotype proteins, because under stressful conditions damage-recovery proteins need
to rapidly coordinate a wide variety of cellular processes that will ultimately dictate cel-
lular viability [19]. For MMS alone it has been postulated that extensive damage occurs
to DNA, RNA, lipids, and proteins [18] [19] [73] [72] it therefore seems likely that a highly
coordinated response to carry out the repair, removal and replacement of a multitude of
damaged molecules is required for survival. Short path lengths via access to a number of
highly connected nodes might serve to provide damage-recovery proteins with a means of
optimizing cellular responses that together prevent damage induced cell death.

The fact that the importance of a protein may be reflected by its connectivity degree in
the graph can be further investigated by quantitatively categorizing the damage-recovery
proteins in high, medium, and low sensitivity categories and calculating the average degree
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and characteristic path length of each category. Specifically, strains with high, medium, and
low sensitivity were identified by using a range of exposure doses in our genomic phenotyping
screen [19]. High, medium, and low sensitivity proteins were then compiled for each one
of the four damaging agents and grouped into different categories. High, medium, and low
damage-recovery categories were also obtained by combining the data of each of the four
different agent-specific categories. The high damage-recovery category for example includes
any protein that exhibits high sensitivity to any one of the four damaging agents. The
global network measures were then computed for each category and the results are given in
Table 3.1. The results indicate that highly sensitive mutants are distinct in their topological
properties from their low-sensitivity counterparts. High sensitivity corresponds in most of
the cases to higher connectivity degree and shorter characteristic path length, therefore
further supporting the hypothesis that a protein with higher degree and greater centrality
is on average more important for damage recovery than a lowly connected and less central
one.
Finally, even though the degree distribution curves are significantly different from each

other for several phenotypic categories, all seven phenotypic categories nevertheless em-
brace some number of highly connected proteins, or hubs, and some number of much lesser
connected nodes. Thus, it is important to stress that it is the distributions and the average
values that serve to distinguish between protein categories.
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Chapter 4

Local Properties of Synthesized
Phenotypic Networks
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Figure 4-1. Newly-defined networks and clustering coefficient analysis. A. Derivations of new networks:
networks comprised of only essential proteins and connecting edges are shown in black, proteins that prevent
agent induced cell death and connecting edges are shown in green and no-phenotype proteins and connecting
edges are shown in red. The clustering coefficient (C), can be determined for each protein to identify the
degree of connectivity between a given protein’s neighbors. B. Clustering coefficient analysis. C. p values.

In the last chapter, we have analyzed the essential, damage-recovery, and no-phenotype
proteins, in the context of the full yeast interactome, i.e. as selected groups of proteins
within the overall network. We have looked at degree distributions in the overall network
as well as shortest-path analysis, allowing proteins in each category to traverse non-category
proteins to get to other proteins in the same category (see Figure 3-1). In order to gain
further insight into the organization and local environment of proteins in each category, sub-
networks were compiled that are composed solely of protein-protein interactions between
proteins within a given phenotypic category. The local properties of these networks are the
focus of this chapter.
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Figure 4-2. Newly-defined phenotypic sub-networks.

� 4.1 Synthesis of Phenotypic Networks

The newly defined sub-networks have nodes corresponding to proteins exhibiting a given
phenotype and edges representing experimentally characterized protein-protein interactions.
We thus generated seven new sub-network structures, one for the essential proteins, five for
the damage-recovery proteins, and one for the no-phenotype proteins.

Figure 4-1A illustrates the full network (as in Figure 3-1A), the essential sub-network,
the no-phenotype sub-network, and the collective damage-recovery sub-network that in-
cludes MMS, 4NQO, UV and t-BuOOH recovery proteins. The individual MMS, 4NQO,
UV and t-BuOOH sub-networks are shown in Figure 4-2. The overall network connectivity
and the local properties of the nodes in these seven sub-networks were further investigated
(Table 4.1 and Figure 4-1). The results were compared to the outcome from 1,000 ran-
domized networks obtained by randomly selecting the same number of nodes in each one
of the seven sub-networks from the full yeast interactome and assembling the correspond-
ing network. For the non-essential sub-networks (no-phenotype and damage-recovery), the
nodes in the corresponding randomized networks were picked from the non-essential yeast
network in order to eliminate bias introduced by the essential proteins.
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� 4.2 Network Metrics

� 4.2.1 Connected component analysis

We have computed the largest connected component size for each one of the eight phenotypic
networks and compared it to the largest connected component size of the full yeast network
as well as to the size of the largest connected component in the corresponding randomized
networks.

� 4.2.2 Clustering coefficient

The clustering coefficient was compiled for each node in the essential, no-phenotype and
each damage-recovery networks (Table 3.1). The average clustering coefficient per node, the
percent of nodes with a positive clustering coefficient, as well as the percent of isolated nodes
(i.e. that do not have any neighbors) was then computed for each network and compared
to the corresponding randomized networks. For each phenotypic network, the set of nodes
with a non-zero clustering coefficient was identified and visualized using Cytoscape [115].

� 4.3 Network Connectivity

The landscape of connected components in each newly defined network was explored to
probe the connectivity of each structure. Formally, a connected component in a graph is
defined by a set of nodes wherein every single node is reachable from every other node
in the component, i.e. the set of nodes for which there exist paths to connect them all
together. In each one of the seven networks (except the t-BuOOH-recovery network) one
large connected component emerged (Table 4.1, Figure 4-1A, and Figure 4-2). For the
essential, no-phenotype, collective damage-recovery, MMS-recovery, and 4NQO-recovery
networks, the largest connected component included more than half of the nodes in the
sub-network, i.e., using graph-theoretic terminology, a giant component emerged. It was
further noted that the size of these components was significantly larger for the essential and
each of the damage-recovery sub-networks (except that for t-BuOOH) than the size that
would be expected if the nodes were selected at random from the full or non-essential yeast
network (p values from < 0.009 to < 10−8). In contrast, the no-phenotype sub-network
had a smaller, though not statistically significant (p < 0.074), large connected component
than the one expected if the nodes were randomly selected from the full non-essential yeast
network. These observations indicate that the essential and damage-recovery proteins are
relatively highly connected to each other, and we infer that this suggests that cohesive
signalling pathways, protein complexes and biochemical pathways are at least partially
represented in these novel sub-networks.

� 4.4 Local Protein Environments in the Phenotypic Sub-Networks

We further investigated the organization of the newly defined sub-networks using clustering
coefficient analysis, which measures whether direct, first degree partners of a particular
node interact with each other. This is a common and convenient measure used in graph
theory to investigate the local neighborhood of nodes in the graph and it simply measures
the amount of clustering within the local neighborhood of a node. The clustering coefficient
(C) of a particular node is defined as the ratio of the number of edges that actually exist
between the direct partners of that node, to the total number of edges that could possibly
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Table 4.1. Large connected component (LC) size in newly defined sub-networks. ∗n is the total number
of proteins in a given category. ∗∗The large component (LC) size is the number of connected proteins. Blue
(red italic) font indicates a positive (negative) deviation from the random average.

exist among these partners (Figure 4-1A). We considered that clustering coefficient analysis
might help to identify protein complexes, signalling and biochemical pathways in the newly
defined sub-networks. The clustering coefficient was computed for every node in each of the
phenotypic sub-networks. The average clustering coefficient per node (Cavg), the percent
of nodes with a non-zero clustering coefficient (C > 0) and the percent of isolated nodes
(i.e. proteins that have no direct partners) was also computed for each sub-network and
compared to the corresponding values for randomized sub-networks (Figure 4-1B).

It was previously observed that the average clustering coefficient of the full yeast net-
work is significantly higher than that of a corresponding random network, i.e. a network
containing the same number of nodes and edges but where edges connect nodes at random
[134]. This observation indicates that protein interaction networks have an overall tendency
to form clusters or groups; this translates biologically into biochemical pathways, signalling
pathways and protein complexes [117]. The tendency to form protein clusters is signifi-
cantly over-emphasized in the essential and damage-recovery networks (Figure 4-1B). The
essential, MMS-recovery, and 4NQO-recovery networks are around five times more clustered
than what would be expected from a random sampling of nodes from the full yeast net-
work. Moreover, clustering in the UV-recovery network is more than one order of magnitude
higher than expected by a random selection of nodes, while the t-BuOOH-recovery network
is more than two orders of magnitude more clustered than the corresponding randomized
network. The p values for the enrichment of protein clusters in these phenotypically derived
sub-networks range from < 10−10 to < 10−109. In contrast, the no-phenotype network is
actually less clustered than the corresponding randomized network (p < 0.023).

The average clustering coefficient (Cavg) results suggest that the phenotypic effects of
the proteins in these sub-networks is governed by denser than normal interconnected bio-
chemical pathways, signalling pathways and protein complexes. This notion is supported
by a finer look at the distribution of the clustering coefficients (Figure 4-1B and 4-1C).
The percentage of nodes having a non-zero clustering coefficient indicates that a certain
degree of local clustering is taking place. This percentage is significantly higher for the
essential and damage-recovery sub-networks, and significantly smaller for the no-phenotype
sub-networks, compared to their randomized counterparts (p values range from < 10−3 to
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Table 4.2. Significance of the clustering coefficient analysis using biased randomizations. Blue (red italic)
font indicates a positive (negative) deviation from the random average. The metabolic network will be
discussed in the next chapter.

< 10−104). The corollary of this is that the number of isolated nodes in the essential and
damage-recovery sub-networks is significantly smaller than that expected from a random
selection (p values range from < 0.0024 to 10−11), while the no-phenotype sub-network
actually has a larger proportion of isolated nodes (p < 0.05). In summary, these results
indicate that sub-networks corresponding to essential and damage-recovery phenotypes are
much more clustered and organized into groups than what would be expected based on a
random selection of nodes from the full network, while the no-phenotype network exhibits
the opposite trend.

We have further investigated the extent to which the high degree of clustering could be a
simple consequence of the high average node degree observed in the essential and damage-
recovery networks by carrying out a new set of biased randomizations that preserve the
proportion of high degree nodes in each network. Specifically, we define a high degree
node as a node having more than 10 direct interactions. For each network tested, we
performed a set of 1,000 biased randomizations constrained to have the same proportion
of high degree nodes as the network to be tested. Specifically, biased randomizations were
carried out by dividing all the yeast proteins into two subsets: high degree nodes (nodes
with a degree higher than 10) and low degree nodes (nodes with a degree between 0 and
10). The number of high and low degree nodes was then determined for each category
and 1,000 biased randomized networks were obtained for each category based on 1,000
independent experiments consisting of randomly selecting nodes from the full yeast high
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(low) degree nodes subset using a binomial distribution with mean equal to the ratio of
the total number of high (low) degree nodes in that category over the total number of high
(low) degree nodes in the full yeast network. The non-essential network was used for the
non-essential categories as described above. The corresponding p-values were computed
as described earlier. The results are shown in Table 4.2 and indicate that even when the
randomized networks are constrained to have the same average degree as the tested network,
the average clustering coefficient as well as the proportion of nodes with a non-zero clustering
coefficient are significantly higher for the damage-recovery and essential networks than for
the randomized networks, indicating that the degree of local clustering is not a consequence
of the presence of higher degree nodes but a reflection of another underlying phenomenon
related to protein complexes and dense signalling pathways.

� 4.5 Identification of Toxicologically Important Protein Complexes and Sig-
nalling Pathways

Clustering coefficient analysis of the newly defined damage-recovery sub-networks (for MMS,
4NQO, UV, and t-BuOOH) appears to provide an analytical method to identify damage-
recovery protein complexes, pathways and signalling information. It should be stressed that
clustering coefficient analysis identified local neighbor interactions that we in turn have used
to build higher order complexes in silico using the program Cytoscape (www.cytoscape.org)
[115]. Figure 4-3(A-D) contains every protein in each of the damage-recovery sub-networks
that has a non-zero clustering coefficient (C > 0); these proteins are displayed with their
corresponding protein-protein interactions (edges) derived from each sub-network; in cases
where the protein-protein interaction has previously been characterized in a biological con-
text (i.e., not just as part of a high throughput screen [40]) the edge is shown in bold. All
of the proteins in Figure 4-3(A-D) are shown with gene names in Figures 4-4, 4-5, 4-6, and
4-7. Tables 4.3 and 4.4 identify the protein complexes and signaling pathways derived by
clustering analysis of the phenotypic networks.

From the bold edges in Figure 4-3 it is clear that previously recognized complexes, path-
ways and signalling modules are represented, even though many of these were not previously
recognized as being important for cellular recovery after exposure to a DNA damaging agent.
(Note that all of the protein nodes shown in Figure 4-3 play a role in damage-recovery, but
now they are colored to represent their cellular function [40].) As expected, groups of pro-
teins that participate in coordinated DNA damage responses (i.e. nucleotide excision repair,
mismatch repair, DNA damage checkpoints) were identified among the clustered proteins
in the damage recovery sub-networks (Figure 4-3E). However, groups of proteins involved
in transcription regulation and chromatin remodeling are also well represented, and these
include components of the SAGA regulatory complex (MMSS , 4NQOS and t-BuOOHS),
RNA polymerase II complex (MMSS , 4NQOS , and UVS) and SWI/SNF complex (4NQOS).
In addition signal transduction is represented for MMS and UV damage-recovery with the
cyclin dependent kinase that phosphorylates the C-terminal domain of RNA polymerase II,
and which contains CTK1, CTK2 and CTK3 as subunits [40]. Unexpectedly, protein com-
plexes and pathways involving the nuclear pore complex (NUP proteins), RNA metabolism
(MUD, STO1, PUB and TIF proteins), vacuolar function and targeting (VMA proteins)
are also represented upon visualizing the proteins with non-zero clustering coefficients (i.e.,
C > 0) from the MMS-, 4NQO-, UV- and t-BuOOH-recovery sub-networks (Figure 4-3E).
In addition, it is clear from Figure 4-3 that many other known and putative complexes
await further investigation into their role in cellular recovery after exposure to the so-called
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Transcription
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Signal Transduction
Other
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UV t-BuOOH

MMS              4NQO          UV         t-BuOOHMMS              4NQO          UV         t-BuOOHE)

Figure 4-3. Phenotypic protein networks with C > 0. Thick blue lines represent previously reported
protein complexes. E. Selected complexes identified using clustering coefficient analysis. From top to bottom:
MMS (RNA polymerase II holoenzyme/mediator complex and vacuolar H-ATP assembly complex); 4NQO
(SWI/SNF complex and Nuclear pore complex); UV (Nucleotide excision repair pathway and C-terminal
domain kinase I complex); and t-BuOOH (putative vacuolar sorting sub-network and SAGA transcriptional
regulatory complex).
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Figure 4-4. MMS protein network with C > 0.

DNA damaging agents, roles that may involve protein complexes, biochemical pathways or
signalling modules.
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Figure 4-5. 4NQO protein network with C > 0.
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Figure 4-6. UV protein network with C > 0.
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Figure 4-7. t-BuOOH protein network with C > 0.
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Agent Complex Proteins

MMS DNA clamp complex Mec3, Ddc1, Rad17

MMS Prefoldin complex Gim5, Pac10, Yke2

MMS SAGA transcriptional regulatory complex
Spt7, Spt8, Spt20, Spt3, Hfi1, 
Ycl010c, Ngg1, Ada2, Gcn5,  

MMS COMPASS complex
Ydr469w, Ybr75w, Ylro15w, 

Ybr258c, Ypl138c

MMS Clatherin complex Clc1, Crc1, Yap1801

MMS C-terminal domain kinase I complex Ctk1, Ctk2, Ctk3

MMS Nucletide excision repair
Rad1, Rad14, Rad4, Rad7, Rad23, 

Rad10, 

MMS Mismatch repair Msh2, Pms1, Mlh1

MMS Chromatin assembly complex Msi1, Cac2, Rlf2

MMS ATP synthase complex Atp1, Atp5, Atp7, Atp17

MMS dynactin complex Nip100, Arp1, Jnm1

MMS small nuclear ribonucleprotein complex Lsm6, Lsm7

MMS GTP binding complex Gtr1, Gtr2, 

MMS Nucelar pore complex Nup133, Nup84

MMS BAR adaptor proteins Rvs161, Rvs167, Ypl249c

MMS Kel1, Lte1, 

MMS Histone deactylase complex Hda1, Ypr179c

MMS Gcn1, Gcn20

MMS RNA polymerase II holoenzyme/mediator complex
Srb5, Sin4, Rox3, Gal11, Med1, 

Srb2, 

MMS Transcription elongation factor complex Cdc73, Leo1, Rtf1

MMS Transcription cofactor complex Swi4, Swi6

MMS Map kinase pathway Bck1, Slt2, Mkk1, Mkk2

MMS Histoine deacteylase complex
Hst1, Yor279c, Ybr103w, Hos2, 

Ycr033w, Ykr029c, Sum1

MMS Protein kinase CK2 Cka1, Ckb1, Ckb2

MMS CCR4-NOT transcription factor complex Ccr4, Pop2, Not3, Sig1, Ynl288w

MMS vacuolar H-ATP assembly  complex
Vma2, Vma4, Vma5, Vma6, Vma7, 

Vma8, Vph1

t-BuOOH SAGA transcriptional regulatory complex Spt7, Spt20, Hfi1

t-BuOOH vacuolar H-ATPasem complex Vma4, Vma8, Vph1, Vph2

Table 4.3. Protein complexes and signaling pathways identified by clustering coefficient analysis of the
MMS and t-BuOOH networks.
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Agent Complex Proteins

UV SAGA transcriptional regulatory complex Ngg1, Ada2  

UV C-terminal domain kinase I complex Ctk1, Ctk2, Ctk3

UV Nucletide excision repair
Rad1, Rad14, Rad4, Rad7, Rad23, 

Rad10, Rad16

UV ATP synthase complex Atp1,  Atp17, Yml081c-a

UV Nucelar pore complex Nup133, Nup84

4NQO Prefoldin complex Gim5, Pac10, Yke2

4NQO SAGA transcriptional regulatory complex Spt7, Hfi1, Ycl010c, Ngg1, Gcn5,  

4NQO SWI/SNF complex Snf2, Snf5, Swi3

4NQO Nucletide excision repair
Rad1, Rad14, Rad4, Rad7, Rad23, 

Rad10, Rad16

4NQO Chromatin assembly complex Msi1, Cac2, Rlf2

4NQO GARP complex Luv1, Yjl029c

4NQO ATP synthase complex Atp1, Atp2, Atp11, Inh1

4NQO small nuclear ribonucleprotein complex Lsm6, Lsm7

4NQO nuclear cap-binding protein complex Sto1, Mud13

4NQO Nucelar pore complex Nup120, Nup42, Nup133, Nup84

4NQO Kel1, Lte1, 

4NQO RNA polymerase II holoenzyme/mediator complex
Srb2, Srb5, Srb8, Sin4, Rox3, Gal11, 

Med1 

4NQO Transcription elongation factor complex Leo1, Rtf1, Paf1

4NQO Transcription cofactor complex Swi4, Swi6

4NQO CCR4-NOT transcription factor complex Ccr4, Sig1, Pop2

4NQO INO80 chromatin remodeling complex Ylr052w, Yer092w

4NQO vacuolar H-ATPasem complex
Vma1, Vma2, Vma4, Vma5, Vma6, 

Vma7, Vma8, Vph1, Yjr033c

Table 4.4. Protein complexes and signaling pathways identified by clustering coefficient analysis of the
4NQO and UV networks.
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� 4.6 Towards a Systems Level Understanding of Vital Cellular Processes

In this and the previous chapter, we have presented a systematic investigation of global pro-
tein networks in a phenotypic context. Recovery from exposure to DNA damaging agents
was chosen because of the wide range of cellular activities required to prevent cell death
and because of the association of many damage-recovery pathways with human diseases
such as cancer, aging, and other degenerative diseases. Our findings suggest that damage-
recovery proteins have attributes somewhat similar to essential proteins. It is striking that
all measures reported here (degree distribution, shortest-path distribution, characteristic
path length, global centrality distribution, connected component analysis, and clustering
coefficients) lead us to the same conclusion. Specifically, damage-recovery proteins have
greater direct interactions, smaller shortest-path, are more connected, and are significantly
more clustered than the average yeast protein, suggesting that there exists a higher-order
organization for these damage-recovery networks. These results reflect two underlying phe-
nomena: the damage-recovery proteins have more hubs allowing them to be more connected
and to exhibit shorter path lengths, and the network composed of these proteins is more
clustered indicating the existence of many protein complexes and dense signalling pathways.
We were also able to identify, using global measures, targeted pathways and complexes essen-
tial for damage recovery. The integration of global genomic-scale computational techniques
with targeted, experimentally established genome-wide phenotypic data, and the use of
such integrated information to uncover biological network information, is one of the major
contributions of this study.
The exact biological advantage associated with connectivity characteristics remains to

be determined, but we would hypothesize that increased connectivity could allow for more
efficient control of cellular processes. Efficiency could manifest itself in the form of redundant
signalling events, faster response times and greater flexibility in responses; all of which
could provide a biological advantage. Molecular interactions require conserved molecular
interfaces. We suppose that proteins involved in vital cellular processes (i.e. essential and
damage-recovery) may have “older” molecular interfaces than random proteins, due to the
essentiality of their function. These older interface points represent the basic blue print
for motifs employed by younger proteins and the high number of molecular interactions
displayed by “older” proteins could be due to cross reactivity with new evolved partners.
In fact, this view would be supported by recent efforts to model biological networks degree
distributions using graph generation techniques. In the proposed network evolution models,
high degree nodes are the ones that were added early in the history of the graph [126] [128].
Furthermore, damage-recovery pathways may be highly conserved across evolution (cer-

tainly this is true for DNA repair pathways) and as a result, it is expected that the pathway
characteristics unraveled for S. cerevisiae will parallel those in higher organisms. Using ho-
mology mapping, siRNA-mediated genomic phenotyping, and global network information
in higher organisms, we aim to explore the biological networks important for protecting
mammalian cells against the cytotoxic effects of environmental damaging agents.
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Chapter 5

Topological Organization of
Functional Yeast Networks
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So far, the main results have demonstrated that damage-recovery proteins have greater
direct interactions, smaller shortest-path, are more connected, and are significantly more
clustered than the average yeast protein. These properties are shared with the essential
proteins while proteins not important for damage recovery show opposite trends. One
possible explanation to these findings is that the no-phenotype network is composed of a
wide selection of unrelated proteins that are part of different pathways and therefore it
does not constitute a coherent functional biological network. One would then anticipate
the topological network properties observed for the no-phenotype network and one would
further expect that all functional cellular networks have the same kind of quantitative
characteristics as the ones found for the damage-recovery and essential networks. In this
chapter, we investigate the topological organization of a number of different functional
yeast networks and compare them to the network properties of damage-recovery proteins
described in the previous chapter. Based on the results, we propose new ways to combine
expression profiling data with network information to better predict phenotypic outcome.
We also expand the network analyses presented in the previous chapters by proposing
additional measures for analyzing phenotypic data.

� 5.1 Functional Yeast Networks

Functional networks are networks of proteins and/or genes that are involved in coordi-
nating a common function such as damage-recovery. There has been a number of recent
genome-wide studies that uncovered protein and gene networks involved in different func-
tions. We restrict our study in this chapter to protein networks involved in metabolism,
sporulation, the environmental stress response, and the damage recovery transcriptional
profiling response.

� 5.1.1 Metabolism

The metabolic network is composed of proteins, genes, and molecules involved in biochem-
ical processes that sustain the living cell. These include the breaking down of complex
substances into simple ones leading to the release of energy as well as the storing of energy
by building up complex substances from simple ones. A genome-scale reconstruction of
the metabolic network of S. cerevisiae was recently synthesized by Forster et al [48]. The
network is based on currently available genomic, biochemical, and physiological information
collected from the genome annotation, biochemical pathway databases, biochemistry text-
books, and recent publications. The network contains 708 structural open reading frames of
which 508 are present in the yeast protein-protein interactome used in the previous chapter.
Out of the 508 proteins, 395 are non-essential proteins.

� 5.1.2 Sporulation

Yeast reproduction occurs mainly through vegetative growth, i.e. by mitotic division which
is initiated when cells reach a critical cell size and are stimulated by exogenous or endogenous
signals. However, when nutrient supplies are low, sexual reproduction is an alternative way
for yeast to reproduce. Specifically, cells of opposite mating type (a and α) fuse to form a
diploid a/α cell. The diploid cell can then be induced by external signals (starvation) to
enter meiosis and undergo sporulation. Meiosis involves two successive nuclear divisions with
only one round of DNA replication producing four haploid daughter cells (spores) from the
initial diploid cell. It is a specialized process that requires the expression of many specialized
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genes. A number of genetic screens have been carried out to identify the various contributors
to the meiotic pathway in yeast. A functional screen has been recently described by Enyenihi
and Saunders [42] where they have used diploid deletion mutants (constructed by mating
independently mutated haploid strains) to screen for genes required for meiotic division and
sporulation using differential interference contrast microscopic inspection for the formation
of visible spores following growth in liquid population medium. Out of the 4,323 single-gene
deletion mutants in non-essential genes, 334 were found to be sporulation-essential genes.
This phenotypic analysis was further compared to the sporulation expression data of Chu
et al [35]. The results show that there is little total overlap between the genes essential for
sporulation and those showing the most increase in expression.

� 5.1.3 Environmental stress response (ESR)

Gash et al [53] have recently studied genomic expression profiles in yeast responding to
different environmental changes. Specifically, they used DNA microarrays to measure
changes in transcription levels over time for every yeast gene as cells responded to temper-
ature shocks, hydrogen peroxide, the superoxide-generating drug menadione, the sulfhydryl-
oxidizing agent diamide, the disulfide-reducing agent dithirthreitol, hyper- and hypo-osmotic
shock, amino acid starvation, nitrogen source depletion, and progression into stationary
phase. Approximately 900 genes were found to respond to all stressful conditions tested.
These genes define the Environmental Stress Response (ESR).

� 5.1.4 Damage-recovery transcription response (DRR)

Damage-recovery transcriptional profiling was also performed by Samson and coworkers [72]
where the transcriptional response of S. cerevisiae after exposure to methyl methanesul-
fonate (MMS), 4-nitroquinoline-N-oxide (4NQO) and tert-butyl hydroperoxide (t-BuOOH)
was measured. 1,648 genes were found to be three-fold differentially expressed in response
to at least one of these three damaging agents. Out of these 1,648 genes, 1,239 are present in
the yeast protein-protein interactome used the previous chapter. 938 of the 1,239 genes are
non-essential. We define this set of genes as the Damage-Recovery transcription Response
(DRR). In addition, 229 genes were two-fold differentially expressed in response to all three
agents. Out of these 229 genes, 167 are found in the protein interactome of which 146
are non-essential. We define this set of genes as the common Damage-Recovery Response
(cDRR).

� 5.2 Network Properties of Functional Yeast Networks

We have computed the network measures defined in the previous chapters: average degree,
characteristic path length, largest component size, clustering coefficient average, proportion
of non-zero clustering coefficients (C > 0), and the number of isolated nodes for all four
functional yeast networks defined in the previous section. In addition, for the metabolic,
ESR, DRR, and cDRR networks, we computed the measures for non-essential versions of
these networks. The results are shown in Table 5.1.

� 5.2.1 Regulatory versus energy generation networks

Table 5.2 shows all network measures computed for the phenotypic networks defined in the
previous chapters as well as for the full metabolic network and for the metabolic network
composed of only non-essential proteins. The results indicate that the metabolic network
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Table 5.1. Network measures for a number of functional yeast networks. n is the total number of proteins
in a given category. (N-E) corresponds to non-essential versions of the networks. The large connected
component (LC) size is the number of proteins in the LC. Blue font indicates a positive deviation from the
random average and red italic font indicates a negative deviation from the random average.
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Table 5.2. Network measures for the metabolic network as compared to the networks defined in the previous
chapter. Blue (red italic) font indicates that the measured value is greater (smaller) than the one obtained
using the randomized networks.
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exhibits properties more similar to the randomized (and no-phenotype) networks than to
the essential and damage-recovery networks. Since the metabolic network contains modules
and complexes (as is confirmed by the more significant Cavg and C > 0 measures), this result
indeed contradicts the supposition that all cellular networks must share similar quantitative
features. For instance, as can be seen in Table 5.2, the metabolic network has a lower average
degree than the corresponding randomized networks similar to the no-phenotype network.
This contrasts with the essential and damage-recovery networks which have a higher average
degree than the corresponding randomized networks.

We can speculate as to why the individual network metrics are so different for the
metabolic network and how the damage-recovery network metrics can provide a biological
advantage for achieving an effective damage-recovery response. One possibility is that since
small diffusible metabolites play an important role in metabolism, they may be the crucial
components for keeping the network coherent instead of protein-protein interactions that
seem to be more important in signaling pathways. This contrast would be consistent with
a view that regulatory networks may be more complex in organizational structure than
those devoted to core functions such as metabolism and energy generation [81]. The re-
sults observed here would then suggest that essential and damage-recovery networks involve
modular control elements tightly networked to each other allowing a fast and coordinated
response. This may also be related to the fact that the phenotypic readout for both the
essential and damage-recovery networks is the same, namely cell death since the damage-
recovery proteins are themselves “essential” in the presence of a damaging agent. Preventing
such a catastrophic outcome may need tight coordination and the rapid stimulation of mul-
tiple cellular processes that display, at the network level, more hubs, shorter path lengths,
larger connected component size, and higher clustering coefficients. Consequently, phe-
notypic network studies of the kind presented here shed new light on the architecture of
biological networks and are an important tool for further understanding their functionality.

� 5.2.2 Expression profiling versus phenotypic analysis

In addition to metabolism, the results in Table 5.1 show that data obtained from expression
profiling (ESR, DRR, and cDRR) have, for the most part, network properties similar to
the randomized networks (low p values) which is in contrast to the phenotypic damage-
recovery networks. These results are surprising, especially since the DRR network uses the
same DNA damaging agents (MMS, 4NQO, t-BuOOH) as the ones used in the phenotypic
study leading to the damage-recovery network. Proteins that are more than three-fold
differentially expressed in response to DNA damaging agents have very different topological
properties than proteins that are essential for normal growth after exposure to the same
DNA damaging agents. In contrast, the sporulation network has highly significant network
properties very similar to the ones observed for damage-recovery. Specifically, the results
in Table 5.1 indicate that sporulation-essential proteins have a significantly higher degree,
shorter characteristic path length, are more connected, and are more clustered than the
average yeast protein. The sporulation network is derived from phenotypic analyses similar
to the ones used to derive the damage-recovery networks. These observations show that data
obtained from expression profiling do not seem to have any distinctive network properties
whereas data obtained from phenotypic analyses have clear distinctive network properties.
These results seem to suggest a fundamental difference between the topological properties of
networks derived from expression profiling data and networks constructed using phenotypic
studies. We explore this difference in the next section.
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4.25165.1290938DRR (expr)

4.22286.05601376DRR(phe)

4.15035.6695348DRR (both)
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4.17246.27641100MMS (phe)

4.15736.78426724NQO (phe)

4.34856.8333124NQO (both)

4.27485.0069723t-BuOOH (expr)

4.27506.6188160t-BuOOH (phe)

4.16348.871031t-BuOOH (both)

4.14544.9167844NQO(expr)

4.17585.8095420MMS (expr)

Char. Path 
length

Average 
degree

n

Table 5.3. Comparison of the expression and phenotypic damage-recovery data. expr corresponds to
proteins that are differentially expressed in response to a damaging agent, phe corresponds to proteins
whose deletion leads to impaired growth upon exposure to a damaging agent and both indicates proteins
that are both differentially expressed and important for proper growth in response to a damaging agent.

� 5.3 Predicting Phenotypic Outcome Using Expression Profiling Data

In order to further investigate the difference between the expression profiling data and
the phenotypic data, we computed the global network properties (degree and characteris-
tic path length) for the individual MMS, 4NQO, and t-BuOOH expression networks and
compared them to their phenotypic counterparts. Since we only have phenotypic data for
non-essential genes, the expression networks only include non-essential genes. The protein
overlap between the expression and phenotypic networks was also computed as well as the
global network properties of the overlapping proteins. The results are shown in Table 5.3.
Figure 5-1 displays, for each class, the number of proteins that are exclusively differentially
expressed (expr only), i.e. are differentially expressed but do not, if deleted, affect growth
upon exposure to a damaging agent. The number of proteins that are important for proper
growth upon exposure to a damaging agent but are not differentially expressed (phe only) as
well as the proteins that are both differentially expressed and important for proper growth
upon exposure to a damaging agent (both) are also shown. Figure 5-2 graphs the average
degree (computed in Table 5.3) for proteins in the different categories.

� 5.3.1 Protein overlap between expression profiling and phenotypic data

The results in Figure 5-1 indicate that there is little overlap between differentially expressed
damage recovery genes and the ones needed for proper growth. It should be noted that
for this analysis the damage-recovery phenotypic category (DRR phe) is the union of the
MMS, 4NQO and t-BuOOH phenotypic categories and excludes the UV data since we do
not have expression profiling data on UV treated cells. Only 37% of the damage-recovery
differentially expressed genes show a sensitive growth phenotype upon deletion. For MMS
alone this fraction reduces to 31%, for 4NQO it is 14.2% while for t-BuOOH it is 4.3%.
This is in agreement with previous analysis on a smaller set of genes tested for growth
sensitivity [18]. Furthermore, as can be seen from Table 5.3, the individual mutagen network
results for the expression profiling data follow the same characteristics as the ones for the
collective damage recovery response in that their average degree and characteristic path
length is not higher than what would be expected from a random selection of nodes showing
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DRR                           MMS                  

4NQO                     t-BuOOH                         

Figure 5-1. Number of proteins important for phenotypic growth only (phe only), proteins showing
differential expression only (expr only), and proteins both important for phenotypic growth and showing
differential expression (both).
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Figure 5-2. Average degree of proteins in different categories.
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DRR MMS 4NQO t-BuOOH

px(P |E,H)/px(P |E) 1.51 1.52 1.79 2.50
px(P |E)/px(P ) 0.92 0.99 0.75 0.95
px(P |H)/px(P ) 1.43 1.50 1.72 1.30

px(E|P,H)/px(E|P ) 1.07 1.27 1.35 2.06
px(E|P )/px(E) 0.92 0.99 0.75 0.95
px(E|H)/px(E) 1.01 1.26 1.32 1.17

Table 5.4. Ratios quantifying the importance of one measurement (expression (E), phenotype (P), high
degree (H)) compared to the other two.

very different topological behavior from their phenotypic counterparts. However, if the
expression profiling data is intersected with the phenotypic data (the ’both’ rows in the
table) and network properties of the resulting set of overlapping nodes are investigated,
significant topological trends arise. Specifically, the average degree of the differentially
expressed genes that show phenotypic behavior is, for all networks, much higher than the
one for all differentially expressed genes and this time the result is statistically significant.
Furthermore, as can be seen from Figure 5-2, for the individual mutagen networks (MMS,
4NQO, and t-BuOOH), the average degree of the intersection of differentially expressed and
phenotypic genes is higher than the one obtained only based on phenotypic data. These
trends are also observed for the characteristic path length shown in Table 5.3 except for
4NQO possibly due to the very small number of overlapping genes.

� 5.3.2 Using network information to better predict phenotype from expression
profiling data

The observations discussed in the previous subsection suggest a way to combine expression
profiling data with network information to better predict phenotypic outcome. In order
to test the prospects of such a method, we have estimated the probability that a protein
exhibits a growth phenotype given that it is differentially expressed and has a high degree.
Specifically, let P denote the event that a protein x exhibits a growth phenotype, i.e. if x
is deleted, the cell does not grow properly in response to exposure to a damaging agent. E
is defined as the event that a protein x is differentially expressed and H the event that it
has a high degree where high is defined as having more than 14 direct interactions. Then,
pqx(P |E,H) defines the probability that protein x belonging to category q (DRR, MMS,
4NQO, or t-BuOOH) exhibits a growth phenotype given that it is differentially expressed
and has a high degree and is given by:

pqx(P |E,H) =
pqx(P,E,H)

pqx(E,H)
≈ Nq(P,E,H)
Nq(E,H)

(5.1)

where Nq(P,E,H) and Nq(E,H) are respectively the number of proteins in category q that
are differentially expressed, exhibit a growth phenotype, and have a high degree, and the
number of proteins in category q that are both differentially expressed and have a high
degree. Table 5.4 shows the change in the probability of a protein x having a growth
phenotype or being differentially expressed as one additional measurement (expression,
phenotype, or high degree) is obtained. The results indicate that just knowing that a
protein is differentially expressed does not increase its probability of showing a growth
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Table 5.5. Difference between down and up regulated genes.

phenotype and vice versa. However, a differentially expressed protein that has a high
degree is more than one and a half times more likely to show a growth phenotype than a
random differentially expressed protein. This trend is not as marked in the reverse direction,
i.e. knowing that a protein exhibiting a growth phenotype is highly connected only shows
a slight increase in the likelihood that it is differentially expressed compared to a random
protein showing a growth phenotype. The results in Table 5.4 also confirm the earlier
observation that a high degree node is as equally likely to be differentially expressed as a
random protein however this is not true for a protein exhibiting phenotypic growth where
a high degree node is more likely to be required for proper growth upon exposure to a
damaging agent than a random protein.

� 5.3.3 Up-regulated versus down-regulated genes

So far we have considered proteins whose corresponding genes are differentially expressed
as one homogeneous category. This category includes proteins whose transcription is down-
regulated in response to exposure to a damaging agent as well as proteins whose transcrip-
tion is up-regulated. The proteins exhibiting a growth phenotype however correspond to
proteins whose deletion yields to impaired growth upon exposure to a damaging agent. One
may therefore suspect that proteins exhibiting a growth phenotype should correlate better
with proteins whose expression is down-regulated in response to exposure damaging agents
since gene deletion effectively corresponds to eliminating gene expression which is the goal
of down-regulation. In order to investigate this hypothesis, we computed the number of
proteins in each category that are down-regulated and up-regulated as well as the number
of proteins that are both down-regulated or up-regulated and show a growth phenotype.
For each category, we also computed the average degree of the proteins in that category.
The results are shown in Table 5.5 and indicate that the extent of overlap between pro-
teins that are down- or up-regulated and the ones important for growth is the same for
both down-regulated and up-regulated proteins. However, the average degree results are
very different for the down-regulated and up-regulated genes. The up-regulated proteins
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MMS 4NQO t-BuOOH

px(P |E,H)/px(P |E) 1.33 7.34 2.27
px(P |E)/px(P ) 0.86 0.71 0.96
px(P |H)/px(P ) 1.50 1.72 1.30

px(E|P,H)/px(E|P ) 1.94 2.73 2.91
px(E|P )/px(E) 0.86 0.71 0.96
px(E|H)/px(E) 2.19 0.64 1.67

Table 5.6. Ratios quantifying the importance of one measurement (expression (E), phenotype (P), high
degree (H)) compared to the other two for down-regulated genes.

results are similar to the overall differentially expressed results in that the average degree
for up-regulated proteins is not significantly higher than expected by chance while the over-
lap between the up-regulated proteins and the ones important for phenotypic growth has
a significantly higher average degree. The down-regulated proteins however show a sur-
prising trend. While the probability of a protein being important for growth given that
it is down-regulated is still the same as the probability of a protein being important for
growth given that it is differentially expressed, unlike generally differentially expressed and
up-regulated proteins, proteins that are down-regulated have a much higher average degree
than expected by chance. This is true for MMS responsive and t-BuOOH responsive pro-
teins however the trend does not hold for 4NQO responsive proteins perhaps due to the
small size of this category. Furthermore the overlap between down-regulated proteins and
proteins important for proper growth has a much higher average degree than the overlap
between differentially expressed proteins and proteins important for proper growth. To fur-
ther quantify this effect, we computed the likelihood of having one additional measurement
(expression, phenotype, or high degree) compared to the other for the down-regulated pro-
teins. The results are shown in Table 5.6 and indicate that while knowing that a protein is
down-regulated does not increase the probability of it exhibiting a growth phenotype and
vice versa similar to the results obtained using all differentially expressed proteins, knowing
that a protein is down-regulated and has a high degree greatly increases its probability
of exhibiting a growth phenotype. The opposite also holds, i.e. knowing that a protein
has a growth phenotype and has a high degree greatly increases the probability of it being
down-regulated. This last observation does not hold for all differentially expressed proteins
as was observed in Table 5.4.

� 5.3.4 Towards a better prediction of phenotype using expression profiling data

The results presented in this section suggest a simple yet powerful way to combine network
information with expression profiling data to better predict phenotypic outcome. Specifi-
cally, overlaying expression profiling data with network topology and screening for highly
connected proteins provides a set of candidate proteins that are more likely to exhibit a
growth phenotype than a random differentially expressed protein. Providing methods that
better predict phenotype using expression profiling data is important because expression
profiling data are readily available and can be easily obtained using non-invasive procedures.
This is not the case for phenotypic data where the experiments are more complicated and
sometimes impossible to do such as on humans for example. As a result, any method that
improves our ability to predict phenotype using expression data is highly valuable since
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ultimately one is interested in changes in observable behavior (phenotype) in response to
some stimulus. We have presented here a very simple way to combine expression profiling
data with network information in order to illustrate the power of the network models we
provide in this thesis. Clearly, more sophisticated methods can and should be developed
using the different measures presented in this thesis. This further analysis is proposed as a
direction for future work.

� 5.4 Robustness of the Network Results

All network measures so far relied on protein-protein interactions obtained from the Database
of Interacting Proteins (DIP) [135] which includes high-throughput genome-wide data such
as yeast two hybrid [123] [50] [106] and mass spectrometric analysis of protein complexes
[65] [54] as well as interactions collected from small scale screens in hundreds of individ-
ual research papers. We performed computations on an exhaustive yeast interactome that
includes all reported protein-protein interactions in order to evaluate the network character-
istics of all our identified damage-recovery proteins. However, false-positive protein-protein
interactions might affect our observed trends so it is important to assess the robustness of
the results reported here. We have recomputed all network measures using an additional
smaller yeast protein-protein interaction network: the core yeast interactome obtained from
DIP as of October 2004 [135] which is a curated interactome using the method outlined by
Deane et al. [38]. The network includes 6,337 high confidence interactions among 2,628
proteins. Results are shown in Table 5.7 and are in agreement with those obtained us-
ing the complete yeast interactome, indicating that the results are robust to false-positive
protein-protein interactions.

We have also recomputed the network measures using the recently published Filtered
Yeast Interactome (FYI) [63]. Table 5.8 shows the results. As can be seen by comparing
Tables 5.7 and 5.8, the results for this network are different than for the core network as
well as for the full yeast network. This is most probably due to the fact that this network is
biased towards complexes and signaling pathways published by individual groups as opposed
to genome-wide studies as can be confirmed from the clustering coefficient average results.

� 5.5 Damage-Recovery Party and Date Hubs

In their recently published paper, Han et al. [63] analyzed the dynamic organization of
the yeast protein-protein interaction network. In their study, they defined two types of
hubs, i.e. proteins that interact with many partners, party hubs and date hubs. Party
hubs are proteins that interact with most of their partners at the same time. In contrast,
date hubs interact with their partners at different times or locations. The authors propose
an organized modularity of the yeast proteome where modules are connected by the date
hubs which represent regulators, mediators, or adaptors. Party hubs exist within modules
coordinating the function mediated by these modules therefore functioning at a lower level
of the organization of the proteome. The same proportion of party and date hubs was found
to be essential.

We have identified the party and date hubs in the damage-recovery networks in order
to extend the results of Han et al. and unravel the role of damage-recovery proteins in the
context of the modular network organization of the yeast proteome. Table 5.9 summarizes
the results and Tables 5.10-5.15 give the names and description of the party and date hubs
for the MMS, 4NQO, UV, and t-BuOOH networks as well as the process they are involved
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Table 5.7. Network measures based on the core yeast interactome.
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Table 5.8. Network measures based on the FYI yeast interactome.

Phenotype total proteins date hubs party hubs

Essential 572 55 74
Damage-recovery 403 23 25
MMS 322 21 20
4NQO 229 16 19
UV 99 3 4
t-BuOOH 65 5 7

Table 5.9. Number of total proteins, date hubs, and party hubs in the different phenotypic categories.
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MMS date hubs

ORF Description Process

YBR200W BEM1 Bud emergence mediator Cell division
YAL040C CLN3 Cyclin, G1/S-specific Cell cycle
YPL031C PHO85 Cyclin-dependent protein kinase Cell cycle
YHR152W SPO12 Sporulation protein Cell cycle
YGL240W DOC1 Component of the anaphase promoting complex Cell cycle
YBL016W FUS3 Mitogen-activated protein kinase (MAP kinase) Cell signaling
YMR125W STO1 Large subunit of the nuclear cap-binding protein mRNA metabolism

complex CBC
YPL254W HFI1 Transcriptional coactivator Sm
YDR378C LSM6 Sm-like (Lsm) protein Sm
YNL147W LSM7 Sm-like (Lsm) protein Sm
YBL093C ROX3 Transcription factor Transcription
YOL004W SIN3 Transcription regulatory protein Transcription
YDR392W SPT3 General transcriptional adaptor or co-activator Transcription
YBR081C SPT7 Involved in alteration of transcription start Transcription

site selection
YNL236W SIN4 Global regulator protein Transcription
YOL148C SPT20 Member of the TBP class of SPT proteins that alter Transcription

transcription site selection
YGR252W GCN5 Histone acetyltransferase Transcription
YBR289W SNF5 Component of SWI/SNF transcription activator Transcription

complex
YLR055C SPT8 Transcriptional adaptor or co-activator Transcription
YDR448W ADA2 General transcriptional adaptor or co-activator Transcription
YDR176W NGG1 General transcriptional adaptor or co-activator Transcription

Table 5.10. MMS date hubs.
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MMS party hubs

ORF Description Process

YLR102C APC9 Subunit of the Anaphase Promoting Complex Cell cycle
YFR036W CDC26 Subunit of anaphase-promoting complex (cyclosome) Cell cycle
YDR388W RVS167 Reduced viability upon starvation protein Cell shape
YDR264C AKR1 Ankyrin repeat-containing protein Cell shape
YOL018C TLG2 Member of the syntaxin family of t-SNAREs Cell traffic
YMR167W MLH1 DNA mismatch repair protein DNA metabolism
YBL099W ATP1 F1F0-ATPase complex, F1 alpha subunit Mito. Atpase
YDR298C ATP5 F1F0-ATPase complex, OSCP subunit Mito. Atpase
YGL173C KEM1 Multifunctional nuclease mRNA metabolism
YGL070C RPB9 DNA-directed RNA polymerase II, 14.2 KD subunit Polymerase
YJL124C LSM1 Sm-like (Lsm) protein Sm
YEL051W VMA8 H+-ATPsynthase V1 domain 32 KD subunit, vacuolar Vacuolar atpase
YEL027W CUP5 H+-ATPase V0 domain 17 KD subunit, vacuolar Vacuolar atpase
YOR332W VMA4 H+-ATPase V1 domain 27 KD subunit, vacuolar Vacuolar atpase
YLR447C VMA6 H+-ATPase V0 domain 36 KD subunit, vacuolar Vacuolar atpase
YGR020C VMA7 H+-ATPase V1 domain 14 kDa subunit, vacuolar Vacuolar atpase
YBR127C VMA2 H+-ATPase V1 domain 60 KD subunit, vacuolar Vacuolar atpase
YPL234C TFP3 H+-ATPase V0 domain 17 KD subunit, vacuolar Vacuolar atpase
YOR270C VPH1 H+-ATPase V0 domain 95K subunit, vacuolar Vacuolar atpase
YHR026W PPA1 H+-ATPase 23 KD subunit, vacuolar Vacuolar atpase

Table 5.11. MMS party hubs.

4NQO date hubs

ORF Description Process

YHR152W SPO12 Sporulation protein Cell cycle
YOR212W STE4 GTP-binding protein beta subunit of the pheromone Cell signaling

pathway
YMR125W STO1 Large subunit of the nuclear cap-binding protein mRNA

complex CBC metabolism
YDR378C LSM6 Sm-like (Lsm) protein Sm
YNL147W LSM7 Sm-like (Lsm) protein Sm
YBL093C ROX3 Transcription factor Transcription
YBR081C SPT7 Involved in alteration of transcription start site selection Transcription
YBR289W SNF5 Component of SWI/SNF transcription activator complex Transcription
YDR176W NGG1 General transcriptional adaptor or co-activator Transcription
YDR392W SPT3 General transcriptional adaptor or co-activator Transcription
YGL025C PGD1 Mediator complex subunit Transcription
YGR252W GCN5 Histone acetyltransferase Transcription
YLR055C SPT8 Transcriptional adaptor or co-activator Transcription
YNL236W SIN4 Global regulator protein Transcription
YOL004W SIN3 Transcription regulatory protein Transcription
YPL254W HFI1 Transcriptional coactivator Transcription

Table 5.12. 4NQO date hubs.
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4NQO party hubs

ORF Description Process

YFR036W CDC26 Subunit of anaphase-promoting complex Cell cycle
(cyclosome)

YDR388W RVS167 Reduced viability upon starvation protein Cell shape
YLR268W SEC22 Synaptobrevin (V-SNARE) Cell traffic
YOL018C TLG2 Member of the syntaxin family of t-SNAREs Cell traffic
YJR121W ATP2 F1F0-ATPase complex, F1 beta subunit Mitocondrial ATPase
YBL099W ATP1 F1F0-ATPase complex, F1 alpha subunit Mitocondrial ATPase
YGL173C KEM1 Multifunctional nuclease mRNA metabolism
YGL070C RPB9 DNA-directed RNA polymerase II, Polymerase

14.2 KD subunit
YCR002C CDC10 Cell division control protein Septins
YJL124C LSM1 Sm-like (Lsm) protein Sm
YEL051W VMA8 H+-ATPase V1 domain 32 KD subunit, vacuolar Vacuolar ATPase
YHR026W PPA1 H+-ATPase 23 KD subunit, vacuolar Vacuolar ATPase
YGR020C VMA7 H+-ATPase V1 domain 14 kDa subunit, vacuolar Vacuolar ATPase
YOR332W VMA4 H+-ATPase V1 domain 27 KD subunit, vacuolar Vacuolar ATPase
YEL027W CUP5 H+-ATPase V0 domain 17 KD subunit, vacuolar Vacuolar ATPase
YDL185W TFP1 H+-ATPase V1 domain 69 KD subunit, vacuolar Vacuolar ATPase
YBR127C VMA2 H+-ATPase V1 domain 60 KD subunit, vacuolar Vacuolar ATPase
YLR447C VMA6 H+-ATPase V0 domain 36 KD subunit, vacuolar Vacuolar ATPase
YPL234C TFP3 H+-ATPase V0 domain 17 KD subunit, vacuolar Vacuolar ATPase

Table 5.13. 4NQO party hubs.

UV date hubs

ORF Description Process

YPL031C PHO85 Cyclin-dependent protein kinase Cell cycle
YDR176W NGG1 General transcriptional adaptor or co-activator Transcription
YDR448W ADA2 General transcriptional adaptor or co-activator Transcription

UV party hubs

ORF Description Process

YFR036W CDC26 Subunit of anaphase-promoting complex (cyclosome) Cell cycle
YBL099W ATP1 F1F0-ATPase complex, F1 alpha subunit Mitochondrial ATPase
YGL070C RPB9 DNA-directed RNA polymerase II, 14.2 KD subunit Polymerase
YGR020C VMA7 H+-ATPase V1 domain 14 kDa subunit, vacuolar Vacuolar ATPase

Table 5.14. UV date and party hubs.
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t-BuOOH date hubs

ORF Description Process

YPL031C PHO85 Cyclin-dependent protein kinase Cell cycle
YPL254W HFI11 Transcriptional coactivator Transcription
YBR081C SPT7 Involved in alteration of transcription start site selection Transcription
YOL148C SPT20 Member of the TBP class of SPT proteins that alter Transcription

transcription site selection
YBR289W SNF5 Component of SWI/SNF transcription activator complex Transcription

t-BuOOH party hubs

ORF Description Process

YDR388W RVS167 Reduced viability upon starvation protein Cell shape
YDR395W SXM1 Putative beta-karyopherin Cell traffic
YOR332W VMA4 H+-ATPase V1 domain 27 KD subunit, vacuolar Vacuolar ATPase
YOR270C VPH1 H+-ATPase V0 domain 95K subunit, vacuolar Vacuolar ATPase
YHR026W PPA1 H+-ATPase 23 KD subunit, vacuolar Vacuolar ATPase
YEL051W VMA8 H+-ATPsynthase V1 domain 32 KD subunit, vacuolar Vacuolar ATPase
YEL027W CUP5 H+-ATPase V0 domain 17 KD subunit, vacuolar Vacuolar ATPase

Table 5.15. t-BuOOH date and party hubs.

in. As can be seen from Table 5.9, although the majority of these hubs are essential, most
of the remaining nonessential party and date hubs are involved in damage recovery. Tables
5.10-5.15 indicate that the date hubs mostly coordinate transcription and the cell cycle
while party hubs are involved in complexes and signaling modules important for recovery
from exposure to the mutagen such as the vacuolar ATPase, the mitochondrial ATPase,
and cell trafficking. These results shed some light on the organization of damage-recovery
proteins and emphasize the topological similarities between essential and damage-recovery
proteins.

� 5.6 Beyond Pairwise Interactions: Understanding Network Integrity Through
Constrained Graph Partitioning

Biological signaling is ultimately about relaying signals and processing them. At relatively
short time-scales, this process happens entirely at the level of protein-protein interactions.
As a result, it would be expected that disabling protein-protein interactions such that entire
sections of the network can no longer communicate with each other may have a profound
effect on the ability of a cell to properly process signals and in some cases may lead to
a catastrophic outcome. Alternatively, disconnection between sections of the network can
potentially occur by disabling specific proteins whose collective action seems to hold the
network together. We have investigated these two scenarios by applying different graph
partitioning algorithms to the different versions of the yeast interactome.

� 5.6.1 Interaction-centric partitioning

We first focused on specific interactions as opposed to full protein function by disconnecting
edges in the graph rather than removing nodes. Specifically, the yeast interactome was
partitioned into two equal partitions while minimizing the number of edges cut (i.e. the
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FULL CORE FYI

Total number of proteins 4,597 2,435 778
Essential 25.41% 33.68% 45.76%
Damage-recovery (DR) 30.17% 31.17% 26.74%
No-Phenotype 39.46% 30.84% 24.16%
Total number of edges 14,448 6,227 1,798
Number of edges cut 2,396 (16.58%) 557 (8.95%) 9 (0.5%)

part. 0 part. 1 part. 0 part. 1 part. 0 part. 1

Average degree 6.357 4.130 4.601 4.713 3.424 5.774
Essential 28.2% 22.6% 36.9% 30.5% 35.7% 55.8%
Damage-Recovery (DR) 30.1% 30.2% 30.9% 31.4% 29% 24.4%
No-Phenotype 36.6% 42.4% 28.3% 33.4% 31.4% 17.0%

Nodes in partition with edges cut 47.7% 39.41% 26.62% 24.38% 2.31% 2.06%
Essential edges cut/ Total edges cut 31.5% 29.7% 38.9% 41.4% 77.8% 62.5%
Essential edges cut/ Total essential 53.2% 51.8% 28.1% 33.2% 5% 2.3%
DR edges cut/ Total edges cut 32.2% 29.8% 32.4% 30.6% 22.2% 25.0%
DR edges cut/ Total DR 51.0% 38.8% 27.9% 23.8% 1.8% 2.1%
Nophe edges cut/ Total edges cut 30.9% 36.2% 24.1% 24.2% 0% 12.5%
Nophe edges cut/ Total nophe 40.4% 33.7% 22.7% 17.7% 0% 1.5%

Nodes with > 5 edges cut ≡ N5 2.78% 3.83% 0.49% 1.15% 0% 0%
Essential with > 5 edges cut/ N5 40.6% 45.5% 83.3% 78.6% - -
DR with > 5 edges cut/ N5 35.9% 25.0% 0% 0% - -
Nophe with > 5 edges cut/ N5 21.9% 26.1% 16.7% 21.4% - -

Table 5.16. Summary of edge partitioning results.
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YBR133C HSL7 ↔ YPL016W SWI1 DR ↔ Ess
YDL043C PRP11 ↔ YKL074C MUD2 Ess ↔ Nophe
YIL129C TAO3 ↔ YDR167W TAF25 Ess ↔ Ess
YOR250C CLP1 ↔ YDR167W TAF25 Ess ↔ Ess
YIL144W TID3 ↔ YOL069W NUF2 Ess ↔ Ess
YLR026C SED5 ↔ YLR268W SEC22 Ess ↔ DR
YMR117C SPC24 ↔ YPR010C RPA135 Ess ↔ Ess
YOL004W SIN3 ↔ YDR207C UME6 DR ↔ DR
YOR326W MYO2 ↔ YBR109C CMD1 Ess ↔ Ess

Figure 5-3. Specific interactions with edges cut in the FYI partitioning. ORF names are followed by
common names in italic. DR, Ess, and Nophe correspond to damage-recovery, essential, and no-phenotype
classifications respectively.

number of interactions disabled). This was done using the program METIS (http://www-
users.cs.umn.edu/karypis/metis/metis/index.html) which is based on a multilevel graph
partitioning algorithm described in [76]. The program provides high quality partitions and
runs very fast. We applied the graph partition algorithm on the three versions of the
yeast interactome described earlier: the full yeast interactome (full), the curated core yeast
interactome (core), and the filtered yeast interactome (FYI). For each interactome, the
minimum number of edges cut to partition the network into two equal partitions (part. 0
and part. 1) was computed and identified. The nature of these interactions was investigated
as well as the phenotypic node distribution between the two partitions, i.e. the relative
number of nodes with a given phenotype (essential, damage-recovery, and no-phenotype) in
each partition. We also computed the average degree of each partition and identified the
phenotype of nodes that had a large number of interactions disabled in order to partition the
network. The results are summarized in Table 5.16 and indicate that the proportion of nodes
with a given phenotype in each partition is similar to the proportion of nodes with a given
phenotype in the non-partitioned network for all three versions of the network. However
the relative number of proteins with a given phenotype that had their edges cut is different
for each version of the network. While for the full and core networks the proportion of
essential proteins that had their edges cut is slightly higher than the proportion of essential
proteins in the partition, this proportion is much higher in the FYI network indicating that
most of the edges cut in the network belong to essential proteins. Furthermore, the number
of deleted edges needed to partition the network is higher for the full network (16.58%),
than for the core network (8.95%) which is higher than for the FYI network (0.5%). This
should not be surprising since the core and FYI networks are curated and include only high
confidence interactions. As a result, these networks are sparser and therefore it would take
fewer disconnected edges to partition them. The results also show that the proteins that
had many (greater than five) interactions removed are mostly essential proteins emphasizing
the special topological role of these proteins.

In order to gain further insight as to the nature of the interactions disabled, we identified
the five proteins in each partition that had most of their edges cut for the full and core
interactomes as well as all the proteins that had their edges cut for the FYI network. The
results are shown in Table 5.17 and again show that the majority of these proteins are
essential. The FYI network results are particularly interesting since cutting only nine edges
disconnects the network. These nine interactions are shown in Figure 5-3 along with the
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FULL

Partition 0 Partition 1

ORF Edges cut Class ORF Edges cut Class

YML064C 38 Ess. YJR091C 71 Nophe.
YBR055C 20 Ess. YNL189W 70 Ess.
YMR308C 19 Ess. YLR447C 39 DR
YDR034C 18 Nophe. YMR047C 33 Ess.
YER133W 16 Ess. YHR114W 31 -

CORE

Partition 0 Partition 1

ORF Edges cut Class ORF Edges cut Class

YBR009C 10 Nophe YBR160W 33 Ess.
YDR170C 8 Ess. YNL189W 20 Ess.
YPL153C 7 Ess. YDL188C 8 Nophe.
YPL204W 7 Ess. YFL039C 8 Ess.
YPR041W 7 Ess. YHR135C 8 Nophe.

FYI

Partition 0 Partition 1

ORF Edges cut Class ORF Edges cut Class

YBR133C 1 DR YDR167W 2 Ess.
YDL043C 1 Ess. YBR109C 1 Ess.
YIL129C 1 Ess. YDR207C 1 DR
YIL144W 1 Ess. YKL074C 1 Nophe.
YLR026C 1 Ess. YLR268W 1 DR
YMR117C 1 Ess. YOL069W 1 Ess.
YOL004W 1 DR YPL016W 1 Ess.
YOR250C 1 Ess. YPR010C 1 Ess.
YOR326W 1 Ess.

Table 5.17. Proteins identities (top 5) with the highest number of edges cut in the full and core networks.
All proteins with edges cut in the FYI network.

common names of the proteins as well as their phenotype. The majority of these interactions
involve at least one essential protein and most of them involve two essential proteins.

Proteins are classified as essential because their deletion is lethal. However when delet-
ing a protein, all its interactions with other proteins are effectively disabled. Some of these
interactions may be essential in the sense that without those functional interactions, the
yeast would die, others however may not. Given the way experiments are carried out to
identify essential proteins (gene deletion), it is impossible to determine which specific inter-
actions or combinations of interactions are essential. In order to identify which interactions
are essential, interactions have to be specifically inhibited through a specific antibody for
example or an engineered protein that has an inactive binding site effectively disabling that
interaction. These types of experiments can be very difficult to carry out and going through
the combination of over 700 interactions (for the case of the FYI network) is practically
infeasible. The results in this section suggest a method to identify potential combinations
of interactions that are likely to be essential. Specifically, we hypothesize that inhibiting
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interactions that lead to network disconnection will be catastrophic to the cell leading to
cell death. As a result, we predict that if the interactions in Figure 5-3 were specifically
inhibited, the yeast will die. Carrying out these types of experiments is suggested as a
possible direction for future work. Being able to distinguish between essentiality based on
full protein function and essentiality based on specific protein interactions is important for
understanding fundamental network structure and function as well as for effective targeted
drug design. The types of network analyses presented in this section present a first step
towards building this kind of understanding.

� 5.6.2 Protein-centric partitioning

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

Number of nodes removed

si
ze

 o
f n

ew
 la

rg
es

t c
om

po
ne

nt

FYI

Essential
Damage recovery
No phenotype
Full
Nonessential

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

Threshold

si
ze

 o
f n

ew
 la

rg
es

t c
om

po
ne

nt

FYI

Essential
Damage recovery
No phenotype
Full
Nonessential

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

Threshold

N
um

be
r 

of
 n

od
es

 r
em

ov
ed

FYI

Essential
Damage recovery
No phenotype
Full
Nonessential

(c)

Figure 5-4. Node partitioning results using the FYI interactome.

We also investigated full protein function by examining the set of proteins that, if re-
moved, disconnects the network. We call this approach protein-centric partitioning because
it focuses on node (protein) removal as opposed to edge (interaction) cutting. Nodes can be
removed and the network can be disconnected in a number of different ways. We present
here one approach for removing nodes and disconnecting the network to illustrate the poten-
tial of this partitioning scheme. We use the FYI network and consider five classes of proteins
(nodes): all proteins (full), the essential proteins (essential), the non-essential proteins (non-
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essential), the damage-recovery proteins (damage-recovery), and the no-phenotype proteins
(no-phenotype). Proteins in each class are ordered according to their degree in the full
network and are serially removed starting from the highest degree protein until the ratio of
the largest connected component size of the new network and the largest connect compo-
nent size in the original network reaches a threshold which is varied in increments of 0.05
from 0 to 0.95. In addition, in order to avoid trivial solutions where single nodes are being
disconnected, the size of the second largest connected component is constrained to be at
least 10 nodes. Figure 5-4 shows the results.
Figure 5-4 shows that it takes fewer essential nodes to disconnect the network at a given

threshold than non-essential nodes and similarly it takes fewer damage-recovery nodes to
disconnect the network than no-phenotype nodes. These results further emphasize the topo-
logical similarities between essential and damage-recovery proteins. The results in Figure
5-4 also show a surprising trend: at almost all threshold values, it takes fewer proteins
to disconnect the network if using the class of essential proteins than if using the class of
all proteins. A similar trend, though less marked, holds for the damage-recovery proteins
where for a few threshold values, fewer damage-recovery proteins need to be removed to
disconnect the network than if the entire class of non-essential proteins was used. These
results are not necessarily expected because the essential and damage-recovery proteins
are subsets of the all and non-essential proteins respectively and therefore any essential
(damage-recovery) protein is present in the class of all (non-essential) proteins. Further-
more, since we chose to remove nodes by classifying them according to their degree and by
starting from the highest degree node, the average degree of the nodes removed to satisfy
a given disconnection threshold is lower for the essential proteins than for the class of all
proteins since the essential class is a subset of the class of all proteins and it takes fewer
essential proteins to disconnect. The same observation holds for the damage-recovery pro-
teins. These results indicate that essential and damage-recovery proteins have distinctive
network properties beyond the number of direct physical interactions (degree). Specifically,
they play an important role in maintaining network integrity.
We have chosen here to use protein degree as a classifying measure to systematically

remove proteins in order to disconnect the network. This choice was motivated by the
fact that node degree was extensively used as a distinctive network property in the other
analyses presented in this chapter as well as the previous two chapters and continues to be
used in many published articles studying network topology. The results presented here show
that properties of phenotypic proteins extend well beyond first-order interactions (analyzed
through node degree) emphasizing the importance of studying the properties of phenotypic
proteins using the methods presented in this section. A number of other network measures
can and should be used to classify proteins and systematically remove them in order to
disconnect the network. This analysis is the focus of future work.
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Chapter 6

Low-Level Modeling of Biological
Signaling Networks
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Looking at network topology and interconnectivity properties is important in order to
understand the high-level properties of the network and for example the impact a node
removal could have on the entire network. However, temporal information and dynamics
cannot be inferred from such a high-level modeling technique. In other words, in order to
get the dynamics of the interactions between different nodes in a graph, one has to know the
identities and characteristics of the nodes. In this section, we add resolution to the models
described in the previous section by examining the proteins that constitute the nodes in the
graph and providing a model for their dynamics and interactions. We term this approach
low-level modeling of signaling networks.

Most current low-level models for signaling pathways can be classified in one of two
categories: biochemical models which define the system in terms of kinetic differential
equations governed by the laws of mass action or Michaelis Menten kinetics and biophysical
models which are concerned with the mechanical forces and spatial distributions necessary
to generate a response. While these models usually have a direct physical basis, even the
simplest of these includes hundreds of equations and many parameters that usually need
to be estimated since they are not directly measurable. As a result, one can rarely gain
intuition from such models. Also, the under-constrained parameter space makes such models
somewhat arbitrary.

In this thesis, we propose a fundamentally different approach to modeling biological
signaling at a low-level based on statistical control and signal processing theory. Our goal is
to develop an intuition as well as some understanding of how cells perform signal processing
based on approximate yet detailed models with a physical foundation inspired from our
engineered signal processing networks. We start this section by reviewing some of the
relevant current low-level models. We then present a new framework based on interacting
Markov chains and discuss related models.

� 6.1 Current Low-Level Models

Biological signaling networks can be represented as a series of biochemical reactions that
can then be modeled using some mathematical formalism. If one further assumes that the
volume V of the cell or compartment is fixed and contains a spatially uniform mixture of
N species (proteins, chemicals, or other molecules) that can interact through M specified
biochemical reactions, then given the number of molecules of each species present at some
initial time, the modeling problem consists of finding the molecular population levels at
any later time. Several approaches have been formulated to solve this problem, the oldest
of which is the deterministic approach [125] [92]. More recently, a stochastic approach has
been proposed [90] and successfully implemented using a direct algorithm [55] as well as a
Petri net formalism [61]. We give below some background on these approaches.

� 6.2 Deterministic Formulation

The traditional way of modeling biochemical reaction networks consists of translating each
reaction involved in the network into a set of ordinary differential equations. This leads to
the deterministic approach. The deterministic approach is based on two basic assumptions:
the number of molecules of each species can be represented by a continuous, single-valued
function and each of theM chemical reactions can be regarded as a continuous-rate process.
Using these two assumptions one can easily construct a set of coupled, first-order, ordinary
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differential equations of the form

dXi
dt
= fi(X1, ...,XN ) (6.1)

where i = 1, ...,N and N is the total number of species. The specific forms of the functions
fi are determined by the structures and rate constants of the M chemical reactions. These
equations express the time-rate-of-change of the molecular concentration of one chemical
species, Xi, as a function of the molecular concentrations of all the species, X1, ...,XN .
They are termed the reaction-rate equations and their solution gives the time evolution of
the network. In large volumes, the rate of the reaction is proportional to the concentration
of the reactants. This is the Law of Mass Action which has been well established in large
volumes based on experiments that date back to the mid-1800s [125]. Later, in the early
1900s, Michaelis and Menten [92] published a model for enzyme kinetics where an enzymatic
reaction can be written as:

E + S ↔ ES → P + E (6.2)

The Law of Mass Action applied to this basic enzyme reaction leads to a set of coupled
differential equations that can be approximated using perturbation theory or solved numer-
ically. This approach is referred to as the deterministic approach.

While differential equations are a natural way to model chemical reactions in large con-
tainers, they do not necessarily represent the true state of the system in a cell. Specifically,
the Law of Mass Action relies on two key assumptions: continuity and determinism, both
become problematic at the level of the single cell. The low number of molecules, usually
ranging from dozens to a few hundreds, may compromise the notion of continuity while
fluctuations in the timing of cellular events may lead to non-deterministic outcomes. For
example, two regulatory systems having the same initial conditions might ultimately end up
in different states. The deterministic approach also ignores effects due to correlations. The
stochastic approach, which we discuss next, tries to deal with some of these shortcomings.

� 6.3 Stochastic Master Equation Formulation

The stochastic approach to chemical kinetics dates back to the mid 1950s [90] where the
inability of the deterministic formulation to take into account fluctuations and correlations
led scientists to explore a stochastic formulation. In this approach, the reaction constants are
viewed not as reaction “rates” but as reaction “probabilities per unit time”. As a result, the
time evolution of theN species is analytically described not by a set ofN coupled differential
equations but rather by a single differential-difference equation for a grand probability
function in which time and the N species populations all appear as independent variables,
this equation is termed the master equation [55]. The solution to the master equation gives
the probability of finding various molecular populations at each instant of time and it can
be rigorously derived from a microphysical standpoint [57]. The fundamental hypothesis of
the stochastic formulation, and the only one, is that there exists a reaction parameter cµ
which characterizes each reaction Rµ such that:
cµδt = average probability, to first order in δt, that a particular combination of Rµ
reactant molecules will react accordingly in the next interval δt.

where cµ depends on many physical properties of the system including volume, temperature,
mass, and activation energy. One can thus see that the solution to the master equation can
be thought of as a Markovian random walk in the space of reacting variables. The condition
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above is satisfied when non-reactive molecular collisions occur much more frequently than
reactive molecular collisions, i.e. the system is “well-mixed”: the reactant molecules are
always randomly distributed uniformly throughout the volume.

One can prove [80] that the stochastic formulation reduces to the deterministic formu-
lation in the thermodynamic limit i.e. when the number of molecules of each species and
the containing volume all approach infinity in such a way that the molecular concentrations
approach finite values. In this limit, the deterministic rate constant kµ can be expressed in
terms of the reaction parameter cµ as

kµ = V ∗ cµ (6.3)

where V is the volume.

Analytic solutions to the master equation are very difficult to obtain and earlier numer-
ical methods encountered convergence issues. However, Gillespie in 1976 [55] presented a
general method for numerically simulating the stochastic time evolution, and, as a result,
the stochastic formulation gained more applicability in the modeling community. In the
remainder of this section, we briefly present the Gillespie algorithm, for a more detailed
discussion, the reader is referred to [55].

The Gillespie algorithm is based on defining the reaction probability density function,
P (τ, µ) where:
P (τ, µ)dτ = the probability at time t that the next reaction in V will occur in the

differential time interval (t+ τ, t+ τ + dτ) and will be an Rµ reaction.
P (τ, µ) is therefore a joint probability density function on the space of the continuous
variable τ (0 ≤ τ <∞) and the discrete variable µ (µ = 1, 2, ...,M). In order to obtain an
expression for P (τ, µ), we define:
hµ = the number of distinct molecular reactant combinations for reaction Rµ found to

be present in V at time t.
Then,
hµcµδt = probability, to first order in δt that an Rµ reaction will occur in V in the next

time interval δt.
With these definitions, one can derive an expression for P (τ, µ) as follows:

P (τ, µ) = hµcµe
∑M
µ=1 hµcµτ (6.4)

for τ positive real (0 ≤ τ < ∞) and µ integer µ (µ = 1, 2, ...,M), for all other values of τ
and µ, P (τ, µ) is zero. Furthermore, one can write:

P (τ, µ) = P1(τ)P2(µ|τ) (6.5)

where
P1(τ) = ae

−aτ (6.6)

and
P2(µ|τ) =

aµ
a

(6.7)

where aµ = hµcµ and a =
∑M
µ=1 aµ. With these equations, one can use a direct method

where we first generate a random value τ according to P1(τ) in equation (6.6) and then
generate a random integer µ according to P2(µ|τ) in (6.7). The resulting random pair (τ, µ)
will be distributed according to P (τ, µ). The Gillespie algorithm uses this joint probability
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to give an exact simulation to the corresponding master equation. Specifically, given a
specified population of molecules at time 0, the Gillespie algorithm consists of the following
three steps:
Step(1): Calculate the function P (τ, µ) for the current population.
Step(2): Use Monte Carlo methods to generate a pair of random numbers (τ, µ) accord-

ing to the density function computed in Step(1).
Step(3): The time variable is advanced by τ and the molecular population is adjusted

to reflect the occurrence of one molecular reaction Rµ and return to Step(1).
Note that the algorithm generates its own, non-uniform, time samples: as the simulation
proceeds, it generates time samples based on the probability density function in (6.6), i.e.
simulation time steps are based on draws from an exponential distribution. Each reaction
that occurs changes the quantity of at least one reactant. When this happens, hµ changes
and it is necessary to recalculate the aµ values. If we did not need to recalculate the prob-
abilities at every time step, the system would be a Markov process with a fixed transition
matrix.

� 6.4 Stochastic Petri Nets

Petri nets were first introduced by C.A. Petri in 1960 and have been widely used in computer
science for the modeling and analysis of computer systems. They have a standard graphical
representation that is easy to interpret and to use for defining models. Petri net models are
composed of four basic elements: places P , transitions T (represented by bars or boxes),
directed arcs, and tokens. If a directed arc connects a place to a transition, the place is
called the input place to the transition while if a directed arc connects a transition to a
place, the place is the output place to the transition. The directed arcs linking input and
output places to transitions represent the input and output functions respectively. The arcs
can have different weights depending on the input and output functions and are labeled
with a natural number. By default unlabeled arcs have unit weight. Given these rules,
multiple places and transitions can be connected to form a complex net to model the static
view of a complex system.

In addition to the net structure that represents the static part of the system, Petri nets
have a global marking M which represents the overall state of the structure. Each place
contains tokens, the number of tokens in a place is its marking and represents the local
state of the place. The token distribution among the places of a Petri net is called its global
marking and represents the overall state of the system. The dynamic behavior of the system
is modeled by the flow of tokens and the firing of transitions. Specifically, a transition is
said to be enabled if each input place has at least as many tokens as the weight of the arc
connecting them. Enabled transitions may be fired by removing from each input place the
number of tokens equal to the weight of the arc. When the transition is fired, tokens, equal
to the weight of the arc joining the transition to the output place, are added to the output
places connecting the transition.

In conventional Petri nets, every enabled transition may fire. However this is not always
true for other kinds of Petri nets. In particular, in the kind of Petri nets we are interested in,
stochastic Petri nets, enabled transitions fire with an exponentially distributed time delay.
The rate parameter for each transition tj is given by a weight function wj and may in
general be a function of the global marking M . These stochastic Petri nets are equivalent
to continuous-time Markov chains.

Since Petri nets are described as both a graphical tool and a mathematical tool, they
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provide both a visual medium for a modeler to describe complex systems and present
it to others and an analytic medium for formal analysis via linear algebraic equations.
Specifically, one can perform structural analysis on the net to determine which states are
transient, fixed and recurring. Numerical analysis can also be used to derive both steady-
state and transient behavior for a small number of states and algorithms are available to
simulate both steady-state and transient behavior as well as estimating the distributions
of the results. However the major weaknesses of Petri nets is that as the system size and
complexity evolve, the state-space of the Petri net grows exponentially which can become
too difficult to manage both graphically and analytically.
The use of stochastic Petri nets to model biochemical reactions was first proposed by

Goss and Peccoud [61]. In their model, each place represents a distinct molecular species
and tokens represent the individual molecules. The initial marking M0 is the number of
molecules of each species in the system at time t = 0. Elementary chemical reactions are
represented by transitions and input and output functions determine the stoichiometric
coefficients of the molecular species involved in the reaction. The rate of the reaction is
represented by the weight function, W . The input places are the reactants and the output
places are the products. If the rate parameter wj for a transition tj of the stochastic Petri
net is equal to the stochastic rate (as defined in the previous section) of the reaction the
transition represents, then the stochastic Petri net represents molecular interactions exactly.
In other words, the Kolmogorov equations for the corresponding stochastic Petri net are the
same as the chemical master equation for the system of molecular interactions represented.
In their work, Goss and Peccoud defined stochastic Petri nets models for plasmid ColE1
replication [61]. They used a computer package that integrates the graphical representation
with the analysis of stochastic Petri nets to simulate the dynamics of the system.
One of the limitations of stochastic Petri nets in their application to biochemical systems

modeling is the lack of spatial dimension. While compartmentalization by representing sys-
tems as separate but interacting with the movement of molecules between compartments
represented by transitions is conceptually easy to perceive, the current definition of stochas-
tic Petri nets does not allow the implementation of a true reaction-diffusion model. This
limitation together with the exponential growth of the state-space creates the need for more
manageable models that are still detailed enough to capture the dynamics of the system.
In the next chapters, we present such a model based on interacting Markov chains.
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Chapter 7

Stochastic Models for Cell Signaling
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In this chapter, we propose a new framework for modeling the stochasticity of cellular
signaling. Our goal is to develop an intuitive model that captures the stochastic behavior
of cells while reconciling the results obtained from a deterministic modeling approach. The
model is formulated and described in the following sections.

� 7.1 Markov Modulated Markov Chains (3MC)

We define a Markov modulated Markov chain to be a doubly stochastic process composed
of a discrete-time Markov chain whose transition probabilities vary according to a second
Markov chain. The two chains are said to interact or more precisely, the states in the second
chain modulate the state transition probabilities of the first chain.

The Markov Modulated Markov Chains (3MC) model is composed of a network of v
interacting nodes. Each node is composed of a k-state Markov modulated Markov chain,
i.e. the transition probabilities for node Xp at time n is given by:

P (Xp[n] = j|Xp[n− 1] = i, · · · ,Xp[0] = m) = P (Xp[n] = j|Xp[n− 1] = i) ≡ pXpij [n] (7.1)

where Xp[n] is the state of node Xp at time n. In the absence of any modulation, the

transition probabilities of chain Xp are simply p
Xp
ij [n] = q

Xp
ij [n] where q

Xp
ij [n] is independent

of all chains in the network. More generally, nodes can interact i.e. the Markov chain in one
node is modulated by Markov chains in other nodes. These interactions between different
nodes are defined by influences from states in a set of nodes onto transition probabilities in
other nodes. The interaction may be either positive (activating) or negative (inhibiting).
Specifically, if a node Xr affects the transition probability from state i to state j in node
Xp then the transition probability from state i to state j in node Xp at time n due to the

interaction with chain Xr, {pXpij [n]}Xr , is given by:

{pXpij [n]}Xr = f(Xr[n]) (7.2)

where Xr[n] is the state of node Xr at time n and f() is a function that depends on the
nature of the interaction and will be derived later in this chapter.

Furthermore, in addition to q
Xp
ij [n], a given transition probability may be subject to

interactions from several nodes, each one of which will have a form similar to equation (7.2).
There are clearly many different ways in which the individual transition probabilities, or
equivalently the interactions, may be combined with q

Xp
ij [n] into one composite transition

probability. Here we consider two models for combining the state influences: an additive
model and a fading model.

� 7.1.1 Additive model

As the name suggests, in the additive model, the interactions from different nodes are added
together to form the total transition probability from state i to state j in node Xp at time

n, p
Xp
ij [n], as follows:

p
Xp
ij [n] = q

Xp
ij [n] +

∑

r

{pXpij [n]}Xr (7.3)

This model is used whenever the individual interactions define mutually exclusive events
and when the nature of the compound interaction is associative.
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� 7.1.2 Fading model

In the fading model, the individual interactions are combined through multiplication, i.e.
the composite probability is given by:

p
Xp
ij [n] = q

Xp
ij [n]

∏

r

{pXpij [n]}Xr (7.4)

This model is used when the nature of the compound interaction is cooperative.

� 7.2 Notation

A graphic representation of the model is given in Figure 7-1 where directed arrows between
nodes define influences of the Markov chain in the originating node onto specific transition
probabilities in the receiving node. The interaction is labeled I[Xr,Xp] where Xr is the
originating node and Xp is the receiving node. Each I[Xr,Xp] carries with it a set of

relations of the form f(Xr[n])
ǫ−→ [pij,Xp] where pij is the transition probability in node

Xp being affected by node Xr, f(Xr[n]) is the mapping of the influence from the state of
node Xr at time n onto the transition probability, and ǫ describes the way the interactions
is to be composed with other interactions. Specifically, ǫ = + if the additive model is to be
used and ǫ = × if the fading model is to be used. Examples of such interactions are given
in Figure 7-1.
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I[X1,X2] = f(X1[n])
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I[X2,X3] = f(X2[n])
+−→ [p21,X3]
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f(X2[n])
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Figure 7-1. Graphical representation of the interacting Markov chain model. Two representative Markov
chains are illustrated for nodes 4 and 5: a two-state and a three-state chain respectively.

� 7.3 Evolution of the State Probabilities

Recursive formulae for the state occupancy probabilities of the individual Markov modulated
Markov chains are similar to those of traditional Markov chains [52]. Specifically, let pXp [n]
be a row vector of length k where k is the order of the Markov chain at node Xp and whose
entries correspond to the state probabilities at time n, i.e. the l-th entry corresponds to
the probability of chain Xp being in state l at time n, P (Xp[n] = l), and the initial state
probability distribution is given by pXp [0]. Furthermore, let AXpXp [n] be the transition
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matrix of the Markov chain at node Xp at time n, i.e. AXpXp [n] is written as follows:

AXpXp [n] =







p
Xp
11 [n] · · · p

Xp
1k [n]

...
. . .

...

p
Xp
k1 [n] · · · p

Xp
kk [n]






(7.5)

Then, it follows from the Markovian property that:

pXp [n+ 1] = pXp [n]AXpXp [n] (7.6)

and therefore:

pXp [n+ 1] = pXp [0]

i=n
∏

i=0

AXpXp [i] (7.7)

It is straightforward to show that if the individual Markov chains consist of a single re-
current class and if the graph representing the network is acyclic, then the state probabilities
will always reach a steady-state which can be solved for by propagating the steady-state
probabilities of the originating node (the node that is not subject to any influence) into the
other nodes. If the graph contains cycles however, a steady-state may not exist. In order
to have a full characterization of the network behavior such as the pattern of states that
the network can be in at a given point in time, the joint probabilities of state occupancies
in different chains is needed. This higher-order analysis is not considered here.

� 7.4 Application to Cellular Signaling

In applying our model to cellular signaling, each type protein or enzyme corresponds to
a node. The order of the associated Markov chain is given by the number of states the
protein can have. For example, a protein can be in one of two states: active or inactive,
alternatively it can have three possible states: unphosphorylated, singly phosphorylated, or
dually phosphorylated. Non-zero transitions between states are given by our knowledge of
the protein state transitions. For example if the protein cannot be dually phosphorylated
without first being singly phosphorylated, the corresponding Markov chain will only allow
for transitions between the unphosphorylated state and the singly phosphorylated state and
between the singly phosphorylated state and the dually phosphorylated state, i.e. no direct
transitions between the unphosphorylated state and the dually phosphorylated state are
allowed.

Interactions between different nodes in the network are defined by interactions between
the different proteins represented by those nodes including enzymatic reactions, binding
events, and protein modifications. Furthermore, when more than one state affects a tran-
sition probability in a given node, whether the additive model or the fading model is used
depends on the actual nature of the protein interaction. Specifically, if the protein inter-
actions are known to be cooperative, i.e. the proteins either bind to the same site or all
the proteins in question need to be present to get an activation or an inhibition effect, then
the fading model is used. On the other hand, if the proteins bind at different sites or their
actions are independent of each other, then the correct model to use is the additive model.

Multiple proteins or enzymes of the same type are represented by identical Markov
chains independent of each other and evolving according to their transition probabilities.
For simplicity, the identical Markov chains are never shown in the graphical representation
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of the model. Only one Markov chain for each protein type is shown in the graphical
representation. Since proteins of the same type are represented by identical Markov chains,
they can be thought of as different realizations of the same random process. In addition,
when proteins of different types interact, the specific pair of proteins interacting is selected
at random from the set of proteins of the same type using a uniform probability distribution.
For example, if a protein of type Y gets activated by interacting with a protein of type X
and there is a total of 100 proteins of type X, a particular X is selected at random from the
100 proteins, using a uniform probability distribution, as the X protein the Y protein will
interact with.

� 7.5 Derivation of the Modulating Function f()

Biological signaling pathways are dominated by three main types of interactions: reac-
tive collisions, such as enzymatic modifications, associative interactions such as protein-
protein associations or ligand binding, and activations (or inhibitions) due to conforma-
tional changes such as proteins part of a receptor complex that get activated (or inhibited)
in response to a conformational change of the receptor or proteins activated (or inhibited)
through scaffolds. The form of the influence functions in our model will depend on the
nature of the interaction. In this section, we derive an expression for f() for these three
types of interactions.

� 7.5.1 Reactive collisions

Consider two types of molecules, X and Y , that can be in one of two states: an inactive
state 0, and an active state 1. An inactive Y -type molecule gets activated by colliding
and reacting with an active X-type molecule. In the 3MC model formulation, X and Y
are represented by two nodes each comprising a two-state discrete-time Markov chain with
states ’0’ (inactive) and ’1’ (active). Furthermore, the transition probability from state 0
to state 1 in the Y node is modulated by the states of node X.

We wish to derive an expression for the probability that an inactive Y -type molecule
gets activated at time n, i.e. P (Y [n] = 1|Y [n − 1] = 0) = pY01[n]. This corresponds to the
probability that an inactive Y collides into at least an X in the time interval [n− 1, n] and
that the X is active and that the Y reacts with that X. Let C be the event that Y collides
with an X in the time interval [n− 1, n], A the event that the X is active, and R the event
that Y reacts with that X, we then have using Bayes rule:

P (Y [n] = 1|Y [n− 1] = 0) = P (C,A,R) (7.8)

= P (R|C,A)P (C,A) = P (R|C,A)P (A|C)P (C)

The probability that X and inactive Y react given that they collided and that X is
active, P (R|C,A), is a constant, γ, that depends on the kinetic energy due to the relative
motion of X and Y as well as temperature. The probability that X is active given that
it collided with a Y , P (A|C), is 1 if X is in the active state (state 1) and 0 if X is in the
inactive state (state 0). We therefore have:

P (R|C,A) = γ (7.9)

P (A|C,X) =
{

0 : X = 0
1 : X = 1

(7.10)
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The probability that inactive Y collides with at least an X in the time interval [n − 1,
n], P (C), can be derived by considering the complement of C, C̄: the event that inactive Y
does not collide into any X in the time interval [n− 1, n]. In order to get an expression for
P (C̄), we first define V to be the volume in which Y and X lie and NX the total number
of X species in V in the time interval [n − 1, n] (generally NX will be a constant over all
time). Let v be the volume swept by a given Y molecule in the time interval [n−1, n]. The
relative volume swept by a Y molecule in the time interval [n − 1, n] is therefore given by
vr ≡ v

V .
In order to get an expression for the collision probability, we make two basic assumptions:

(1) that X is uniformly distributed across V so that the probability that a given X is in
the sweeping volume of Y is vr and (2) that different X molecules are independent of each
other. An X-Y collision occurs in the time interval [n− 1, n] if and only if an X is present
in the sweeping volume of Y in that time interval. As a result, the probability that a given
X will collide with Y is simply vr. Using these assumptions, we get:

P (C̄) = (1− vr)NX (7.11)

and therefore:
P (C) = 1− (1− vr)NX (7.12)

Note that the above probability is the probability that a given Y collides with at least
one X in [n−1, n]. We can guarantee that Y collides with at most one X in that interval by
sampling at a high enough rate so that the sweeping volume is small enough such that the
probability that more than one X exists in the sweeping volume is negligible. Constraints
on vr that guarantee an upper bound on this probability will be given in the next section.
Adding this constraint, the above expression for P (C) simplifies to the following:

P (C) = NXvr (7.13)

Combining the above expressions, we get:

P (Y [n] = 1|Y [n− 1] = 0,X[n − 1]) =
{

0 : X[n− 1] = 0
γNXvr : X[n− 1] = 1

(7.14)

� 7.5.2 Associative interactions

Consider the case where X and Y in the previous subsection can only associate without
reacting. Specifically, if Y can only bind to active X (i.e. X in state one), the transition
probability would then just be the probability that Y collides with X and X is active.
Therefore, we have in this case:

P (Y [n] = 1|Y [n− 1] = 0,X[n − 1]) =
{

0 : X[n− 1] = 0
NXvr : X[n− 1] = 1

(7.15)

� 7.5.3 Conformational activation

Molecules associated as part of a complex that undergo activation as a result of a conforma-
tional change or modification of the complex react without colliding since they are already
attached to the complex. As a result, f() in this case is a much simpler function that is
directly proportional to the probability that the complex is in the active state. Specifically,
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if Y above was part of the complex X which can be in either the inactive (0) or active (1)
state and if Y gets activated upon activation of the complex, we then have:

P (Y [n] = 1|Y [n− 1] = 0) = P (A,R) = P (R|A)P (A) (7.16)

i.e. the probability that Y gets activated is given by the probability that X is in the active
state and that it reacts with X. As a result, following the same derivation as in the previous
subsections, we get:

P (Y [n] = 1|Y [n− 1] = 0,X[n − 1]) =
{

0 : X[n− 1] = 0
γ : X[n− 1] = 1 (7.17)

� 7.5.4 Simplified notation

Using the definition of f() described in this section, we can simplify the notation presented
in Section 7.2 by drawing non-zero state interactions as dashed arrows from the originating
state to the transition probability as shown in Figure 7-2 below where pyf is non-zero only
when X is in state X1. For simplicity, the self loops on each state are not drawn but can
be readily derived using the other transition probabilities.

Y_0

Y_1

pxf pxb pyf pyb

X_0

X_1

Figure 7-2. Simplified notation for the Markov chains model. For simplicity, the self loops on each state
are not drawn.

� 7.6 Revisiting the Single Event Assumption

In this section, we derive constraints on vr such that the probability that Y collides with
more than one X in the time interval [n−1, n], P (C > 1), is negligible. Formally, P (C > 1)
is given by:

P (C > 1) = 1− (1− vr)NX −
(

NX
1

)

vr(1− vr)NX−1

= 1− (1− vr)NX −NXvr(1− vr)NX−1 (7.18)

We would like to choose vr such that P (C > 1) ≈ 0. Therefore:

1− (1− vr)NX −NXvr(1− vr)NX−1 = 1− (1− vr)NX−1(1 + vr(NX − 1)) ≡ g(vr) ≈ 0

Or more precisely we would like to derive a condition on vr such that g(vr) < ǫ for some
small value ǫ. Note that vr = 0 is a root of g(vr). The Taylor series expansion of g(vr)
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around this root is:

g(vr) = g(0) + g′(0)vr +
g′′(0)

2!
v2r +

g(3)(0)

3!
v3r ...

= 0 + 0 +
NX(NX − 1)

2!
v2r +

−2N(N − 1)(N − 2)
3!

v3r + ...

Using the first three terms in the Taylor series expansion, we get the following condition:

NX(NX − 1)
2!

v2r < ǫ

vr <

√

2ǫ

NX(NX − 1)
≈
√
2ǫ

NX

The condition on vr is therefore:

vr <

√
2ǫ

NX
(7.19)

For example, for ǫ = 10−3, vr has to be smaller than
0.044
NX
.

� 7.7 Model Approximation: State Dependency versus Probabilistic Depen-
dency

In this section, we consider an approximation to the 3MC model that decouples the chains
while maintaining a dependency between the distributions of the different states. We name
this new model the a priori Markov Modulated Markov Chains (a3MC) model.

Consider the 3MC model described in Section 7.1 with f() as described in Section 7.5.
We have:

P (Y [n] = 1|Y [n− 1] = 0,X[n − 1]) =
{

0 : X[n− 1] = 0
γNXvr : X[n− 1] = 1

≡ f(Y [n− 1] = 0,X[n − 1])

where Y andX are dependent random variables. One can obtain an expression for P (Y [n] =
1|Y [n− 1] = 0) by summing over the different values of X[n− 1], we have:

P (Y [n] = 1|Y [n− 1] = 0) =
∑

j

P (Y [n] = 1|Y [n− 1] = 0,X[n − 1] = j)

×P (X[n− 1] = j|Y [n− 1] = 0)
=
∑

j

f(Y [n− 1] = 0,X[n − 1] = j)P (X[n − 1] = j|Y [n− 1] = 0)

= γNXvrP (X[n − 1] = 1|Y [n− 1] = 0) (7.20)

� 7.7.1 The a3MC model

We define the a priori Markov Modulated Markov Chains (a3MC) model as a stochastic
process composed of a discrete-time Markov chain whose transition probabilities are depen-
dent on the a priori state probabilities of a second Markov chain. Specifically, using the
example laid out in Section 7.5, in the a3MC model, the transition probability in chain Y
from state 0 to state 1 is independent of the realizations of the random process X but is
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related to its statistics as follows:

P̂ (Y [n] = 1|Y [n− 1] = 0) ≡
∑

j

f(Y [n− 1] = 0,X[n − 1] = j)P (X[n − 1] = j)

= γNXvrP (X[n − 1] = 1) (7.21)

Said differently, the transition probability from state 0 to state 1 in chain Y in the a3MC
model is equal to the expected value of the function f(Y [n− 1] = 0,X[n− 1]) with respect
to X[n − 1] and is independent of chain X. Since the chains in the a3MC model are inde-
pendent of each other, stochastic simulations of the chains can be performed independently,
i.e. in order to obtain a stochastic simulation of a particular chain of interest, one needs to
only simulate that chain using the transition probabilities that can be precomputed. This
is in contrast to the 3MC model where the chains are dependent and therefore in order to
stochastically simulate a chain, all the chains in the model have to be simulated. Recur-
sive formulae for the state occupancy probabilities of the individual Markov chains can be
obtained as described in Section 7.3.

� 7.7.2 Relationship between the 3MC and the a3MC

The a3MC model is an approximation to the 3MC model where the chains are independent
but the transition probabilities take on values derived from the state-dependency in the
3MC model. Specifically the transition probabilities are given by the average with respect
to X[n] of the function describing the state dependency in the 3MC model, f(X[n]) The
relationship between the two models can be examined by computing the state probabilities.
In the 3MC model, we have:

P (Y [n] = m) =
∑

p

∑

j

P (Y [n] = m|Y [n− 1] = p,X[n− 1] = j)P (Y [n− 1] = p,X[n − 1] = j)

=
∑

p

∑

j

f(Y [n− 1] = p,X[n− 1] = j)P (X[n − 1] = j|Y [n− 1] = p)P (Y [n− 1] = p)

=
∑

p

∑

j

P (Y [n] = m,X[n − 1] = j|Y [n− 1] = p)P (Y [n− 1] = p)

=
∑

p

P (Y [n] = m|Y [n− 1] = p)P (Y [n− 1] = p)

(7.22)

whereas in the a3MC model, we have:

P̂ (Y [n] = m) =
∑

p

∑

j

f(Y [n− 1] = p,X[n − 1] = j)P (Y [n− 1] = p,X[n − 1] = j)

=
∑

p

∑

j

f(Y [n− 1] = p,X[n − 1] = j)P (X[n − 1] = j)P (Y [n− 1] = p)

(7.23)

where f(Y [n−1],X[n−1]) is the function defining the state dependency in the 3MC model.
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It should be clear from the above that the only difference between equations 7.22 and
7.23 is that the conditional probability P (X[n − 1]|Y [n − 1]) in the 3MC is approximated
in the a3MC by the unconditional probability P (X[n − 1]). Specifically, let pY[n] be the
row vector containing the state probabilities of chain Y at time n and AY Y [n] be the
transition matrix of the Markov chain in node Y at time n. We define the conditional
transition matrix AY Y |X [n] as a block matrix composed of the vertical concatenation of the
conditional transition matrices of chain Y given chain X is in state j for j = 1, ..., p where
p is the number of states in chain X. AY Y |X [n] has m× p rows and m columns where m
is the number of states in chain Y and p is the number of blocks, i.e. we have:

AY Y |X [n] ≡

















AY Y |X=1[n]

AY Y |X=2[n]

...
AY Y |X=j[n]

...
AY Y |X=p[n]

















(7.24)

where

AY Y |X=j[n] =











p
Y |X=j
00 [n] ... p

Y |X=j
0m [n]

p
Y |X=j
10 [n] ... p

Y |X=j
1m [n]

... ... ...

p
Y |X=j
m0 [n] ... p

Y |X=j
mm [n]











(7.25)

Let BX|Y [n] be another block matrix composed of the horizontal concatenation of p diagonal
matrices having m rows and m columns with entries equal to the conditional probability of
X being in state p at time n given Y is in state m at time n, i.e.:

BX|Y [n] ≡
[

BX=1|Y [n] ... BX=j|Y [n] ... BX=p|Y [n]
]

(7.26)

where

BX=j|Y [n] =









P (X[n] = 1|Y [n] = 1) 0 .. 0
0 P (X[n] = 1|Y [n] = 2) .. 0
0 0 ... 0
0 0 ... P (X[n] = 1|Y [n] = m)









(7.27)
Using these newly defined matrices, we have the following state evolution equation for the
3MC model:

pY [n] = pY [n− 1]BX|Y [n]AY Y |X [n] (7.28)

while the state evolution equation for the a3MC model is given by:

p̂Y[n] = p̂Y[n− 1]B̂X|Y[n]ÂYY|X[n] (7.29)

where:
ÂYY|X[n] ≡ AY Y |X [n] (7.30)

The a3MC model converges to the 3MC model when:

BX|Y [n] ≈ B̂X[n] (7.31)
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i.e. when:

P (X[n− 1] = j, Y [n− 1] = p) ≈ P (X[n − 1] = j)P (Y [n− 1] = p) (7.32)

This condition is satisfied when NX is large enough since under such a regime, Y can
collide into any X with a uniform probability and therefore the expected value of the state
of the X molecule it collides into is P (X[n] = 1) and thus in the limit of large NX , the
3MC model converges to the a3MC model.

� 7.7.3 Advantages of the a3MC Model

As noted earlier in this section, the advantage of the a3MC model is that it is much
easier to compute and therefore the algorithm is more efficient since the individual chains
can be simulated separately. In a model with hundreds of nodes and interactions, the
computational savings can be very significant. Furthermore, since the 3MC converges to
the a3MC when the number of substrate molecules (NX) is large enough, hybrid simulations
can be performed on a large model by using the a3MC in subsets of the model where the
number of substrate molecules is large enough and using the 3MC model in subsets where
the number of molecules is small.

� 7.8 Reconciling the Stochastic and Deterministic Formulations

The framework described in this chapter provides a stochastic formulation for modeling the
behavior of biological networks. This framework is particularly valuable in situations where
the number of molecules in the system is small enough that a deterministic formulation
which relies on a continuum assumption is no longer valid. However, in the limit of large N
(number of molecules), we would like the formalism to reduce to conventional mass action
kinetics. Stated differently, we would like the expected value of the state probabilities in
the model to equal the result obtained using the deterministic formalism of mass action
kinetics.

In this section, we derive relationships between the microscopic reaction probability
γ defined in our model and the macroscopic deterministic rate constant k such that the
average in our model matches the deterministic result. In the following subsections, we
address two types of reactions: unimolecular reactions, i.e. reactions that involve only one
species that spontaneously gets transformed (in our model these reactions correspond to
constant transition probabilities) and bimolecular reactions, that is reactions that involve
two species.

� 7.8.1 Unimolecular reactions

Consider the following reaction:

X0
kx−→ X1 (7.33)

where X0 gets spontaneously transformed to X1 at a rate of kx measured in s
−1. Using

mass action kinetics, we can write a differential equation that governs the dynamics of the
reaction in 7.33:

d[X1]

dt
= kx[X0] (7.34)
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as well as a conservation equation:

[X0] + [X1] = [Xtot] (7.35)

where brackets indicate concentrations in M and [Xtot] is a constant and equal to the total
concentration of species X. Using forward Euler, equation 7.34 can be approximated as
follows:

∆[X1]t
∆t

≈ kx[X0]t (7.36)

[X1]t+∆t − [X1]t
[X0]t

≈ kx∆t (7.37)

The Markov modulated Markov chains model of the reaction in 7.33 leads to:

pX1 [n+ 1] = pxf × pX0[n] + pX1 [n] (7.38)

where:
pX0[n] + pX1 [n] = 1 (7.39)

Multiplying the equation 7.38 by the total number of X molecules, NX and taking the
expectation with respect to X, we get:

NX1 [n+ 1] = pxf ×NX0 [n] +NX1 [n] (7.40)

NX1 [n+ 1]−NX1 [n]
NX0[n]

= pxf (7.41)

where NX0 [n] and NX1 [n] are the expected number of molecules in state X0 and X1 respec-
tively. Furthermore, using the definition of concentration, we have:

NX0 [n]

AvV
= [X0]n (7.42)

NX1 [n]

AvV
= [X1]n (7.43)

where V is the total volume containing the molecules and Av is Avogradro’s number: the
total number of molecules contained in one mole. Equating the two expressions above, we
therefore get:

NX1 [n+ 1]−NX1 [n]
NX0 [n]

=
[X1]t+∆t − [X1]t

[X0]t

∣

∣

∣

∣

∣

t=n

(7.44)

pxf ≈ kx∆t (7.45)

The derivation above assumed that the reaction was unidirectional. It is straightforward to
show that the expression in equation 7.45 holds even in the case of bidirectional reactions
where a similar expression for the backward probability involving the backward reaction
rate can also be derived.
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� 7.8.2 Bimolecular reactions

We now consider the following bimolecular reaction:

Y0 +X1
kyx−→ Y1 +X1 (7.46)

where Y0 reacts with X1 to create Y1 without consuming X1 at a rate kyx measured in
M−1s−1. Following the same methodology as in the previous subsection, we have, using
mass action kinetics:

d[Y1]

dt
= kyx[X1][Y0] (7.47)

and
[Y0] + [Y1] = [Ytot] (7.48)

For a small period of time ∆t, we have

∆[Y1] ≈ kyx[X1]t[Y0]t∆t (7.49)

∆[Y1]

[Y0]t
≈ kyx[X1]t∆t (7.50)

[Y1]t+1 − [Y1]t
[Y0]t

≈ kf [X1]t∆t (7.51)

Using the Markov modulated Markov chains model formulation, we get:

pY1[n+ 1] = pyf [n]× pY0[n] + pY1 [n] (7.52)

NY1 [n+ 1] = pyf [n]×NY0 [n] +NY1[n] (7.53)

NY1 [n+ 1]−NY1 [n] = γNXvrpX1[n]×NY0[n] (7.54)

NY1 [n+ 1]−NY1 [n]
NY0 [n]

= γvrNX1 (7.55)

where we have taken the expected value over both Y and X and NX1 [n], NY0[n], and NY1 [n]
are the expected numbers of molecules X1, Y0, and Y1 at time n respectively. Using the
definition of concentration and setting the two expressions above equal, we get:

γ ≈ ky∆t

vrAV V
(7.56)

Here again, it is straightforward to show that the expression in equation 7.56 holds even in
the case of bidirectional reactions where a similar expression for the backward probability
involving the backward reaction rate can also be derived.

105



� 7.9 Example

To illustrate the models described in this chapter, consider the system composed of the
following simple reactions:

X0
kxf−→ X1 (7.57)

X1
kxb−→ X0 (7.58)

Y0 +X1
kyf−→ Y1 +X1 (7.59)

Y1
kyb−→ Y0 (7.60)

where two species X and Y each exist in one of two states X0, X1, and Y0, Y1 respectively.
X0 gets converted to X1 spontaneously at the rate kxf and X1 gets converted back to
X0 at the rate kxb. Y0, on the other hand, reacts with X1 to create Y1 at the rate kyf
without consuming X1 and Y1 spontaneously converts back to Y0 at the rate kyb. If we
use a deterministic formulation (mass action kinetics) of the chemical dynamics, we get the
following set of differential equations:

d[X1]

dt
= −d[X0]

dt
= kxf [X0]− kxb[X1] (7.61)

d[Y1]

dt
= −d[Y0]

dt
= kyf [X1][Y0]− kyb[Y1] (7.62)

Figure 7-3 shows the Markov chains representation of the system where pxf , pxb, and pyb
are constant transition probabilities and pyf is modulated by the X chain. For simplicity
the self loops on the states are not shown. Specifically, we have pxf = kxf∆t, pxb = kxb∆t,

Y_0

Y_1

pxf pxb pyf pyb

X_0

X_1

Figure 7-3. Markov chains model representation.

and pyb = kyb∆t while

pyf [n] =

{

0 : X[n] = X0
γNXvr : X[n] = X1

(7.63)

where γNXvr = kyf∆t
NX
AV V

= kyf∆t[X]. [X] is the total concentration of species X. We
have simulated the behavior of this system under the different models using the parameters
shown in Table 7.1.
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kxf = 1 s−1 [X] = 1 M
kxb = 1 s−1 NX = 100
kyf = 1 M−1s−1 NY = 100
kyb = 0.5 s−1 V = 100
∆t = 0.001 s

Table 7.1. Example parameters.

� 7.9.1 State probabilities

Figure 7-4-a shows the computed a3MC Markov chain model state probabilities as a func-
tion of time. The solution to the differential equations obtained using the deterministic
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Figure 7-4. Time evolution dynamics.

formulation is shown in Figure 7-4-b. The results in Figure 7-4 show that the a3MC model
state probabilities converge to the deterministic solution as expected by design.

� 7.9.2 Stochastic realizations

We performed Monte Carlo simulations of 100 molecules of each species using both the 3MC
model and the a3MC model. Examples of time realizations are shown in Figure 7-5.
These simulations, as compared to the state probabilities and deterministic solution

(Figure 7-4) illustrate the value of the stochastic simulations since they provide time-series
that can be directly compared to biological experiments. Specifically, they provide a mean
to quantify the expected intrinsic fluctuations in the biological system being studied and as
a result, biological fluctuations can be separated from external fluctuations resulting from
the experimental apparatus. The expected biological variance can be quantified by looking
at the distributions of the time series.

� 7.9.3 Distributions

Distributions were also computed using 1000 independent experiments consisting of simula-
tions of 100 molecules at different time points. Figure 7-6 show the histograms for both X1
and Y1 at 0.5s, 1s, and 10s obtained using the 3MC model. The a3MC model histograms
are shown in Figure 7-7.
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Figure 7-5. Examples of time realizations.

The figures illustrate how the variance as well as the shape of the distributions change
depending on the molecules examined and the time points measured. Being able to predict
the variance in the measurement as well as its variation with time can have a deep impact on
the way biological experiments are performed and interpreted. Furthermore, the shape of
the distributions for the 3MC and a3MC models are similar confirming that 100 molecules
is large enough for the a3MC model approximation to hold.

� 7.10 Related Models

� 7.10.1 The Gillespie algorithm

cxf = 1
cxb = 1
cyf = kyf/V = 0.01
cyb = 0.5
NX = 100
NY = 100
V = 100

Table 7.2. Gillespie algorithm parameters.

Simulations of the example presented in the previous section were also performed using
the Gillespie algorithm (discussed in detail in the previous chapter) with the parameters
shown in Table 7.2. The results are shown in Figures 7-8 and 7-9.

As can be seen from the figures the results are very similar to the results obtained using
our models. However, the Markov model formulation presented in this thesis differs from
the Gillespie algorithm in important ways. While the Gillespie algorithm adopts a reaction-
centric approach, our model is molecule-centric. Specifically, in the Gillespie algorithm, it
is assumed that only one reaction occurs in the volume at a given time. The time and
identity of the reaction are then determined according to their probability distribution
(obtained from the number of all reactant molecules in the volume and the propensity of
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Figure 7-6. 3MC model histograms.

the reactions). Time is therefore a stochastic variable that needs to be computed. In our
model, however, time is discrete and sampled uniformly. Reactions are viewed from the
standpoint of individual molecules and the assumption is that at most one reaction occurs
per molecule in a time interval [n− 1, n] however there are no restrictions on the number of
simultaneous reactions that can occur if they involve different molecules. Since our method
is molecule-centric, individual molecules in the volume can be tracked. This is not possible
using the Gillespie algorithm since the algorithm simulates the occurrence of reactions not
individual molecules involved in those reactions. Finally, the Markov chains model with
its graphical notation is very intuitive and therefore formulating a model (defining the
topology and interactions) can be done very easily using a non-mathematician intuitive
understanding of the system under study, a property that neither the Gillespie algorithm
nor the deterministic formulation have.
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Figure 7-7. a3MC model histograms.
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Figure 7-8. Examples of a time realization using the Gillespie algorithm.
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Figure 7-9. Gillespie algorithm histograms.
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� 7.10.2 Stochastic cellular automata

A variety of interacting Markov chains or more generally stochastic cellular automata models
have previously been formulated and described, most in the context of studying parallel
systems, i.e. systems composed of interacting modules. The most recent of these models and
probably the closest to our model are the influence model described in [9] and the stochastic
automata network (SAN) in [104]. All three models, ours, the influence model and the SAN
define a network of interacting Markov chains. However our model diverges from both of
these models in very important ways. In the influence model [9], a node randomly selects
a neighboring node according to an influence probability. Once the neighboring node is
selected, it fixes the transition matrix to be used by the node being influenced. As a result,
nodes interact with other nodes by affecting all transition probabilities in the receiving
nodes. In contrast in our model, specific transitions in a given chain are influenced by
different states in other nodes and at any given time different transitions in a node can
be affected by different nodes in the model. This is not allowed in the influence model.
Furthermore, in the influence model, the influence from neighboring nodes is constrained to
take a multilinear form, while the interaction between Markov chains in our model can be
non-linear. The difference between our model and the SAN is more subtle. In fact, the 3MC
model presented here can be thought of as a special case of the SAN where interactions have
been specialized to biological phenomena. However, the a3MC is very different from the
SAN since the interaction is expressed through the unconditional probability of being in a
certain state while in the SAN the influence is expressed through the conditional probability
of being in a given state. As a result, while it can be shown that the SAN can always be
expanded to a higher order Markov chain with much larger state-space, the a3MC model
presented here is not always expandable to a higher order Markov chain. For a more detailed
literature review of related models, the reader is referred to [9].

� 7.11 A Unified Framework for Modeling the Dynamics of Signaling Pathways

In this chapter, we have formulated a stochastic framework for modeling biological signaling
dynamics based on interacting Markov chains. We defined a Markov Modulated Markov
Chains (3MC) model and explored an efficient way to approximate it by decoupling the
Markov chains while maintaining the probabilistic influence. We call this new simplified
model the a priori Markov Modulated Markov Chain (a3MC) model. These models can
be viewed as a unified framework for simultaneously studying the fluctuations of signaling
pathways (stochastic behavior) and computing their average behavior therefore allowing
modeling at multiple resolutions within the same framework. Specifically, computing the
state probabilities of the individual chains in the model is equivalent to computing solutions
to deterministic models based on Mass Action kinetics while performing Monte Carlo simu-
lations of the chains provide stochastic behavior. Furthermore, using the different versions
of the model, one can perform hybrid simulations where in parts of the model, only average
behavior is sought and therefore state probabilities are computed while in other parts, the
a3MC approximation holds and therefore stochastic simulations are performed on the rele-
vant chains only. Other sections of the model may not need to be simulated but should be
graphically included for completeness, and finally, full stochastic behavior of some proteins
in the model can be obtained by using the 3MC to simulate those chains. The intuitive
graphical representation as well as ability to perform different levels of simulations make
this modeling framework particularly attractive for studying biological signaling pathways.
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Chapter 8

The Mitogen Activated Protein
Kinase Cascade
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In this chapter, we demonstrate the modeling framework proposed in the previous
chapter using a well conserved and studied module: the mitogen activated protein kinase
(MAPK) cascade. The goal here is to introduce and validate the model by applying it to
a simple module and comparing the model predictions to established results rather than
to use it to discover new phenomena which will be explored in the next chapter in the
context of bacterial chemotaxis. We start by presenting some background and established
properties of the cascade, we then formulate the model and perform simulations. We end
this chapter by discussing the implications of the results.

� 8.1 Background

The mitogen-activated protein kinase (MAPK) cascade is an essential component of a wide
variety of cell signaling pathways. It is a series of three conserved kinases (i.e. enzymes that
add phosphate groups to other enzymes) organized in a hierarchy and found only in eukary-
otes. This set of enzymes plays a role in relaying signals from receptors at the cell surface
to regulatory elements inside the cell nucleus. They are involved in a variety of pathways
ranging from growth, differentiation, and development to inflammation and programmed
cell death. At the top of the hierarchy, activated MAPK kinase kinase (or MAP3K*) seri-
ally phosphorylates MAPK kinase (or MEK or MAP2K) at two serine residues. Activated
MEK then serially phosphorylates MAPK at a threonine and a tyrosine residue which in
turn proceeds to activate downstream signals. The cell also contains phosphatases that
dephosphorylate activated kinases. The cascade can thus be perceived as a stand-alone
module with the MAP3K activating enzyme as the input signal and the activated MAPK
as the output signal. Figure 8-1 gives a schematic representation of the cascade.

in
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? ?

MAP2K MAP2K-p
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Y
MAP2K-pp
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? ?

MAPK MAPK-p
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MAPK-pp
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Y
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?

Figure 8-1. Schematic of the MAPK cascade. Forward arrows correspond to activation (phosphorylation
for MAP2K and MAPK) while back-arrows correspond to deactivation steps (phosphatase activity in the
case of MAP2K and MAPK).
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Figure 8-2. Experimental stimulus/response data for MAPK and MAP2K(MEK) activation in Xenopus
oocytes reproduced with permission of the authors from [67]. malE-Mos is the relevant MAP3K in this
system. For more details regarding the experimental setup, the reader is referred to [67].

� 8.2 Properties of the MAP Kinase Cascade

Many MAP kinase cascade proteins have been studied and quantitative data can be found in
the literature for both steady-state behavior [67] [12] and time behavior [10]. Three impor-
tant properties implemented by this module have been suggested, namely ultrasensitivity,
adaptation, and bistability. Probably the most important property is ultrasensitivity, i.e.
the ability of the cascade to generate a highly switch-like response to a continuously variable
stimulus. Specifically, Huang and Ferrell [67] studied the steady-state response of the cas-
cade in Xenopus oocytes and were able to show that in response to a continuous stimulus,
the response at the output of the cascade, i.e. the concentration of activated MAP kinase,
was more switch-like than at intermediate stages of the cascade such as the concentration
of activated MAP2K. The data is shown in Figure 8-2. In a parallel and complementary
manner, Asthagiri and Lauffenburger studied the MAPK cascade in Chinese Hamster ovary
cells [10]. They were able to show that there exists a negative feedback mechanism which
leads to adaptation of the response, i.e. the time response to a step stimulus generates an
output with a peak response followed by an adaptation of the output back to its original
value, or close to that value, as if the stimulus was turned back off. The corresponding data
is given in Figure 8-3(a). Furthermore, Bagowski and Ferrell [12] suggested that a positive
feedback mechanism may occur within the cascade leading to bistability: they were able to
measure a different steady-state response if the stimulus was stepped up from a low level
than if the stimulus was stepped down from a high level as shown in Figure 8-3(b). In
addition to the experimental findings, a kinetic model based on reaction-rate differential
equations was first formulated by Huang and Ferrell in [67]. The simplest model they pro-
pose which does not include feedback has at steady-state a total of 25 equations and 17
parameters which need to be estimated. Asthagiri and Lauffenburger in [10] used a similar
model with negative feedback.
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(a) (b)

Figure 8-3. Time evolution data. (a) ERK2 (the relevant MAPK) adaptation in Chinese hamster ovaries
obtained from [10] with permission of the authors. Insulin is an activating factor which operates upstream of
the cascade. The reader is referred to [10] for experimental details. (b) Time course of JNK (MAPK) activa-
tion and inactivation in sorbitol-treated Xenopus oocytes obtained from [12] with permission of the authors.
Sorbitol is an activating factor upstream of the cascade. The reader is referred to [12] for experimental
details.

� 8.3 Model Formulation

� 8.3.1 Topology

KKK

KKK*

p3kf p3kb
KK

KKp

p2kf p2kb
K

Kp

pkf pkb

IN

Figure 8-4. Interactive Markov chains model of the mitogen activated protein kinase cascade with a single
phosphorylation mechanism.

Figures 8-4 and 8-5 show schematics of the interacting Markov chains model of the MAP
kinase cascade using both a single and dual phosphorylation mechanism respectively. Both
models have three chains which correspond to the three proteins in the cascade (MAP3K,
MAP2K, and MAPK). In the single phosphorylation model, each protein is represented by
two states: an inactive state (KKK, KK, and K) and an active state (KKK*, KKp, and Kp).
The MAP2K and MAPK chains in the dual phosphorylation model are represented by three
states corresponding to the unphosphorylated proteins (KK and K), singly phosphorylated
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Figure 8-5. Interactive Markov chains model of the mitogen activated protein kinase cascade with a dual
phosphorylation mechanism.

proteins (KKp and Kp), and dually phosphorylated proteins (KKpp and Kpp). Note that
in this model, we do not differentiate between the different phosphorylation sites in the
singly phosphorylated protein states, i.e. these states correspond to singly phosphorylated
proteins whether the phosphorylation is on one site or the other.

� 8.3.2 Interactions

p3kf [n] = γinvrNin = kin∆t[IN ]
p2kf [n] = γ3k∗1vrN3Kp3k∗[n− 1] = k3k∆t[3K]p3k∗[n− 1]
pkf [n] = γ2kppvrNKKp2kpp[n− 1] = k2kpp∆t[KK]p2kpp[n− 1]
p3kb[n] = kp3k∆t[P3k]
p2kb[n] = kp2k∆t[P2k]
pkb[n] = kk∆t[Pk]

Table 8.1. Transition probabilities for the model in Figure 8-4. For bimolecular reactions, the relevant γ
is obtained from the relevant k (in M−1s−1) using the expression γ = k∆t

vrAV V
.

The models interactions described by the full transition probabilities are shown in Table
8.1 for the single phosphorylation model and in Table 8.2 for the dual phosphorylation
model. Note that for the dual phosphorylation, the interactions for the middle states of
the three states Markov chains are modified to incorporate the competition between the
relevant phosphatase and kinase.
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p3kf [n] = γinvrNin = kin∆t[IN ]
p2kf1[n] = γ3k∗1vrN3Kp3k∗[n− 1] = k3k∗1∆t[3K]p3k∗[n− 1]
p2kf2[n] = k3k∗2∆t[3K]p3k∗[n− 1]× (1− kp2k1∆t[P2k])
pkf1[n] = γ2kpp1vrNKKp2kpp[n− 1] = k2kpp1∆t[KK]p2kpp[n− 1]
pkf2[n] = k2kpp2∆t[KK]p2kpp[n− 1]× (1− kpk1∆t[Pk])
p3kb[n] = kp3k∆t[P3k]
p2kb1[n] = kp2k1∆t[P2k1]× (1− k3k∗2∆t[3K]p3k∗[n− 1])
p2kb2[n] = kp2k2∆t[P2k2]
pkb1[n] = kpk1∆t[Pk1]× (1− k2kpp2∆t[KK]p2kpp[n− 1])
pkb2[n] = kk2∆t[Pk2]

Table 8.2. Transition probabilities for the model in Figure 8-5. For bimolecular reactions, the relevant γ
is obtained from the relevant k (in M−1s−1) using the expression γ = k∆t

vrAV V
.

� 8.3.3 Parameters values

The parameters values used in the initial set of simulations are shown in Tables 8.3 and 8.4.
The parameters are based on the values used by Huang and Ferrell in their deterministic
model [67]. Later, some of the parameters values will be modified. The new values will be
introduced as the corresponding modifications are considered.

∆t = 0.1s Time step
Kin = 8.3 × 106 Activation of MAP3K
Kastar = 8.3 × 106 Phosphorylation of MAP2K
Kbstarstar = 8.3 × 106 Phosphorylation of MAPK
Kpa = 8.3 × 106 Deactivation of MAP3K
Kpb = 8.3× 106 Dephosphorylation of MAP2K
Kpc = 8.3 × 106 Dephosphorylation of MAPK
Atot = 3× 10−9 Total MAP3K concentration
Btot = 1.2 × 10−6 Total MAP2K concentration
Ctot = 1.2 × 10−6 Total MAPK concentration
Pa = 3× 10−10 Total MAP3K deactivating enzyme concentration
Pb = 3× 10−10 Total MAP2K phosphatase concentration
Pc = 120 × 10−9 Total MAPK phosphatase concentration

Table 8.3. Parameters values for the model in Figure 8-4. AllK values are inM−1s−1 and all concentrations
are in M .

118



∆t = 0.1s Time step
Kin = 8.3 × 106 Activation of MAP3K
Kastar1 = 8.3× 106 First phosphorylation of MAP2K
Kastar2 = 8.3× 106 Second phosphorylation of MAP2K
Kbstarstar1 = 8.3× 106 First phosphorylation of MAPK
Kbstarstar2 = 8.3× 106 Second phosphorylation of MAPK
Kpa = 8.3 × 106 Deactivation of MAP3K
Kpb1 = 8.3 × 106 First dephosphorylation of MAP2K
Kpb2 = 8.3 × 106 Second dephosphorylation of MAP2K
Kpc1 = 8.3× 106 First dephosphorylation of MAPK
Kpc2 = 8.3× 106 Second dephosphorylation of MAPK
Atot = 3× 10−9 Total MAP3K concentration
Btot = 1.2 × 10−6 Total MAP2K concentration
Ctot = 1.2 × 10−6 Total MAPK concentration
Pa = 3× 10−10 Total MAP3K deactivating enzyme concentration
Pb1 = 3× 10−10 Total MAP2K phosphatase 1 concentration
Pb2 = 3× 10−10 Total MAP2K phosphatase 2 concentration
Pc1 = 120× 10−9 Total MAPK phosphatase 1 concentration
Pc2 = 120× 10−9 Total MAPK phosphatase 2 concentration

Table 8.4. Parameter values for the model in Figure 8-5. AllK values are inM−1s−1 and all concentrations
are in M .
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� 8.4 Dynamics of the State Probabilities of the a3MC Model Implementation

� 8.4.1 Steady-state
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Figure 8-6. Steady-state state probabilities predicted by the a3MC model using the parameters given in
Table 8.4. (a) The input stimulus is expressed in multiples of EC50 (the input concentration that produces
a 50% maximal response. (b) Semi-log scale. Here, the input stimulus is expressed in absolute values.

The steady-state state probabilities as a function of the input stimulus (MAP3K acti-
vating enzyme) are shown in Figure 8-6 for the a3MC model implementation of the dual
phosphorylation version of the model. These results are in agreement with the results ob-
tained from the deterministic model presented by Huang and Ferrell [67] in that they predict
the ultransensitivity of the cascade. The figures are directly comparable to dose-response
experimental results such as the ones shown in Figure 8-2.
In their paper, Huang and Ferrell [67] investigate systematic changes to their model in

order to study the effect of the model parameters on ultrasensitivity. We performed similar
changes in our model and examined the corresponding response. As a start, we have ex-
amined the effect of increasing the concentration of MAP2K alone keeping the rest of the
parameters the same. Figure 8-7 shows the steady-state state probabilities obtained when
the concentration of MAP2K is assumed to be 6µM (5-fold greater than the concentra-
tion initially assumed and 20-fold above the measured Km value for the phosphorylation
of MAPK by active MAP2K (300nM) [67]). As can be seen from the figure, the activated
MAPK response becomes more ultrasensitive in agreement with previous results [67] as
well as more amplifying at high input concentrations. A similar effect, although not as pro-
nounced (and without amplification), can be obtained by decreasing the Km values from
300 nM to 60nM for the reactions that convert MAP2K among its various phosphorylation
states (Figure 8-8). If the single phosphorylation model is used (Figure 8-4), the ultrasen-
sitive response is lost (Figure 8-9) in agreement with previous results [67]. We have also
examined the effect of negative and positive feedback on the steady-state response of the
cascade. Feedback was implemented using the dual phosphorylation model in Figure 8-5.
Specifically MAPK-pp was allowed to interact with inactive MAP3K as either an inhibitor
(negative feedback) or an activator (positive feedback). We assumed that MAPK-pp in-
hibits the activation of MAP3K by preventing the MAP3K activating enzyme from binding
inactive MAP3K. As a result, the fading version of the interactive Markov chains model was
used for negative feedback and the transition probability from state KKK to state KKK∗,
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Figure 8-7. Steady-state state probabilities predicted by the a3MC model using a concentration of MAP2K
of 6µM . (a) The input stimulus is expressed in multiples of EC50 (the input concentration that produces a
50% maximal response. (b) Semi-log scale on an absolute scale.

p3kf [n], was defined as:

p3kf [n] = kin∆t[IN ]× knfbk∆t[K](1− pkpp[n− 1]) (8.1)

where
knfbk = 8.3 × 106M−1s−1 (8.2)

It was further assumed that the activation of MAP3K by MAPK-pp and the activation of
MAP3K by MAP3K activating enzyme was associative and as a result the additive version
of the interactive Markov chains model was used for positive feedback. p3kf [n] was therefore
defined as:

p3kf [n] = kin∆t[IN ] + kpfbk∆t[K]pkpp[n− 1] (8.3)

where again kpfbk was chosen to be 8.3 × 106M−1s−1. The negative feedback results are
shown in Figure 8-10. As can be seen from the figure, the cascade still displays ultrasensi-
tivity although it is slightly less marked. On the other hand, the response becomes almost
a perfect switch (Figure 8-11) in the presence of positive feedback.

These results demonstrate the ability of the steady-state state probabilities of the a3MC
model to predict average behavior computed by the deterministic approach as well as to
match experimental data obtained through dose response measurements.

� 8.4.2 Dynamic behavior

We have also examined the time evolution of the state probabilities in response to different
inputs. Figure 8-12 shows representative time plots for the state probabilities of the open
loop dual phosphorylation model shown in Figure 8-5 in response to different step input
stimuli of different strengths covering the entire dynamic range.

The results show that the active states (MAP3K*, MAP2K-pp, and MAPK-pp) reach
their steady-state values monotonically. However the singly phosphorylated states do not
exhibit monotonic behavior if the input is large enough. Specifically, the state probability
of the singly phosphorylated state peaks a few minutes after the stimulus is applied and
then adapts to a lower value at steady-state. Applying negative feedback leads to a partial
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Figure 8-8. Steady-state state probabilities predicted by the a3MC model using Km values of 60nM (as
opposed to 300nM) for the reactions that convert MAP2K among its various phosphorylation states. (a)
The input stimulus is expressed in multiples of EC50.(b) Semi-log scale on an absolute scale.

adaptation of the MAP3K* state and if the feedback is strong enough, it also leads to
a partial adaptation of the MAP2K-pp and MAPK-pp states in agreement with previous
results [10].

� 8.5 Stochastic Simulations

The previous sections presented the dynamics of the state probabilities which lead to pre-
dictions of average behavior and are directly comparable to solutions of mass action de-
terministic models. These results are useful for predicting average behavior which can be
obtained from repeating experiments numerous times and hold in the limit of a large number
of molecules.

However, even more important is the ability of our model to generate meaningful pre-
dictions of the variance of single measurements and therefore proper interpretations of
biological experiments. This is achieved by performing stochastic simulations and examin-
ing the individual time realizations as well as protein distributions at a given time. This
section presents the results of such stochastic simulations.

Stochastic simulations were performed using the parameters in Table 8.4 and using both
the 3MC and the a3MC model formulations. We simulated the stochastic behavior of 100
proteins for step inputs at time 0 of various concentrations and performed 1000 independent
experiments. Both individual time realizations and distributions were investigated for the
different proteins.

� 8.5.1 Time realizations

Figures 8-13 and 8-14 show sample paths of the 3MC and a3MC models simulation re-
spectively for all molecules in the cascade in response to a step input stimulus of varying
strength.

Note that the initial response is very different for both models. The difference is par-
ticularly striking for MAPK-p and MAPK-pp. This should not come as a surprise since
the phosphorylation probabilities associated with MAPK are 400 times larger than those
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Figure 8-9. Steady-state state probabilities predicted by the a3MC model using a single phosphorylation.
(a) The input stimulus is expressed in multiples of EC50. (b) Semi-log scale.
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Figure 8-10. Steady-state state probabilities predicted by the a3MC model using negative feedback. (a)
The input stimulus is expressed in multiples of EC50. (b) Semi-log scale.

associated with MAP2K and MAPK because the concentration of MAP2K is 400 times
larger than that of MAPK and since under the a3MC, the transition probabilities of a
given chain are independent from the other chains in the model, we would expect the states
of the MAPK chain in the model to reach their steady state values relatively fast even if
the MAP2K chain is still in its initial state (i.e. the state probability of MAP2K-pp and
MAP2K-p is zero), however this is not possible in the 3MC model implementation. In
other words, one can clearly see from the figures that the joint distributions of states in
different chains are different for both models. In the 3MC model, it is impossible to obtain
activated MAPK molecules before observing activated MAP2K molecules whereas in the
a3MC model that is possible since the relevant states are independent from each other.
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Figure 8-11. Steady-state state probabilities predicted by the a3MC model using positive feedback on a
semi-log scale.
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Figure 8-12. State probabilities time evolution for a step of input stimulus of different strengths.
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Figure 8-13. Time realization using the a3MC model for a step input stimulus of varying strengths.
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Figure 8-14. Time realization using the 3MC model for a step input stimulus of varying strengths.
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Figure 8-15. Distributions at steady state of relevant protein states using the a3MC model for step input
stimuli of different strengths.

127



0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25
Map3K* Histogram at steady−state input = 10−11 M (doubly stochastic)

number of proteins out of 100

(a) 10−11M , MAP3K

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Histogram at steady−state input = 10−11 M (doubly stochastic)

number of proteins out of 100

MAP2K−p
MAP2K−pp

(b) 10−11M , MAP2K

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

Histogram at steady−state input = 10−11 M (doubly stochastic)

number of proteins out of 100

MAPK−p
MAPK−pp

(c) 10−11M , MAPK

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

Map3K* Histogram at steady−state input = 10−10 M (doubly stochastic)

number of proteins out of 100

(d) 10−10M , MAP3K

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Histogram at steady−state input = 10−10 M (doubly stochastic)

number of proteins out of 100

MAP2K−p
MAP2K−pp

(e) 10−10M , MAP2K

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Histogram at steady−state input = 10−10 M (doubly stochastic)

number of proteins out of 100

MAPK−p
MAPK−pp

(f) 10−10M , MAPK

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

Map3K* Histogram at steady−state input = 10−9 M (doubly stochastic)

number of proteins out of 100

(g) 10−9M , MAP3K

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

Histogram at steady−state input = 10−9 M (doubly stochastic)

number of proteins out of 100

MAP2K−p
MAP2K−pp

(h) 10−9M , MAP2K

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Histogram at steady−state input = 10−9 M (doubly stochastic)

number of proteins out of 100

MAPK−p
MAPK−pp

(i) 10−9M , MAPK

Figure 8-16. Distributions at steady state of the relevant protein states using the 3MC model for step
input stimuli of different strengths.
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� 8.5.2 Distributions

While the individual time realizations presented in the previous subsection can correspond
to the kind of data one would obtain from an individual experiment on a single cell. Inves-
tigating an isolated sample from a random process which is effectively what one experiment
on a single cell would amount to, does not necessarily provide intuition and understanding
as to the underlying nature of the process under study. A better approach to empirically
analyzing random processes is to generate and study distributions which represent estimates
of the probability density function of the underlying process. As a result, protein distribu-
tions were computed for all molecules in the model using 1000 independent experiments of
100 molecules.
The normalized distributions of the relevant protein states are shown in Figure 8-15

for the a3MC version of the model and in Figure 8-16 in the 3MC implementation of the
model. The results indicate that the shape of the distributions are different depending on
the protein state we are interested in as well as the strength of the input stimulus. It is clear
from the figures that the average of the distribution which could be obtained using a more
conventional modeling framework such as a mass-action deterministic model represents a
very narrow view of the system’s dynamics. Furthermore, the current state-of-the-art in
single cell measurement techniques now allows the validation of such model predictions
using flow cytometry therefore making the models presented here a potential formalism for
interpreting single cell measurements.

� 8.6 Summary

This chapter presented an example of how the interactive Markov chains model can be
used to model biological pathways. Specifically, we applied the model to a classic biological
signaling module: the mitogen-activated protein kinase cascade. The dynamics of the
state probabilities obtained from the a3MC implementation of different versions of the
model were validated by comparing the results to deterministic models based on mass-action
kinetics as well as experimental data. We also generated results beyond those that could
be obtained from deterministic models by performing stochastic simulations using both the
a3MC and 3MC model implementations. Individual time realizations as well as distributions
representing ensemble behavior illustrated the power of the modeling technique presented in
this thesis. The model can potentially prove particularly useful as it generates predictions
that are now readily testable using the current state of the art single cell measurements.
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Chapter 9

Bacterial Chemotaxis
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Bacterial chemotaxis is one of the most studied and well-understood signaling pathway
in Biology. It involves a small, defined set of proteins and molecules that have been all
purified and sequenced [26]. In addition, many of the enzymatic reactions they catalyze
have been characterized and analyzed kinetically. In this chapter, we review some of the es-
sential features of bacterial chemotaxis and the signaling cascade responsible for generating
the chemotactic response. We then formulate an interactive Markov chains model for the
chemotactic cascade and analyze it in the context of other models as well as experimental
findings.

� 9.1 The Biology of Bacterial Chemotaxis

Bacteria, such as Escherichia coli (Ecoli), cannot control their swimming direction, instead,
they choose between swimming in a straight line or tumbling randomly. Some chemicals act
as attractants while others are repellents. An attractant suppresses the tumbling behavior
while a repellent induces it. However, if the swimming takes the bacteria away from the
attractant, it will start tumbling randomly re-orienting itself before resuming its swimming
behavior, possibly this time, in the direction of the attractant. Ecoli ’s swimming mechanism
consists of 6 to 10 flagella per cell [94]. The swimming behavior of the cell is determined by
the direction of rotation of the flagella. If they are rotating in an anti-clockwise direction,
they propel the cell in one direction. If, on the other hand, one or more flagella rotates in
a clockwise direction, the cell tumbles.

� 9.1.1 Signaling cascade

The underlying mechanisms governing bacterial chemotaxis revolve around a multifunc-
tional, dimeric transmembrane receptor, the Tar complex. This receptor monitors the
concentration of aspartate in the surrounding fluid, as well as the concentration of maltose
(through a specific interaction with maltose binding protein), repellents such as nickel ions,
ambient pH, and ambient temperature. On the cytoplasmic domain, Tar is associated with
a cluster of “Che” (for chemotaxis) proteins and, together with these proteins, generates
a signal that is sent to the flagellar motors. The magnitude of the signal depends on the
rate of change of the various inputs to the Tar molecule [28]. The core Tar complex (the
receptor with the associated signaling proteins) is shown in Figure 9-1.

Proteins associated with the Tar complex include CheA, CheB, CheW, CheR, CheZ and
CheY. Binding of an attractant, or repellant, to the Tar receptor induces a conformational
change that is propagated through the membrane to the cytoplasmic domain where it causes
a change in the rate of autophosphorylation of CheA. The phosphorylated form of CheA
(CheAp) transfers its phosphate group to a second protein, CheY, transforming it into
CheYp. CheYp is the ultimate signaling molecule which diffuses to the flagellar motor
where it interacts with it, increasing the clockwise rotation and, as a result, the bacteria
starts tumbling. The default state of the motor (in the absence of CheYp) is therefore in
counterclockwise rotation which causes the bacteria to swim [26]. Two additional molecules
involved in this response are CheW, which is a transducing protein and mediates the effect
of the receptor on the CheA phosphorylation, and, CheZ, a protein phosphatase, which
counteracts the effect of CheYp by dephosphorylating it. In addition to this direct response,
a slower adaptive response is orchestrated by CheR and CheB. CheR, a methyltransferase,
deactivates receptor proteins by methylating them while CheB, a methylesterase, removes
the methyl groups. The complete signal transduction pathway is shown in Figure 9-2.
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Figure 9-1. The core Tar complex (reproduced from Bray [28]). CheY, CheB, and CheZ are not shown.

The aspartate pathway is thus greatly simplified in bacteria. It consists of a single
freely diffusing molecule (CheYp), a receptor complex concerned with the stimulus (the
Tar complex), and a second protein complex concerned with the behavioral response, the
flagellar motor [28].

� 9.2 Current Models of Bacterial Chemotaxis

Current models of bacterial chemotaxis are of two types, biophysical and biochemical mod-
els. Biophysical approaches attempt to model the conformational change of the Tar receptor
induced by signaling molecules, while biochemical approaches model the enzymatic reac-
tions leading to the cell response.

� 9.2.1 Biophysical models

Chervitz et al. [34] presented the first molecular description of a ligand-induced transmem-
brane conformational change using results from x-ray crystallography, solution 19F NMR,
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Figure 9-2. The signal transduction pathway in bacterial chemotaxis (reproduced from Bray et al. [26]).
Solid arrows represent phosphorylation reactions. Dashed arrows indicate regulatory interactions, and open
arrows are methylation reactions.

and disulfide-engineering studies. They concluded that the available evidence supports a
swinging-piston mechanism for the transmembrane signal of the aspartate receptor. The
signal is transmitted by a ligand-induced movement of a single transmembrane helix, located
within the subunit providing most of the contacts to the bound aspartate molecule. They
further noted that this model could be extended to any histidine kinase signaling pathway
since the pathways are regulated by the same class of receptors possessing two transmem-
brane helices per subunit. They also appear to use the same mechanism of transmembrane
signaling. Ottemann et al. [100] further explored the piston model for transmembrane
signaling of the aspartate receptor by attaching nitroxide spin labels at strategic positions
in the receptor and collecting the electron paramagnetic resonance spectra.

� 9.2.2 Biochemical models

The piston model does not explain how the cytoplamic domain translates the conforma-
tional change into modulation of histidine kinase activity. A different approach is therefore
needed to complement the results. An alternative consists of describing the signal trans-
duction pathway as a biochemical network. A full characterization of the network could
then be obtained by enumerating the Mass Action equations for the different biochemical
reactions involved. Bray et al. [26] developed a computer simulation of the phosphorylation
cascade controlling bacterial chemotaxis. In their model, each binding (where two molecular
components associate or dissociate) and reaction (where a phosphate is added or removed
by a protein) step is represented by an equation which is evaluated repeatedly at intervals
of time ∆t. The reactions rate constants and molecules concentrations are obtained from
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previous published experiments and analyses. Their results show that the model provides
an adequate explanation for most of the short-term chemotactic responses. The model was
further generalized by Bray and Lay [27] to model the family of histidine kinase recep-
tors. This simple signaling pathway is modeled by seven reactions, four of the reactions are
treated as simple binding equilibria governed by the Law of Mass Action, and thus are char-
acterized by a constant rate of association and a dissociation rate. The three other reactions
are phosphorylation and dephosphorylation steps treated as first-order, irreversible, reac-
tions, each characterized by a single rate. The slower response which leads to adaptation
and is characterized by the methylation and demethylation of the receptor by respectively
CheR and CheB is not considered in the original model. This bacterial chemotaxis model,
named BCT, is available online at http://www.anat.cam.ac.uk/comp-cell/Chemotaxis.html
and has been updated to include adaptation and conformational spread, i.e. the change in
activity of a ligand-bound receptor can propagate to neighboring receptors in a cluster.

A number of additional models have been developed using a deterministic formulation of
mass-action kinetics focusing on different aspects and properties of the signaling pathway.
In particular, Spiro et al. [118] and Barkai and Leibler [15] proposed different models for
adaptation in bacterial chemotaxis. In Spiro et al. [118], it is assumed that the receptor
Tar, CheW, and CheA only exist as a complex (Tar-CheA-CheW) and never dissociate. The
receptor has three methylation states (the three highest ones: two methyl groups attached,
three methyl groups attached, and four methyl groups attached) since the unstimulated level
is assumed to be at 1.5-2 methyl groups per receptor [25]. In the model, only phosphorylated
CheB can demethylate the receptor and the phosphorylation state of CheA is independent
of the ligand-binding state of the receptor and of the activities of CheR and CheBp, i.e.
CheR and CheBp act in the same way on phosphorylated (active) and unphosphorylated
receptors. Furthermore, the activity of CheZ is not modulated and the activation of CheY
and CheB by CheAp is independent of the ligand binding and methylation states of the
receptor. Finally, CheR methylates ligand-bound receptors faster than ligand-unbound
receptors and the autophosphorylation of CheA is faster for higher methylation states of
the receptor. Using these assumptions and experimentally based rate constants, Spiro et
al. simulated the bacterial chemotaxis signaling pathway in response to a ramp, step and
saturating levels of aspartate. They were also able to achieve perfect adaptation after fine-
tuning the parameters using trial and error. In fact, it can be shown [124] that perfect
adaptation is achieved using a very specific set of constants and small variations of the
values will lead to a loss of perfect adaptation.

In contrast to Spiro et al., Barkai and Leibler [15] proposed a robust model for perfect
adaptation. The main assumption in this model is that CheB only demethylates active,
i.e. phosphorylated, receptors and demethylation is independent of ligand binding. CheR,
on the other hand, methylates both active and inactive receptors at the same rate. Under
these assumption, Barkai and Leibler have shown that the system shows almost perfect
adaptation over a wide range of parameter values. However while adaptation is a robust
property of the system, they also show that adaptation time is not. Specifically, it is found
that adaptation time is inversely proportional to receptor-complex activity.

� 9.2.3 Stochastic models

There have been recently interest in modeling the stochastic aspects of the bacterial chemo-
taxis pathway. Specifically, Morton-Firth et al. [96] developed the first stochastic simulation
of bacterial chemotaxis using the StochSim program. In this model, the activity of the re-
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ceptor changes with both ligand-binding and methylation states. Furthermore, CheR binds
exclusively to inactive receptor complexes while phosphorylated CheB binds exclusively to
active receptor complexes. It is shown that the model achieves robust adaptation. The
model was further extended by Shimizu et al. [116] to allow interactions between neighbor-
ing receptor complexes arranged in a regular lattice according to the Ising model.

� 9.3 A Markov Modulated Markov Chains Model of Bacterial Chemotaxis

In this section, we use the interactive Markov chains formulation presented in Chapter 7 to
model the bacterial chemotaxis pathway. The model includes a number of key assumptions
which we discuss in the next subsections. Later in this chapter we will modify some of the
assumptions and investigate their impact on the results.

� 9.3.1 Ligand binding and receptor states

We assume in the model that ligand binding is independent of methylation state, i.e. the
binding constant for the ligand and the receptor is the same whether or not the receptor
is methylated, and that the receptor has only two methylation states: unmethylated and
methylated. In addition, since ligand binding is much faster than any enzymatic transfor-
mation such as phosphorylation or methylation, we assume that the ligand and the receptor
instantly equilibrate. As a result, we have:

kD =
[T ]n[L]n
[TL]n

=
(NTn/AV V )[L]n
NTLn/AV V

=
NTn
NTLn

[L]n

=
pT [n]NTtot
pTL[n]NTtot

[L]n

=
pT [n]

pTL[n]
[L]n

pTL[n]

pT [n]
=
[L]n
kD

(9.1)

where KD is the dissociation constant of the receptor, AV is Avogadro’s number, V is the
volume around the receptor, [L]n is the concentration of free ligand at time n, [T ]n is the
concentration of free receptor at time n, [TL]n is the concentration of ligand bound receptor
at time n, NTn and NTLn are the numbers of free receptors and ligand bound receptors at
time n, Ntot is the total number of receptors, and pT [n] and pTL[n] are the probabilities of
the receptor being in the ligand unbound and bound states respectively. Similarly, we have:

pTmL[n]

pTm[n]
=
[L]n
kD

(9.2)

where pTm[n] and pTmL[n] are the probabilities of the methylated receptor being in the
ligand unbound and bound states respectively.
The receptor is assumed to be in one of four states: unbound and unmethylated receptor

(T), unbound and methylated receptor (Tm), ligand bound and unmethylated receptor
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(TL), and ligand bound and methylated receptor (TmL). While it is known that Tar has
four different methylation states (unmethylated, singly methylated, doubly methylated,
and triply methylated), the first version of the model includes only two methylation states
(unmethylated and methylated). We therefore have at all times:

pT [n] + pTm[n] + pTL[n] + pTmL[n] = 1 (9.3)

and using equations (9.1) and (9.2) above, we get:

pT [n] + pTm[n] =
1

1 + [L]nkD

=
kD

kD + [L]n
(9.4)

pTL[n] + pTmL[n] =

[L]n
kD

1 + [L]nkD

=
[L]n

kD + [L]n
(9.5)

Since ligand binding is always assumed to be at equilibrium in the model, the receptor
is represented as two conditional Markov chains: a ligand unbound chain and a ligand
bound chain. Each chain is composed of two states corresponding to the unmethylated and
methylated forms of the receptor. Specifically, the ligand unbound chain is composed of the
states T’ and Tm’ corresponding to the unmethylated and methylated states of the receptor
respectively given the receptor is not ligand bound. Similarly the ligand bound chain is
composed of the states TL’ and TmL’ corresponding to the unmethylated and methylated
states of the receptor respectively given the receptor is ligand bound. Figure 9-3 shows the
receptor model with the conditional Markov chains.

ptbptf

Tm’

T’

ptlbptlf

TL’

TmL’

[L]

Figure 9-3. Conditional Markov chains representing the receptor states.

Each conditional chain evolves according to its transition matrix which is governed by
the methylation and demethylation probabilities (ptf , ptlf , and ptb, ptlb). In order to get the
unconditional probability of the receptor being in a given state, the conditional state prob-
abilities are multiplied by the probability of being in the ligand bound or ligand unbound
states. For example, the a priori probability of the receptor being in the unmethylated
non-ligand bound state at time n, pT [n], is given by the product of the probability of the
receptor being unmethylated at time n given it is not ligand bound, pT ′ [n], and the proba-
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bility of the receptor being not ligand bound at time n which according to equation 9.4 is
1

1+
[L]n
kD

, i.e.:

pT [n] = pT ′ [n]×
kD

kD + [L]n
(9.6)

Similarly, we have:

pTm[n] = pTm′ [n]×
kD

kD + [L]n
(9.7)

pTL[n] = pTL′ [n]×
[L]n

kD + [L]n
(9.8)

pTmL[n] = pTmL′ [n]×
[L]n

kD + [L]n
(9.9)

� 9.3.2 Chains and states

The core model (excluding the motor) includes six Markov chains representing the different
molecules involved in the signaling pathway. The first chain represents the Tar receptor
and has been discussed in the previous subsection. The second chain represents the CheA
protein and has two states: unphosphorylated CheA (a) and phosphorylated CheA (ap).
CheB and CheY are similarly represented with two-states Markov chains representing the
phosphorylation states of the proteins: unphosphorylated (b and y) and phosphorylated
(bp and yp). CheR and CheZ are represented by single states (R and Z respectively).
The chains and states are shown in Figure 9-4 along with the interactions between chains
(dashed arrows).

� 9.3.3 Interactions and parameters

The interactions among the different Markov chains are obtained based on the known in-
teractions between the different molecules in the signaling pathway and are depicted as
dashed arrows in Figure 9-4. The expressions for the transition probabilities (using the
a3MC model notation) are also given in Table 9.1 along with the rate constants values
(Table 9.2). Table 9.3 tabulates the model parameters. Most rate constants and parame-
ters were obtained from Spiro et al. [118] and are for the most part based on experimental
measurements. (See [118] for further details.) In this version of the model, we have assumed
that all enzymatic reactions occur in a regime of low substrate concentrations and therefore
obey pseudo-first order kinetics where the effective rate constant is given by kcat/Km. ∆t
was chosen based on the fastest rate constant (largest) and vr was chosen so that vr <<

1
N

making sure that the one collision approximation is accurate. The transition probability
describing the phosphorylation of CheA, paf [n] is simply expressed as a weighted sum of
the activating states of the receptor since CheA is attached to the receptor complex and
therefore does not need to collide with the receptor in order to get phosphorylated. In
addition, each receptor state has an a priori probability of being active, i.e. being able to
phosphorylate CheA. The activities of the different states are as follows:

A(T ) = 0.07

A(Tm) = 0.88

A(TmL) = 0.74

A(TL) = 0
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Figure 9-4. Core interactive Markov chains model of the bacterial chemotaxis pathway.

where A(x) denotes the probability of state x being active (i.e. being able to phosphorylate
CheA). These activities were obtained from Morton-Firth et al. [96] and are estimated from
free energy changes. In [96] five different methylation states are considered. We map the
two low methylation states (unmethylated, singly methylated) to our non-methylated state
and use the average of the activities of those states for the activity of our state. Similarly,
we map the two high methylation states (triply methylated and quadruply methylated)
to the methylated state in our model where we use the average of the activities of those
states as the activity of the methylated state in our model. We further assume that CheB
demethylates only active receptors and therefore the activity probabilities are factored into
the demethylation probabilities. As for the transition probability describing the dephos-
phorylation of CheA, pab[n], both unphosphorylated CheB and unphosphorylated CheY
contribute to the dephosphorylation of CheA in an associative manner. We therefore use
the weighted sum model to combine the probabilities.

� 9.3.4 The flagellar motor

The motor is modeled as an eight-state Markov Chain corresponding to the number of
bound phosphorylated CheY molecules (ranging from zero CheYp bound to seven CheYp
bound). Figure 9-5 shows the Markov chain model of the motor and Tables 9.4 and 9.5
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ptf [n] = γtfvrNR
ptlf [n] = γtlfvrNR
ptb[n] = γtbvrNBpbp[n− 1]A(Tm)
ptlb[n] = γtlbvrNBpbp[n− 1]A(TmL)
paf [n] = kaf∆t(A(T )pT [n− 1] +A(Tm)pTm[n− 1] +A(TmL)pTmL[n− 1] +A(TL)pTL[n− 1])
pab[n] = γabbvrNBpb[n− 1] + γabyvrNY py[n− 1]
pbf [n] = γbfvrNApap[n− 1]
pbb[n] = kbb∆t
pyf [n] = γyfvrNApap[n− 1]
pyb[n] = kyb∆t

Table 9.1. Transition probabilities for the model shown in Figure 9-4. For bimolecular reactions, the
relevant γ is obtained from the relevant k (in M−1s−1) using the expression γ = k∆t

vrAV V
.

ktf = 79992M−1s−1

ktlf = 79992M−1s−1

ktb = 79992M−1s−1

ktlb = 79992M−1s−1

kaf = 45s−1

kabb = 8× 105M−1s−1
kaby = 3× 107M−1s−1
kbf = kabb
kbb = 0.35s−1

kyf = kaby
kyb = 20s−1

Table 9.2. Model rate constants. Rate constants were obtained from Spiro et al. [118].

give the expressions for the transition probabilities and the values of the rate constants
associated with the motor respectively.
The direction of rotation of the motor is governed by its state. States m1, m2, m3, m4,

and m5 correspond to the motor rotating counter clockwise which propels the bacterium
forward while states m6, m7, and m8 correspond to the motor rotating clockwise which
makes the bacterium tumble. As a result, the probability of the motor rotating counter
clockwise (run) at time n, pccw[n], is given by:

pccw[n] = pm1[n] + pm2[n] + pm3[n] + pm4[n] + pm5[n] ≡ prun[n] (9.10)

and the probability of the motor rotating clockwise (tumble) at time n, pcw[n], is given by:

pcw[n] = pm6[n] + pm7[n] + pm8[n] ≡ ptumble[n] (9.11)

The motor bias (or simply bias) is defined as the probability of a run, i.e. of rotating
counterclockwise:

bias ≡ pccw[n] = prun[n] (9.12)
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kD = 10−6M Motor = 1
[L] = x the input NTtot = 6793
NR = 255 ∆t = 0.001 s
NB = 1444 vr = 10−6

NA = 6793 AV = 6.022 × 1023
NY = 17000 V = 1.41 × 10−15

Table 9.3. Model parameters. NX is the total number of molecules of species X and were obtained from
the concentrations in [118].

pmf1[n] = γmf1vrNY pyp[n− 1]
pmf2[n] = γmf2vrNY pyp[n− 1](1 − kmb1∆t)
pmf3[n] = γmf3vrNY pyp[n− 1](1 − kmb2∆t)
pmf4[n] = γmf4vrNY pyp[n− 1](1 − kmb3∆t)
pmf5[n] = γmf5vrNY pyp[n− 1](1 − kmb4∆t)
pmf6[n] = γmf6vrNY pyp[n− 1](1 − kmb5∆t)
pmf7[n] = γmf7vrNY pyp[n− 1](1 − kmb6∆t)
pmb1[n] = kmb1∆t(1− γmf2vrNY pyp[n− 1])
pmb2[n] = kmb2∆t(1− γmf3vrNY pyp[n− 1])
pmb3[n] = kmb3∆t(1− γmf4vrNY pyp[n− 1])
pmb4[n] = kmb4∆t(1− γmf5vrNY pyp[n− 1])
pmb5[n] = kmb5∆t(1− γmf6vrNY pyp[n− 1])
pmb6[n] = kmb6∆t(1− γmf7vrNY pyp[n− 1])
pmb7[n] = kmb7∆t

Table 9.4. Transition probabilities for the motor model. For bimolecular reactions, the relevant γ is
obtained from the releval k (in M−1s−1) using the expression γ = k∆t

vrAV V
.

kmf1 = 7× 106M−1s−1 kmb1 = 1.43s−1

kmf2 = 6× 106M−1s−1 kmb2 = 2.86s−1

kmf3 = 5× 106M−1s−1 kmb3 = 4.29s−1

kmf4 = 4× 106M−1s−1 kmb4 = 5.72s−1

kmf5 = 3× 106M−1s−1 kmb5 = 7.15s−1

kmf6 = 2× 106M−1s−1 kmb6 = 8.58s−1

kmf7 = 1× 106M−1s−1 kmb7 = 10.01s−1

Table 9.5. Motor model rate constants obtained from [97].
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Figure 9-5. Markov chains model of the flagellar motor.
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� 9.4 Simulations

� 9.4.1 The dynamic behavior of the state probabilities

A multistep input was applied to the model and the state probabilities were computed.
Specifically, the input ligand concentration was stepped up from 0 to 10−6M at 250 seconds,
and from 10−6M to 10−3M at 400 seconds. The input concentration was then stepped down
from 10−3M to 10−6M at 550 seconds, and from 10−6M to zero at 700 seconds. Figure 9-6
plots the input ligand concentration between 250 and 700 seconds.
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Figure 9-6. Non-zero input ligand concentration stimulus.

Simulations were carried out using the default parameters given in the previous sections
and the state probabilities for the phosphorylated forms of CheA (ap), CheY (yp), and CheB
(bp) were computed. The probabilities of the different receptor states (T, Tm, TL, TmL)
were also computed as well as the probability of a receptor being methylated which is given
by the sum of p(Tm) and p(TmL) and gives an indication of the level of receptor activity.
Finally, the motor bias, defined as the probability of a run (i.e. the probability of rotating
counterclockwise), was also computed. The results are shown in Figure 9-7. As expected,
upon ligand addition, the receptor states shift from non-methylated non-ligand bound to
predominantly ligand bound (both unmethylated and methylated). Since demethylation is
a function of ligand activity and the methylated ligand bound receptor is less active than the
methylated non-ligand bound receptor, demethylation is slower for the ligand bound state
and as a result the proportion of methylated receptors continues to slowly increase after the
initial step increase due to ligand addition and instantaneous equilibration. These dynamics
lead to an immediate decrease in phosphorylated CheA upon ligand addition followed by
a slow increase due to the methylation of the receptor. This effect is transmitted down to
the motor as shown in the figure leading to a transient increase in motor bias upon ligand
addition followed by a slower decrease. The amplitude of the motor bias response is larger
upon ligand addition than upon ligand removal. This is largely due to the non-symmetric
functional states of the motor. Specifically, as can be seen from equations 9.10 and 9.11, five
out of the eight motor states correspond to a run whereas only three states correspond to
a tumble. Upon ligand addition the transitions into the run states are increased and since
the number of these states is larger than the number of the tumble states, the probability
of being in a state corresponding to a run increases more than upon removal of the same
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Figure 9-7. State probabilities using default parameters. (a) ap, yp, and bp, (b) receptor states (c)
methylated receptors, (d) motor bias.

amount of ligand, since in this latter case, the transition probabilities into the tumbling
states are higher but the number of corresponding states is smaller. This assymetry in the
response upon ligand addition and removal is in agreement with previous results [15]. The
response in Figure 9-7, however, fails to adapt or more precisely over-adapts, i.e. instead of
settling back to its original value (perfect adaptation), the response overshoots its original
value.

In order to address the failure of the model to adapt, we consider two modifications
to the original model. First, the rate of receptor demethylation by phosphorylated CheB
was increased by a factor of 3.75. The same factor was applied to the demethylation of the
ligand bound and the ligand unbound receptor states. Increasing the demethylation rate
reduces the activity of the receptor at steady state since unmethylated receptors are less
active. As a result, the proportion of phosphorylated CheA is reduced which propagates
to the motor increasing the bias at steady-state and therefore reducing over-adaptation.
The value of the factor by which the demethylation rate was increased (3.75) was derived
to achieve perfect adaptation in response to a saturating ligand stimulus (i.e. in response
to a step in ligand concentration of 10−3M). Figure 9-8 shows the results. As expected, in
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Figure 9-8. State probabilities using a high rate constant for demethylation by bp. (a) ap, yp and bp, (b)
receptor states (c) methylated receptors, (d) motor bias.

response to a ligand concentration of 10−3M (the input value between 400 and 550 seconds),
the response perfectly adapts i.e. it returns to its pre-stimulus level. However, for lower
concentrations (10−6M in the figure, for the time points between 250 and 400 seconds as
well as 550 and 700 seconds), the response overadapts however not as strongly as before.
We also considered the case where the receptors can be demethylated by all forms of CheB
(both phosphorylated and unphosphorylated). The results are shown in Figure 9-9. The
amplitude of the response in this model is now larger than the amplitude of the response in
both the original model and the model with higher demethylation rate. However, the system
still overadapts as in the original model. Later in this chapter, additional modifications to
the model leading to perfect adaptation will be considered and discussed.

� 9.4.2 Adaptation time

The results obtained in the previous section (examining the dynamics of the state proba-
bilities and their response to different modifications) are equivalent to the results one can
obtain using models based on deterministic rate equations. However, while the model pre-
sented here can perform the kind of “average” analysis that the deterministic approach
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Figure 9-9. State probabilities using the case where all forms of CheB can demethylate the receptor. (a)
ap, yp, and bp, (b) receptor states (c) methylated receptors, (d) Motor bias.

provides, it can also be used to examine the variations and stochasticity of the response
which is not possible using a deterministic formalism. In order to illustrate this feature of
the model, we investigate the effect of CheR concentration on the adaptation time (or more
generally time to steady-state) of the motor in response to a step increase in ligand con-
centration. Stochastic simulations using the a3MC model implementation were performed
for different CheR concentrations . For each CheR concentration, the average as well as
the variance of the time to adaptation was computed using 100 simulations. The results
are shown in Figure 9-10 and indicate that the adaptation time decreases with increased
CheR concentration. This result should not come as a surprise since the higher the CheR
concentration, the higher the transition probabilities out of the non-methylated states of
the receptor which makes the chains reach steady-state faster. The results in Figure 9-10
also show that the standard deviation of the adaptation time decreases with increasing
CheR. This result is not necessarily expected since CheR acts upstream in the signaling
cascade while adaptation time is measured using the motor which is much further down-
stream. These results are in agreement with experimental observations. Specifically, Alon
et al. [5] measured the average adaptation time in response to a step-like stimulus of 1mM
L-aspartate using different bacterial strains including wild-type and a mutant lacking CheR.
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Figure 9-10. Average adaptation time and standard deviation using the original model parameters. The
error bars correspond to the standard deviation.

The level of CheR expression in the mutant was controlled by inserting a plasmid contain-
ing a CheR gene that can be controlled by IPTG induction. The average adaptation time
for different concentrations of CheR was measured and it was observed that the average
adaptation time decreased with increased CheR concentration. In addition to the average,
Alon et al. computed error bars corresponding to the standard deviation of triplicate exper-
iments (see Figure 2b in [5]). The standard deviation results follow the same trend as the
results shown in Figure 9-10 indicating that the change in standard variation is an intrinsic
property of the signaling pathway as opposed to a consequence of external variations such
as experimental noise. These results imply that more experimental replicates need to be
performed for low CheR concentrations than for high CheR concentrations in order to get
a good estimate of the average adaptation time since higher biological variance is expected
at low CheR concentrations.

� 9.5 Stochastic Implementation of Enzyme Kinetics

The macromolecular rates used to derive the transition probabilities in the model presented
in the previous sections were all based on first order mass action kinetics. In particular,
all enzymatic reactions were assumed to operate in a regime of low substrate concentra-
tion relative to the Km of the enzyme. While for bacterial chemotaxis, this assumption
holds for most enzymatic reactions, it does not always hold for the reactions governing the
methylation of the receptor by CheR. Specifically, when the probabilities of the receptor
being in the unmethylated non-ligand bound or in the unmethylated ligand bound states
are greater than 0.2, using the first order approximation leads to a much larger transition
probability than the one based on enzymatic kinetics. To address this issue, the original
model was modified to include a stochastic implementation of enzymatic dynamics. In this
implementation, we assume the existence of an intermediary state between the substrate
and the product corresponding to the enzyme bound substrate. Specifically, the reaction
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can be written as follows:

S + E
k1→←
k−1
SE

k2→ P + E (9.13)

where S is the substrate, E is the enzyme, ES is the enzyme-substrate complex and P is
the product. The total enzyme concentration, [Et] is fixed and is given by:

[E]t = [E] + [ES] (9.14)

and the total substrate-product concentration, [S,P ]t, is also fixed (in the absence of addi-
tional reactions involving these species) and is given by:

[S,P ]t = [S] + [ES] + [P ] (9.15)

where brackets indicate concentration.

� 9.5.1 Interacting Markov chains model of enzyme kinetics

The reaction given in 9.13 has a natural interacting Markov chains representation based on
two Markov chains: the enzyme chain and the substrate-product chain. The enzyme chain
has two states corresponding to the free and bound states while the substrate-product chain
has three states corresponding to the substrate, substrate bound to enzyme, and product
states. Furthermore, since the last reaction in 9.13 is irreversible, there is no transition
from the product to the enzyme-bound substrate state in the substrate-product chain. The
interacting Markov chains representation of enzyme kinetics is shown in Figure 9-11. In

S

ES

P

p-1

p2

p1

ES

E

pebpef

Figure 9-11. Interacting Markov chains illustration of enzyme kinetics.

the figure, p1[n] is the probability that a substrate collides and binds to a free enzyme and
is therefore a function of the probability of an enzyme being in the free state at time n,
pE[n]. pef [n] is the probability that a free enzyme collides and binds to a substrate and is
therefore a function of the probability of the substrate-product chain being in the substrate
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state at time n, pS [n]. Specifically, we have:

p1[n] = γ1vrNEtpE[n]

pef [n] = γ1vrN(S,P )tpS[n]

where NEt and N(S,P )t are the total numbers of enzyme and substrate-product species
respectively. Since the two events (the enzyme transitioning from the free state to the bound
state and the substrate transitioning from the free state to the bound state) correspond to
the same reactions, the probability of a reaction happening given that the molecules have
collided is the same, namely γ1. In addition, the probability of an enzyme in the bound
state transitioning to the unbound state, peb[n], is equal to the probability of the substrate-
enzyme bound complex transitioning out of that state (into the free substrate state or the
product state), i.e. we have:

peb[n] = p−1[n] + p2[n] (9.16)

where p−1[n] and p2[n] are constant. All transition probabilities can be derived from the
kinetic rates constants as was demonstrated in the previous chapter. We therefore have:

p1[n] = k1∆t[E]tpE[n]

p−1[n] = k−1∆t

p2[n] = k2∆t

pef [n] = k1∆t[S,P ]tpS[n]

peb[n] = (k−1 + k2)∆t

where k1, k−1, and k2 are the rate constants associated with the enzymatic reaction.

� 9.5.2 Applying the Michaelis-Menten approximation

In the Michaelis-Menten formalism [92], it is assumed that the enzyme-substrate concentra-
tion ([ES]) quickly reaches a steady-state that persists until almost all of the substrate has
been consumed. Using the steady-state assumption and the conservation of enzyme species,
the Michaelis-Menten equation which gives the rate of change of the concentration of the
product can be derived and is given by:

d[P ]

dt
=

k2
kM + [S]

[E]t[S] (9.17)

where kM is the Michaelis constant and is defined as:

kM =
k−1 + k2
k1

(9.18)

In a similar manner, we can derive a Michaelis-Menten approximation to the interacting
Markov chains model shown in Figure 9-11. Using the substrate-product chain, the proba-
bility of being in state ES at time n, pES[n], can be written as:

pES[n] = p1[n− 1]pS [n− 1] + (1− p−1 − p2)pES[n− 1] (9.19)
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where p1[n− 1] is given by:

p1[n− 1] = γ1vrNEtpE[n− 1] (9.20)

Substituting back the expression for p1[n − 1] and using the steady-state assumption for
pES[n], we get:

pES = γ1vrNEtpE[n− 1]pS [n − 1] + (1− p−1 − p2)pES (9.21)

Solving for pES, we get:

pES =
γ1vrNEtpE [n− 1]
p−1 + p2

pS [n− 1] (9.22)

Since the enzyme is assumed to be at steady-state, pE[n−1] is constant and can be obtained
using the enzyme chain. Specifically, we have:

pE[n] = (1− pef [n− 1])pE [n− 1] + peb[n− 1]pES [n− 1] (9.23)

Using the steady-state assumption and substituting the values for the transition probabili-
ties, we get:

pE[n] = (1− γ1vrN(S,P )tpS[n− 1])pE + (p−1 + p2)(1 − pE) (9.24)

where we have used the fact that pE + pES = 1. Solving for pE , we get:

pE =
p−1 + p2

γ1vrN(S,P )tpS [n− 1] + p−1 + p2
(9.25)

Substituting back the value of pE into equation 9.22, we get:

pES =
γ1vrNEt

p−1 + p2 + γ1vrN(S,P )tpS[n− 1]
pS[n− 1] (9.26)

=
NEt

p−1+p2
γ1vr

+N(S,P )tpS[n− 1]
pS[n− 1] (9.27)

The probability of being in state P at time n, pP [n], is given by:

pP [n] = p2pES[n− 1] + pP [n− 1] (9.28)

substituting the expression for pES, we get:

pP [n] =
p2NEt

p−1+p2
γ1vr

+N(S,P )tpS [n− 1]
pS [n− 1] + pP [n− 1] (9.29)

Defining psf [n] as:

psf [n] ≡
p2NEt

p−1+p2
γ1vr

+N(S,P )tpS[n]
(9.30)

we can rewrite equation 9.29 as:

pP [n] = psf [n− 1]pS [n− 1] + pP [n− 1] (9.31)
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Figure 9-12. Simplified Markov chains model using the Michaelis-Menten approximation.

which can be represented by the simplified Markov chain shown in Figure 9-12. psf [n] can
also be rewritten in terms of the rate constants as follows:

psf [n] =
k2∆tNEt

(k−1+k2)∆t
(k1∆t)/(AV V )

+N(S,P )tpS[n− 1]
(9.32)

=
k2∆t

NEt
AV V

k−1+k2
k1

+
N(S,P )t
AV V

pS [n− 1]
(9.33)

=
k2∆t[E]t

kM + [S,P ]tpS[n− 1]
(9.34)

where kM is the Michaelis constant of the reaction.

� 9.6 Updated Two-State Receptor Model

� 9.6.1 Stochastic enzyme kinetics implementation for methylation by CheR

The two-state receptor model was first updated to include the stochastic implementation
of enzyme kinetics for the methylation of the receptor by CheR. The updated conditional
receptor chains along with the CheR and CheA chains are shown in Figure 9-13. Tables
9.6 and 9.7 give the new interactions and parameters associated with the chains. All other
chains, interactions, and parameters are left unchanged.

ptf1[n] = ktf1∆t[R]pR[n]
ptb1[n] = ktb1∆t
ptf2[n] = ktf2∆t
ptb2[n] = ktb2∆t[B]pbp[n− 1]A(Tm)
ptfl1[n] = ktfl1∆t[R]pR[n]
ptbl1[n] = ktbl1∆t
ptfl2[n] = ktfl2∆t
ptbl2[n] = ktbl2∆t[B]pbp[n− 1]A(TmL)
prf [n] = krf∆t[Ttot]pT [n]
prb[n] = krb∆t

Table 9.6. Interactions of the updated two-state receptor model.

The state probabilities of the chains in the model in response to the input stimulus
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Figure 9-13. Receptor model updated to include the stochastic implementation of enzyme kinetics for the
methylation of the receptor by CheR.

shown in Figure 9-6 were computed using the a3MC model implementation and are shown
in Figure 9-14. The effect of the total number of molecules of CheB and CheR on the
behavior of the state probabilities was also investigated. Figures 9-15 and 9-16 show the
phosphorylated CheY state probabilities as well as the motor bias computed using the
default parameters as well as half and ten times the concentration of CheB and CheR
respectively. The results indicate that CheB and CheR have opposite effects on the state
probability of CheYp and the bias. This should not be surprising since CheR and CheB
have opposite functions (receptor methylation and receptor demethylation). The magnitude
of the effect on the state probability of CheYp and the bias due to a change in CheB is
comparable to the magnitude of the effect in response to a similar change in CheR. In
addition, the enzyme kinetics model implementation for methylation by CheR leads to
significantly less methylated receptors than the original model. For example, at saturating
stimulus levels (10−3M), the updated two state model predicts less than 20% of the receptors
will be methylated (Figure 9-14) while the original model predicts 40% of the receptors will
be methylated (Figure 9-7). This deviation between the two models is expected since at this
input stimulus level, the probability of the receptor being in the unmethylated ligand bound
case is much greater than 0.2. As a result, using the stochastic enzyme kinetics model for
the methylation by CheR leads to better adaptation since the lack of adaptation in the
original model was mainly due to the large increase in methylated receptors in response to
an increase in ligand concentration (input stimulus). The magnitude of the response is also
increased using the updated model.
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ktf1 = 8× 107M−1s−1
ktb1 = 100s−1

ktf2 = 0.1s−1

ktb2 = 79992M−1s−1

ktlf1 = ktf1
ktlb1 = ktb1
ktlf2 = ktf2
ktlb2 = ktb2
krf = ktf1
krb = ktb1 + ktf1

Table 9.7. Parameter values of the updated two-state receptor model.

� 9.6.2 Using the Michaelis-Menten approximation

We applied the Michaelis-Menten approximation to the updated two-state model, we call
this new updated model: the Michaelis-Menten two-state model. Specifically, we use the
same model as the one shown in figure 9-4 however the probabilities of a non-ligand bound
and a ligand bound receptor being methylated at time n, ptf [n] and ptlf [n] respectively are
now given by:

ptf [n] = (ktf∆tNR)/(kmtfAV V +NTtotpT [n− 1]) (9.35)

ptlf [n] = (ktlf∆tNR)/(kmtlfAV V +NTtotpTL[n− 1]) (9.36)

where:

ktf = 0.1s−1 (9.37)

ktlf = 0.1s−1 (9.38)

kmtf = 1.25 × 10−6M−1s−1 (9.39)

kmtlf = 1.25 × 10−6M−1s−1 (9.40)

The rest of the interactions and parameters are left unchanged and are as in Tables 9.1 and
9.2. Figure 9-17 shows the state probabilities of the a3MC model in response to the multi-
step input shown in figure 9-6. The state probability of CheY being in the phosphorylated
state and the bias for varying concentrations of CheB and CheR were also computed and
are shown in Figures 9-18 and 9-19 respectively. As was observed for the two-state model
using the enzyme kinetics implementation, CheB and CheR have opposite effects on CheYp
and bias but similar magnitude.

A 3MC stochastic simulation of the Michaelis Menten two-state model was also im-
plemented. In this implementation, phosphorylated CheB can only demethylate active
receptors, i.e. receptors that have their attached CheA phosphorylated. The conditional
transition probabilities, which can be readily obtained using the description of the model
in Table 9.1 and equation 9.36 are then realized through a Monte-Carlo simulation. As an
example, in the implementation, the conditional probability of an unphosphorylated CheA
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Figure 9-14. State probabilities for the two-state model with enzymatic kinetics implementation. (a) ap,
yp and bp, (b) receptor states (c) methylated receptors, (d) motor bias.

getting phosphorylated at time n given the receptor state, paf |t[n], is given by:

paf |t[n] =















kaf∆tA(T ) : t = T
kaf∆tA(Tm) : t = Tm
kaf∆tA(TL) : t = TL
kaf∆tA(TmL) : t = TmL

(9.41)

Similar expressions hold for the other states. In addition, it is assumed in these simulations
that the CheA protein can fall off the receptor and re-attach to another receptor, i.e. at each
time step, a CheA molecule (whether phosphorylated or not) is randomly (using a uniform
distribution) paired with a receptor whose state determines the transition probability given
in equation 9.41. We performed Monte Carlo simulations of the network response to a step
change in input concentration at 400 seconds from 0 to 10−3M. 100 molecules of the receptor
and of each signaling protein (CheY, CheB, and CheA) as well as 1 motor were simulated
and a total of 100 independent simulations were performed. The average phosphorylated
CheY and average bias are shown in Figure 9-20. Note that the average of the 3MC model
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Figure 9-15. State probabilities for different concentrations of CheB of the two-state enzymatic kinetics
model.
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Figure 9-16. State probabilities for different concentrations of CheR of the two-state enzymatic kinetics
model.

at 0 and 10−3M input concentrations match the state probability obtained from the a3MC
model shown in Figure 9-17 which is expected since the number of molecules being simulated
is large.

In the 3MC implementation presented so far, it was assumed that the CheA protein can
fall off the receptor and pair up with a new one randomly at each time step, i.e. at every ∆t.
While there is biological evidence supporting the fact that CheA is not always attached to
the receptor, the measured time scales at which CheA attaches and falls off are much longer
than the time step used in our simulations and therefore a more realistic model would keep
CheA attached to the receptor at all times. We therefore carried a second set of stochastic
simulations using the 3MC model where now each CheA is attached to the same receptor
and, at each time step, the state of the receptor to which a CheA is attached is checked
and the transition probabilities of that CheA are set according to equation 9.41. Again,
100 stochastic simulations were carried out using 100 molecules of each signaling protein
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Figure 9-17. State probabilities for the Michaelis-Menten two-state model. (a) ap, yp and bp, (b) receptor
states (c) methylated receptors, (d) motor bias.

and one motor. The average number of CheYp and the average bias in response to a step
input stimulus at 400 seconds from 0 to 10−3M are shown in Figure 9-21. As is clear from
the figure, the average signal levels still match the a3MC model as well as the first version
of the stochastic 3MC simulations. However, the variance using this version of the model
is slightly smaller than the variance obtained using the first version of the model as can be
seen from comparing Figures 9-20 and 9-21. This is due to the fact that keeping the CheA
attached to the receptor eliminates one source of variability associated with CheA pairing
up with a receptor and therefore the fluctuations in the response are reduced.

Finally, we performed a third set of stochastic simulations where now in addition to CheA
not being allowed to fall off the receptor, phosphorylated CheB can only demethylate phos-
phorylated (as opposed to active) receptors, i.e. receptors that have their attached CheA
phosphorylated. This assumption effectively leads to less receptors being demethylated and
therefore a higher level of activity compared to the previous versions. 100 simulations using
the 3MC model were carried out using 100 molecules of each signaling protein in response
to a step input concentration at 400 seconds from 0 to 10−3M. We also computed responses
using different total CheR and CheB concentrations. Specifically, we used the default CheR
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Figure 9-18. State probabilities for different concentrations of CheB for the Michaelis-Menten two-state
model.

and CheB concentrations as well as a ten fold increase in concentration and half the con-
centration of CheR and CheB. For each modification, 100 realizations were computed. The
average phosphorylated CheY for each modification is shown in Figure 9-22. As expected,
the level of activity (number of CheYp) is higher for this version of the model than for
the previous versions. Furthermore, as was observed in the a3MC model implementation,
changes in the total concentration of CheR and CheB have opposite effects on the proba-
bility of CheYp but similar in magnitude. The distributions of the phosphorylated CheY
state for different CheR and CheB concentrations with zero input stimulus are shown in
figures 9-23 and 9-24 respectively. The shape of the distribution changes for different CheR
and CheB concentrations. Higher concentrations lead to narrower distributions. Further-
more changes in the concentration of CheR tend to have a larger effect on the shape of
the distribution than changes in the concentration of CheB. These plots are intended to
be illustrations of the types of results one can obtain using this model. To further inves-
tigate the implications of the effect of changes in CheR or CheB on the network response,
a larger number of simulations needs to be run in order to get a better estimate of the
distribution. In addition, while the magnitude of the effect of changes in CheR and CheB
concentrations is comparable, the effect of these changes on adaptation precision seems to be
different. Specifically, Figure 9-22 suggests that a ten fold increase in CheR concentration
leads to a larger adaptation error than a ten fold increase in CheB concentration. Figure
9-25 plots the average percent adaptation error for different values of CheR and CheB as
well as the standard deviation. While at wild type CheR and CheB values as well as at
half that concentration, the adaptation precision is similar, at ten fold CheR concentration,
the adaptation error is double the adaptation error obtained at ten fold the concentration
of CheB. However, the standard deviation follows the opposite trend: it is higher for a ten
fold increase in CheB than for a ten fold increase in CheR.

� 9.7 Six-State Receptor

So far, we have only considered two states for the receptor (methylated and non-methylated),
in this section we extend the model and incorporate three methylation states for the recep-
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Figure 9-19. State probabilities for different concentrations of CheR for the Michaelis-Menten two-state
model.
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Figure 9-20. 3MC implementation of the Michaelis-Menten two-state model.

tor. In fact, the Tar receptor is known to have three different methylation sites [25]. In
this version of the model, the receptor is modeled as a six-state receptor where the singly
methylated, dually methylated and triply methylated states are explicitly modeled and each
one of these states can be in the active form (i.e. the attached CheA is phosphorylated) or
in an inactive form. For simplicity, we fuse the unmethylated state into the singly methy-
lated state since their behavior (in terms of activity) is very similar. Figure 9-26 shows the
six-state receptor model. In addition, since ligand binding is much faster (more than three
orders of magnitude) than methylation and phosphorylation, the effect of the ligand on re-
ceptor activation and methylation is modeled through its effect on the respective transition
probabilities by using an effective rate constant that is the weighted average of the rates in
the ligand bound and ligand unbound cases. Specifically, let α(Ln) be the probability that
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Figure 9-21. 3MC implementation of the Michaelis-Menten two-state model with CheA always attached
to the receptor.

a receptor is ligand bound at time n, i.e.

α(Ln) =
[L]n

KD + [L]n
(9.42)

and let kLtf1 be the rate constant for receptor methylation if the receptor is singly methylated
and ligand bound and ktf1 be the rate constant for receptor methylation if the receptor is

singly methylated but not ligand bound. Then, the effective rate constant, kefftf1 , for a singly
methylated receptor to be methylated at time n, i.e. to become dually methylated is defined
as:

kefftf1 ≡ α(Ln)k
L
tf1 + (1− α(Ln))ktf1 (9.43)

Similar expressions hold for the rate constants associated with transitions to higher methy-
lation states as well as for transitions from unphosphorylated (inactive) to phosphorylated
(active) states. In addition, in this model, demethylation is assumed to be independent of
ligand binding and the activity of the receptors.

Tables 9.8 and 9.9 give expressions for the transition probabilities as well as the values
of rate constants used. The values of the rate constants are obtained from Spiro et al.
[118] except for the rate constant for the methylation of the receptor in the ligand bound
case which is assumed to be 18 times higher than the rate constant for the methylation of
the receptor in the ligand unbound case. This value is in agreement with experimentally
measured values [118].

� 9.7.1 Dynamics of the state probabilities of the a3MC model

Figure 9-27(a) shows the state probabilities for the phosphorylated signaling molecules of
the six-state receptor a3MC model in response to the multistep input shown in Figure 9-
6. The motor bias is shown in Figure 9-27(b). Interestingly, the six-state receptor leads
to perfect adaptation and has a much larger response. In addition, as can be seen from
Figure 9-27(b) adding aspartate (i.e. increasing the stimulus) leads to a stronger response
than removing aspartate (i.e. decreasing the stimulus) which is in agreement with previous
results [15].
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Figure 9-22. Average number of phosphorylated CheY for varying concentrations of CheR (a) and CheB
(b) The average is based on simulations of 100 CheY molecules using the Michaelis-Menten two-state model
where CheB only demethylates phosphorylated receptors.
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Figure 9-23. Distribution of the phosphorylated CheY state for different concentrations of CheR using the
Michaelis-Menten two-state model where CheB only demethylates phosphorylated receptors.

The state probabilities in response to changes in the total concentration of CheB and
CheR were also computed and are shown in Figures 9-28 and 9-29 respectively. Surprisingly,
the model is robust to changes in the concentration of CheB but not CheR. Figure 9-28
shows that the response is insensitive to as much as a ten fold increase in CheB concentration
however as little as a 0.5 change in the total concentration of CheR leads to a loss of
perfect adaptation and a change in the magnitude of the response: higher CheR corresponds
to a smaller response while lower CheR leads to a magnified response. Understanding
the implication of these findings requires carrying out biological experiments to test the
predictions and measure their impact in vivo which is suggested as further work.

� 9.7.2 Stochastic simulations using the a3MC model

In order to further investigate the effect of the total concentration of CheR on the network
response, we performed stochastic simulations using the a3MC model. 1000 molecules of
CheY were simulated using different concentrations of CheR and 100 simulations. His-
tograms of phosphorylated CheY in the absence of stimulus are shown in Figure 9-30. The
histograms at different CheR concentrations have similar shape. Specifically, increasing
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Figure 9-24. Distribution of the phosphorylated CheY state for different concentrations of CheB using the
Michaelis-Menten two-state model where CheB only demethylates phosphorylated receptors.
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Figure 9-25. Adaptation error for different concentrations of CheR (a) and CheB (b) using the Michaelis-
Menten two-state model where CheB only demethylates phosphorylated receptors. Error bars correspond
to standard deviations around the average.

the CheR concentration does not make the distribution narrower as was observed for the
two-state model (Figure 9-23).
The average normalized adaptation time as well as the average percent adaptation error

for different CheR concentrations are shown in Figure 9-31 along with the corresponding
standard deviation (error bars). When the error bars are not visible, they are smaller than
the size of the circle representing the average. The results indicate that, as was observed for
the other models, the adaptation time decreases with increasing CheR concentrations while
the standard deviation decreases. The magnitude of the adaptation error, on the other
hand, greatly increases with any deviation from the wild type CheR concentration and the
standard deviation is extremely low.
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Figure 9-26. Interacting Markov chains model of the six-state receptor
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Figure 9-27. State probabilities for the six state receptor.
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Figure 9-28. State probabilities for varying concentrations of CheB using the six-state receptor model.
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ptf1[n] = (α(Ln)k
L
tf1 + (1− α(Ln))ktf1)× (∆tNR)/(kmtfAV V +NTtotpTma[n− 1])

ptf2[n] = (α(Ln)k
L
tf2 + (1− α(Ln))ktf2)× (∆tNR)/(kmtfAV V +NTtotpTma[n− 1])

ptf1p[n] = ptf1
ptf2p[n] = ptf2
ptb1[n] = γtbvrNBpbp[n− 1]
ptb2[n] = γtlbvrNBpbp[n− 1]
ptb1p[n] = ptb1
ptb2p[n] = ptb2
paf1[n] = (α(Ln)k

L
af1 + (1− α(Ln)kaf1)∆t

paf2[n] = (α(Ln)k
L
af2 + (1− α(Ln)kaf2)∆t

paf3[n] = (α(Ln)k
L
af3 + (1− α(Ln)kaf3)∆t

pab1[n] = γabbvrNBpb[n− 1] + γabyvrNY py[n− 1]
pab2[n] = pab1[n]
pab3[n] = pab1[n]
pbf [n] = γbfvrNA(pTmap[n− 1] + pT2map[n− 1] + pT3map[n− 1])
pbb[n] = kbb∆t
pyf [n] = γyfvrNA(pTmap[n− 1] + pT2map[n− 1] + pT3map[n− 1])
pyb[n] = kyb∆t

Table 9.8. Transition probabilities for the six-state receptor model. For bimolecular reactions, the relevant
γ is obtained from the relevant k (in M−1s−1) using the expression γ = k∆t

vrAV V
.

ktf1 = 0.17 kaf3 = 3.2kaf1
ktf2 = 0.1ktf1 kLaf1 = 0

kLtf1 = 18ktf1 kLaf2 = 1.1kaf1
kLtf2 = 18ktf2 kaf2 = 0.72kaf3
kmtf = 1.7× 10−6 kabb = 8× 105
ktb = 79992 kaby = 3× 107
ktlb = 79992 kbf = kabb
kaf1 = 15 kyf = kaby
kaf2 = 3kaf1 kyb = 20

Table 9.9. Six state receptor model rate constants.
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Figure 9-29. State probabilities for varying concentrations of CheR using the six-state receptor model.
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Figure 9-30. Distribution of the phosphorylated CheY state for different concentrations of CheR using the
six-state receptor model.
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Figure 9-31. Normalized adaptation time (a) and percent adaptation error (b) for different concentrations
of CheR using the six-state receptor.

� 9.8 Stochastic Analysis of Single Cell Behavior

The power of a stochastic modeling approach is that it provides a framework for studying
the stochastic nature and properties of cellular behavior. In particular, for the case of
bacterial chemotaxis, it allows investigation of the behavioral variability in single cells.
In fact, Korobkhova et al. [78] have recently experimentally measured this variability and
suggested that variability is a selected property of the bacterial chemotaxis adaptive system.
In particular, they analyzed the power spectrum of the binary time series constructed
by monitoring switching events of individual flagellar motors from cells in the absence of
attractant (unstimulated). Specifically, the time series is constructed from the clockwise and
counterclockwise rotations of a single motor. They found that correlations exist between
time points separated by up to 15 minutes which would be unexpected if using the standard
assumption that switching events are independent and governed by a Poisson process. In
this section, we use our model to generate similar time series and analyze the effect of
changes in CheR and CheB concentrations on these events.

� 9.8.1 Correlations underlying the binary time series of switching events

Binary time series of switching events of unstimulated bacteria were generated using three
models: the a3MC implementation of the six-state receptor model, the 3MC implementa-
tion of the updated two-state model with the enzyme kinetics implementation for CheR,
and the 3MC implementation of the Michaelis-Menten two-state model with CheB acting
only on phosphorylated receptors. For the six-state receptor model, each time series was
7200 seconds long while for the two-state receptor models, the time series were 2000 seconds
long. Simulations were carried out using wild type concentrations of CheR and CheB as
well as half and ten times the concentration of CheR and half and ten times the concen-
tration of CheB. The estimate of the power spectral density of the time series was then
computed using periodogram averaging with a rectangular window length of 10 seconds, an
overlap of half the window size, and a 218 point FFT. The power spectra of individual time
series with varying CheR concentration for the six-state receptor are shown in Figure 9-32.
Figures 9-33 and 9-34 show power spectra computed using the two-state receptor model
with stochastic CheR enzyme kinetics as well as the Michaelis-Menten two-state receptor
model with varying concentrations of CheR and CheB. The average power spectral density
is shown in Figure 9-35 for the Michaelis-Menten two-state receptor model obtained by
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Figure 9-32. Power spectral density of the six-state receptor a3MC model.

averaging ten individual power spectra.
The results in Figures 9-32, 9-33, 9-34, and 9-35 indicate that some degree of correlation

exist between different time points in the binary time series. Interestingly, while the correla-
tion seems to disappear for frequencies below 1Hz in the a3MC six-state receptor indicating
that events more than one second apart are uncorrelated, this does not seem to be the case
for the 3MC two-state model implementation. In the 3MC two-state model implementation,
correlations seem to exist between events more than 100 seconds apart for wild-type concen-
tration of CheR and CheB which is in agreement with the results reported by Korobkhova
et al. [78] even though the correlation observed for distant time points is much weaker than
the one reported in [78]. However, interestingly increasing the CheB concentration leads to
a less flat power spectrum (Figure 9-34b) i.e. it leads to correlations extended for longer
times in the binary time series. These results are interesting because based on the changes
in CheR concentration results one may speculate that temporal behavioral variability has
been selected for through evolution because small changes in CheR lead to a suppression of
this variability which seems to have been selected against. These results therefore suggest
that some degree of controlled temporal behavioral variability seems to have been selected
for. The advantages of this variability remain to be determined, However one can start
analyzing its effects using the kind of models developed here.

166



10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Hz

P
S

D

R x 1
R x 0.5
R x 10

Figure 9-33. Power spectral density of the two-state model with stochastic enzyme kinetics 3MC imple-
mentation.
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Figure 9-34. Power spectral density of the Michaelis-Menten two-state 3MC implementation.
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� 9.8.2 Distributions of run and tumble lengths
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Figure 9-36. Distribution of run lengths computed using the Michaelis-Menten two-state model.
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Figure 9-37. Distribution of tumble lengths computed using the Michaelis-Menten two-state model.

In addition to correlations in the binary time series, we have analyzed the nature of
the runs and tumbles durations for the 3MC Michaelis-Menten two-state receptor model.
Specifically, we have computed the distribution of run and tumble lengths for one simulation
lasting 2000 seconds as well as for an average of ten simulations which correspond to taking
the output from ten bacteria and averaging the lengths of each run and tumble. The
individual and average cell distributions of run and tumble lengths are shown in Figures 9-36
and 9-37 respectively as well as in Figure 9-38 on a logarithmic scale. The single cell results
are quantitatively and qualitatively very different from the average cell behavior stressing
the importance of single cell measurements. The distributions of run and tumble lengths for
a single cell with varying total concentration of CheR and CheB was also computed. The
results are plotted on a logarithmic scale and are shown in Figures 9-39 and 9-40. Again,
as was observed for the stochastic simulations of the signaling molecules, changes in the
concentration of CheB and CheR have opposite effects on changes in the distributions of
run and tumble lengths. Furthermore, the effect of one species (CheR or CheB) is opposite
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Figure 9-38. Distribution of run and tumble lengths computed using the Michaelis-Menten two-state
model.
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Figure 9-39. Distribution of run lengths for various CheB and CheR concentrations computed using the
Michaelis-Menten two-state model.

on the run lengths distributions than on the tumble lengths distributions. Surprisingly,
the nature of the effect on the distribution is very different whether the concentration of
CheR or the concentration of CheB is modified. As can be seen from Figures 9-39(a)
and 9-40(a), changing the CheB concentration simply shifts the distribution of runs and
tumbles length, i.e. it increases or decreases the duration of all tumbles or runs by the
same amount. However changing the CheR concentration has a very different effect. In
fact, changing the concentration of CheR has essentially little to no effect on the relative
number of short tumbles or runs however the relative number of longer tumbles and runs
is changed dramatically. This observation is much more marked for tumbles than for runs.

These results reveal some insights as to the mechanism of CheR and CheB actions and
the level of control that can be obtained by modifying their concentrations. Of course,
experiments need to be carried out to further validate the results. However, this type
of analysis stresses the importance of developing theoretical frameworks for studying the
stochastic behavior of single cells.
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Figure 9-40. Distribution of tumble lengths for various CheB and CheR concentrations computed using
the Michaelis-Menten two-state model.

� 9.9 Summary

In this chapter, we have demonstrated the use of the interacting Markov chains framework
developed in Chapter 7 and have expanded it to include enzymatic kinetics as well as approx-
imations based on Michaelis-Menten assumptions. The specific case of bacterial chemotaxis
was chosen because of the wealth of both theoretical and experimental information avail-
able for this system as well as the fact that it is naturally suited for stochastic modeling
since the behavior of the system is inherently random. We developed several versions of
chemotactic models and explored both the a3MC and 3MC implementations which allowed
us to draw conclusions about various aspects of the signaling pathway and the difference
between individual and average cell behavior. The main purpose of the results presented in
this chapter was to provide the reader with an in-depth example as to how our modeling
framework could be used to investigate signaling pathways. It also provided validation of
the models by comparing them to experimental data. While one can draw some hypotheses
and preliminary conclusions using the results presented here, biological experiments need
to be carried out to further validate the predictions of the models. It is the hypotheses and
predictions as well as the proposal of new sets of relevant biological experiments to validate
the model that is the most valuable contribution of this modeling technique.
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Chapter 10

Using Biology as a Metaphor: A
Surface Mapping Algorithm Based on

Bacterial Chemotaxis
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We have so far, in this thesis, focused on developing models for understanding the
transmission and processing of signals in biological cells. Our work has led to the formulation
of a new stochastic framework that was tested on a number of signaling networks including
bacterial chemotaxis. While the understanding of the mechanisms underlying biosignaling is
an important scientific endeavor, exploiting our understanding to formulate new algorithms
for non-biological applications is an important engineering objective. This chapter presents
a preliminary example of such an effort by formulating a new surface mapping algorithm
inspired by the bacterial chemotaxis pathway investigated in the previous chapter. This
algorithm falls under a general class of algorithms that use nature as a metaphor. Many of
these algorithms have been developed in the context of optimization. We therefore start by
presenting some examples of such algorithms in the context of optimization followed by the
formulation of a bacterial chemotaxis a3MC based algorithm for surface mapping. Results
based on different test functions are then presented and discussed.

� 10.1 Nature as a Metaphor

The field of optimization has been the source of many problems addressed by algorithms
inspired from Nature. It is defined in the context of an optimization problem which broadly
refers to the problem of having a different number of possible solutions and a clear notion
for assessing and comparing the quality of different solutions. Optimization is simply the
collection of techniques leading to the best (in some well defined meaning) possible solution
to the optimization problem. Some optimization problems can be fundamentally hard, i.e.
they cannot be solved in a reasonable time [64]. In these cases, approximate methods provide
efficient methods for solving hard problems by relaxing the constraint that the solution needs
to be the best, instead a ’good enough’ solution is generated. A number of approximate
methods use various natural phenomena as a source of inspiration for formulating new
optimization techniques. In the following subsections we briefly review a few examples of
such methods. For a more extensive review, the reader is referred to [36] and [108].

� 10.1.1 Simulated annealing

Simulated annealing falls under the broad class of local search methods where a special
’current’ solution is maintained and its neighbors, i.e. new candidates that are only slightly
different from it, are explored to find a better solution [36]. The algorithm is based on
an analogy between the way a metal cools and freezes into a minimum energy crystalline
structure (the annealing process) and the search for a minimum in a more general sense. It
is based on the algorithm of Metropolis et al. [91] which provides a means of finding the
equilibrium configuration of a collection of atoms at a given temperature. This algorithm
was connected to mathematical minimization by Pincus [103] and was later proposed as
the basis for an optimization technique for combinatorial problems by Kirkpatrick et al.
[77]. The implementation of the simulated annealing algorithm is very straightforward
and consists of four elements: a representation of possible solutions, a generator of random
changes in solutions, a means of evaluating the problem functions, and an annealing schedule
i.e. an initial temperature and rules for lowering it as the search progresses. Furthermore
the algorithm is guaranteed to converge to the global optimum as the number of iterations
approaches infinity if some conditions on the annealing schedule are met. For a detailed
description of the algorithm, the reader is referred to [70] and [33]. The major advantage of
the simulated annealing algorithm over other methods is that it avoids becoming trapped
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at local minima by using a random search which not only accepts changes that decrease the
objective function but also accepts, with a small probability, some changes that increase
it [66]. In the course of the optimization process the process of accepting deteriorations
decreases slowly towards zero.

� 10.1.2 Genetic algorithms

In contrast to simulated annealing algorithms, genetic algorithms are population based
search algorithms where the notion of a single current solution is replaced by a population
of current solutions. The algorithms generate new solutions by first selecting members of
the population as ‘parents’ and then making changes to the parents to produce ‘children’
[36]. In the case of genetic algorithms, the selection and reproduction process is inspired
by Darwin’s theory of evolution where problems are solved by an evolutionary process
resulting in a best (fittest) solution (survivor), i.e. the solution is evolved. Specifically, the
algorithm begins with a set of solutions which are represented by chromosomes and are
called a population. Solutions from one population are selected and used to form a new
population that is hopefully better than the first one. The selection process uses a fitness
function which assesses the suitability of each solution: the more suitable a solution is the
higher the chance it has to reproduce. This process is repeated until some condition, such
as the number of populations or the quality of the best computed solution is satisfied. In
addition, the reproduction process (creating new solutions using previously computed ones)
uses two diversifying operations inspired from biology: genetic recombination and mutation.
Genetic recombination is implemented through a crossover probability which is used to cross
over the parents to form new offspring (children). If no crossover was performed, offsprings
are exact copies of parents. Furthermore, a mutation probability (which is usually low)
mutates new offspring at each locus by, for example, flipping a bit in the individual’s bit
string representation. For more details on this algorithm, the reader is referred to [69] and
[132].

� 10.1.3 Ant colony optimization

Ant algorithms in general are multi-agent systems in which the behavior of a single agent
(artificial ant) is inspired by the behavior of real ants [36]. A particularly successful class
of algorithms is the Ant Colony Optimization (ACO) algorithms which are inspired from
experiments by Goss et al. [60] which showed that, after going through a brief transitory
phase, most ants use the shortest paths if faced with different lengths paths leading to the
same food source. ACO algorithms have been applied successfully to a large number of
difficult combinatorial problems like the quadratic assignment and the traveling salesman
problems, to routing in telecommunication networks, scheduling, and other problems [36].
The basic idea is that a large number of simple artificial agents are able to build good solu-
tions to hard combinatorial optimization problems via low-level based communications such
as the one used by real ants. A common memory which corresponds to the pheromone de-
posited by real ants is used in order for artificial ants to cooperate. The artificial pheromone
is then accumulated at run-time through a learning mechanism. A detailed description of
this class of algorithms can be found in [87].

� 10.1.4 Optimization based on bacterial chemotaxis

In the same way as ants, genetics, and physics have been an inspiration for optimization
algorithms, there have been a number of studies investigating the motion of bacteria as a
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ktf = 79992/1.2

ktlf = 79992/1.2 ×
√
8.403

ktb = 79992 × 1.2
ktlb = 79992 × 1.2/

√
8.403

kaf = 45
kabb = 8× 105
kaby = 3× 107
kbf = kabb
kbb = 0.35
kyf = kaby
kyb = 20

Table 10.1. Model rate constants used for the surface mapping algorithm.

potential metaphor for optimization techniques specifically for the search for the maximum
of a function [29], [30], [8], [16], [17], [98], and [99]. While the algorithms developed in these
studies are inspired from bacterial chemotaxis, they are mainly behavioral algorithms i.e. are
built using our understanding of the behavior of bacteria searching for food. In particular,
they do not incorporate mechanistic knowledge as to how bacteria process environmental
information internally leading to system behavior. For example, none of these algorithms
incorporate the notion of adaptation which, as was investigated in the previous chapter, is
a fundamental system property allowing the bacterium to have a wide dynamic range.

In the remainder of this chapter we present a preliminary formulation of an algorithm
based on the molecular mechanism of bacterial chemotaxis. The potential applications of
the algorithm is extended beyond the search for the maximum of a function to the problem
of surface mapping and flattening.

� 10.2 An Interactive Markov Chains Algorithm for Surface Mapping Based on
Bacterial Chemotaxis

Bacterial chemotaxis is ultimately about searching a volume for nutrients (aspartate) where
the bacterium moves towards higher nutrient concentrations and moves away from lower
concentrations or repellents effectively mapping the nutrient concentration surface. As a
result, bacteria can be thought of as surface mappers or optimizers whereby they scan a
three-dimensional function (the nutrient concentrations) and try to spend most of their time
on the function’s maxima. This behavior can be directly translated into a signal processing
algorithm that uses local information to evaluate and map a function. While most current
optimization algorithms inspired from Nature focus on searching for the extremum of a
function, the algorithm we formulate here provides an approximate solution to the value
of a function at every point in the space and therefore constitutes a broader optimization
algorithm. Later in this chapter, we will modify the algorithm to solve a newly formulated
optimization problem consisting of flattening a surface. In this section, we formulate the
surface mapping algorithm and we evaluate its performance in the following sections.
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� 10.2.1 BASM: Bacterial Algorithm for Surface Mapping

The Bacterial Algorithm for Surface Mapping (BASM) we propose is based on the interact-
ing Markov chains model of bacterial chemotaxis presented in the previous chapter. The
model schematic is the same as the one in Figures 9-3, 9-4, and 9-5 in the previous chapter
where the interactions are given by Tables 9.1, 9.3, and 9.4. However the parameter values
we use here are modified in order to amplify the response of the network and reach perfect
adaptation. This is achieved by scaling the rate constants for the methylation and demethy-
lation of the receptor as is shown in Table 10.1, increasing the rate constants associated
with the backward probabilities in the motor chain as shown in Table 10.2, and changing
the activities of the different receptor states as follows:

A(T ) = 0.15

A(Tm) = 0.95

A(TmL) = 0.4

A(TL) = 0

kmf1 = 7× 106 kmb1 = 1.43× 2.5
kmf2 = 6× 106 kmb2 = 2.86× 2.5
kmf3 = 5× 106 kmb3 = 4.29× 2.5
kmf4 = 4× 106 kmb4 = 5.72× 2.5
kmf5 = 3× 106 kmb5 = 7.15× 2.5
kmf6 = 2× 106 kmb6 = 8.58× 2.5
kmf7 = 1× 106 kmb7 = 10.01 × 2.5

Table 10.2. Motor model rate constants used for the surface mapping algorithm.

The a3MC implementation of the model is used in order to make the algorithm more
efficient. Specifically, the state probabilities are determined and only the relevant Markov
chain, the motor chain, is stochatically simulated. Figures 10-1 and 10-2 show the dynamics
of the state probabilities for a step increase in input from 0 to 10−3M and from 10−3M to
10−6M respectively. The initial transient response corresponds to the chains equilibrating
and should be ignored. When running the algorithm, the chains are initially trained so
that they equilibrate before processing the input thereby eliminating the initial transient
response. The figures show the amplified magnitude of the response and perfect adaptation
over different input stimuli. Using this model as a basis, we formulated both two-dimensional
and one-dimensional versions of the algorithm.

� 10.2.2 Two-dimensional BASM

The motion and position of the bacterium in a two-dimensional search space can be char-
acterized by three variables: (1) position, i.e. its current (x,y) coordinates, (2) angle or
direction of motion, and (3) the state of the motor, i.e. running (rotating counterclockwise)
or tumbling (rotating clockwise) between time indices n and n+1. During a run, the posi-
tion changes but the direction does not while during a tumble the direction changes while
the position remains the same.

177



0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
step height= 0.001M, step starts at 100s, default =0M

Time in s

S
ta

te
 P

ro
ba

bi
lit

y

[Ap]
[Yp]

(a)

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
step height= 0.001M, step starts at 100s, default =0M

Time in s

S
ta

te
 P

ro
ba

bi
lit

y

[Bp]
[Methylated Receptors]

(b)

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
step height= 0.001M, step starts at 100s, default =0M

Time in s

S
ta

te
 P

ro
ba

bi
lit

y

[T]
[Tm]
[TL]
[TLm]

(c)

0 20 40 60 80 100 120 140 160 180 200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
step height= 0.001M, step starts at 100s, default =0M

Time in s

S
ta

te
 P

ro
ba

bi
lit

y

Bias = p
run

[n]

(d)

Figure 10-1. State probabilities time evolution for a step input stimulus at 100s from 0 to 10−3M. (a) [Ap]
and [Yp], (b) [Bp] and methylated receptors, (c) receptor states, (d) Motor bias.

Tumbles

A simple model is used to encode the effect of a tumble: for each tumble, the angle of the
cell rotates counterclockwise or clockwise with equal probability. Note that the cell rotation
is distinct from the flagellar rotation which is always in the clockwise direction for tumbles.
The direction of rotation is constant throughout the tumble and a constant angular velocity
(wr) is used to determine the total change in direction due to the tumble. Specifically, the
equation governing the angular direction in rad/s during a tumble is as follows:

θ[n+ 1] = θ[n] + wr × dt (10.1)

where dt is the sampling period in seconds and θ[n] is the angular direction at time n.
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Figure 10-2. State probabilities time evolution for a step input stimulus at 100s from 10−3M to 10−6M.
(a) [Ap] and [Yp], (b) [Bp] and methylated receptors, (c) receptor states, (d) Motor bias.

Runs

The run speed of a bacterium is constant and given by v. As a result, the updated position
of the bacterium during a run is given by:

x[n+ 1] = x[n] + v × dt× cos(θ[n]) (10.2)

y[n+ 1] = y[n] + v × dt× sin(θ[n]) (10.3)

Motor behavior: single motor case

In one scheme the motor state is updated every dt, which means the cell could potentially
switch between a run and a tumble every dt in the single flagellum per cell case.

An alternative scheme effectively simulates a two-state motor (run and tumble) whose
transition probabilities are based on the 8 state model. That is once a motor is in run mode,
the probability of exiting the run state is:

p56P (Mn = 5)

P (Mn = 5) + P (Mn = 4) + P (Mn = 3) + P (Mn = 2) + P (Mn = 1)
(10.4)
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where p56 represents the transition probability from state 5 to 6 at time index n, and Mn is
the state of the motor at time n. This scheme amounts to finding the probability of being
in the ’edge state’, i.e. the state that is one transition away from changing the behavior
of the motor, and multiplying that by the transition probability from that edge state to a
tumble state. The expression is similar for the probability of transitioning from a tumble
to a run.
Another scheme is to only check on the motor state every dt′ = L × dt where L is an

integer greater than 1. In this scenario, L should be large enough so that the effect due to
a change in input ligand concentration propagates to the CheY or motor chains. One can
then ignore all the states the motor is in between dt′ checks or alternatively take an average
of the motor states for the past dt′.

Multiple motors/flagella

There are about 6 to 10 flagella/motors per bacterium [94]. As a result, we can use multiple
motors in our simulation such that a single motor cannot determine on its own whether
the cell is running or tumbling. Motors are simulated independently and overall behavior
is determined using a voting scheme. Specifically, if half the flagella or more are in the run
state, the cell runs, otherwise it tumbles. We chose an odd number of tails so that there is
always a clear winner when comparing the number of motors in the run and tumble states.
An alternative scheme is to average the states of the motors, and compare that average
to a threshold between the edge run and tumble states to decide whether the cell runs or
tumbles. This scheme suggests that a motor can be ’tumbling more’ if it has more CheYp
bound than another motor that is also in a tumble state, and similarly for motors in a run
state.

Algorithm flow

The algorithm is initialized with the cell position, direction, internal states, and motor state
(run or tumble) at time 0. The flow of the algorithm is then as follows, for every dt:

1. Find current ligand concentration using current position.
2. Update the motor state using the current concentration and internal states.
3. Update the internal states and probabilities using current concentration and internal states.
4. Update position using current position and motor state.
5. go to 1 until reaching the simulation end time.

� 10.2.3 One-dimensional BASM

The one dimensional implementation of the algorithm has exactly the same formulation as
the two-dimensional case except that the cell moves in the positive x direction when the
cosine of the angle is positive, and in the negative x direction when the cosine is negative.
The speed of the run is constant and is independent of the angle.
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� 10.3 One-Dimensional Simulations

� 10.3.1 Unimodal test function

We performed simulations of BASM on a one-dimensional function. Specifically, the test
function was:

f(x) = 10−4e−|
3
4
x| (10.5)

and is plotted in figure 10-3. Each simulation was run for 1000 seconds where the initial
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Figure 10-3. One-dimensional test function.

starting point for the cell was drawn from a uniform distribution between x = −10 and
x = 10 and was equally likely to start in the +x or −x direction. We performed 10 to 40
such simulations for each condition described below. The default values for the run speed,
v, and angular velocity, wr, were 0.75 units/s and π rad/s respectively. Density functions
displaying how often the bacterium visited certain parts of the x-axis (the search space)
were computed as well as time plots for the internal variable [Y p], the input function that
the bacterium sees as it is traveling, and the points where the direction of running switches
between the positive and negative x directions. This last measurement gives an indication
of how long tumbles last.
Figure 10-4 shows the results for the simulation using a one motor configuration. Figure

10-5 shows the results for the simulation using nine motors as described earlier. Figure 10-6
shows the results for the simulation using one motor but where now the angle of rotation
is only in the counterclockwise direction for a tumble. This change will effectively cause
the run direction to change only after the cell tumbles for a long enough time. Figure 10-7
shows the results for the simulation using nine motors but with the angle of rotation only in
the counterclockwise direction for a tumble (as in the previous figure), and with a factor of
two increase in the backward probabilities of the motor Markov chain (i.e. the probability
that lead to the unbinding of CheYp). This last change makes the backward transition
probabilities more comparable to the transition probabilities in the forward direction, ef-
fectively leading to shorter tumbles and longer runs. Note the oscillations in the time plots
of CheYp. The density plot which is flat near zero also suggests that changes in directions
rarely occur near the maximum of the function. In order to check which set of conditions is
driving these oscillations, we performed each combination of two out of the three conditions
and checked the behavior. The closest behavior to the one seen in the previous figure is the
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Figure 10-4. Simulations using the default parameters and a one motor configuration. (a) individual
bacterium variables. (b) Average density plot using 10 simulations.
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Figure 10-5. Simulations using the default parameters and a nine motor configuration. (a) individual
bacterium variables. (b) Average density plot using 40 simulations.

modification that makes the angle always rotate counterclockwise during a tumble together
with the backward rate constants multiplied by 2. The results from this last modification
are shown in Figure 10-8.

� 10.3.2 Multimodal test function

We also performed one-dimensional BASM simulations on a multimodal function. Specifi-
cally, the test function was:

f(x) = 5× 10−5
∣

∣

∣

∣

sin(0.25x)

0.25x

∣

∣

∣

∣

(10.6)

which is shown in Figure 10-9. 10 to 40 simulations were performed for different conditions.
In each simulation, the bacterium was dropped uniformly between -10 and +10 and each
run lasted 1,000 seconds. The results for the nine motor simulations are shown in Figure
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Figure 10-6. Simulations using the rotation in only one direction. (a) individual bacterium variables. (b)
Average density plot using 10 simulations.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

time(s)

[Y
p]

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1
x 10

−4

time(s)

[in
pu

t]

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

time(s)

R
un

 d
ire

ct
io

n 
sw

itc
he

s

(a)

−30 −20 −10 0 10 20 30
0

500

1000

1500

(b)

Figure 10-7. Simulations using the rotation in only one direction, 9 motor chains, and an increase in the
motor backward probabilities by a factor of two. (a) individual bacterium variables. (b) Average density
plot using 40 simulations.

10-10 and correspond to a run speed of 0.75 units/s and an angular velocity of π rad/s.
Figure 10-11 shows the average density of 40 simulations using a reduced run speed of 0.6
units/s while keeping the angular velocity at π rad/s. The angular velocity in Figure 10-12
is increased to 1.25π rad/s while the run speed is further decreased to 0.5 units/s.

The results show that while the bacterium spends most of its time on the main lobe of
the test function, it also spends a fair amount of time on the side lobes thereby mapping
the different modes of the test function.
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Figure 10-8. Simulations using the rotation in only one direction, and an increase in the motor backward
probabilities by a factor of two. (a) individual bacterium variables. (b) Average density plot using 10
simulations.
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Figure 10-9. One-dimensional multimodal test function.

� 10.4 Two-Dimensional Simulations

� 10.4.1 Unimodal test function

We also simulated the two-dimensional version of BASM on different test functions. The
test function used in the first set of simulations is given by:

f(x, y) = 10−4e−0.5
√
x2+y2 (10.7)

and is shown in Figure 10-13. In these simulations, the nine motor configuration is always
used and the cell is allowed to reach steady state with the initial concentration corresponding
to the concentration of the test function at its initial position before the search begins.

Figure 10-14 shows a trace of the bacterium running for 5000 seconds using double the
backward probabilities for the motor, a running speed of 0.3 units/s and an angular velocity
of 2π rad/s. Figure 10-15 shows a trace and density of a bacterium running for 5000 seconds
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Figure 10-10. Multimodal simulations using the nine motor configuration. The test function (scaled) is
shown in solid red. (a) individual bacterium variables. (b) Average density plot using 10 simulations.
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Figure 10-11. Average density plot using 40 multimodal simulations with nine motor configuration. v = 0.6
units/s and wr = π rad/s.

dropped uniformly on a radius of 7 around (0,0) and with a uniform angle using double
the backward probabilities for the motor, a running speed of 0.3 units/s and an angular
velocity of 2π rad/s. The average density plot of ten runs lasting 4000 seconds each and
using a running speed of 0.3 units/s and an angular velocity of 10 π rad/s is given in Figure
10-16. The results show that the bacterium spends most of its time on the areas where
the magnitude of the function is high.

� 10.4.2 Multimodal test function

The multimodal test function we used in the second set of simulations is given by:

f(x, y) = 5× 10−5 sin(x/4) sin(y/4)
(x/4)(y/4)

(10.8)

and is shown in Figure 10-17. The average density plot of ten runs lasting 4000 seconds each
and using a speed of 0.3 units/s and an angular velocity of 10 π rad/s is given in Figure 10-
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Figure 10-12. Average density plot using 40 multimodal simulations with nine motor configuration. v = 0.5
units/s and wr = 1.25π rad/s.

Figure 10-13. Two-dimensional test function.

18. In these simulations, the bacterium was uniformly dropped at the start of each run on a
radius of 7 units around (0,0) and with a uniform angle. The double backward probabilities
version of the parameters was used along with the nine motor configuration. While the
results are not as dramatic as for the other test functions, the bacterium is still able to map
the different modes of the function by spending more time on them then elsewhere in the
function space.

� 10.5 Bacterial Algorithm for Surface Flattening (BASF)

The chemotaxis pathway allows bacteria to search their environment for nutrients and move
towards higher nutrient concentrations. However, as bacteria move, they eat and therefore
change the nutrient concentration in their environment. As a result, these organisms are
not only mapping the nutrient surface but effectively flattening it by reducing its value at
the place they visit.

One can formulate by analogy a surface flattening algorithm where a surface rewriting
step is added to the BASM algorithm presented in the previous sections. We call this
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Figure 10-14. Two-dimensional bacterial run.
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Figure 10-15. Two-dimensional run using a uniformly dropped bacterium.

algorithm: Bacterial Algorithm for Surface Flattening (BASF). Specifically, every time a
point in the surface is read as an input to BASM, it is rewritten by reducing the value of
the surface at that point by the flattening factor. In the one-dimensional version of BASF,
the surface update is given by:

f [x, n+ 1] = ǫf [x, n] (10.9)

where f [x, n] is the value of the function at x at time n and 0 < ǫ < 1 is the flattening
factor.

We implemented a one-dimensional version of BASF using the exponential test function
shown in Figure 10-9. The default parameters and nine motor configuration were used for
the a3MC model implementation. The run speed was 0.75 units/s and the angular velocity
was π rad/s. The flattening factor was 0.8. The discretization step, which determines the
region of the function being reduced in one step, was vdt. Furthermore, the search space
was limited to the closed interval [-90 90], i.e. if the bacterium reached -90 or 90, it would
stay at that position until it switched directions. We performed 20 simulations that lasted
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Figure 10-16. Average density plot of 10 uniformly dropped bacteria.

Figure 10-17. 2D multimodal test function.
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Figure 10-18. Average density of 10 runs using the multimodal test function.
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Figure 10-19. Surface flattening using one bacterium.
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Figure 10-20. Average of 20 independent runs using one bacterium.
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Figure 10-21. Average of two simultaneous bacteria.

20,000 seconds each. For each simulation, a bacterium was uniformally dropped in the
interval [-10 10] and the total area under the surface was recorded as a function of time.

Figure 10-19 shows the total surface sum as a function of time for one bacterium as
well as results obtained using an unbiased random walk, i.e. a bacterium that does not
use surface information to guide its motion, that is the input to the a3MC model is always
zero for that bacterium. The average of twenty runs is plotted in Figure 10-20. The results
suggest that the BASF algorithm lead to faster surface flattening than the unbiased random
walk.

We have also implemented a two-bacteria version of the algorithm where two bacteria
are simultaneously dropped and evolve according to the BASF algorithm. The average of
16 runs using two simultaneous bacteria is shown in Figure 10-21 along with the average
obtained from 10 runs of the unbiased random walk. As expected, using two bacteria leads to
a faster flattening of the surface than using one bacterium. However Figure 10-21 indicates
that the difference between the unbiased random walk and BASF is not as pronounced as
for the one bacterium case. This may be due to the limited size of the flattening space used.
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� 10.6 Summary

In this chapter, we have started to explore the potential of using our understanding of
cellular signaling to formulate new signal processing algorithms by developing algorithms for
surface mapping and flattening based on bacterial chemotaxis. While the results presented
here are still preliminary, there would seem to be potential advantages of such algorithms,
namely simplicity and parallelism. These algorithms can be implemented on a collection
of cheap, dispensable sensors that can be deployed in a field where a surface of interest
(such as the chemical concentration of a given agent) needs to be mapped and potentially
neutralized (flattened). Obviously, in order to determine the power of these algorithms, one
needs to benchmark the performance of these algorithms against other common algorithms
such as those presented in the first section of this chapter. This type of analysis is the
subject of our future research.
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Chapter 11

Conclusions and Contributions
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In this thesis, we have developed new frameworks directed towards understanding the
information processing in biological cells at different levels of abstraction. We have also
presented a preliminary example as to how the results might be exploited to develop a new
generation of algorithms for engineered distributed networks.

� 11.1 Graph Theoretic Modeling

At the highest modeling level, the focus was on the network topology rather than on the dy-
namical properties of the components of the signaling network. In this regime, we focused on
interconnectivity of nodes and introduced concepts from random graph theory to examine
and analyze the distribution and properties of the network graph. Among the contributions
of this thesis is the first graph theoretic model of the whole-genome relationship between
cell genotype (genomic content) and phenotype (pathophysiological behavior) in response
to toxic agents (chemicals and radiation) in the environment, for yeast as the currently most
genomically-complex available experimental system. This model enabled exploration of how
a biomolecular network processing input stimuli leading to output behavior in living cells
operates in terms of network topology properties. Specifically, we have applied protein-
protein interaction network analysis to the global genotype/phenotype data-set recently
developed for the recovery of S. cerevisiae from exposure to DNA damaging agents. The
data was analyzed in the context of the full yeast interactome and in newly defined network
structures. On average, essential and damage-recovery proteins displayed greater direct in-
teractions, smaller shortest-path-length characteristics, increased connectedness and higher
local clustering than non-essential and no-phenotype proteins (i.e. proteins not required for
recovery from DNA damage) respectively. We have also shown that other functional yeast
networks do not necessarily share similar quantitative features. These results suggest that
cells initiate highly coordinated responses to damage. With mapped genotype/phenotype
information, we have further identified toxicologically-important protein complexes, path-
ways, and modules. In addition, we have presented a method for combining expression
profiling data with network information to enhance the probability of predicting pheno-
typic behavior. And through partitioning analysis, we have identified specific interactions
that could be tested for essentiality.

� 11.2 Multiresolution Modeling

Another contribution of the thesis is the development of a new model referred to as Markov
modulated Markov chains, for examining the dynamics of cellular signal processing based
on interacting Markov chains. This model represents a unified framework for simultane-
ously studying the fluctuations of signaling pathways (stochastic behavior) and computing
their average behavior therefore allowing modeling at multiple resolutions within the same
framework. The use of this framework was demonstrated on two classical signaling net-
works: the Mitogen Activated Protein Kinase (MAPK) cascade and the signaling pathway
underlying bacterial chemotaxis.

� 11.3 Biologically Inspired Surface Mapping and Flattening Algorithm

In the thesis, we have started exploring the potential of using our understanding of cellular
signaling to formulate novel signal processing algorithms by developing a surface mapping
and flattening algorithm based on bacterial chemotaxis. This algorithm can be implemented
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on a collection of cheap, dispensable sensors that can be deployed in a field where a surface
of interest (such as the chemical concentration of a given agent) needs to be mapped and
potentially neutralized (flattened).
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Appendix A

Randomizations
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Table A.1. Rank of each statistic in the tested network with respect to the values obtained in the 1,000
randomized sets.

The quantiles of each randomized data set are plotted versus the quantiles of a standard
Normal distribution in Figure A-1. The purpose of this kind of plot is to determine whether
the sample is drawn from a Normal (i.e. Gaussian) distribution. If the sample comes from
a Normal distribution, even if one distribution is shifted and re-scaled from the other, the
plot will be linear.

198



−4 −3 −2 −1 0 1 2 3 4
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data (noessrand. DR. Deg. avg.) versus Standard Normal

(a) Average degree

−4 −3 −2 −1 0 1 2 3 4
4.2

4.25

4.3

4.35

4.4

4.45

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data (noessrand. DR. Char. Path. lg.) versus Standard Normal

(b) Characteristic path length

−4 −3 −2 −1 0 1 2 3 4
450

500

550

600

650

700

750

800

850

900

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data (noessrand. DR. LC size) versus Standard Normal

(c) LC size

−4 −3 −2 −1 0 1 2 3 4
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data (noessrand. DR. Cavg) versus Standard Normal

(d) Average clustering coefficient

−4 −3 −2 −1 0 1 2 3 4
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data (noessrand. DR. C>0) versus Standard Normal

(e) C > 0

−4 −3 −2 −1 0 1 2 3 4
0.3

0.35

0.4

0.45

0.5

0.55

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data (noessrand. DR. isol. nodes) versus Standard Normal

(f) Isolated nodes

Figure A-1. Representative Normal quantile-quantile (q-q) plots for different measures of the randomized
networks corresponding to the damage-recovery category.
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