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Abstract

Techniques for developing low-complexity, robust Digital Signal Processing (DSP) algo-
rithms with low-power consumption have become increasingly important. This thesis ex-
plores a framework, discrete-time randomized sampling, which allows the design of algo-
rithms that meet some desired complexity, robustness or power constraints. Three distinct
sampling schemes are presented based on randomized sampling of the input, of the filter im-
pulse response, and iterative randomized sampling of the filter impulse response. Additive
noise models are derived for each approach and error characteristics are analyzed for both
white and colored sampling processes. It is shown that semi-white iterative randomized
sampling leads to better error characteristics than white sampling through higher SNR as
well as noise shaping. Discrete-time randomized sampling is then used as a filter approxima-
tion method and conditions are derived under which a randomized sampling approximation
to the Wiener filter is guaranteed to lead a smaller mean-square estimation error than the
best constrained LTI approximation. A low-power formulation for randomized sampling is
also given and the tradeoff between power consumption and output quality is examined and
quantified. Finally, this framework is used to model a class of random hardware failures
and two algorithms are presented that guarantee a desired SNR level at the output under
a given probability of hardware failure.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Electrical Engineering
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Chapter 1

Introduction

Signal processing algorithms are designed to satisfy a variety of constraints depending on

the application and the resources available. For example, when the amount of computation

or the processing time is an issue, algorithms should be optimized for computational or time

efficiency. Low-power algorithms, on the other hand, are used in environments where power

is limited such as battery-powered mobile devices. Other situations present the need for

robust algorithms in order to maintain a given performance level during hardware failure.

Recently, with the rising demand for small mobile devices, there has been an increasing

need for efficient, reliable, and low-power signal processing algorithms. In this thesis, we

define a framework, discrete-time randomized sampling, with potential applications in the

areas of hardware failure modeling, efficient algorithm development, and low-power signal

processing. By randomly sampling signals or filters, this approach allows the modification

of pre-existing algorithms to meet certain complexity, robustness or power constraints.

Randomized sampling is defined within the broader randomized signal processing frame-

work used when the signal conversion or processing procedures are performed stochastically.

Randomized signal processing is therefore fundamentally different from statistical signal

processing where randomness is only used as a representation of signals. When sampling is

performed at random time-intervals, it is described as randomized. Most of the randomized

sampling literature starts from a continuous-time signal and thus consists of a randomization

of the sampling process. Bilinskis and Mikelsons [2] survey the current results and issues in

this area. By dealing with randomness exclusively in discrete-time, the framework presented

by this thesis is distinct from the common approach found in the literature. Discrete-time
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randomized sampling could therefore be thought of as randomized down-sampling.

The approach developed in this thesis leads directly to three major applications in the

areas of efficient convolution, low-power signal processing and hardware failures. In the

remainder of this chapter, we present some relevant background in each of these areas. We

then conclude with an outline of the thesis.

1.1 Efficient Convolution

Linear time-invariant (LTI) systems are widely used in signal processing applications, mainly

because they can be analyzed in great detail and present good models of many physical phe-

nomenon. A major advantage of discrete-time LTI systems is their ability to be fully char-

acterized by the convolution sum. Implementing a filter is thus equivalent to implementing

a convolution, and since processing power is usually an issue, efficient implementations tend

to be favored. In general, convolution can be implemented either in the time or frequency

domains. The fast Fourier transform (FFT) algorithm made the frequency-domain imple-

mentation of convolution much more computationally attractive since the implementation

of a length N convolution using block processing and fast Fourier transforms requires an

order of NlogN multiplications per block of input, while the same operation implemented

directly in time requires N2 multiplications. However, frequency-domain processing leads

to delays of the order of the filter length which is undesirable in some practical applications

such as echo cancellation. In fact, many current Digital Signal Processing (DSP) chips

implement convolution in time which can result in a very large computational complexity

in applications where the filters have several thousands of coefficients. There have been sev-

eral approaches to deal with this increased complexity. One class of approaches generates

algorithms with exact solutions, i.e. no errors are introduced. Examples of such approaches

include the parallel-decomposition algorithm of Wang and Siy [20] and the non-uniform

partitioned block frequency-domain adaptive filter of Egelmeers and Sommen [7]. While

these methods can be attractive because they do not introduce any distortions, they often

either require specialized hardware or involve complex filter manipulations.

Simpler efficient algorithms can usually be obtained, at the cost of errors, from filter

approximation techniques which reduce the filter length, and therefore reduce the amount of

multiplications and additions in the convolution. Two common approximation techniques

16



are the window method and the Parks-McClellan algorithm. While both tend to be used

to obtain FIR filters from IIR filters, these procedures can also be used to approximate

long FIR filters with shorter ones. By truncating the original filter, the rectangular window

method provides the best mean-square approximation to a desired frequency response for a

given filter length, i.e. it minimizes
∑
n h
2
e[n] where he[n] is the error filter which is defined

as the difference between the original filter and the truncated filter. The Parks-McClellan

algorithm, on the other hand, minimizes the maximum magnitude of the error filter, i.e. it

minimizes Max(|He(e
jω)|).

In this thesis, we present randomized sampling as an alternative filter approximation

technique and, therefore, a method for efficient computation. In fact, by randomly setting

some of the filter coefficients to zero, randomized sampling can be used as a procedure to

perform only a subset of the multiplications in the convolution sum. An investigation of

this technique will be carried out in Chapter 3.

1.2 Low-Power Signal Processing

Another area of interest in signal processing, power consumption, gained more attention

in the early 90’s due to the advances in storage and display technologies. These advances

significantly reduced the power consumption due to the transfer of data and, as a result,

increased the proportional power consumption by the processing modules [14]. A current

major concern when developing signal processing algorithms for portable devices is to min-

imize the total power consumption in order to maximize the run-time while minimizing

battery size [5]. In general, power can be minimized at four different levels: technology, cir-

cuit approaches, architectures and algorithms. Various techniques have been developed to

reduce power consumption in digital circuits and research in this area is gaining tremendous

attention. Brodersen et al. [3], present a good discussion of the relative gain to be expected

from each of these areas while Evans and Liu [8] survey several low-power implementation

strategies for common processing modules.

While both peak and time-averaged power are important factors in low-power systems

design, battery size and weight are only affected by the average power. The time-averaged

power consumption in CMOS digital circuits can be divided into four different components
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due to short-circuit, leakage, static, and switching as shown in equation 1.1 [13].

Paverage = Pshort-circuit + Pleakage + Pstatic + Pswitching (1.1)

All four components are affected by the supply voltage, Vdd. In addition, the first three

components depend on the short-circuit, leakage, and static currents respectively while the

last component depends on the load capacitor, CL, the operating or switching frequency,

fs, and a constant, p, also known as the activity factor, which represents the probability

of a power consuming transition. Table 1.1 gives mathematical expressions for all four

components.

Short-circuit power Pshort-circuit = Ishort-circuitVdd

Static power Pstatic = IstaticVdd

Leakage power Pleakage = IleakageVdd

Switching power Pswitching = pCLV
2
ddfs

Table 1.1: Individual power components contributing to the overall time-averaged power
consumption.

In general, the switching power component is responsible for more than 90% of the total

average power consumption [3]. As a result, switching power has gained great attention in

low-power design. In general, algorithm design has little or no effect on power consumption

resulting from leakage, short-circuit, or static, but it can play a major role in reducing the

power due to switching. To first order, the average switching power consumption of a signal

processing task can be written as:

P̃switching =
∑
i

NiCiV
2
ddfs (1.2)

where Ci is the average capacitance switched per operation of type i corresponding to ad-
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dition, multiplication, storage, or bus access. Ni is the number of operations of type i

performed per output sample. Vdd is the operating supply voltage while fs is the switch-

ing frequency. Traditionally, the switching frequency is fixed in many signal processing

applications [6] and Ci is adjusted at the physical or circuit level. As a result, algorithm

optimization for low-power processing has been mainly concerned with minimizing Ni. Sev-

eral filter approximation methods have been used to explore low-power algorithms. Ludwig

et al. [12], for example, use approximate processing to adaptively reduce the number of

operations switched per sample based on signal statistics. They propose an adaptive fil-

tering technique applied to frequency selective filters which dynamically chooses the lowest

filter order that is guaranteed to achieve a preset output SNR. Pan [18], on the other hand,

reduces power dissipation using approximate processing by taking advantage of the nature

of audio signals. He uses adaptive filtering algorithms to reduce power by dynamically

minimizing digital filter order. Chapter 4 of this thesis presents an algorithmic approach

to low-power based on randomized sampling. Considerable power savings are obtained by

reducing Ni, Vdd, and fs in equation 1.2.

1.3 Hardware Failures

With the increase in dependability on digital systems, robustness is yet another issue to

address when designing signal processing algorithms. Even with the use of high quality

components and design techniques, there is always a non-negligible probability of system

failure: robust algorithms should therefore be designed to deal with such failures. Most

of the work in this area has been in the development of fault tolerant systems which are

achieved through redundancy in hardware, software, information and/or computation [17].

Jiang et al. [10], for example, use adaptive fault tolerance for FIR filters to compensate for

coefficient failures in an FIR adaptive filter by adding extra coefficients. Because of cost

constraints, most of the fault tolerance strategies tend to address only single, statistically

independent faults. However, multiple faults are very common especially with complex in-

tegrated systems and thus are receiving increased attention. Another disadvantage of the

fault tolerance strategy is that it usually leads to very complex and inefficient algorithms.

This can be particularly undesirable if only an acceptable, and not necessarily exact, perfor-

mance is needed. An alternative approach to fault tolerance briefly explored by this thesis
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is the design of robust algorithms that are guaranteed to maintain a given signal-to-noise

ratio in the presence of some types of hardware failures. This approach, while it does not

guarantee a fault-free system, is generally much simpler and can be implemented efficiently.

Chapter 5 lays out the hardware failure model and presents techniques for maintaining a

desired level of performance under some types of hardware failures.

1.4 Thesis Outline

The thesis is organized as follows: in Chapter 2 we define the discrete-time randomized

sampling framework by presenting three distinct sampling algorithms. Error models and

properties are also derived for each sampling procedure. Discrete-time randomized sampling

is then presented in an approximate filtering context in Chapter 3. Performance measures

are defined and the randomized sampling algorithms are compared to LTI approximate pro-

cessing techniques such as the rectangular window method. A low-power digital filtering

formulation for discrete-time randomized sampling is given in Chapter 4. Power savings are

evaluated and the trade-off between power and system performance is analyzed. Chapter 5

defines hardware failure models where the algorithms described in Chapter 2 are representa-

tive of the distortion introduced by the faulty system. As a result, techniques are derived to

guarantee a desired performance level under a given probability of failure. Finally, Chapter

6 concludes by summarizing the contributions of the thesis and further research directions

are suggested.
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Chapter 2

Discrete-Time Randomized

Sampling

In this chapter, we define discrete-time randomized sampling and present three different

sampling approaches in the context of LTI filtering. We then derive linear noise models

for each case and give second-order characteristics for the errors resulting from both white

and colored sampling processes. Further error analysis is then presented by examining the

in-band SNR obtained from each approach.

2.1 Definition

Discrete-time randomized sampling (DTRS) refers to any process which randomly sets some

of the sample points of a discrete-time signal or filter impulse response to zero. DTRS

is defined in the context of a general LTI system where the impulse response, h[n], is

deterministic and the input and output signals, x[n] and y[n], are wide-sense-stationary

stochastic processes. The sampling can essentially be applied to the input, x[n], or the

filter, h[n].

Sampling the input consists of randomly setting some of the input signal samples to zero.

This can be viewed as a randomized down-sampling procedure where the randomization is

at the signal conversion level. It is modeled as a multiplication by a non-zero-mean wide-

sense-stationary random signal rs[n], independent of x[n], that can only take on values 0 or
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1. The resulting output, ys1[n], can then be written as:

ys1[n] = (x[n]rs[n]) ∗ h[n] =
+∞∑
k=−∞

x[k]rs[k]h[n − k] (2.1)

In the remainder of this thesis, this procedure will be referred to as DTRS of the input.

DTRS can also be applied to the filter impulse response. Sampling the filter can be

performed in two ways. First, a one-pass sampling scheme can be applied in which the

filter is sampled only once and then the resulting filter is used to process the signal, x[n].

We refer to this sampling scheme as DTRS of the impulse response. It consists of

randomly setting some of the filter coefficients to zero which makes the processing procedure

stochastic. Again, the sampling process, rs[n], is a non-zero-mean wide-sense-stationary

random signal and independent of x[n]. The output, ys2[n], can then be written as:

ys2[n] = (h[n]rs[n]) ∗ x[n] =

+∞∑
k=−∞

h[k]rs[k]x[n − k]. (2.2)

A more elaborate sampling procedure for the impulse response consists of randomly

sampling the filter at each iteration of the convolution sum. We refer to this sampling scheme

as iterative DTRS of the impulse response, or simply IDTRS. The resulting filter is

time-varying and stochastic, and can be modeled as multiplying the impulse response by a

two-dimensional random signal in which one dimension corresponds to time and the second

dimension is the ensemble member. The sampling process, rs[n; k], is a two-dimensional

non-zero-mean wide-sense-stationary random signal and independent of x[n]. The output,

ys3[n], can then be written as:

ys3[n] = x[n] ∗ (rs[n; k]h[n]) (2.3)

=

+∞∑
k=−∞

rs[n; k]h[k]x[n − k]. (2.4)

2.2 Linear Noise Models

For each sampling method and for the case where the sampling is performed using wide-

sense-stationary sampling sequences, one can derive linear noise models for the resulting

distortion by rewriting the sampling process, rs[n], as the mean, mr, added to a zero-
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mean process, r̂s[n]. Similarly the two-dimensional process, rs[n; k], can be rewritten as a

two-dimensional zero-mean random process, r̂s[n; k], added to the mean, mr, where the two-

dimensional mean is defined as E(rs[n; k]) = mr. As a result, each of the above sampling

procedures can be rewritten as a scaled output added to noise. In order to gain some

understanding as to the nature of the distortion introduced, second-order characterizations

of the noise processes for each procedure are derived below.

2.2.1 DTRS of the Input Signal

Rewriting rs[n] as the sum of r̂s[n] and mr, equation (2.1) can be expressed as a scaled

output added to a noise term:

ys1[n] = h[n] ∗ ((r̂s[n] +mr)x[n]) (2.5)

= mry[n] + e1[n] (2.6)

where it can be shown that mry[n] and e1[n] are uncorrelated (Appendix A). Furthermore,

assuming r̂s[n] is white, then it can be shown that:

Re1e1[n] = mr(1−mr)Rxx[0]Rhh[n] (2.7)

where Re1e1 [n] and Rxx[n] denote the autocorrelation functions of the error and the input

signals respectively, and Rhh[n] is the deterministic autocorrelation of the impulse response.

This method can thus be modeled as adding white noise to the scaled input signal and then

filtering the resulting signal with h[n] as shown in Figure 2-1. w1[n] is a zero-mean wide-

sense-stationary white noise process with variance mr(1−mr)Rxx[0].

x[n] mr
���
HHH - m+?

w1[n]

ys1[n]- - -h[n]

Figure 2-1: Linear Model for Discrete-Time Randomized Sampling of the Input.
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2.2.2 DTRS of the Impulse Response

Following the same approach as in the previous section, ys2[n] can be expressed as a scaled

output added to a noise term:

ys2[n] = x[n] ∗ ((r̂s[n] +mr)h[n]) (2.8)

= mry[n] + e2[n]. (2.9)

Again, it can be shown that mry[n] and e2[n] are uncorrelated. In addition, assuming r̂s[n]

is white, then the autocorrelation of the error, Re2e2[n], is given by:

Re2e2 [n] = mr(1−mr)Rxx[n]Rhh[0]. (2.10)

This method can thus be represented as adding colored noise to the scaled output, as shown

in Figure 2-2. The noise spectrum has the same shape as the input power spectrum: w2[n]

x[n] m+?
w2[n]

ys2[n]- - -mr
���
HHH -h[n]

Figure 2-2: Linear Model for Discrete-Time Randomized Sampling of the Impulse Response.

is a zero-mean colored noise with autocorrelation mr(1−mr)Rhh[0]Rxx[n].

2.2.3 Iterative DTRS of the Impulse Response

We can rewrite ys3[n] as :

ys3[n] = x[n] ∗ ((r̂s[n; k] +mr)h[n]) (2.11)

= mry[n] + e3[n]. (2.12)

Again mry[n] and e3[n] are uncorrelated. In addition, we assume that r̂s[n; k] is two-

dimensional white, so that the autocorrelation Rr̂sr̂s [n; k] of r̂s[n; k] is given by:

Rr̂sr̂s [n; k] = mr(1−mr)δ[n; k] = mr(1−mr)δ[n]δ[k] (2.13)
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and that x[n] is a wide-sense-stationary random process. Then the autocorrelation of e3[n],

Re3e3 [n], is given by:

Re3e3 [n] = mr(1−mr)Rxx[0]Rhh[0]δ[n]. (2.14)

This method can thus be represented as adding white noise to the scaled original output

resulting from filtering the input signal, x[n], with h[n] as shown in Figure 2-3. w3[n] is

zero-mean wide-sense-stationary white noise with variance mr(1−mr)Rhh[0]Rxx[0].

x[n] m+?
w3[n]

y[n]- - -mr
���
HHH -h[n]

Figure 2-3: Linear Model for Iterative Discrete-Time Randomized Sampling of the Impulse
Response.

2.3 Error Analysis

The previous section showed that if the sampling process is wide-sense-stationary, the output

from each of the three sampling procedures could be rewritten as the original output scaled

by the mean of the sampling process added to an error term which was shown to be wide-

sense-stationary and uncorrelated with the signal. Table 2.1 summarizes the second-order

characteristics of the errors obtained when the sampling process is white. All three errors

have the same total power or variance since

Re1e1 [0] = Re2e2 [0] = Re3e3 [0] = mr(1−mr)Rxx[0]Rhh[0]. (2.15)

However, they each have different spectral densities.

The signal-to-noise ratio (SNR), defined as the ratio of signal variance (power) to noise

variance, is commonly used as a measure for the amount of degradation of a signal by

additive noise [1]. A mathematical expression for the SNR is given in equation (2.16). It

is clear that, since all errors have the same total power, the three sampling methods are

equivalent if the only criteria is to maximize SNR. However, using the SNR as defined in

equation (2.16) is sometimes misleading since a more relevant measure is typically the noise
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Method Error Autocorrelation Function

DTRS of x[n] e1[n] Re1e1[n] = mr(1−mr)Rxx[0]Rhh[n]
DTRS of h[n] e2[n] Re2e2[n] = mr(1−mr)Rhh[0]Rxx[n]
Iterative DTRS of h[n] e3[n] Re3e3[n] = mr(1−mr)Rxx[0]Rhh[0]δ[n]

Table 2.1: Autocorrelation Functions of the Errors obtained from each Sampling Scheme
using a White Sampling Process.

power in relation to the signal spectrum. Therefore, a more useful measure for the amount

of distortion is the in-band SNR defined as the ratio of the power in the output signal to

the noise power within the signal band. Equation (2.17) gives a mathematical expression

for this measure and Table 2.2 lists the in-band signal-to-noise ratios for the cases when

|H(ejω)|2 is bandlimited and when Φxx(e
jω) is bandlimited.

SNR =
variance of signal

variance of noise
=
m2rRyy[0]

Ree[0]
(2.16)

SNRin =
signal power

noise power in signal band
=

m2rRyy[0]
1
2π

∫
<signal band>Φee(e

jω)dω
(2.17)

Method Case 1: |H(ejω)|2 Case 2: Φxx(e
jω)

is bandlimited to ω0 is bandlimited to ω0

DTRS of x[n] SNR1in =
mr
1−mr

Ryy[0]
Rxx[0]Rhh[0]

SNR1in =
mr
1−mr

Ryy[0]

Rxx[0]
1

π

∫ ω0
0
|H(ejω)|2dω

DTRS of h[n] SNR2in =
mr
1−mr

Ryy[0]

Rhh[0]
1

π

∫ ω0
0
Φxx(ejω)dω

SNR2in =
mr
1−mr

Ryy[0]
Rxx[0]Rhh[0]

Iterative DTRS of h[n] SNR3in =
π
ω0

mr
1−mr

Ryy[0]
Rxx[0]Rhh[0]

SNR3in =
π
ω0

mr
1−mr

Ryy[0]
Rxx[0]Rhh[0]

Table 2.2: In-band Signal-to-Noise Ratios for the Three Sampling Methods.
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It is clear from Table 2.2 that, since π
ω0
> 1, IDTRS always leads to a higher in-band

signal-to-noise ratio than DTRS of the input if the filter is bandlimited. If, on the other

hand, the input has a bandlimited power spectrum, then IDTRS always leads to a higher

in-band signal-to-noise ratio than DTRS of the impulse response. In addition, it follows in

a relatively straight-forward way that in the case where the filter is bandlimited to ω0, if

the ratio of input power within the filter band to the total power in the input is greater

than ω0
π
, then IDTRS always leads to a higher in-band SNR than DTRS of the filter, and

thus in this case, IDTRS leads to the highest in-band SNR. In the case where the input

power is bandlimited to ω0, then it can be shown that IDTRS leads to a higher in-band

signal-to-noise ratio than DTRS of the input if and only if the ratio of power in the filter

within the input band to the total power in the filter is higher than ω0
π
, and in this case,

IDTRS leads to the highest in-band SNR. Table 2.3 summarizes these results.

Case 1 Case 2
|H(ejω)|2 = 0 for |ω| ≥ ω0 Φxx(e

jω) = 0 for |ω| ≥ ω0

SNR1in ≤ SNR
3
in and SNR

1
in ≤ SNR

2
in SNR2in ≤ SNR

3
in and SNR

2
in ≤ SNR

1
in

In addition: In addition:

SNR2in ≤ SNR
3
in if and only if: SNR1in ≤ SNR

3
in if and only if:

∫ ω0
0
Φxx(ejω)dω∫ π

0
Φxx(ejω)dω

≥ ω0
π

∫ ω0
0
|H(ejω)|2dω∫ π

0
|H(ejω)|2dω

≥ ω0
π

Table 2.3: In-band SNR Comparisons for the Three Sampling Methods.

2.4 Non-White Sampling

While in previous sections, we assumed the sampling process was white, in this section, we

relax this condition and explore non-white sampling in the context of iterative randomized

sampling of the impulse response. In particular, having a correlated sampling process could

potentially lead to better error characteristics through lower error variance or higher in-
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band signal-to-noise ratio. In the following, we examine cases where the two-dimensional

sampling process, r̂s[n; k], is white in one dimension and colored in the other. Specifically,

we first investigate the case where r̂s[n; k] is white in the n-dimension and arbitrary in the

k-dimension, we then proceed to the case where r̂s[n; k] is colored in the n-dimension and

white in the k-dimension.

2.4.1 IDTRS using a Correlated Sampling Process at each Convolution

Step

Consider the case where the processes used to sample the impulse response in order to

compute successive output samples are uncorrelated with each other. However, the process

used to compute each output sample has some correlation, i.e. is not white. Then, assuming

the mean of the process is mr, the autocorrelation function of the sampling process can be

written as:

Rr̂sr̂s [m; k] = (1−mr)mrδ[m]Rgg[k] (2.18)

where Rgg[k] is a one-dimensional arbitrary autocorrelation function which describes the

second-order statistics of r̂s[n; k] in the k-dimension. We can then show (Appendix B) that

the autocorrelation of the error, e3[n], can be written as:

Re3e3[m] = mr(1−mr)
+∞∑
k=−∞

+∞∑
l=−∞

h[k]h[l]Rgg [l − k]Rxx[l − k]δ[m] (2.19)

i.e. the error resulting from such sampling is still white however the variance is now different

from the sampling using a two-dimensional white process. In order to gain some intuition,

consider the special case where Rgg[m] = δ[m]− αδ[m− 1]− αδ[m+ 1] where −1 < α < 1,

i.e. where there is correlation at only one lag. In this case, equation (2.19) becomes:

Re3e3[m] = mr(1−mr)(Rhh[0]Rxx[0]− 2αRhh[1]Rxx[1])δ[m]. (2.20)

The variance is no longer only a function of the energy in the filter and the input, as was the

case for white sampling, it now also depends on the energy at one lag in the filter and the

input. In particular, if Rhh[1] and Rxx[1] have the same sign and α is positive, or if Rhh[1]

and Rxx[1] have opposite signs and α is negative, the resulting error has a lower variance
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than the one resulting from randomized sampling using a two-dimensional white sequence.

This therefore suggests a method for adjusting the correlation of the sampling process in

order to reduce the error variance if some information about the signal and filter is known.

2.4.2 IDTRS using a Sampling Process Correlated across Output Sam-

ples

Now consider the case where at each convolution step, the sampling process is white, how-

ever the processes used in computing different output time samples have some non-zero

correlation. Then, if the process mean is mr, the two-dimensional autocorrelation function

of the sampling process can be written as:

Rr̂sr̂s [m; k] = mr(1−mr)Rvv [m]δ[k] (2.21)

where Rvv [m] is a one-dimensional arbitrary autocorrelation function which describes the

second-order statistics of r̂s[n; k] in the n-dimension. We can then show (Appendix B) that

the autocorrelation of the error e3[n], can be written as:

Re3e3 [m] = mr(1−mr)Rhh[0]Rvv [m]Rxx[m]. (2.22)

The error, in this case, is no longer white and the correlation is determined by the amount

of correlation in the sampling process as well as in the input. Note that in the limiting case

where Rvv [m] is 1 for all m, Re3e3[m] = Re2e2 [m], i.e. the autocorrelation function equals

the autocorrelation function resulting from DTRS of the impulse response. This should

not be surprising since in the limiting case, both sampling procedures are equivalent up

to second-order statistics, and as a result, the errors should have the same autocorrelation

functions. Furthermore, consider the case where Rvv [m] = δ[m] − αδ[m − 1] − αδ[m + 1]

where again −1 < α < 1, then equation (2.22) can be rewritten as:

Re3e3[m] = mr(1−mr)Rhh[0]Rxx[0](δ[m] − α
Rxx[1]

Rxx[0]
δ[m− 1]− α

Rxx[1]

Rxx[0]
δ[m+ 1]). (2.23)

If Rxx[1] and α have the same sign, then the error power is highest at high frequencies

whereas if Rxx[1] and α have opposite signs, then the error power is highest at low frequen-

cies. In fact, equation (2.23) shows that the error exhibit spectral shaping reminiscent of

29



the error behavior in a sigma-delta Analog-to-Digital converter. As a result, this method

can be used to shape the error and increase in-band SNR.

2.5 Summary

This chapter defined discrete-time randomized sampling as a method of setting some of

the samples of a discrete-time signal or filter to zero. Three methods for performing the

randomized sampling were examined and linear noise models were derived for the case when

the sampling process was white. Further error analysis in the case of white sampling was

then presented and conditions were derived where iterative DTRS of the impulse response

always outperformed the other sampling methods. Finally, two cases of non-white sampling

were investigated and the resulting errors were analyzed. The observed lower error variance

and noise shaping suggested trading off structure in the sampling process for improved error

characteristics.
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Chapter 3

Filter Approximation Based on

Randomized Sampling

Approximate Signal Processing was first defined by Nawab et al. [16] as a formal approach

of trading-off quality for resources. In this Chapter, we consider the use of randomized

sampling for filter approximation and therefore for trading-off quality for computation.

In various signal processing applications, one is interested in reducing the total amount

of computation required to perform a filtering operation. Such applications include reduc-

ing the amount of computation in order to speed up the processing time or reduce power

consumption. Approximation techniques have been used as ways to reduce computation

since these techniques reduce the filter length, and therefore reduce the amount of multipli-

cations and additions in the convolution. A common LTI approximation technique consists

of reducing the filter length using one of the optimal FIR filter design methods such as

the window method or the Parks-McClellan algorithm. All LTI approximation techniques

introduce an error that can be modeled as in Figure 3-1. In this figure, h[n] represents the

original desired filter of length P and he[n] the error filter resulting from approximating

h[n] with a filter of length M where M < P . Discrete-time randomized sampling of the

impulse response, as defined in the previous chapter, can be used as a filter approximation

technique and a method for efficient computation since by randomly setting some of the

filter coefficients to zero, randomized sampling can be used as a procedure to perform only

a subset of the multiplications in the convolution sum if one checks for multiply-by-zero

operations. This chapter investigates the potential of DTRS as a filter approximation tech-
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x[n] m+

-

6

e[n]-he[n]

yapp[n]- - y[n] - -h[n]

Figure 3-1: Block Diagram of the LTI Approximation of h[n].

nique by comparing the error introduced through DTRS with errors introduced through LTI

filter approximation techniques such as the rectangular window method. Error measures

and specific classes of inputs are defined and explored.

3.1 Approximate Filtering Formulation

In Chapter 2, we noted that both non-iterative and iterative randomized sampling of the

impulse response lead to errors with equal variances. As a result, if the performance measure

is chosen to be the output error variance, we will only analyze the IDTRS case since the

non-iterative case is equivalent. In addition, in Section 2.3, we showed that if the filter is

bandlimited to ω0 and the ratio of the input signal energy within the pass-band to the total

input signal energy is greater than or equal to ω0
π
, iterative sampling always outperforms

non-iterative sampling if the in-band SNR is the performance measure. As a result, in

the following, we will assume that these conditions are met and will only focus on iterative

sampling of the impulse response. In addition, we will assume that the sampling is performed

using a two-dimensional wide-sense-stationary white process.

Since IDTRS in this case results in the original output scaled down by the mean of the

sampling process added to white noise, we first need to re-scale the output by 1/mr in order

to formulate the problem in the context of Figure 3-1. The rescaling is shown in Figure 3-2,

and results in an additive noise model where the error variance is now scaled by 1/m2r , i.e.

we can rewrite ys[n] as:

ys[n] = y[n] + e[n] (3.1)

where the output and the noise are uncorrelated and the autocorrelation of e[n], Ree[n], is
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x[n] 1/mr
�����
PPPPP - ys[n]- -hs[n; k]

Figure 3-2: Re-Scaled IDTRS. hs[n; k] is the sampled version of h[n] as explained in Chapter
2 and mr is the mean of the sampling process.

given by:

Ree[n] =
(1−mr)

mr
Rxx[0]Rhh[0]δ[n]. (3.2)

Figure 3-2 and equations (3.1) and (3.2) summarize the approximate filtering formu-

lation of discrete-time randomized sampling. These results can now be used to compare

randomized sampling to other approximation techniques in the context of LTI filtering. An

example of approximate filtering is given in the next section where the randomized sampling

approach is compared to other approximation approaches.

3.2 Linear Minimum Mean-Square Estimation with Com-

plexity Constraints

In many cases, a filter is obtained by minimizing the mean-square difference between the

output of the filter, ŷ[n], and some desired signal, y[n]. Such applications include detection,

prediction, and estimation. In this section we consider the problem of approximating the

linear minimum mean-square estimator in order to reduce complexity where complexity is

given by the amount of computation needed to obtain the estimate. The problem can be

formulated as follows: we wish to obtain an approximation to the best linear mean-square

estimator of the signal y[n] based on some received data, r[n]. The best linear estimator, in

the mean-square sense, is the Wiener filter. If ŷ[n] denotes the output of the Wiener filter,

then, by definition, the mean-square estimation error, E((ŷ[n]− y[n])2), is minimized, and

as a result, the estimation error, (ŷ[n] − y[n]), is orthogonal to any linear function of the

data, i.e. E(A{r[n]}(ŷ[n] − y[n])) = 0, for any linear operator A{}. In the following, we

consider two different approximation techniques to the Wiener filter. The first uses IDTRS

as the approximation method while the second uses an LTI approximation technique with
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distortion modeled by Figure 3-1. We wish to define conditions under which the IDTRS

approximation leads to a smaller increase in estimation error than the LTI approximation.

Specifically, if ǫ2rs designates the mean-square estimation error resulting from the IDTRS

approximation method, and ǫ2w is the mean-square estimation error resulting from the LTI

approximation method, we would like to derive conditions such as equation (3.3) below

holds.

ǫ2rs < ǫ
2
w (3.3)

In the following, we will refer to the difference between the output of the original Wiener

filter and the output of the approximated filter as the approximation error whereas the

estimation error refers to the difference between the desired signal and the output of the

estimator.

3.2.1 Mean-Square Estimation Error

In this section we derive expressions for the mean-square estimation error for each approx-

imation technique. In general, all approximation techniques can be represented through

an additive error model where the output to the approximated Wiener filter is ỹ[n] + e[n]

where e[n] is white and uncorrelated with ỹ[n] for the IDTRS method, while e[n] is colored

and correlated with ỹ[n] for the LTI method. The mean-square estimation error is therefore

given by:

ǫ2 = E((ỹ[n] + e[n]− y[n])2) (3.4)

= E((ỹ[n]− y[n])2) + E(e2[n]) + E(e[n](ỹ[n]− y[n])) (3.5)

= ǫ2wiener + σ
2
e + E(e[n](ỹ[n]− y[n])) (3.6)

(3.7)

where ǫ2wiener is the minimum mean-square estimation error resulting from the Wiener filter

and σ2e is the approximation error variance (note all signals are zero-mean). As a result,

the increase in the mean-square estimation error, ∆ǫ2 is given by:

∆ǫ2 = σ
2
e + E(e[n](ỹ[n]− y[n])). (3.8)
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In Chapter 2, we showed that the approximation error resulting from randomized sampling

is uncorrelated with the output signal, i.e.:

E(ers[n]ỹ[n]) = 0. (3.9)

It also directly follows that, since the randomizing process is independent of all other signals,

ers[n] is also uncorrelated with y[n]:

E(ers[n]y[n]) = 0. (3.10)

The increase in mean-square estimation error for IDTRS is therefore simply the approxi-

mation error variance:

∆ǫ2rs = σ
2
rs. (3.11)

In the LTI approximation case, the approximation error can be expressed as the convolution

of the input to the filter (the data) with an error filter as shown in Figure 3-1. As a result,

the approximation error is a linear combination of the input data and thus, using the

orthogonality property of the minimum mean-square estimation error, we conclude:

E(ew[n](ỹ[n]− y[n])) = 0. (3.12)

The increase in mean-square estimation error resulting from LTI approximation techniques

is therefore equal to the variance of the LTI approximation error:

∆ǫ2w = σ
2
w. (3.13)

Equation (3.3) is therefore equivalent to equation (3.14) below:

σ2rs = E(e
2
rs[n]) < σ

2
w = E(e

2
w[n]). (3.14)

Expressions for σ2w and σ
2
rs are given in equations (3.15) and (3.16) respectively where

Rrr[m] is the autocorrelation function of r[n] and Srr(e
jω) its Fourier transform. he[n] is

the error filter as defined by Figure 3-1 and h[n] is the Wiener filter.
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σ2w =
∑
k

Rrr[k]Rhehe [−k] =
1

2π

∫ π
−π
Srr(e

jω)|He(e
jω)|2 (3.15)

σ2rs =
1−mr
mr

Rrr[0]Rhh[0] =
1

2π

1−mr
mr

Rrr[0]

∫ π
−π
|H(ejω)|2 (3.16)

3.2.2 Zero-Mean, Unit-Variance, White Process, r[n]

We consider the case where r[n] is a zero-mean, unit-variance white process. In this case,

σ2rs and σ
2
w can be rewritten as follows:

σ2w =
1

2π

∫ π
−π
|He(e

jω)|2 =
∑
k

h2e[k] (3.17)

σ2rs =
1

2π

1−mr
mr

∫ π
−π
|H(ejω)|2 =

1−mr
mr

∑
k

h2[k] (3.18)

Among all possible LTI approximation techniques which are modeled as Figure 3-1, the

rectangular window method is the one that leads to the best mean-square approximation to

the original frequency response [1], i.e. it minimizes the expression: 12π
∫ π
−π |He(e

jω)|2dω and

therefore minimizes the value of σ2w in equation (3.17). We will therefore use the rectangular

window method as the LTI approximation technique and explore conditions under which

randomized sampling leads to a better estimate.

In this case, equation (3.14) is satisfied if and only if:

0 <
1−mr
2mr − 1

<

∑
k h
2
e[k]∑

k h
2
w[k]

(3.19)

where hw[n] is the windowed impulse response. The length M of the window is determined

by mr:

mr =
M

P
(3.20)

where P is the length of the original impulse response. The condition given by equation

(3.19) states that if the ratio of the total energy in the portion of the impulse response not

covered by the window to the total energy in the windowed impulse response is greater than

1−mr
2mr−1

, then iterative randomized sampling leads to an estimation error with lower variance

than filter approximation using a rectangular window. In addition, the first inequality in
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equation (3.19) shows that IDTRS can never outperform LTI approximation techniques if

mr < 0.5. Figure 3-3 shows how the ratio
1−mr
2mr−1

varies with mr.
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Figure 3-3: Boundary Condition for the LMMSE Approximation Problem. IDTRS Out-

performs any LTI Approximation Technique if
∑
k h
2
e[k]∑

k h
2
w[k]
> 1−mr
2mr−1

.

It is clear from Figure 3-3 that, since the length of the window is constrained by equation

(3.20), and assuming the window is positioned optimally, i.e. around the region of the filter

with maximal energy, equation (3.19) cannot be satisfied if |h[n]| is monotonic or has a

single peak. A direct consequence of this is that if the filter of interest is a linear-phase low-

pass filter and the goal is to minimize error variance, then the window method is a better

approximation method than randomized sampling. However, if the Wiener filter impulse

response has multiple peaks, i.e. its energy is spread out in time, and the desired number

of non-zero taps in the approximate filter, M , is such that equation (3.19) is satisfied, then
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it is better, in the mean-square sense, to use a long filter and iteratively randomly sample

it than use the best mean-square linear filter of length M .

3.2.3 Non-White r[n]

The truncated Wiener filter is the best length-M linear minimum mean-square estimator

only if the received signal, r[n], is white. If r[n] is not white, then the optimal linear

mean-square estimator needs to be computed every time M changes. This may not be

desirable or even feasible in cases where resources are limited or if algorithm simplicity

is of primary concern. In these cases, a straight-forward approach would be to truncate

the Wiener filter or iteratively randomly sample it if the conditions in equation (3.19) are

satisfied. Alternatively, the estimator could be decomposed into two systems with different

resource allocations: a whitening filter implemented accurately, and a constrained Wiener

filter (with limited resources) operating on the white data. In this case, the problem is

similar to the one discussed in the previous section and the IDTRS method may lead to a

better mean-square estimate than the best LTI approximation method.

3.3 Summary

This chapter exploited randomized sampling as a filter approximation technique. Results

derived in Chapter 2 were used to compare IDTRS filter approximations to LTI approxima-

tion techniques. Specifically, we compared the performance of both methods in the context

of linear minimum mean-square estimation with complexity constraints was compared and

conditions were derived, in the case of white data, where IDTRS lead to a better mean-

square estimate than the best constrained linear mean-square estimator. Scenarios where

it would be desirable to use IDTRS even if the data is not white were also discussed.
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Chapter 4

Low-Power Digital Filtering

In this chapter, we explore the use of randomized sampling as a way to reduce power

consumption in a filtering context by examining the tradeoff between power savings and

output quality. To this end, we first give a low-power formulation for randomized sampling

by showing how setting some filter coefficients to zero can lead to powering down parts of the

processor and therefore reducing the switching activity. Further savings can be obtained

by slowing-down the computation in order to avoid processor idling time, and therefore

reducing the voltage supply. Clearly, the additional savings due to scaling the voltage

supply are not specific to randomized sampling but a consequence of reduced computation

and have been already thoroughly examined [6]. However, some of these results will be re-

derived in this chapter in order to quantify the tradeoff between power savings and output

quality for the case of randomized sampling.

4.1 Low-Power Formulation

With the recent expanding interest in wireless systems, reducing power consumption is

becoming an additional design factor along with size and speed. As discussed in Chapter

1, algorithmic approaches to low-power design are mainly concerned with reducing the

switching power given by equation (4.1)

P̃switching =
∑
i

NiCiV
2
ddfs (4.1)
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where Ci is the average capacitance switched per operation of type i corresponding to

addition, multiplication, storage, or bus access. Ni is the number of operations of type i

performed per output sample, Vdd is the operating supply voltage, and fs is the switching

frequency. In general, any discrete-time randomized sampling approach in a filtering context

consists of reducing the average number of multiplications and additions performed per

output sample. As a result, any discrete-time randomized sampling approach can be used

in a low-power processing context where the power savings result from a reduction in Ni in

equation (4.1).

x[n] y[n]- -h[n]

Figure 4-1: Original System.

Specifically, consider a time-domain implementation of the convolution illustrated by

the system shown in Figure 4-1. If the filter, h[n], has length p0, then a time-domain

implementation of the convolution requires (p0 + 1) multiplications and p0 additions per

output sample as can be seen in equation (4.2).

y[n] = h[0]x[n] + h[1]x[n − 1] + h[2]x[n − 2] + ...+ h[p0]x[n− p0]. (4.2)

Discrete-time randomized sampling of the impulse response can lead to power savings

through both a lower switching activity (lower Ni) and a scaling of the voltage supply

(lower Vdd) which we examine separately in the next sections.

4.1.1 Switching Activity Reduction

Both DTRS of the impulse response and IDTRS using a sampling process with mean mr

consist of setting an average of (1 −mr) filter coefficients to zero prior to computing each

output sample. In the DTRS case, the same subset of filter coefficients is set to zero for all

time whereas in the IDTRS case, the subset is different for each output sample. As a result,

for both cases, mr(p0+1) multiplications and mrp0 additions are required, on average, per
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output sample, i.e. the number of multiplications and additions used per output sample is

reduced by a factor of (1 −mr) which corresponds to a similar reduction in the switching

activity. Since average switching power is a linear function of the amount of computation

required per output sample, a reduction by (1 −mr) in computation leads to a reduction

in power consumption by the same factor.

IN -

?m
?

-h[0] ×

- -

?m
?

-h[1] ×

- -

?m
?

-h[2] ×

- -

?m
?

-h[3] ×

- . . .

. . .

-

?m
?

-h[n − 1] ×

- -

?m
?

-h[n] ×

@
@

@

�
�

�
MUX

? ?
. .

?∑

?
OUT

Figure 4-2: FIR Filter Structure for Low-Power Filtering Using Discrete-Time Randomized
Sampling. MUX is used as an abstraction to a collection of multiplexers.

Figure 4-2 illustrates a low-power implementation for discrete-time randomized sam-

pling. At each time point or clock cycle, a subset of the outputs of the multipliers is picked

by a collection of multiplexers (abstracted by MUX in the figure), the remaining multiplica-

tions are not performed therefore reducing computation. The chosen subset is then used as

an input to an accumulator which performs the final addition to generate the output. Figure

4-3 shows an equivalent implementation where the powering down of a subset of the multi-

plication branches is made explicit by the addition of switches for each branch. Branches

that are powered down are not used by the adders. The normalized power consumption as

a function of the mean, mr, of the sampling process is shown in Figure 4-4.

4.1.2 Supply Voltage Reduction

Figure 4-3 suggests yet a further reduction in power through an increase in the propagation

delay which allows a reduction in the supply voltage while maintaining the same throughput
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Figure 4-3: FIR Filter Structure for Low-Power Filtering using Randomized Sampling.

as the initial system. Burd and Brodersen [4] note that if the clock-rate is equal to the

increase of the critical path delay, then throughput is proportional to the number of parallel

operations per clock cycle (concurrency) divided by the delay, i.e.:

T =
Operations

second
= γ
Concurrency

Delay
(4.3)

In this case, delay refers to the time it takes to perform a multiplication. Most digital

signal processing applications are real-time applications and as a result the throughput is

fixed. In the filtering context of Figure 4-1, the number of parallel operations per clock

cycle correspond to the number of multiplications per output sample which is equal to

(p0+1) in the original system. Using the randomized sampling approximation method, the

number of multiplication is reduced to mr(p0+1) and so is the amount of concurrency per

clock cycle. It is thus clear from equation (4.3) that an increase in the delay by a factor of

1/mr will compensate for the decrease in the amount of concurrency and therefore the same

throughput could be maintained. In this context, there is no need to increase throughput,

power reduction has higher priority. Chandrakasan et al. [6] have already explored the idea

of lowering the voltage supply if less work needs to be done by developing an approach to

minimize the energy dissipation per output sample in variable-load DSP systems. Here, we

derive similar results and apply them to randomized sampling.
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Figure 4-4: Relative percent power consumption as a function of the sampling process mean
mr. A value of α = 1.3 was used in this simulation. [Chandrakasan et al. [6] derive a similar
relationship where the relative power consumption is plotted as a function of the normalized
workload.]

The increase in the delay can be achieved by reducing the supply voltage Vdd. The

relationship between Vdd and the circuit delay Td is given in [19] and shown in equation

(4-5). CL is the load capacitance, α is the velocity saturation index which can be anywhere

between 1 (complete velocity saturation) and 2 (no velocity saturation), β is the gate

transconductance, and Vt is the device threshold.

Td =
CLVdd

β(Vdd − Vt)α
(4.4)

From equation (4.4), we can derive a normalized delay, Td/T
ref
d where T refd is the delay

when Vdd/Vt = 6. The normalized delay is given in equation (4.5) where k represents the
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ratio of Vdd to Vt. Figure 4-5 shows a plot of the delay versus Vdd/Vt for different values of

α. The delay increases hyperbolically as the supply voltage approaches Vt.

Td

T refd
=

5αk

6(k − 1)α
. (4.5)

Equation (4.1) suggests that a reduction in the supply voltage will lead to a quadratic

reduction in switching power consumption since the power is proportional to the square of

the supply voltage. This assumes however that all other variables in that equation remain

constant in particular the switching frequency, fs. However, fs represents the number of

switching events per unit time and circuits are usually operated at the maximum frequency

allowed by their propagation delay. As a result, as the propagation delay increases, the

number of switching events per unit time, i.e. the switching frequency fs, will decrease.

The resulting decrease in the switching frequency will lead to further improvement in power

consumption since switching power is proportional to fs. The switching power consumption

as a function of k = Vdd/Vt, normalized to power consumption when Vdd/Vt = 6, is given in

equation (4.6).

Ps

P refs
=
k(k − 1)α

6(5α)
(4.6)

A plot of normalized switching power as a function of the supply voltage for different values

of α is shown in Figure 4-5.

4.1.3 Total Power Savings

As discussed above, randomized sampling results in power savings due to switching activity

reduction as well as power reduction resulting from voltage scaling. If the mean of the

sampling process is mr, then the analysis carried out in the previous sections shows that Ni

is reduced by a factor of 1/mr, fs is also reduced by a factor of 1/mr since the propagation

delay can be increased by 1/mr. This increase in propagation delay leads to a reduction

in the supply voltage by a factor of Vr which can be obtained using equation (4.4). As a

result, the total power reduction is by a factor of Vr/m
2
r . Figure 4-4 shows the normalized

power consumption as a function of mr with and without voltage scaling. It is clear from
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this figure that the most savings using randomized sampling occur indirectly through a

reduction in the supply voltage.

4.2 Tradeoff between Power and Quality

A simple performance measure is given by total SNR, i.e. the ratio of total output signal

power to total output error power. For the IDTRS case, the total SNR, expressed in dB, is

given by:

SNR (in dB) = 10 log10(
mr
1−mr

) + 10 log10(
Ryy[0]

Rxx[0]Rhh[0]
). (4.7)
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The second term in equation (4.7) is independent of the sampling process parameters and

as a result, the first term can be used as a measure for gain in SNR as mr varies. Figure

4-6 gives a plot of normalized power consumption versus gain in SNR for different values of

mr. The figure shows that for power savings greater than 90%, the SNR degrades sharply,
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Figure 4-6: Relative percent power consumption as a function of the gain in SNR at the
output on a semi-log scale. A value of α = 1.3 was used.

however for power savings around 50% the gain in SNR is higher than 5 dB.

4.3 Summary

A low-power formulation for discrete-time randomized sampling was presented in this chap-

ter and two levels of power savings were exploited. Power was first reduced through a

lower switching activity due to a smaller number of operations since multiply-by-zero op-
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erations can be checked for and skipped. Power was then further reduced by scaling the

supply voltage since the lower number of multiplications allows the slowing-down of the

processor while maintaining a constant throughput. While the additional savings through

lower voltage supply are not specific to randomized sampling but a consequence of reduced

computation, the analysis was used to derive the relationship between total savings and the

mean of the sampling process and therefore the tradeoff between power savings and SNR,

which is specific to randomized sampling, was examined and quantified.
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Chapter 5

Hardware Failure Modeling

With the growing prevalence of digital systems in communication networks, it is increas-

ingly important to develop models for hardware failures and to design fault tolerant systems

to deal with such errors. Most current fault tolerant algorithms address only single, statis-

tically independent faults [17]. They also tend to be very complex and inefficient. In these

cases, efficiency and simplicity are traded for robustness. This chapter presents a different

approach where the goal is to maintain a pre-set tolerable signal-to-noise ratio in the pres-

ence of certain types of hardware failures as opposed to preventing errors. The types of

failures considered are first examined, then an analysis of the signal-to-noise ratio result-

ing from some systems is analyzed. Finally, algorithms that are guaranteed to maintain a

desired SNR under a given probability of failure are developed.

5.1 Hardware Failure Model

Consider direct and transposed direct form implementations of an FIR filter as shown in

Figures 5-1 and 5-2 where we have explicitly drawn the multipliers, adders, and delay

elements. The delay elements can be thought of as memory registers, the filter coefficients

are also stored in memory or specialized registers, and it is assumed that the output of the

multipliers are stored in registers where the adders can access those values. At any given

time point, n, and for a given coefficient, h[i], the following three types of failures generate

the same error and are therefore equivalent from a distortion point of view:

1. The value of the coefficient is read as a zero.
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Figure 5-1: Direct Form Implementation of an FIR Filter.
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Figure 5-2: Transposed Direct Form Implementation of an FIR Filter.

2. The output of the multiplier associated with the coefficient is reset to zero.

3. An addition is skipped by not using the value resulting from the multiplier operation

associated with the coefficient.

In addition, assume that, for each coefficient, h[i], the probability of an error occurring,

which results from one of the above modes of failures, is (1−mr) and is independent of the

occurrence of other similar errors associated with other coefficients. The resulting faulty

process is, in this case, equivalent to iterative randomized sampling of the FIR impulse

response as described in Chapter 2. In particular, under these circumstances and after

proper scaling, the distortion introduced consists of additive zero-mean white noise at the

output with variance 1−mr
mr
Rxx[0]Rhh[0], i.e. Figures 5-3 and 5-4 are equivalent up to second-

order statistics.

5.2 Bandlimited Input

Since the distortion resulting from the hardware failures described in the previous section

consists of additive white noise, one can use simple techniques to improve the signal-to-
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x[n] 1/mr
������
XXXXXX - ys[n]- -Faulty FIR filter

Figure 5-3: FIR Filtering using a Faulty FIR Filter with Output Scaling.

x[n] m+?
e[n]

y[n]- - -h[n]

Figure 5-4: Additive Noise Model for the Faulty FIR Filter with Proper Re-scaling
Shown in Figure 5-3. e[n] is a zero-mean wide-sense-stationary white noise with variance
1−mr
mr
Rxx[0]Rhh[0].

noise ratio at the output. In particular, if the input signal is bandlimited to π
N
, then a more

relevant measure is the in-band signal-to-noise ratio since out-of-band noise can be filtered

out by using an appropriate low-pass filter. In this case, the output will also be bandlimited

to π
N
, and as a result the in-band-SNR, SNRin, is given by:

SNRin =
signal power

noise power in signal band
= N

mr
1−mr

Ryy[0]

Rxx[0]Rhh[0]
(5.1)

SNRin (in dB) = 10 log10(
Nmr
1−mr

) + 10 log10(
Ryy[0]

Rxx[0]Rhh[0]
) (5.2)

Note that, as in the case of the SNR computed in Chapter 4, the second term on the right

hand side of equation (5.2) only depends on the input and desired filter while the first term

incorporates the effect of the probability of failure, (1 − mr), as well as N on the SNR .

As a result, this first term can be regarded as a gain factor that incorporates all the effect

on SNR due to the probability of error and N . The relationship between the gain in SNR,

N , and mr is shown in Figures 5-5, 5-6, and 5-7 which display how N varies with mr at

constant gain in SNR levels, how the gain in SNR varies with increased mr and how it

varies with increased N , respectively.
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Bandlimited inputs can occur naturally or be obtained by up-sampling the input and

filtering it at a higher rate. Figures 5-8 and 5-10 show the original filter implementation and

an equivalent implementation that uses the up-sampled version of the input and filters it at

a higher rate. The filter used in the up-sampled version, hup[n], is obtained by up-sampling

the original filter, h[n], as shown in Figure 5-9. It should be noted that both x[n] and

h[n] are fully up-sampled i.e. zeros are inserted and those values are properly interpolated.

The up-sampling is such that the up-sampled signals have the same energy as the original

signals.

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

20

30

40

50

M=0.99

N

G
ai

n 
in

 S
N

R
 (

in
 d

B
)

M=0.9
M=0.8

M=0.5

M=0.1

Figure 5-7: Gain in SNR as a function of N for different values of mr.

x[n] y[n]- -h[n] 1/mr
������
XXXXXX -

Figure 5-8: Original System with Scaling.

Based on equation (5.2), the resulting system leads to a gain of N in SNR. Note that

prior to the second low-pass filter, LPF2, in Figure 5-10, the SNR as well as the probability of

failure are the same as for the unmodified case. The averaging resulting from the second low-

pass filter leads to an increase in SNR because it eliminates all high frequency components
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h[n] hup[n]- -N6 LPF -

Figure 5-9: Derivation of hup[n]. LPF is a low-pass filter with cutoff
π
N
and gain N .

of the error, therefore reducing the error variance. Averaging however does not distort the

signal since the prior oversampling ensures that all the spectral information in the signal

occurs at low enough frequency. This approach, and the intuition behind it, is similar to

oversampled analog-to-digital conversion. In addition, Figure 5-5 can be used as a guide

to deciding on the amount of up-sampling needed to maintain a given SNR given a certain

probability of failure. For example up-sampling by a factor of 10 will be needed to maintain

a gain in SNR of 20dB with a 1% probability of failing.

x[n] 1/mr
������
XXXXXX - y[n]- -N -6 LPF1 hup[n] -LPF2- - N?

Figure 5-10: Up-sampled Realization of Figure 5-8. LPF1 is a low-pass filter with cutoff π
N

and gain N while LPF2 is a low-pass filter with cutoff π
N
and unit gain. It is assumed that

only hup[n] is implemented on the faulty hardware.
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5.3 Parallel Filters

The signal-to-noise ratio can also be improved by using multiple faulty filters in parallel

and averaging the outputs from each filter. Such topology can be particularly desirable in a

sensor context where several sensors are deployed to measure the same signal by processing it

through an FIR filter. The output then consists of an average of the individual outputs from

each sensor. Figure 5-11 displays this topology where each of the sensors has components

that can fail, with probability (1−mr), in a manner similar to Section 5.2. In addition, a

scaling factor is included to account for the loss in energy due to the failing process. Figure
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Figure 5-11: Sensor Network.

5-12 shows an equivalent network generated using the IDTRS model. In this figure, each

sensor is modeled as the original FIR filter, h[n], with white noise added to its output.

Each of the noise processes, wi[n], is zero-mean wide-sense-stationary white uncorrelated

with the input with variance 1−mr
mr
Rxx[0]Rhh[0]. Using Figure 5-12, we can write yr[n] as:

yr[n] = y[n] + e[n] (5.3)
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Figure 5-12: Sensor Network Model.

where y[n] = x[n] ∗ h[n] and e[n] is a zero-mean wide-sense-stationary white noise process

with variance N 1−mr
mr
Rxx[0]Rhh[0]. The SNR at the output is therefore:

SNR =
signal power

noise power
= N

mr
1−mr

Ryy[0]

Rxx[0]Rhh[0]
(5.4)

SNR (in dB) = 10 log10(
Nmr
1−mr

) + 10 log10(
Ryy[0]

Rxx[0]Rhh[0]
) (5.5)

Equation (5.5) is the same as equation (5.2) and therefore Figures 5-5, 5-6, and 5-7

display the tradeoff between gain in SNR and the error probability as well as N where now

N refers to the number of filters or sensors used in parallel. For example, to maintain a

gain of 30dB in SNR, 15 sensors should be used in parallel if the probability of error is 1%.
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5.4 Summary

This chapter used discrete-time randomized sampling as a framework to model independent

random failures of adders, multipliers and register retrieving operations in hardware imple-

mentations of direct-form and transposed direct-form FIR filters. The resulting additive

noise model lead to the formulation of two algorithms to increase the signal-to-noise ratio

at the output. The first consisted of up-sampling the input by a factor of N and filtering it

at a higher rate while the second used N processors in parallel and averaged their output.

Both algorithms lead to a gain of N in SNR and graphs that illustrate the tradeoffs between

gain in SNR, N and the probability of failure were presented.
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Chapter 6

Conclusion

6.1 Thesis Contributions

This thesis defined a framework, discrete-time randomized sampling, and explored applica-

tions in three areas: approximate filtering, low-power design, and hardware failure modeling.

The thesis contributions are two-fold:

1. A formalized discrete-time randomized sampling theory.

and

2. Randomized sampling algorithms spanning various signal processing areas.

In this section, we summarize the analysis carried out in previous chapters and outline the

thesis results.

Discrete-time randomized sampling was defined as a process which randomly sets some

of the sample points of a discrete-time signal or filter impulse response to zero. We specif-

ically derived three sampling techniques: discrete-time randomized sampling of the input

(DTRS of the input), discrete-time randomized sampling of the impulse response (DTRS

of the impulse response), and iterative discrete-time randomized sampling of the impulse

response (IDTRS ). In DTRS of the input (the impulse response), a random subset of the

input signal (impulse response) coefficients is set to zero while in IDTRS the filter impulse

response is randomly sampled at each iteration of the convolution sum. After deriving

linear noise models for each sampling scheme where the system was expressed as the orig-

inal output added to an error term uncorrelated with the signal, error characteristics in

the case of white sampling were analyzed for each scheme. Semi-white sampling, where
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the two-dimensional autocorrelation function of the sampling process is white in only one

dimension and correlated in the other, was also explored in the case of iterative randomized

sampling and error analysis was performed.

In order to assess the quality of each sampling procedure, the in-band SNR was analyzed

and conditions where IDTRS led to the best performance were derived. Specifically, it

was shown that if the filter (the input power) is bandlimited to ω0 and the ratio of the

input power (filter power) within the filter (input) band to the total power in the input

(filter) is greater than ω0/π, then IDTRS always leads to the highest in-band SNR. We

demonstrated that error characteristics (error variance and in-band SNR) could also be

improved by imposing more structure to the sampling process leading to the notion of

trading-off sampling structure for better error characteristics. For example, if the input

process is colored, the error variance in the iterative randomized sampling scheme can be

improved by using one-lag correlated sampling at each convolution step. Alternatively,

higher in-band SNR can be achieved by using a sampling process with one-lag correlation

across output samples.

Chapter 3 explored the potential of randomized sampling as an approximation technique

by comparing approximations based on randomized sampling to LTI approximations in

the context of constrained linear minimum mean-square estimation. We first proved that

if the input to the estimator is white, then the best length M linear estimator, in the

mean-square sense, is the truncated Wiener filter. As a result, conditions were derived

under which randomized sampling performed better than the best constrained length M

estimator. It was shown in that case that if the energy of the Wiener filter was sufficiently

spread out in time, then IDTRS of the original estimator lead to a better mean-square

estimate than the optimal fixed-length LTI mean-square estimator. Specifically, if the ratio

of the energy in the out-of-window region of the Wiener filter to the energy in the windowed

impulse response is greater than (1−mr)/(2mr − 1), then IDTRS always outperforms LTI

approximations. These results could also be incorporated for the case where the data is not

white. In particular, the Wiener filter could be, in that case, decomposed into a whitening

filter and an estimator operating on the whitened data, randomized sampling can then be

used to approximate the estimator part of the system.

A low-power formulation for randomized sampling was presented in Chapter 4 where,

by checking for multiply-by-zero operations, the switching activity was reduced. Additional
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power savings were exploited by noting that throughput could be maintained by slowing

down the processor and therefore reducing the voltage supply. We showed that power sav-

ings as high as 70% could be obtained if the impulse response is sampled with a mean of 0.8.

The tradeoff between quality and power in the case of white iterative randomized sampling

was further analyzed and a relationship between percent relative power consumption and

gain in SNR was obtained. It was shown that for power savings of the order of 50%, the

gain in SNR was higher than 5dB.

DTRS was also used for modeling of a class of hardware failures. In Chapter 5, we

showed that three types of random failures of adders, multipliers, and register-retrieving

operations of direct and transposed-direct form hardware implementations of FIR filters

could be modeled as IDTRS. As a result, the linear models derived in Chapter 2 were

used to develop algorithms for maintaining a desired SNR given a probability of hardware

failure. An approach involved first up-sampling the input by a factor of N and filtering it

at a higher rate using the faulty hardware then down-sampling the output while another

approach averaged the outputs to a collection of N identical faulty FIR filters. Graphs

showing the tradeoff between gain in SNR, N , and the probability of failure were also

presented. For example, it was shown that up-sampling the input by a factor of 10 would

be needed to maintain a gain in SNR of 20dB under a 1% probability of failure.

6.2 Future Directions

The framework defined by this thesis and the analysis and applications explored revealed

some of the potential as well as limitations of discrete-time randomized sampling. However,

a number of issues and applications which may lead to interesting results and innovative

algorithms still need to be investigated. In this section, we suggest some directions for

further work.

First, the main focus of this thesis was white sampling processes and while some semi-

white processes were explored, a thorough investigation of correlated sampling should be

carried out. We suspect that better error characteristics could be obtained from additional

structure in the sampling process through increased correlation. In particular, a potentially

promising method is energy-proportional sampling where the probability of setting a co-

efficient to zero is inversely proportional to the normalized energy of that coefficient. In
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this case, the sampling process is no longer wide-sense-stationary, however it is still simple

enough to analyze.

Second, in Chapter 3, we saw that the randomized sampling error was fundamentally

different from any LTI filter approximation method since the error is signal-independent

in the randomized case whereas it is signal-dependent in the LTI case. There are many

applications where a high-variance uncorrelated white error is more desirable than a low-

variance correlated colored error. Audio and image processing are examples of such appli-

cations. Since an analytical perceptual metric for audio and speech processing is hard to

obtain, hearing experiments should be performed to compare approximation techniques us-

ing randomized sampling to other optimal LTI approximation techniques. We believe that

randomized sampling may well lead to a perceptually higher quality output than other LTI

approximation techniques. We suggest starting with applications in analog-to-digital speech

pre-processing where the pre-emphasis filter is approximated. Similarly, approximate image

processing applications need to be explored.

Third, in the domain of low-power filtering, simulations should be carried out to measure

the actual power savings versus quality distortion. Furthermore, Chapter 4 of this thesis

evaluated the tradeoff between power consumption and output quality only for the case of

white sampling. This tradeoff should be investigated for correlated sampling schemes since

improved quality is expected in these cases.

Fourth, in the domain of hardware failure modeling, more algorithms should be explored

to improve the quality of the output given a hardware failure probability. Specifically,

efforts should be invested in trying to identify hardware constellations where while each

piece of the constellation fails according to the white iterative randomized sampling model,

the interconnections are such that the overall system exhibits a composite failing behavior

characteristic of correlated sampling and as a result, achieves noise shaping and higher SNR.

Finally, we suggest exploring adaptive discrete-time randomized sampling where the

sampling process mean and autocorrelation function are adjusted according to some target

quality performance and complexity level subject to a pre-defined metric. In this case,

depending on the input signal statistics, the sampling process varies from white and constant

mean to correlated and varying mean in order to maintain a fixed output quality. In

addition, for any given time point, this scheme guarantees the use of the simplest and most

efficient (lowest mean) sampling process to achieve a target quality performance.
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Appendix A

Derivations for White Sampling

A.1 mry[n] and e1[n] are uncorrelated

ys1[n] = h[n] ∗ (x[n]rs[n]) (A.1)

= h[n] ∗ ((mr + r̂s[n])x[n]) (A.2)

= mry[n] + e1[n] (A.3)

Proof that mry[n] and e1[n] are uncorrelated:
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E{mry[n]e1[n]} = mrE{(x[n] ∗ h[n])((r̂s[n]x[n]) ∗ h[n])} (A.4)

= mrE{
+∞∑
k=−∞

x[k]h[n − k] (A.5)

+∞∑
l=−∞

r̂s[l]x[l]h[n − l]} (A.6)

= mrE{
+∞∑
k=−∞

+∞∑
l=−∞

(x[k]h[n − k]) (A.7)

(r̂s[l]x[l]h[n − l])} (A.8)

= mr

+∞∑
k=−∞

+∞∑
l=−∞

E{x[k]x[l]h[n − k]h[n − l]r̂s[l]} (A.9)

= mr

+∞∑
k=−∞

+∞∑
l=−∞

E{r̂s[l]} (A.10)

E{x[k]x[l]h[n − k]h[n − l]} (A.11)

= 0 (A.12)

Also:

E{mry[n]}E{e1[n]} = E{mry[n]}E{(r̂s[n]x[n]) ∗ h[n]} (A.13)

= E{mry[n]}E{

+∞∑
k=−∞

r̂s[k]x[k]h[n − k]} (A.14)

= E{mry[n]}
+∞∑
k=−∞

E{r̂s[k]x[k]h[n − k]} (A.15)

= E{mry[n]}

+∞∑
k=−∞

E{r̂s[k]}E{x[k]h[n − k]} (A.16)

= 0 (A.17)

Therefore:

E{mry[n]e1[n]} = E{mry[n]}E{e1[n]} (A.18)
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A.2 The autocorrelation of the error: Re1e1[m]

Re1e1[m] = E{e1[n]e1[n+m]} (A.19)

= E{

+∞∑
k=−∞

r̂s[k]x[k]h[n − k]

+∞∑
l=−∞

r̂s[l]x[l]h[n +m− l]} (A.20)

= E{

+∞∑
k=−∞

+∞∑
l=−∞

r̂s[k]r̂s[l]x[k]x[l]h[n − k]h[n+m− l]} (A.21)

=
+∞∑
k=−∞

+∞∑
l=−∞

E{r̂s[k]r̂s[l]}E{x[k]x[l]}h[n − k]h[n +m− l]} (A.22)

=

+∞∑
k=−∞

+∞∑
l=−∞

Rr̂sr̂s [k − l]Rxx[k − l]h[n − k]h[n +m− l]} (A.23)

Since:

Rr̂sr̂s [m] = σ
2
rδ[m] = mr(1−mr)δ[m] (A.24)

Then:

Re1e1 [m] =

+∞∑
k=−∞

+∞∑
l=−∞

mr(1−mr)δ[k − l]Rxx[k − l]h[n− k]h[n +m− l] (A.25)

=
+∞∑
k=−∞

mr(1−mr)δ[0]Rxx[0]h[n − k]h[n +m− k] (A.26)

= mr(1−mr)Rxx[0]Rhh[m] (A.27)

A.3 mry[n] and e2[n] uncorrelated

E{mry[n]e2[n]} = mrE{(x[n] ∗ h[n])(x[n] ∗ (r̂s[n]h[n]))} (A.28)

= mrE{

+∞∑
k=−∞

x[k]h[n − k]

+∞∑
l=−∞

x[l]r̂s[n− l]h[n − l]} (A.29)

= mr

+∞∑
k=−∞

+∞∑
l=−∞

E{x[k]x[l]h[n − k]h[n − l]r̂s[n− l]} (A.30)

= mr

+∞∑
k=−∞

+∞∑
l=−∞

E{x[k]x[l]h[n − k]h[n − l]}E{r̂s[n− l]} (A.31)

= 0 (A.32)
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Also:

E{mry[n]}E{e2[n]} = E{mry[n]}E{

+∞∑
k=−∞

x[k]r̂s[n− k]h[n − k]} (A.33)

= E{mry[n]}

+∞∑
k=−∞

E{x[k]h[n − k]}E{r̂s[n− k]} (A.34)

= 0 (A.35)

Therefore:

E{mry[n]e2[n]} = E{mry[n]}E{e2[n]} (A.36)

A.4 Derivation of Re2e2[m]

Re2e2[m] = E{e2[n]e2[n+m]} (A.37)

= E{

+∞∑
k=−∞

r̂s[k]h[k]x[n − k]

+∞∑
l=−∞

r̂s[l]h[l]x[n +m− l]} (A.38)

=
+∞∑
k=−∞

+∞∑
l=−∞

E{r̂s[k]r̂s[l]h[k]h[l]x[n − k]x[n+m− l]} (A.39)

=

+∞∑
k=−∞

+∞∑
l=−∞

h[k]h[l]E{r̂s[k]r̂s[l]}E{x[n − k]x[n+m− l]} (A.40)

=

+∞∑
k=−∞

+∞∑
l=−∞

h[k]h[l]Rr̂s r̂s [k − l]Rxx[−k −m+ l] (A.41)

Since:

Rr̂sr̂s [m] = mr(1−mr)δ[m] (A.42)
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Then:

Re2e2[m] =

+∞∑
k=−∞

+∞∑
l=−∞

h[k]h[l]mr(1−mr)δ[k − l]Rxx[l −m− k] (A.43)

=

+∞∑
k=−∞

h[k]h[k]mr(1−mr)δ[0]Rxx[−m] (A.44)

= mr(1−mr)Rxx[m]
+∞∑
k=−∞

h[k]h[k] (A.45)

= mr(1−mr)Rhh[0]Rxx[m] (A.46)

A.5 mry[n] and e3[n] are uncorrelated

E{mry[n]e3[n]} = mrE{(x[n] ∗ h[n])(x[n] ∗ (r̂s[n; k]h[n]))} (A.47)

= mrE{
+∞∑
k=−∞

x[k]h[n − k]
+∞∑
l=−∞

h[l]r̂s[n; l]x[n − l]} (A.48)

= mr

+∞∑
k=−∞

+∞∑
l=−∞

E{x[k]x[n − l]h[n− k]h[l]r̂s[n; l]} (A.49)

= mr

+∞∑
k=−∞

+∞∑
l=−∞

E{x[k]x[n − l]h[n− k]h[l]}E{r̂s[n; l]} (A.50)

= 0 (A.51)

Also:

E{mry[n]}E{e3[n]} = E{mry[n]}E{
+∞∑
k=−∞

h[k]r̂s[n; k]x[n− k]} (A.52)

= E{mry[n]}

+∞∑
k=−∞

E{h[k]r̂s[n; k]x[n − k]} (A.53)

= E{mry[n]}

+∞∑
k=−∞

E{h[k]x[n − k]}E{r̂s[n; k]} (A.54)

= 0 (A.55)

Therefore:

E{mry[n]e3[n]} = E{mry[n]}E{e3[n]} (A.56)
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A.6 The Autocorrelation of e3[n]: Re3e3[m]

Re3e3 [m] = E{e3[n]e3[n+m]} (A.57)

= E{

+∞∑
k=−∞

h[k]r̂s[n; k]x[n − k]

+∞∑
l=−∞

h[l]r̂s[n+m; l]x[n +m− l]} (A.58)

=

+∞∑
k=−∞

+∞∑
l=−∞

E{h[k]h[l]r̂s[n; k]r̂s[n+m; l]x[n− k]x[n +m− l]} (A.59)

=
+∞∑
k=−∞

+∞∑
l=−∞

h[k]h[l]E{r̂s[n; k]r̂s[n+m; l]}E{x[n − k]x[n +m− l]}(A.60)

=

+∞∑
k=−∞

+∞∑
l=−∞

h[k]h[l]Rr̂s r̂s [m; l − k]Rxx[m− l + k] (A.61)

Since:

Rr̂sr̂s [n; k] = σ
2δ[n]δ[k] = mr(1−mr)δ[n]δ[k] (A.62)

Then:

Re3e3[m] =
+∞∑
k=−∞

+∞∑
l=−∞

h[k]h[l]mr(1−mr)δ[m]δ[l − k]Rxx[m− l + k] (A.63)

=

+∞∑
k=−∞

h[k]h[k]mr(1−mr)δ[m]δ[0]Rxx[m] (A.64)

= mr(1−mr)Rhh[0]Rxx[0]δ[m] (A.65)
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Appendix B

Derivations for Non-White

Sampling

B.1 Re3e3[m] in the case of correlated sampling at each con-

volution step

Using derivations in Appendix A we have:

Re3e3 [m] = E{e3[n]e3[n+m]} (B.1)

=
+∞∑
k=−∞

+∞∑
l=−∞

h[k]h[l]Rr̂s r̂s [m; l − k]Rxx[m− l + k] (B.2)

Since in this case:

Rr̂sr̂s [m; k] = (1−mr)mrδ[m]Rgg[k] (B.3)

Then:

Re3e3 [m] =

+∞∑
k=−∞

+∞∑
l=−∞

h[k]h[l](1 −mr)mrδ[m]Rgg[l − k]Rxx[m− l + k] (B.4)

= mr(1−mr)

+∞∑
k=−∞

+∞∑
l=−∞

h[k]h[l]Rxx[k − l]Rgg[l − k]δ[m] (B.5)
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In addition, if:

Rgg[m] = δ[m]− αδ[m − 1]− αδ[m+ 1] (B.6)

Then:

Re3e3 [m] = mr(1−mr)

+∞∑
k=−∞

+∞∑
l=−∞

h[k]h[l]Rxx[k − l](δ[l − k]− αδ[l − k − 1]− αδ[l − k + 1])δ[m]

(B.7)

Re3e3 [m] = mr(1−mr)δ[m]

+∞∑
k=−∞

(h2[k]Rxx[0]− αh[k]h[k + 1]Rxx[−1]− αh[k]h[k − 1]Rxx[1])

(B.8)

Re3e3 [m] = mr(1−mr)δ[m](Rhh[0]Rxx[0] − αRxx[−1]Rhh[1]− αRxx[1]Rhh[−1]) (B.9)

Note that:

Rxx[−1] = Rxx[1] (B.10)

Rhh[−1] = Rhh[1] (B.11)

Therefore:

Re3e3[m] = mr(1−mr)δ[m](Rhh[0]Rxx[0]− αRxx[1]Rhh[1]− αRxx[1]Rhh[1])(B.12)

= mr(1−mr)(Rhh[0]Rxx[0]− 2αRhh[1]Rxx[1])δ[m] (B.13)

B.2 Re3e3[m] in the case of a sampling process correlated across

output samples

In this case:
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Rr̂sr̂s [m; k] = mr(1−mr)Rvv [m]δ[k] (B.14)

Therefore:

Re3e3 [m] =
+∞∑
k=−∞

+∞∑
l=−∞

h[k]h[l]Rr̂s r̂s [m; l − k]Rxx[m− l + k] (B.15)

=

+∞∑
k=−∞

+∞∑
l=−∞

h[k]h[l]Rxx[m− l + k]mr(1−mr)Rvv [m]δ[l − k] (B.16)

=

+∞∑
k=−∞

h2[k]mr(1−mr)Rxx[m]Rvv [m] (B.17)

In addition, if:

Rvv [m] = δ[m]− αδ[m − 1]− αδ[m + 1] (B.18)

Then:

Re3e3 [m] = mr(1−mr)Rhh[0]Rxx[m](δ[m] − αδ[m − 1]− αδ[m + 1]) (B.19)

Re3e3 [m] = mr(1−mr)Rhh[0](Rxx[0]δ[m] − αRxx[1]δ[m − 1]− αRxx[−1]δ[m + 1]) (B.20)

Re3e3[m] = mr(1−mr)Rhh[0]Rxx[0](δ[m] − α
Rxx[1]

Rxx[0]
δ[m− 1]− α

Rxx[1]

Rxx[0]
δ[m+ 1]) (B.21)
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