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Abstract

The problem of how to increase the robustness of an automatic speech recognition
system with respect to additive environment noise is addressed. A two-stage approach
is adopted for improving recognition performance in such an environment, whereby:
(1) the noisy input waveform is filtered in order to enhance the underlying speech,
and (2) the enhanced waveform is processed by the recognizer in an attempt to decode
the utterance. Two sequential/adaptive algorithms are derived for use in the initial
stage of the two-stage system; one of these algorithms is designed to operate in an
environment with white noise, and the other in an environment with colored noise.
A suite of experiments is conducted to evaluate the performance of the recognizer in
the presence of noise, with and without the use of a front-end speech enhancement
stage. Recognition accuracy is evaluated at the phone and word levels, and at a wide
range of signal-to-noise ratios for both white and colored additive noise.
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Chapter 1

Introduction

1.1 The Basic Problem: Recognizing Speech in

an Adverse Environment

As the technology in automatic speech recognition (ASR) becomes increasingly ad-

vanced, greater consideration is given to speech as a viable means of interaction

between humans and machines. However, as more ASR systems become incorpo-

rated into real-world applications, greater attention must be devoted to making these

systems robust with respect to changes in their operating environments. Although it

is true that many modern speech recognizers can perform well in certain adverse en-

vironments when trained extensively under actual environment conditions, even the

most sophisticated ASR systems today are extremely sensitive to variations in these

conditions, and must be carefully retrained for each new setting in which they are

deployed.

In any given setting, a variety of environmental factors can interfere with obtaining

quality measurements of spoken language. Among the many potential sources of

environmental interference, three sources that are commonly addressed in the field

of robust speech recognition are: (1) additive noise, (2) channel distortion, and (3)

articulatory phenomena. To gain an appreciation for how each of these three factors

can influence speech measurements, let us consider the scenario in which an ASR
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system is deployed in a typical business office.

In the office environment, a spoken command intended for the recognizer can be

corrupted by many different types of additive noise. Examples of noise sources in

the workplace include background conversations, keyboard clicking, mechanical air

circulation, and in general any movement of people, chairs, desk drawers, books, and

paper. A noise source may produce sudden and transient interference, as in the case

of a slamming door or a ringing telephone, or it may produce steady and persistent

interference, as in the case of a humming computer fan or a buzzing overhead light.

In addition to undergoing corruption by additive noise, a speech signal can be

distorted as it propagates from the vocal chords of the speaker to the sensor of the

recognizer. Examples of such distortion include spectral shaping by the vocal tract,

spectral shaping by the recording microphone, and reverberation due to acoustic

reflections from walls, floors, and various objects in the room. Characteristics of

the distorted speech signal received by the recognizer will also be affected by variable

factors such as physiological differences between speakers, differences in the geometric

relationship between the speaker and the microphone, and changes in room acoustics

brought about by such events as opening a window or rearranging office furniture.

Finally, in addition to being altered by the effects of noise and distortion, speech

can be influenced heavily by changes in the articulatory patterns of a speaker. For

example, if a speaker attempts to compensate for the ambient noise in the room, or is

simply uncomfortable because of the awkwardness of interacting with the recognizer,

then the resulting speech may have very unnatural rhythm and exhibit significant

spectral tilt. Dealing with this kind of environmental influence is extremely difficult

because it is inherently a part of the speech production process, and therefore varies

as rapidly as the speech itself.

Clearly, each of these environmental factors can affect the critical attributes of

speech used by a speech recognizer, and hence can cause severe degradation in recogni-

tion performance. Though all of these factors eventually must be managed to achieve

robustness in speech recognition, in this thesis we shall address only the problem of

compensating for additive environmental noise.
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1.2 An Approach to Robustness Against Envi-

ronmental Noise

To develop a preliminary solution for dealing with a noisy operating environment, we

consider the situation depicted in Figure 1-1. In this figure, we see that the speaker has

produced an utterance intended to be processed by the recognizer. The environment

contains many sources of noise, however, and the utterance is corrupted before it

reaches the recording microphone. In general, such corruption will be unanticipated

by the speech recognition system, since the system has been trained to recognize

speech that is free of extraneous noise. Because the conditions in the operating

environment are very different from those of the training environment, it is likely

that the performance of the recognizer will be quite poor.

To boost the noise immunity of the recognizer, we introduce the augmented two-

stage system shown in Figure 1-2. In the first stage of this modified system, the

input waveform is filtered in order to enhance the underlying speech; in the second

stage, the enhanced waveform is simply processed by the recognizer as before. If,

in this proposed two-stage system, the front-end speech enhancement component

yields a reasonably accurate representation of the original utterance, then recognition

performance can be expected to improve. This basic two-stage approach to improving

the robustness of the recognizer is the approach we shall pursue in the sequel.

1.3 Previous Work in Robust Speech Recognition

With the recent appearance of ASR systems in many practical applications, the issue

of environmental robustness (and, in particular, the issue of recognition of noisy

speech) has attracted increasing attention in the research literature. Much of the

research in robust speech recognition has been done within the two-stage framework

described in Section 1.2, whereby a suitable speech enhancement subsystem is used

as a preprocessor for the recognizer.

Early development of algorithms for enhancing noisy and distorted speech was
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Figure 1-1: Depiction of an adverse environment for automatic speech recognition in
which multiple noise sources interfere with the utterance of a system user.
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based largely on classical theory in signal processing and estimation; a representative

survey of such classical methods is given in the book by Lim [18]. An important

development in this early work was the speech enhancement algorithm proposed by

Lim and Oppenheim [19]. In this frame-based algorithm, estimates of both the un-

derlying speech and the autoregressive speech parameters are iteratively refined until

a termination criterion is satisfied. At each iteration of the algorithm, the speech

signal is first estimated with a Weiner filter using the current values of the parameter

estimates; then, the parameters are re-estimated using the current value of the speech

signal estimate. In a later paper by Feder, Oppenheim, and Weinstein [7], this iter-

ative estimation technique was identified as a particular implementation of the EM

(Expectation-Maximization) algorithm [4], which is now a widely used mathematical

tool for computing maximum likelihood estimates. Hansen and Clements [13] later

extended the work of Lim and Oppenheim by imposing spectral constraints both

within and across frame boundaries to ensure optimum quality for many different

types of speech sounds.

Recently, there have been several notable developments in speech-enhancement

preprocessing algorithms for recognition systems. Ephraim et al [5] introduced an

approach for enhancing speech using a Hidden Markov Model (HMM). In this method,

both the speech and noise are modeled locally as autoregressive processes, and the

underlying utterance is modeled with the use of an HMM. The speech and noise

parameters are computed iteratively with the EM algorithm such that the likelihood

function over the entire utterance is eventually maximized. This approach has been

shown to yield significant gains in SNR; however, since it involves a re-estimation

of the entire speech waveform at every iteration, it is extremely computationally

expensive. Other research more closely tied to the speech recognition problem has

been contributed by Acero [1]. The basic idea put forth by Acero is that the speech

recorded in the operating environment should be transformed so that it assumes the

critical attributes of the speech used to train the recognizer. To accomplish this

goal, Acero has applied the classical techniques of spectral subtraction and spectral

normalization to provide joint compensation for the effects of environmental noise and
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distortion. When used in conjunction with the SPHINX recognition system [16], these

techniques yielded substantial improvement in recognition accuracy over independent

compensation strategies developed in previous research.

In addition to recently developed methods based on optimizing mathematical cri-

teria, a number of novel speech enhancement techniques based on the properties of

human hearing have also been proposed. Ghitza [9] developed a computational model

of the peripheral auditory system known as the Ensemble Interval Histogram (EIH)

to be used as a front end for a speech recognition system. The EIH has been shown to

be remarkably robust with respect to additive noise, and has produced extremely ac-

curate estimates of speech spectra in SNR levels as low as 0 dB. A substantial gain in

performance was reported when the EIH was employed in a simple speech recognition

task. More recently, Tsoukalas et al [40] proposed an enhancement technique based

on the theory of psychoacoustics that yields a significant gain in SNR and simulta-

neously preserves the intelligibility of the underlying speech. This technique, which

exploits the masking property of the auditory system, first identifies the audible noise

components in the corrupted signal and then suppresses these components through

adaptive nonlinear spectral modification. This perceptually-based method was found

to perform well in SNR levels of 10 dB or higher, and was found to be superior to the

classical spectral subtraction technique in very severe noise environments. Another

approach based on noise masking has recently been studied in the cepstral domain

by Mellor and Varga [22].

A number of other potentially useful techniques have appeared in the signal pro-

cessing literature (e.g., [3, 6, 12, 17, 43]), and many more will undoubtedly be devel-

oped in the near term as research in robust speech recognition continues to expand

rapidly.

1.4 Purpose and Scope of this Thesis

The long-term objective of research in this area is to develop the signal processing

and speech recognition technology required to design an ASR system that performs

18



at a consistently high level even in adverse conditions. In the present work, how-

ever, we focus exclusively on improving the robustness of an existing ASR system

in the presence of stationary additive noise by using a signal-enhancement prepro-

cessing algorithm as discussed in Section 1.2. The preprocessing algorithms used in

the experiments described herein have evolved directly from previous work done by

Oppenheim et al [24, 25] in the context of active noise cancellation; each algorithm

employs an autoregressive model for the speech, and incorporates prior knowledge

about the statistics of the noise. The speech recognition system used in the experi-

ments is the SUMMIT system, which has been developed by Zue and other researchers

from the Spoken Language Systems Group at the MIT Laboratory for Computer Sci-

ence [45, 46, 47]. We seek to evaluate the recognition performance of the SUMMIT

system under noisy conditions, with and without the use of one of the preprocessing

algorithms. Since the SUMMIT system has not previously been tested with respect

to its noise immunity, these studies will establish baseline levels of performance from

which to direct future research.

1.5 Thesis Organization and Development

The material presented in the sequel is organized in the following way:

In Chapter 2, we address the basic problem of how to enhance speech that has been

corrupted by additive environmental noise. First, we introduce stochastic models for

both the speech and noise processes, and formulate objectives for a speech enhance-

ment algorithm. We then derive two separate solutions to the enhancement problem

that take the form of sequential, time-adaptive algorithms; one of these algorithms

is designed for the case in which the corrupting noise is temporally uncorrelated,

or white, and the other for the case in which the noise is temporally correlated, or

colored.

In Chapter 3, we describe how the enhancement algorithms were incorporated in

a set of baseline speech recognition experiments. These experiments were designed to

evaluate the performance of an ASR system, with and without the use of a front-end

19



speech enhancement component, in a variety of environment conditions. Recognition

accuracy was tested at different linguistic levels (specifically, the phone and word

levels), and at different input SNR values for both the white-noise and colored-noise

cases. We provide a general overview of each experiment that was conducted, and

then describe in detail the various components that comprised each experiment.

In Chapter 4, we present and discuss the numerical results generated in these

recognition performance tests. First, we examine the phone and word accuracy rates

achieved by the recognizer as a function of the input SNR for the case in which

white noise was added to the speech; we then analyze an analogous set of results

for the colored-noise case. To aid in the interpretation of the results, we introduce

a further series of experiments designed to evaluate the performance of each speech

enhancement algorithm operating in isolation. In particular, these auxiliary tests

are intended to measure the gain in speech quality afforded by each algorithm as a

function of the input SNR.

Finally, in Chapter 5, we briefly summarize the work done in the thesis, put forth

conclusions regarding the most significant results obtained, and give directions for

future research in the area of robust speech recognition.
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Chapter 2

Algorithms for Enhancing Noisy

Speech

In this chapter, we address the basic problem of how to enhance speech that has been

corrupted by additive environmental noise. First, we introduce stochastic models for

both the speech and noise processes, and formulate objectives for a speech enhance-

ment algorithm. We then derive two separate solutions to the enhancement problem

that take the form of sequential, time-adaptive algorithms; one of these algorithms

is designed for the case in which the corrupting noise is white, and the other for the

case in which the noise is colored. We show the results of applying each algorithm to

actual speech waveforms corrupted by computer-generated noise.

2.1 The Speech Enhancement Problem: Defini-

tions and Models

Before considering the details of designing a speech enhancement system, we must

first impose some probabilistic structure on the speech and noise processes observed

in the recognition environment. In Figure 2-1, we identify the various signals entering

at the front end of the augmented ASR system. The waveform s(t) represents the

speech produced by the system user, and the waveform v(t) represents the additive
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disturbance generated within the environment. The composite waveform z(t) received

at the microphone is therefore given by

z(t) = s(t) + v(t). (2.1)

The signal enhancement algorithm processes this corrupted speech waveform and

generates the output signal (t), which is intended to be an accurate representation

of the original speech.

s(t)

v(t)

z(t) s(t)

Figure 2-1: Definition of waveforms at
nition system.

the front end of the augmented speech recog-

In general, the signal s(t) will be nonstationary, since the time attributes of speech

vary dramatically even over the duration of a single word. However, since the first- and

second-order statistics of relatively short sections of a speech signal (i.e., sections that

are 15 to 30 milliseconds long) are approximately constant, speech is typically modeled

over brief time intervals as the steady-state output of a linear time-invariant system

driven by white noise [31]. Here we shall assume that s(t) has the autoregressive form

p

s(t) = - E akS(t- k) + u(t),
k=l

(2.2)

where p is the order of the speech process over the interval, l1, 2,..., p are the

autoregressive parameters of the speech, and u(t) is a white Gaussian process with

E{u(t)}= and E{u2(t)}= 2. (2.3)
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In many instances, acoustic noise, like speech, is approximately stationary over brief

time intervals, and may also admit a linear representation such as the one given above.

Thus, we shall assume that v(t) also has an autoregressive form given by

q

v(t) = - Z ikV(t - k) + w(t), (2.4)
k=l

where q is the order of the noise process, 31, 2,.. , 3q are the autoregressive param-

eters of the noise, and w(t) is a white Gaussian process with

E {w(t)} = 0 and E {w2(t)} = 0w . (2.5)

In the remaining part of this chapter we develop two speech enhancement algorithms,

each of which is tailored to a specific case for the additive disturbance v(t). In Sec-

tion 2.2, we consider the degenerate case in which all of the autoregressive parameters

are zero, and v(t) is a white noise process with

E {v(t)} = 0 and E {v2(t) = . (2.6)

In Section 2.3, we consider a case in which the autoregressive parameters are nonzero,

so that v(t) is in fact highly correlated in time.

For the algorithm derivations presented in Sections 2.2 and 2.3, we assume that

the speech and noise processes are statistically independent. Furthermore, we restrict

our attention to enhancement algorithms that use only past and present observations

to produce a minimum mean-square error (MMSE) estimate of the current speech

signal value. Thus, at time t, we wish to compute the estimate a(t) that satisfies

9(t) = argmin E { (s(t)- )21 z(0),z(1),..., z(t)}, (2.7)

where the argmin operator yields the argument of the expectation at which the min-

imum value occurs. For the above MMSE criterion, it is well known that the optimal
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estimate 9(t) is the conditional mean given by

9(t) = E{s(t)lz(O),z(1),... ,z(t)}. (2.8)

In the following sections, we develop techniques for computing such a conditional

mean estimate sequentially in time.

2.2 Enhancing Speech in Additive White Noise

Since our underlying speech signal model is autoregressive, and the corrupting noise

is additive, we can conveniently represent our speech measurement model using the

classical linear state-space equations from dynamical system theory. Specifically, at

time t we construct a state vector x(t) that consists of the present speech sample

together with the previous p consecutive speech samples, defined by

x(t)= [ s(t) s(t- 1) .. s(t-p) (2.9)

Using this state vector definition, we can express our speech measurement model as

x(t + 1) = Fx(t) + gu(t) (2.10)

z(t) = gTx(t) + v(t), (2.11)

where F is a (p + 1) x (p + 1) state transition matrix, given by

-C1 -2 ...... - p 0

1 0 ... ... 0 0

0 1 ...... 0 0

0 0 ... ... 1 0

(2.12)
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and g is a (p + 1) x elementary vector, given by

g=[1 0 ... 0] (2.13)

Observe that the matrix F consists mainly of zeroes, with the exception of its first

row, whose elements are the speech signal parameters, and its subdiagonal, whose

elements are all ones. Thus, F is structured to effect the autoregression and to delay

the signal samples in the state vector by one time unit; the vector g, on the other

hand, is designed to incorporate only the current signal sample (i.e., the first element)

of the state vector into the measurement.

To relate the above state-space representation to our original speech enhancement

problem, we express the conditional mean estimate from Equation (2.8) as

9(t) = E {gTX(t) z(O),z(1),... ,z(t)} (2.14)

= gTE {x(t)l z(),z(1),...,z(t)}, (2.15)

where the first equality follows from the definitions of g and x(t), and the second

follows from the linearity of the expectation operator. Now, based on the assump-

tion that the speech parameters ca, a2, . . ., c 2 and the noise parameter o2 are all

precisely known, the conditional expectation of the state vector appearing in Equa-

tion (2.15) can be computed efficiently using a Kalman filter that is designed specif-

ically for the measurement model of Equations (2.10) and (2.11). In the remaining

portion of this chapter, we shall pursue a solution based on the Kalman filtering

algorithm.

To prepare for our discussion on sequential state estimation, we adopt a standard

notation from the literature on Kalman filtering theory whereby the optimal estimate

of the state vector at time t based on measurements up to time r is denoted by R(t T),

and the error covariance associated with this estimate is denoted by P(tr). For the

special case of interest to us in which T = t, we have by definition

R(tlt) = E {x(t)lz(0),z(1),...,z(t)} (2.16)
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Using the classical Kalman filter formulation, we can compute both the state estimate

R(tIt) and its error covariance P(tjt) recursively in time. These recursive computations

are typically decomposed into two sets of updates that are performed sequentially at

each time instant, namely: (1) the time update equations, in which the previous state

estimate and its error covariance are propagated forward to the current time based

on knowledge of the underlying system dynamics and a priori noise statistics, and (2)

the measurement update equations, in which the propagated state estimate and error

covariance are adjusted to reflect the new information in the current measurement [2].

These two sets of updates are specified as follows:

TIME UPDATE EQUATIONS

P(tt- 1) = FP(t- lt - 1) (2.18)

P(tlt-1) = FP(t-llt-1)FT + 2g g T (2.19)

MEASUREMENT UPDATE EQUATIONS

'(t t) = (t t- 1) + k(t) (z(t) - gR(tlt - 1)) (2.20)

P(tlt) = P(tlt - 1)- k(t)gTP(tt- 1) (2.21)

In the measurement update equations above, the vector k(t), which defines the direc-

tion of the adjustment made to the propagated state estimate x(tlt- 1), is commonly

known as the Kalman gain, and is given by

P(tt - 1)gk(t) = gTP(tt - 1)g + (2.22)

In this case, the Kalman gain is simply a scaled version of the first column of the

propagated error covariance matrix P(tlt- 1). Thus, the gain vector k(t) consists

of the cross-correlations between the error in the estimate of s(t) and the errors in

the estimates of s(t - 1), s(t - 2), . . , s(t - p) based on measurements received up
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to time t - 1. The strength of these cross-correlations indicate the extent to which

the elements of the vector x(tlt- 1) can be corrected using the signal portion of

the measurement received at time t. In addition, each element of the Kalman gain

vector is scaled such that it is inversely proportional to the average power in the

measurement noise. Thus, for a case in which noise is dominant in the measurement,

only small corrections to the projected state estimate should be made; on the other

hand, for a case in which the noise power is very small, the measurements will be rich

in signal information, and therefore much larger adjustments to the state estimate

are called for.

Recall that the Kalman filtering equations given above require exact knowledge

of all parameters in our measurement model. In an actual speech processing en-

vironment, however, we will almost certainly have no prior information about the

speech parameters at any time. In fact, it is reasonable to assume that we can, under

suitably stable environment conditions, accurately measure only the statistics of the

background noise. Thus, in the sequel we shall assume that only the noise parameters

are known, and that the speech parameters must be estimated jointly with the speech

signal values.

As one might expect by examining the linear signal model of Equation (2.2), the

signal parameters can be determined uniquely if the second-order signal statistics

are precisely known. To find the relationship between the signal parameters and the

signal correlation function, we first define a parameter vector ca as

[~~~~~
X--- C 1 2 . p (2.23)

and then rewrite Equation (2.2) in vector form as

x T (t) [1 ] = u(t). (2.24)

This equivalent expression for the signal model follows from a simple algebraic rear-

rangement of the original equation and use of the definition of the state vector x(t).
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If we now multiply both sides of this new vector equation by x(t) and apply the

expectation operator, we obtain the expression

E x(t)x T(t)} [ ] E ()()} (2.25)

By assumption, the random variable u(t) is zero-mean and is statistically independent

of all signal values s(r) for r < t; hence, in particular we have

E {s(t-k)u(t)} = 0 for k = 1,2,... ,p. (2.26)

Moreover, by using these orthogonality conditions in conjunction with our autore-

gressive signal model, we see that the correlation between u(t) and the current signal

value is given by

E{s(t)u(t)}

Upon substituting the above

new expression

= E - E akS(t- k) + u(t) u(t)
k=1 )

= E {u2(t)}

= 2
= 0u.

(2.27)

(2.28)

(2.29)

correlation values into Equation (2.25), we obtain the

I 12
R =

a 0
(2.30)

where R is the (p + 1) x (p + 1) signal correlation matrix defined by

R = E {x(t)XT(t)}. (2.31)

Equation (2.30) reveals the relationship between the signal parameters and the second-

order signal statistics. The scalar equations that comprise this matrix-vector expres-

sion are commonly known as the Yule-Walker equations [14], and they will form the
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basis for our parameter estimation algorithm.

Clearly, if the correlation matrix R is known, then Equation (2.30) can be used

to solve explicitly for the parameters and a2. However, as we have already men-

tioned, the signal statistics will not be known a priori, and hence must be estimated.

Furthermore, any method we choose for estimating these statistics must be capable

of adapting to changes in the structure of the signal with time, in view of our initial

remark that speech can be considered stationary only over brief intervals. We can

compute an estimate of the signal correlation matrix based on measurements received

up to time t by using the error covariance matrix P(tlt) from Equation (2.17). In

particular, if we define the state estimation error at time t as

e(t) = :(t t) - x(t), (2.32)

then we can express P(tft) as (dropping the conditioning notation for convenience)

P(t t) = E {(:(t t)-x(t)) eT(t)} (2.33)

= EF {(tjt)eT(t)}-E {x(t)eT(t)}. (2.34)

Because R(tlt) is a minimum mean square linear estimate of the state vector, it is

orthogonal to the error term e(t). Hence, the first term in Equation (2.34) vanishes,

and we are left with

P(tjt) = -E {x(t) ((tlt) - x(t))T } (2.35)

= E {X(t)XT(t)} -E {X(t)RT(tjt)} (2.36)

= E {X(t)XT
(t)} - E {((tIt) - e(t)) ZT(tIt)} (2.37)

= E {X(t)XT(t)} - E {(tt)XT(tIt)}. (2.38)

By dropping the expectations from this last equation, we see that a reasonable in-

stantaneous estimate of the outer product x(t)xT(t) is given by

x(t) x (t) = (tt)(tt)+ P(tt). (2.39)
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Moreover, these instantaneous estimates generated at each time can be incorporated

into a weighted average to be used as an estimate of the current signal correlation ma-

trix. A computationally convenient way of averaging these instantaneous estimates is

to use an exponential weighting, whereby the most recently generated terms have the

most significant contribution to the average, and terms generated in the remote past

have a negligible contribution. For the case of exponential weighting, the estimate

R(t) of the correlation matrix is given by

= Ot _ , (2.40)

where A is the so-called "forgetting factor" that determines the memory length of the

estimator, chosen such that 0 < A < 1. If we assume that the above estimator is

operating in the steady state (i.e., that t is large), then for the overall scaling term

in the estimate we can write

1 1-Ak
ltA= _a 1 -A (2.41)t At_

With this simplification, the estimate R(t) is easily computed recursively, as shown

by

R(t) - ) E At-Tx(T)x (T (2.42)
-r=o

t1

= (1 - A) xx + A At- x(r)xT(1r) (2.43)

= (1- A)x(t)x T (t) + AR(t- 1) (2.44)

Since we now have a method of generating an estimate of the signal correlation matrix

at each time instant, we can consider formulating a parameter estimation scheme

based on the Yule-Walker equations derived earlier. In particular, we replace the

matrix R in Equation (2.30) by its current estimate R(t) to obtain a set of equations

in the unknown parameters a and or2 that can be uniquely solved at time t. If wein the ~~~~~~~~ ukonprmtr ~adc
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first partition the matrix R(t) as

R(t) r1(t) r21(t) ] (2.45)
?21 (t) A22 (t) )

where F11(t) is 1 x 1, r21(t) is p x 1, and R 22(t) is p x p, then by using the above

strategy Equation (2.30) becomes

rl(t) r2T (t) 2 °

[z:ll:; 217t)][I ] = [o] JU (2.46)
r 21(t) 22(t) J (C 0 

After simple rearrangement, this expression yields the two equations

r2l(t) + R 22(t)ca = 0 (2.47)

u - r11l(t)- rTl(t) = 0. (2.48)

Although these equations can readily be solved for the unknown parameters, a direct

solution at each time t requires inversion of the matrix R 22(t), and is therefore com-

putationally unattractive. A somewhat less direct but much more computationally

efficient solution can be obtained by applying the theory of stochastic approxima-

tion [10, 23, 33, 34]. In a typical stochastic approximation problem, we observe the

values of a sequence of identically distributed random vectors {y(t)}, and we seek the

value of an unknown parameter vector that satisfies an equation of the form

E {f(y(t), 0)} = 0, (2.49)

where f(,) is a deterministic vector function that is known in advance. With the

stochastic approximation approach, a solution to this equation evolves sequentially

in time as each new observation becomes available. A standard search algorithm for

converging on a solution to Equation (2.49), which was proposed in its original form
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by Robbins and Munro [34], is the recursion given by

0(t + 1) = 0(t) - 7(t)Q(t)f(y(t), 0(t)), (2.50)

where 8(t) is the estimate of 0 at time t, i(t) is a user-specified scalar determining the

size of the adjustment made to 9(t), and Q(t) is a user-specified matrix of appropriate

dimension determining the direction of the adjustment made to O(t).

To gain an understanding of how the above algorithm can be used for parameter

estimation, let us briefly consider a simple application. Suppose that we wish to

estimate the common mean of the random vectors {y(t)}, and that the actual value

of this mean is 0. We define f(-, ) in this case as

f(y(t), 0) = 0 - y(t), (2.51)

so that the expectation in Equation (2.49) is satisfied, and we choose the updating

scale and direction parameters as

1
?(t) = t1 (2.52)

Q(t) = I. (2.53)

With these definitions, a stochastic approximation algorithm for estimating the mean

is given by

1
O(t + 1) = 0(t) - + (0(t) - y(t)). (2.54)

If this algorithm is initialized with the value 9(0) = 0, then after N observations have

been processed the estimate (N) is identical to the sample mean estimate. Thus,

we have

1 N-1

(N) = E y(T), (2.55)
N'--0
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which is easily verified by iterating Equation (2.54) a total of N times.

The foregoing example illustrates the power and generality of the stochastic ap-

proximation method; in particular, it shows that a simple application of the stochastic

approximation method can lead to a classical and widely used estimator as a special

case. In any given estimation problem, an infinite variety of solutions can be real-

ized through different choices of the algorithm parameters y(t), Q(t), and f(, ). For

example, if Equation (2.49) represents a condition for minimizing a prespecified cost

function, and if derivatives of the cost function can be readily computed, then direc-

tional information can be incorporated through the matrix parameter Q(t) in order

to accelerate convergence [20]. Moreover, if it is known that the observations {y(t)}

are not identically distributed, but instead are characterized by a distribution that

varies slowly over time, then exponential data weighting can be applied through the

step-size parameter iy(t) [11].

To apply the stochastic approximation method to our present parameter estima-

tion problem, we define 0 as

0 = 2 (2.56)

and we consider the random vector y(t) to be our system state vector x(t). With

these definitions, it is clear that the previously derived Yule-Walker equations can,

after some manipulation, be cast in the general form of Equation (2.49). Based on

Equations (2.47) and (2.48), a suitable stochastic approximation algorithm for our

problem is specified by

&(t + 1) = a(t)- -y(t) [r 2 1(t) + R 2 2 (t)&(t)] (2.57)

cr2(t + 1) = 2(t)- 'y(t) [u2( ) - (t)- _T (t)&(t)] (2.58)

In these equations, we have set Q(t) = I, and have defined &(t) and a2(t) to be the

estimates at time t of the signal parameters ac and c, respectively.

We can now include Equations (2.57) and (2.58), as well as Equation (2.44),
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as part of our speech enhancement algorithm. With these additions, the complete

sequential/adaptive algorithm consists of two main stages: (1) the signal estimation

algorithm, in which the Kalman filter equations (based on the original measurement

model) are implemented using the current estimates of the signal parameters, and (2)

the parameter estimation algorithm, in which the stochastic approximation formulas

(based on the Yule-Walker equations) are implemented using the current estimate

of the signal correlation matrix. The two corresponding sets of computations are

specified as follows:

Signal Estimation Algorithm:

TIME UPDATE EQUATIONS

k(tlt - 1) = F(t)R(t - 1It- 1) (2.59)

P(tt - 1) = F(t)P(t - it -1)F T (t) + 2(t)gg T (2.60)

MEASUREMENT UPDATE EQUATIONS

R(tlt) = R(t t- 1) + :(t) (z(t) - gR(tlt- 1)) (2.61)

P(t It) = P(tt- 1)- k(t)gTP(tlt- 1) (2.62)

Parameter Estimation Algorithm:

R(t) = (1 -A) [:(tlt):(tit)+ P(tlt)] + AR(t- 1) (2.63)

&(t + 1) = &(t) - (t) [r21(t) + R 22(t)&(t)] (2.64)

O"2(t + 1) = O"2(t)- p(t) [2(t)--11(t) -r l(t)(t)] (2.65)

In Figure 2-2, we show once again the front end of the augmented ASR system,

but now with detailed views of both the speech signal generation model and the se-

quential/adaptive speech enhancement algorithm. In particular, in the lower portion

of this figure we show the interaction between the two main components (i.e., the sig-

nal estimation and parameter estimation components) of the enhancement algorithm.
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Note that the estimates (tlt) and P(tjt) from the current iteration of the Kalman

equations are used to generate an updated parameter vector estimate O(t + 1). This

parameter vector estimate is then incorporated in the next iteration of the Kalman

equations, and so on until the entire input waveform has been processed.

Though not explicitly stated above, it is understood that the estimate of the cur-

rent signal sample s(t) is taken to be the first element of the vector :(tIt) at each

iteration. It is important to note, however, that the quantity :(tlt) generated during

the measurement update equations can no longer be interpreted as the conditional

mean estimate suggested by Equation (2.16), because the underlying signal parame-

ters are not known precisely at any time. By the same reasoning, the quantity P(tlt)

is not, strictly speaking, the error covariance associated with R(tlt); nonetheless, it

can be considered an estimate of the error covariance, and we have employed the

modified notation P(tlt) to indicate this. Similarly, we have replaced k(t) by k(t)

and F by F(t) to indicate that these quantities are not known precisely, but rather

are evaluated at time t using relevant estimates that are available.

An example in which the above enhancement algorithm was applied to a noisy

speech waveform is shown in Figure 2-3. The upper plot in this figure shows the

original clean speech waveform representing the utterance "Aluminum silverware can

often be flimsy." The middle plot shows a corrupted version of this waveform obtained

by adding a stationary white-noise time series whose average power over the utterance

is equal to that of the speech. (This level of corruption corresponds to a signal-to-noise

ratio of 0 dB.) The lower plot shows the result of applying the sequential/adaptive

algorithm to the corrupted speech waveform. Although the enhanced signal somewhat

resembles the original signal for this processing example, much of the resemblance is

due solely to the adaptive scaling applied through the Kalman gain. The mere scaling

of the corrupted waveform is the dominant part of the enhancement in this example

because, in such an extremely noisy environment, the temporal correlation structure

of the underlying speech cannot be estimated with a significant degree of confidence.
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Figure 2-2: Block diagrams of the speech signal generation model and the sequen-
tial/adaptive speech enhancement algorithm.

36

I
i
I
I
I
I
I
I
I
I
I
I
.. .1

f- 
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



5000 10000 15000 20000 25000 30000 35000

SAMPLE NUMBER

0 5000 10000 15000 20000 25000

SAMPLE NUMBER

30000 35000

0 5000 10000 15000 20000 25000 30000

SAMPLE NUMBER

40000 45000

35000 40000 45000

Figure 2-3: Top to bottom: Clean speech waveform representing the utterance "Alu-
minum silverware can often be flimsy"; speech waveform corrupted by white noise at
an SNR of 0 dB; enhanced waveform produced by the sequential/adaptive algorithm.
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2.3 Enhancing Speech in Additive Colored Noise

We now turn our attention to the case in which the speech signal of interest has been

corrupted by temporally correlated or colored noise, rather than by white noise. In this

case, since the corrupting noise is no longer memoryless, we change our measurement

model of Equations (2.10) and (2.11) to account for the dynamics of the noise process

as it evolves in time. We can make the necessary modification to our model by

augmenting the state vector x(t) with a sufficient number of new state variables

to accurately represent the autoregressive noise process specified by Equation (2.4).

Thus, we now define x(t) as

x(t) [ xI(t) ] ,(2.66)[x2 (t)

where x1 (t) represents the (p + 1) x 1 vector of signal states, given by

x1(t) = s(t) (t- 1) s(t-p) , (2.67)

and x 2(t) represents the q x 1 vector of noise states, given by

AT

x 2 (t) v(t) v(t-1) ... v(t-q+1) (2.68)

In the new dynamical equations, the signal portion of the state vector is, as before,

driven by the white noise process u(t); however, the noise portion is driven by the

independent white noise process w(t). Thus, in terms of the composite state vector

definition given above, our new measurement model can be represented as

xi(t + 1)] [F O [xi(t) ][ g 0 u(t) (2.69)
x 2(t + 1) 0 F2 X2(t) 0 g2 w(t)

z(t) = [gT g ] X1) ](t) (2.70)
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where F1 is the (p+ 1) x (p+ 1) matrix containing the autoregressive signal coefficients,

given by

-- X1 -Ce2 .......- p 0

1 0 ...... 0 0

0 1 ...... 0 0

0 0 ... ... 1 0

,1~~ ~(2.71)

F 2 is the q x q matrix containing the autoregressive noise coefficients, given by

-1 -2 . .-. q- -q

1 0 ... ... 0 0

0 1 ... ... 0 0

0 0 ... 1... 0

(2.72)

gl is the (p + 1) x 1 elementary vector given by

T

gl= 1 0 ... , (2.73)

and g2 is the q x 1 elementary vector given by

g2- I 0 ... 0 (2.74)

Note that because the signal and noise components of the current measurement are

now both included in the state vector, there is no additional noise term appearing in

the equation for z(t).

Using the above colored-noise measurement model, we can, as before, develop an

appropriate set of Kalman filtering equations to serve as the basis for a new signal
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enhancement algorithm. To this end, we now introduce notation (analogous to that

used in the previous section) for the Kalman filter that is based on the composite

system model of Equations (2.69) and (2.70). In particular, we define the current

estimates of the state vector components as

Rl(tIt) = E {xl(t)[z(0),z(1),...,z(t)} (2.75)

: 2(tit) = F {x2(t)I z(0),z(1), ... ,z(t)}, (2.76)

and the error covariances associated with these estimates as

Pll(t t) = {(l(tIt) -Xl(t))(:l(t t)-Xl(t))T z(O),z(1),...,z(t)j (2.77)

P 22(tlt) = E{(R2(ttt) - x 2(t)) ( 2(t t) - x 2(t))T Iz(),z(1), . . ,z(t)} (2.78)

P 12 (t t) = E { (X(tt)- Xl(t)) ( 2 (t t)- 2 (t)) T | z(0),z(1),... , z(t)} (2.79)

P 2 1(tlt) = E { (x 2(t t)- x 2(t)) (Rl(tit) - xl(t))T z(0), z(1), . . ., z(t)} . (2.80)

With these definitions, it can be readily verified that the Kalman gain vector for the

new measurement model is given (in partitioned form) by

P11(tIt- 1) P12(tt- 1) 1gl]

[ki (t)1 L P 21(tt-1) P 22(tt-1) L g 2 (281)
. (2.81)

k 2 t P(tlt -1) P 12(tlt-1) 1
9g1 92 L P 21(tt- 1) P 22(tlt- 1) g2 

As we remarked in the previous section, the computation of each of the Kalman

filtering variables defined above requires exact knowledge of all parameters in our mea-

surement model. However, we shall assume once again that only the noise parameters

are known, and that the speech parameters must be estimated concurrently with the

speech signal values themselves. As a consequence of our incomplete knowledge of the

measurement model, the above Kalman filtering variables cannot be computed ex-

actly at any time, and hence must be approximated using parameter estimates made

available at each iteration. Fortunately, by exploiting the partitioning of the Kalman
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filtering variables into signal and noise components, we can compute the parameter

estimates exactly as before. In particular, we simply replace the estimates R(tlt) and

P(tit) in Equation (2.63) by the newly defined estimates Rl(tlt) and P 11 (tjt), which

are associated strictly with the signal component of the state vector. Following the

development in the previous section, we can then combine the signal estimation al-

gorithm (based on the Kalman filtering equations) with the parameter estimation

algorithm (based on the Yule-Walker equations) to produce a complete algorithm

for enhancing speech in additive colored noise. The resulting sequential/adaptive

algorithm is once again specified in two main stages as follows:

Signal Estimation Algorithm:

TIME UPDATE EQUATIONS

5zil(tlt - 1)1

2(tlt- 1) ]

Pll(tt- 1) P12(tt- 1) 1
LP21(tt - 1) P22(tt - 1)j

Fl(t) 0 (t- lit- 1)

0L F2 (t-l It-1)

F l(t) 1[Pll(t-llt-1) P12(t-lt

0 F 2 P 21(t -lit- 1) P 22 (t -l It

xFl (t) 0 T(t)glgT 0

L o F2 0 22 T2 ~~~~cwg2

MEASUREMENT UPDATE EQUATIONS

Xl(tt- 1) - kl(t)

L2 (tt-1) k 2(t)

x(z(t)_[ g gT] 'xlt[
T2(tit -

[Pll(tt- 1) P12(tlt- 1)]_

P 21 (tIt - 1) P 22(tlt- 1)

Pii(tt - 1) P12(tIt - 1)
x - 2I

P 21 (tit - 1) P 2 2(tit - 1)

21 ) (2.8,
- 1 ) [

ki(t) T T

(2.85)
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(2.82)

-1)

- 1) I
(2.83)

RXl(tt) 1

[ R2(tlt) I

Pni(tit) P12 (tit)

P21(tlt ) P22(tit)
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Parameter Estimation Algorithm:

R(t) = (1 -A) [l(tit)T(tlt)+ P 1l(tlt)] + AR(t- 1) (2.86)

&(t + 1) = &(t) - 'y(t) [ir2 1(t) + R 22 (t)&(t)] (2.87)

W'2-(t + 1 =5(t)-7(t) [2(t)-r (t) _ T (t) (t)](.8+ = - - -~~~~~~~2 (2.88)

Once again, though not explicitly stated in the algorithm above, it is understood that

the estimate of the current signal sample s(t) is taken to be the first element of the

vector Rl(t1t) at each iteration.

An example in which the above algorithm was applied to a noisy speech waveform

is presented in Figure 2-4. The three plots appearing in this figure are analogous to

those shown in the earlier white-noise example of Figure 2-3. As before, the upper plot

shows the original clean speech signal representing the utterance "Aluminum silver-

ware can often be flimsy." The middle plot shows a corrupted version of this waveform

obtained by adding colored noise at a signal-to-noise ratio of 0 dB. (In this case, the

corrupting noise was chosen to be a fifth-order autoregressive process with parameter

values /31 = -2.542, /32 = 2.281, 3 = -1.058, 34 = 0.518, and /35 = -0.195.) The

lower plot in the figure shows the result of applying the above sequential/adaptive

enhancement algorithm to the corrupted waveform. In this colored-noise example,

the enhanced waveform is of slightly better quality than the corresponding waveform

shown in the earlier white-noise example, even though the signal-to-noise ratio was

the same in both cases. This difference exists because, whereas white noise is com-

pletely unpredictable from sample to sample, at least some portion of temporally

correlated noise added at a future sample is predictable, and hence is removable. The

general notion of comparing the quality of output signals produced by the enhance-

ment algorithms derived in this chapter will be made more precise in Chapter 4 as

part of an analysis of experimental speech recognition results.
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Figure 2-4: Top to bottom: Clean speech waveform representing the utterance "Alu-
minum silverware can often be flimsy"; speech waveform corrupted by colored noise at
an SNR of 0 dB; enhanced waveform produced by the sequential/adaptive algorithm.
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Chapter 3

Experiment Methodology and

Design

Thus far, we have proposed an approach for increasing the robustness of an automatic

speech recognition system whereby a front-end signal enhancement component serves

to prefilter the noisy input speech before it reaches the recognizer. In addition, we

have developed two sequential/adaptive algorithms for the specific task of enhanc-

ing speech in two different kinds of additive noise. In this chapter, we describe how

the enhancement algorithms were incorporated in a set of baseline speech recogni-

tion experiments. These experiments were designed to evaluate the performance of

an ASR system, with and without the use of a front-end speech enhancement com-

ponent, in a variety of environment conditions. Recognition accuracy was tested at

different linguistic levels (specifically, the phone and word levels), and at different

input SNR values for both the white-noise and colored-noise cases. We provide a

general overview of each experiment that was conducted, and then describe in detail

the various components that comprised each experiment.
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3.1 Overview of the Speech Recognition Experi-

ments

To determine how the prefiltering of noisy speech affects overall recognition perfor-

mance, we must first measure the baseline performance of the recognizer operating

alone in the presence of additive noise. A standard way of gauging performance under

such conditions is to have the recognizer process a test collection of speech signals re-

peatedly in a sequence of experimental trials, while increasing the level of corruption

applied to the signals on each successive trial.

The structure of the baseline performance evaluation experiment used for this

thesis is presented in the form of a block diagram in Figure 3-1. Note from the

figure that two data bases are used in the baseline experiment: (1) a speech data

base, which contains a large number of high-quality, prerecorded spoken sentences

(together with a corresponding set of sentence transcriptions), and (2) a noise data

base, which contains computer-generated white-noise and colored-noise waveforms

(together with parameter values that characterize the noise). At the start of an

experimental trial, waveforms s(t) and v(t) are extracted from the speech and noise

data bases, respectively. The noise waveform is then scaled such that the average

energy in s(t) and the average energy in v(t) are in the appropriate proportions for

the signal-to-noise ratio (SNR) currently being tested (i.e., if the required SNR is

equal to p (measured in dB), then v(t) is scaled such that

N-1 2 (t))
p = 10 log1 0 (E 2 (t)) (3.1)_t= V(t))

where N is the length in samples of both s(t) and v(t)). Once v(t) is brought to the

required energy level, it is added to s(t) to produce the corrupted speech waveform

z(t) = s(t) + v(t). The speech recognition system accepts this corrupted waveform as

input and subsequently generates an estimate, in the form of a text string T, of the

utterance represented by s(t). Finally, this hypothesized utterance transcription T is

systematically compared, by means of a specially designed string alignment algorithm,
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Figure 3-1: Block diagram of the experiment for evaluating baseline speech recognition
performance in the presence of additive noise.
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to the true utterance transcription T, which accompanies s(t) in the speech data base.

The comparison of the text strings T and T results in a numerical score between 0

and 1 that indicates the accuracy of the recognizer output.

Of course, to obtain a reliable measure of speech recognition performance at a

prespecified noise level, we must perform a suitably large number of experimental

trials such as the one described above, using a variety of speech waveforms from the

data base. Once baseline performance has been established for a given noise level,

we can then measure the corresponding change in performance that results from

prefiltering the noisy speech before recognition is attempted. The structure of the

modified experiment used for this purpose is shown in Figure 3-2. Note that the new

experiment is virtually identical to the baseline experiment, except that it includes

as its first stage of processing a signal enhancement algorithm, which is furnished in

advance with the values of all relevant parameters that characterize the corrupting

noise waveform v(t).

Using the basic experiment configurations depicted in Figures 3-1 and 3-2, it is

possible to generate many different kinds of performance results. For this thesis,

a total of three experimental factors were varied within each configuration. These

factors are:

(1) The type of noise added to the speech. As suggested in Chapter 2, we added

either white Gaussian noise or colored Gaussian noise (generated with an au-

toregressive model) to each speech waveform. For the configuration shown in

Figure 3-2, the appropriate signal enhancement algorithm from Chapter 2 was

used.

(2) The scaling of the noise relative to the speech. To generate a complete per-

formance curve, we conducted each experiment at many different noise levels.

Recognition performance was evaluated at SNR values ranging from -10 dB to

30 dB in increments of 10 dB; performance was also evaluated at an SNR of

oo dB by using only the clean speech signals with no added noise.

(3) The function performed by the speech recognition system. The recognizer was
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set up to perform either phone classification or word recognition. In phone clas-

sification mode, the recognizer is supplied with precise time boundaries marking

the beginning and end of all phonetic units (or phones) comprising the underly-

ing utterance; using this information, which is extracted from the speech data

base, the recognizer attempts to correctly identify each isolated phone repre-

sented in the noisy input waveform. In word recognition mode, the recognizer

is given no auxiliary information about the underlying utterance; nonetheless,

it attempts to determine the entire sequence of words represented in the input

waveform. (Of course, different performance evaluation algorithms are required

for the phone classification and word recognition functions.)

The performance results obtained by varying each of the above factors are pre-

sented and analyzed in Chapter 4. In the next section of this chapter, we give details

of each of the experimental components shown in Figures 3-1 and 3-2, namely: (1)

the speech data base, (2) the noise data base, (3) the signal enhancement algorithm,

(4) the speech recognition system, and (5) the performance evaluation algorithm.

3.2 Elements of the Speech Recognition Experi-

ments

3.2.1 The Speech Data Base

The speech waveforms used in each experiment described above were drawn from a

standard data base known as TIMIT, which was produced jointly by MIT, SRI Inter-

national, and Texas Instruments. The sentences comprising the TIMIT speech corpus

were designed specifically to aid in the development and evaluation of phonetically-

based automatic speech recognition systems [39].

The TIMIT utterances were recorded under very favorable acoustic conditions,

and are therefore virtually free of distortion. Each speaker who participated in the

recordings was placed in an anechoic room, equipped with a close-talking, noise-

cancelling, headset-boom microphone, and instructed to read aloud, in a natural
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conversational voice, a sequence of preselected sentences. The spoken sentences were

stored in digital form at a sampling rate of 16kHz, with each speech sample quantized

to 16 bits [16].

A total of 630 speakers participated in the recordings, each contributing 10 sen-

tences to the 6300-sentence TIMIT data base. Each speaker was associated with one

of eight major dialect categories, labeled as: (1) New England, (2) Northern, (3)

North Midland, (4) South Midland, (5) Southern, (6) New York City, (7) Western,

and (8) Army Brat. In general, the dialect category indicates the geographical region

within the United States where the speaker lived during his childhood years. The

Army Brat label was associated with speakers who moved frequently throughout the

United States during their childhood years.

The text material in the TIMIT corpus consists of three kinds of specially de-

signed speaker prompts, identified in the data base as SA, SX, and SI sentences. The

SA sentences were designed to reveal the variations in phones and phone pairs that

exist because of dialectal differences among speakers. Only 2 SA sentences were con-

structed, and both of these were read by all 630 speakers. The phonetically compact

SX sentences were designed to provide efficient and thorough coverage of phone pairs

considered to be of particular interest for the recognition problem. A total of 450 SX

sentences were constructed; each speaker read 5 of these sentences, and each sentence

was read by 7 different speakers. The phonetically diverse SI sentences were selected

from existing text sources to provide a greater variety of phonetic contexts for study.

A total of 1890 SI sentences were constructed; each speaker read 3 of these sentences,

and each sentence was read by only one speaker.

Each utterance in the TIMIT data base is associated with four descriptive files:

(1) a waveform file, which contains the digitized samples of recorded speech, (2) an

orthographic transcription file, which contains the precise text of the spoken sentence,

(3) a word transcription file, which contains a segmentation of the utterance into its

component words, with beginning and ending waveform sample numbers provided for

each word, and (4) a phonetic transcription file, which contains a segmentation of the

utterance into its component phones, with beginning and ending waveform sample
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numbers provided for each phone. In Figure 3-3, we show the four descriptive files

associated with the TIMIT utterance "She had your dark suit in greasy wash water

all year."

An exhaustive list of phones used in the TIMIT phonetic transcriptions is presented

in Table 3.1. For each phone appearing in this table, we give the corresponding symbol

as well as an example of an occurrence of the phone (highlighted in bold letters) in a

common English word. For convenience, the phones have been sorted into eight major

categories, including stops, affricates, fricatives, nasals, semivowels, diphthongs, and

miscellaneous others.

The TIMIT phones are defined very specifically, and thus the inventory of phonetic

symbols associated with the TIMIT data base is slightly larger than a typical phonetic

dictionary. For example, in the TIMIT dictionary the stops are decomposed into an

initial closure interval (e.g., /bcl/) and a subsequent release interval (e.g., /b/). In

addition, there exist a number of variations of traditional phones (commonly known

as allophones), such as the flap /dx/ (an allophone of /t/), the nasal flap /nx/ (an

allophone of /n/), the voiced-h /hv/ (an allophone of /h/, typically occurring between

two voiced phones), the fronted-u /ux/ (an allophone of /uw/), and the devoiced-

schwa /ax-h/ (an allophone of /ax/, typically occurring for reduced vowels between

two unvoiced consonants). Finally, there are miscellaneous symbols such as /h#/

(used to represent the non-speech events at the beginning and end of a waveform),

/pau/ (used to represent a pause within the utterance), and /epi/ (used to represent

an epenthetic closure, which often occurs between a fricative and a semivowel or nasal,

as in the first part of the word "slow").

3.2.2 The Noise Data Base

As mentioned previously, two basic types of noise were added to the speech in separate

experiments, namely: (1) temporally uncorrelated (or white) Gaussian noise, and (2)

temporally correlated (or colored) Gaussian noise. All of the noise waveforms used in

the speech recognition experiments were created by computer with standard random

number generation algorithms [29]. The model for the computer-generated colored
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SAMPLE NUMBER

I| ~ ORTHOGRAPHIC TRANSCRIPTION FILE I

|0 61748 She had your dark suit in greasy wash water all year.

0 7470 h#
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9840 11362 iy

11362 12908 hv

12908 14760 ae

14760 15420 dcl

15420 16000 jh

16000 17503 axr
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18540 18950 d

18950 21053 aa

21053 22200 r

22200 22740 kcl

22740 23360 k

23360 25315 s

25315 27643 ux

27643 28360 tcl

28360 29272 q

29272 29932 ih

29932 30960 n

30960 31870 gcl

31870 32550 g

32550 33253 r

33253 34660 iy

34660 35890 z

35890 36971 iy

36971 38391 w
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43120 43906 w
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46040 47480 axr

47480 49021 q

49021 51348 ao

51348 52184 1
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58840 61680 h#

Figure 3-3: Top to bottom: Sample time-domain waveform of an utterance from the
TIMIT data base; orthographic transcription file associated with the utterance; word
transcription file; phonetic transcription file.
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Table 3.1: Categorized list of phonetic symbols associated with the TIMIT data base.
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STOPS AFFRICATES FRICATIVES NASALS

PHONE EXAMPLE PHONE EXAMPLE PHONE EXAMPLE PHONE EXAMPLE

b/ bee /jh/ joke /s/ sea /m/ mom
/d/ day /ch/ choke /sh/ she /n/ none
/g/ go /z/ zoo /ng/ sing
/p/ pay /zh/ measure /em/ bottom

/t/ tea /f/ fan /en/ button
/k/ key /th/ thin /eng/ washington
/dx/ butter /v/ van /nx/ runner

/dh/ then

SEMIVOWELS VOWELS DIPHTHONGS OTHERS

PHONE EXAMPLE PHONE EXAMPLE PHONE EXAMPLE PHONE DESCRIPTION

/1/ low /iy/ beet /ey/ bait /q/ glottal stop
/r/ row /ih/ bit /aw/ bout /bcl/ closure before /b/
/w/ wet /eh/ bet /ay/ bite /dcl/ closure before /d/
/y/ yet /ah/ but /oy/ boy /gcl/ closure before /g/
/hh/ hay /ae/ bat /ow/ boat /pcl/ closure before /p/
/hv/ ahead /aa/ cot /ux/ beauty /tcl/ closure before /t/
/el/ bottle /ao/ bought /kcl/ closure before /k/

/uh/ book /epi/ epenthetic closure
/uw/ boot /pau/ pause
/er/ bird /h#/ begin/end marker
/ax/ again
/ix/ debit
/axr/ diner
/ax-h/ sustain



noise was based on a segment of actual car noise recorded from the interior of a

moving automobile. The original car noise was not used in the speech recognition

experiments because it was deemed to have too little spectral overlap with speech

data to pose an interesting enhancement problem. Thus, the recorded car noise was

first downsampled to produce sufficient spectral overlap with the speech, and was

then modeled as a fifth-order autoregressive process. The autoregressive parameters

estimated from the modified car noise were 31 = -2.542, 2 = 2.281, 3 = -1.058,

/4 = 0.518, and .5 = -0.195. These parameter values were then used to generate

synthetic car noise on a computer. In Figure 3-4, we show the true power spectral

densities for both the white and colored noise processes used in the speech recognition

experiments.

0.1 0.2 0.3 0.4 0.5 0.6

NORMALIZED FREQUENCY

0.1 0.2 0.3 0.4 0.5 0.6

NORMALIZED FREQUENCY

0.7 0.8 0.9 1.0

0.7 0.8 0.9 1.0

Figure 3-4: Top to bottom: Power spectral density of the white noise process used
in the speech recognition experiments; power spectral density of the colored noise
process used. (The horizontal axis represents frequencies ranging from 0 to 8 kHz.)
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3.2.3 The Signal Enhancement Algorithm

To conduct the experiments that required filtering of the corrupted speech prior to the

recognition stage, we implemented the adaptive signal processing algorithms derived

in Chapter 2. For each of these experiments, in both the white-noise and colored-

noise cases, the noise parameters were assumed known and constant over the entire

length of the speech signal. The true values of these parameters, taken directly from

the noise data base, were supplied as inputs to the signal enhancement algorithms

together with the corrupted speech waveform.

In each experiment, the underlying speech was modeled locally as a fifth-order au-

toregressive process. To obtain suitable estimates of the time-varying autoregressive

parameters, it was necessary to specify appropriate values for the forgetting factor A

and the step-size parameter 'y(t) appearing in the latter set of computations of the

adaptive algorithm (refer to Equations (2.63) through (2.65)). The parameter A is

the exponential weighting factor in the recursive updating algorithm for the signal

correlation matrix R, and therefore determines the time constant (or, more sugges-

tively, the memory length) associated with the algorithm. In this context, the memory

length is the number of samples into the past at which measurements are weighted

at 1/e or less of the weight given to the most recent measurement; this length, which

we denote by L, is defined implicitly through the equation

AL = 1/e. (3.2)

Since the forgetting factor A is typically chosen to be very close to 1, we can use the

approximate expression for L given by

-1 1
L=lnA ~ 1 (3.3)

The speech enhancement algorithm should have enough memory to allow for the

computation of an accurate estimate, but not so much that the estimate includes

measurements that do not reflect the current properties of the speech. It was deter-

55



mined that a memory length of roughly 100 samples was suitable for the recognition

experiments; this length corresponds to a forgetting factor of A = 0.99.

The selection of the step-size parameter 7y(t) involves a similar trade-off between

the ability of the algorithm to track changes in the structure of the underlying speech

and the sensitivity of the algorithm to disturbances in the measurement data. After

some experimentation, the step size was fixed at the value 7(t) = 0.01 for all t.

3.2.4 The Speech Recognition System

All of the experiments described earlier were performed using a spoken language

understanding system called SUMMIT, which was developed by Zue and other re-

searchers from the Spoken Language Systems Group at the MIT Laboratory for Com-

puter Science [45, 46, 47]. The SUMMIT recognizer is a phonetically-based, speaker-

independent, continuous-speech system that can be configured to perform a variety of

recognition tasks and trained automatically on large sets of prerecorded speech data.

A block diagram of the SUMMIT system is shown in Figure 3-5. From this figure,

we see that the input to the system is a waveform representing a spoken sentence,

and the output is a hypothesized transcription of the sentence. Note that the three

main components of SUMMIT incorporate three distinct levels of linguistic knowledge

into the utterance decoding procedure: phonetic, lexical, and grammatical.

The phonetic recognition subsystem of SUMMIT is itself composed of three stages,

namely: (1) signal representation, (2) acoustic segmentation, and (3) phonetic classi-

fication. In the first stage of this subsystem, the raw input speech waveform is non-

linearly transformed into a more convenient signal representation based on a model

of the human peripheral auditory system [36]; this transformation simultaneously en-

hances important acoustic landmarks in the time-domain signal and sharpens spectral

peaks that are useful in phonetic classification. In the second stage, the output of the

auditory model is used to divide the utterance into time segments that share common

acoustic characteristics; this segmentation procedure is carried out at many different

temporal resolution levels in order to capture both the slow and sudden transitions

in the acoustic structure of the speech signal. In the final stage, a feature vector
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is computed for each acoustic segment, and the segment then becomes associated,

by means of conventional statistical classification procedures, with the label of the

phoneme having the greatest likelihood. The output of the phonetic recognition sub-

system is a forward-directed network that connects the labeled acoustic segments at

various resolution levels from the beginning of the utterance to the end. Each arc in

this acoustic-phonetic network points to a single acoustic segment, and is weighted

by the likelihood of the associated phonetic label.

The lexical component of SUMMIT maintains the extensive inventory of words to

be recognized by the system, and accounts for the many possible pronunciations of

each word. Using the basic phonetic representation of each word in the vocabulary,

the lexical expansion subsystem produces a pronunciation network for the word. The

rules employed for this lexical expansion are defined in advance, and they attempt to

account for both intra-word and inter-word phonological effects that occur in natural

speech. Each node in the pronunciation network corresponds to a phoneme within

the word. Pairs of these nodes are connected by arcs, and each arc is assigned a

weight indicating the probability that the two associated phonemes occur in succession

when the word is pronounced. A path through the network represents a particular

pronunciation of the word.

The pronunciation networks for all words in the lexicon are connected together

by introducing new arcs from the terminal node of each word to the initial node of

every other word. The resulting lexical network allows for all sequences of words

that might occur in a sentence. When this extensive network is constructed, the

high-level linguistic component of SUMMIT imposes local grammatical constraints on

sentence structure by permitting connections to be made only between certain words,

and by weighting these connections with the probabilities of the corresponding word

pairs [37]. Once the lexical network has been constructed, the utterance can be

decoded with the aid of a dynamic programming algorithm. The decoding operation

is essentially a search for the best match between a directed path in the lexical

network (representing a particular sequence of phonemes that comprise a string of

words from the lexicon) and a directed path in the acoustic-phonetic network. Because
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the acoustic segmentation of the speech waveform may be inaccurate, and because the

assignment of phonetic labels for the segments may be incorrect, allowances are made

during the search for the insertion and deletion of segments in the acoustic-phonetic

network.

For each of the phone classification and word recognition experiments conducted

for this thesis, the SUMMIT system was trained using a set of 800 utterances extracted

from the TIMIT data base. This training set consisted of 8 utterances (representing the

SX and SI sentences) for each of 100 speakers selected from various dialect categories.

In addition, an independent testing set of 200 utterances was used in the experiments.

The testing set consisted of 4 randomly chosen SX and SI sentences for each of 50

speakers. For the word recognition experiments, the SUMMIT system operated with a

6000-word vocabulary.

3.2.5 The Performance Evaluation Algorithm

Once a hypothesized transcription of an utterance is generated by the speech recog-

nition system, it must be scored in a meaningful way through a comparison with

the actual utterance transcription so that the performance of the recognizer can be

evaluated. The scoring procedure that is applied in a given instance depends on the

nature of the recognition task being tested. Within the scope of this thesis, two basic

kinds of experiments were performed: (1) phone classification, in which the recog-

nizer attempts to determine the identity of a phone located between two prespecified

time boundaries in a waveform, and (2) word recognition, in which the recognizer

attempts to determine the entire sequence of words in an utterance in the absence of

any boundary information. In this section, we discuss standard methods of evaluat-

ing the output of the speech recognition system for each kind of experiment that was

conducted.

For the phone classification experiments, the scoring procedure is relatively straight-

forward. First, before any evaluation is done, certain "equivalence" classes of phones

are defined according to the type of recognition task being tested. Typically, multiple

phones are assigned to the same class if they are similar enough that distinguishing
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between them would have a negligible effect on ultimate recognition performance. For

all of the phone classification experiments conducted in the present work, each phone

associated with the TIMIT corpus was assigned to one of the 39 classes displayed in

Table 3.2.

Once these classes have been specified, each phone in both the hypothesized tran-

scription and the reference transcription can be given a class label. (In our case, this

label is simply an integer from 1 to 39.) After all phones in the time-aligned utterance

transcriptions have been labeled, a count is made of those phones in the hypothesized

transcription whose class labels match the labels of corresponding phones in the refer-

ence transcription. The accuracy score is then simply the number of matches divided

by the total number of phones in the utterance. To redefine this score in terms of the

error rate, let us suppose that after processing a particular utterance we have NERR

mismatches out of a total of NTOT phones. Then the phone classification accuracy

(PCA) is defined as

NTOT - NERRPCA = (3.4)
NTOT

If multiple utterances are processed in a batch, the individual counts NERR and NTOT

are simply incremented with each new utterance, and phone classification accuracy

is then computed using the above formula with the final count totals.

The scoring procedure applied to the word recognition experiments is much more

complicated, since the recognizer does not have access a priori to any phone or word

boundaries in the waveform, and hence must estimate where each word begins and

ends in addition to estimating the identity of the word itself. One result of having

the recognizer perform this more complex task is that the hypothesized transcription

may contain more or fewer words than the reference transcription; moreover, although

many of the words in these two transcriptions may match, the entire transcriptions

themselves may not be well-aligned (i.e., when a match occurs across transcriptions,

the matching elements may not be positioned the same number of words from the

beginning in their respective strings).
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Table 3.2:
iments.

List of phonetic equivalence classes used in the phone classification exper-

This general problem of string alignment is easily demonstrated with an example.

Let us suppose that the waveform processed by the speech recognizer actually repre-

sents the utterance "This old key does not work," but that the hypothesized utterance

generated by the recognizer is "His key does the top work." With no preprocessing

of these two strings, we might align them word for word in the following way:

REFERENCE STRING:

HYPOTHESIZED STRING:

THIS

HIS

OLD KEY

KEY DOES

DOES

THE

NOT WORK

TOP WORK

Upon examining these transcriptions, we can see that the recognizer has successfully

identified the words "key," "does," and "work," which appear in the original utter-

ance. On the other hand, it has probably misidentified the word "this" as "his" and

the word "not" as "top," and has also inadvertently missed the word "old" in the

original utterance and erroneously added the word "the" in its own hypothesized

utterance.

If, for the above example, we wish to compute an error rate for the output of

the recognizer by directly counting mismatches between the ith word in the reference
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CLASS PHONES CLASS PHONES CLASS PHONES

1 /uw/ /ux/ 15 /r/ 29 /f/
2 /uh/ 16 /1/ /el/ 30 /jh/
3 /ah/ /ax/ /ax-h/ 17 /w/ 31 /ch/
4 /aa/ /ao/ 18 /m/ /em/ 32 /b/
5 /ae/ 19 /n/ /en/ /nx/ 33 /d/
6 /eh/ 20 /ng/ /eng/ 34 /g/
7 /ih/ /ix/ 21 /dx/ 35 Ip/
8 /ey/ 22 Iv/ 36 /t/
9 /iy/ /y/ 23 /th/ 37 /k/
10 /ay/ 24 /dh/ 38 /h#/ /pau/
11 /ow/ 25 /hh/ /hv/ 39 /bcl/ /dcl/
12 /aw/ 26 /Z/ /gcl/ /kcl/
13 /oy/ 27 /s/ /pcl/ /tcl/
14 /er/ /axr/ 28 /sh/ /zh/ /epi/ /q/



string and the ith word in the hypothesized string, the above alignment is clearly

inappropriate, since the only valid match using this method occurs at the final word

"work." We can arrive at a better method for computing the error rate by observ-

ing that there are three basic types of errors introduced by the recognizer into the

hypothesized transcription, namely: (1) deletion errors, which occur when words in

the original utterance are not detected, (2) insertion errors, which occur when words

not in the original utterance are erroneously added, and (3) substitution errors, which

occur when words in the original utterance are incorrectly identified. Using this ob-

servation, we can modify the reference and hypothesis strings slightly to produce the

following more appropriate alignment:

REFERENCE STRING: THIS OLD KEY DOES *** NOT WORK

HYPOTHESIZED STRING: HIS *** KEY DOES THE TOP WORK

Now, the alignment of the words "this" and "his" as well as the words "not" and

"top" correctly indicates the occurrence of two substitution errors. In addition, the

alignment of the word "old" and the placeholder token "***" indicates the occurrence

of a deletion error; similarly, the alignment of placeholder token "***" and the word

"the" indicates the occurrence of an insertion error. Thus, for this example, since

there are two substitution errors, one deletion error, and one insertion error out of a

total of seven words in the modified hypothesized string, a reasonable estimate of the

error rate is 4/7.

The foregoing example of error rate estimation illustrates the main idea underlying

the current standard procedure for evaluating the performance of speech recognition

systems. In this example, however, we arrived at the "optimal" string alignment

simply by comparing the reference and hypothesized strings and subsequently infer-

ring the kinds of errors produced at key word locations. Thus, although the example

affords valuable intuition for addressing the problem of how two strings should be

aligned, it does not provide us with a concrete algorithm for aligning strings. In the

remaining portion of this section, we examine a procedure for alignment-based error

rate estimation that has been widely distributed to speech recognition researchers by
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Figure 3-6: Directed graph used by the dynamic programming algorithm to align the
hypothesized and reference utterances.

the National Institute of Standards and Technology (NIST), and has been employed

in the DARPA Speech Recognition Program [26]. It is important to note, however,

that although this procedure has become a de facto standard in the field of auto-

matic speech recognition, more advanced methods for performing text alignment are

currently available [27, 28].

In the NIST procedure, the optimal alignment of two transcription strings is ac-

complished with the aid of a dynamic programming algorithm [35]. This algorithm

operates on a graph such as the one shown in Figure 3-6, which has been constructed

using the utterances from our string alignment example. Each node in the graph

represents a pair of words, one of which is an element of the reference utterance, and

the other an element of the hypothesized utterance. Observe that a dummy word

has been added at the beginning of each string, producing an extra column of nodes
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along the left side of the graph and an extra row along the bottom. As we will see,

this has been done to facilitate the execution of the algorithm.

Let us now introduce some convenient notation to refer to the augmented utter-

ance transcriptions displayed in Figure 3-6, as well as the node coordinates in the

graph. Specifically, let T(i) represent the ith word in the reference transcription and

T(j) represent the jth word in the hypothesized transcription, and suppose that the

transcriptions T and T contain NREF and NHYP words, respectively. To fix the or-

dering of the graph coordinate system, we define the node (i, j) to be that which

corresponds to the words T(i) and T(j). Finally, for future use we define a function

D(i, j) over all nodes in the graph to indicate whether corresponding words in T and

T are equal. This function is given by

{0 if T(i)= T(j)
D(i,j) = 1 (3.5)

1 if T(i) T(j)

for 0 <i <NREF and 0 < j <NHYP.

Observe that each node in the graph has at most three directed arcs and leading

from it to immediately neighboring nodes. A path through this graph (i.e., a con-

tiguous sequence of directed arcs) beginning at node (0, 0) and terminating at node

(NREF, NHYP) will correspond to some alignment of the reference and hypothesized

utterance transcriptions. Note, for example, that a vertically directed arc on such a

path represents a deletion error made by the recognizer. This is true because travers-

ing a vertically directed arc corresponds to advancing from the current word to the

next word in the reference string while remaining at the current word in the hypothe-

sized string, ultimately resulting in the alignment of a deleted word from the original

reference string with a placeholder token in the modified hypothesized string. By an

analogous argument, a horizontally directed arc represents an insertion error, and a

diagonally directed arc represents either a substitution error or no error at all.

Before the dynamic programming algorithm can operate on the graph, a weight is

assigned to each arc to indicate the penalty associated with the kind of error the arc

represents. The algorithm then searches for the path leading from node (0, 0) to node
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Figure 3-7: Detailed view of a portion of the graph used in the string alignment
problem, labeled with node coordinates and arc weights.

(NREF, NHYP) whose arc weights sum to the smallest possible value. We define the

quantities PSUB, PINS, and PDEL to be the penalties incurred for a substitution error,

an insertion error, and a deletion error, respectively, and we assume that a penalty

of zero is incurred in the absence of an error. In addition, to obtain meaningful

solutions from the dynamic programming algorithm, we typically require the penalty

values PSUB, PINS, and PDEL to satisfy the following three constraints:

(1) PSUB > 0, PINS > 0, PDEL > 0

(2) PINS = PDEL

(3) PSUB < PINS + PDEL

With the penalty values fixed, we define the arc weight assignment function A(-, ) as

A((i- 1,j), (ij)) = PDEL for 1 < i < NREF, 0 < j NHYP (3.6)

A((i,j - 1), (i,j)) = PINS for 0 < i < NREF, 1 < j < NHYP (3.7)
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A((i- 1,j - 1), (i,j)) = D(i,j)PSUB for 1 i < NREF, 1 • j < NHYP (3.8)

Clearly, this function is defined only for certain neighboring pairs of nodes in the

graph. Note that for diagonally directed arcs, the complementary indicator function

D(i,j) serves to activate the substitution penalty if T(i) ~ T(j), and to deactivate

this penalty if T(i) = T(j). In Figure 3-7, we show a small portion of the original

graph with the node coordinates and the above defined arc weights appropriately

labeled.

As one might surmise from the basic structure of the graph and the fact that

the cost function is additive, the path corresponding to optimal string alignment can

be found using a recursive procedure. We define the function C(i,j) to be the cost

incurred along the optimal path from node (0, 0) to node (i, j), so that our ultimate

objective is to solve for C(NREF, NHYP). We initialize the search algorithm by setting

C(0, 0) = 0 (3.9)

C(i,0) = iPDEL for 1 < i NREF (3.10)

C(O,j) = jPINS for 1 <j < NHYP (3.11)

Observe from the graph in Figure 3-6 that each node (i,j) with 1 < i < NREF and

1 < j < NHYP has exactly three arcs leading to it. In particular, these three arcs

emanate from the three nodes (i- 1,j), (i,j - 1), and (i- 1,j - 1). Thus, if we

know the values C(i- 1,j), C(i,j- 1), and C(i- 1,j - 1), we can compute C(i,j)

recursively (either by rows or by columns) using the formula

C(i,j) = min{C(i - 1,j) + PINS,

C(i,j- 1) + PDEL,

C(i - 1,j - 1) + D(i,j)PsusB}. (3.12)

When carrying out this recursion, our goal is not only to compute the array of optimal

cost values C(i, j), but also to retain the specific paths that yield these optimal values.

66



0z

LU

(3

IZU

(3

eno

c]

0J0o

U)

I-

*** HIS KEY DOES THE TOP WORK

HYPOTHESIZED UTTERANCE 

Figure 3-8: A path through the directed graph that represents optimal alignment of
the hypothesized and reference utterances.

We can easily access this information during the recursion by recording the coordinate

of the node at which the minimum occurs in Equation (3.12). In effect, this provides

a backward pointer at each node that can be used when the recursion is done to

trace the optimal path from the terminal node (NREF, NHYP) back to the initial node

(0,0). For the particular example of Figure 3-6, an optimal (nonunique) path is

shown in Figure 3-8. This graphical result corresponds to the following alignment of

the reference and hypothesized utterances, which is consistent with our earlier string

alignment found by inspection:

REFERENCE STRING: THIS OLD KEY DOES *** NOT WORK

HYPOTHESIZED STRING: HIS *** KEY DOES THE TOP WORK

Let us suppose in the general case that, after alignment of the transcriptions
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has been performed, we count NSUB substitution errors, NDEL deletion errors, and

NINS insertion errors. Then, assuming there are NTOT words in each of the aligned

transcriptions, the word recognition accuracy (WRA) is defined as

WRA = NTOT - NSUB - NDEL- NINS (3.13)
NTOT

As in the case of scoring phone classification performance, if multiple utterances are

processed in a batch, the individual counts NSUB, NDEL, NINS, and NTOT are simply

incremented with each new utterance, and word accuracy is computed using the above

formula with the final count totals.
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Chapter 4

Analysis of Experimental Results

In this chapter, we present and discuss the numerical results generated in the recog-

nition performance tests described in Chapter 3. First, we examine the phone and

word accuracy rates achieved by the recognizer as a function of the input SNR for

the case in which white noise was added to the speech; we then analyze an analogous

set of results for the colored-noise case. To aid in the interpretation of the results, we

introduce a further series of experiments designed to evaluate the performance of each

speech enhancement algorithm operating in isolation. In particular, these auxiliary

tests are intended to measure the gain in speech quality afforded by each algorithm

as a function of the input SNR.

4.1 Speech Recognition Performance in Additive

White Noise

4.1.1 Phone Classification Results

In Figure 4-1, we show experimental results for the case in which the recognizer was

configured to perform phone classification in the presence of additive white noise.

Each curve in this figure represents the different levels of performance achieved by

the recognizer (measured in terms of phone classification accuracy, as defined in Sec-

tion 3.2.5) as the input signal-to-noise ratio was varied. The upper curve indicates
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the performance achieved when the enhancement algorithm was applied to the noisy

input speech, and the lower curve indicates the performance achieved in the absence

of enhancement.

Although gains in performance can be measured either along the horizontal axis or

the vertical axis of such plots, we shall concentrate mainly on the horizontal separation

of the performance curves, since the horizontal-axis variable of input SNR is common

to all of the experiments conducted. For the plots shown in Figure 4-1, we note that

performance is uniformly improved by applying the speech enhancement algorithm,

but only by a modest amount. For example, to achieve the moderately high phone

classification accuracy of 0.6 in the experiment that includes a speech enhancement

stage, the system requires input with an SNR of approximately 20 dB; however, to

achieve the same level of accuracy in the experiment that does not include a speech

enhancement stage, the system requires input of slightly higher quality, with an SNR

of about 26 dB.

4.1.2 Word Recognition Results

In Figure 4-2, we show experimental results for the case in which the recognizer was

configured to perform word recognition in the presence of additive white noise. The

curves in this figure indicate the variation in word recognition accuracy (as defined

in Section 3.2.5), with and without speech enhancement, as a function of the input

SNR. Note that these performance curves exhibit much sharper slopes than do those

from the phone classification experiments. In fact, as the SNR is varied from oc dB to

30 dB, there is a significant and immediate drop in performance; at an SNR of 20 dB

-a moderate level of corruption by most standards - the performance degrades

even more dramatically; at 10 dB, virtually no words are recognized.

To achieve the moderately high word recognition accuracy of 0.5 in the experiment

that includes a speech enhancement stage, the system requires input with an SNR of

approximately 27 dB; to achieve the same level of accuracy in the experiment that

does not include a speech enhancement stage, the system requires input of slightly

higher quality, with an SNR of about 29 dB. Thus, in this case the enhancement
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operation yields only a slight improvement in noise immunity of about 2 dB.

4.2 Speech Recognition Performance in Additive

Colored Noise

4.2.1 Phone Classification Results

In Figure 4-3, we show experimental results for the case in which the recognizer was

configured to perform phone classification in the presence of additive colored noise.

Upon comparing this figure to Figure 4-1, it is clear that the recognizer performs

better in each of the colored-noise experiments than in the corresponding white-noise

experiments. This improvement in performance results from the fact that there is

much less spectral overlap between speech and the specific kind of colored noise that

was added than between speech and white noise. Apart from the general boost in

performance exhibited by both curves in Figure 4-3, there is also greater separation

between the curves, indicating that the speech enhancement algorithm is generally

more effective in this kind of noise. As mentioned earlier, the enhancement algorithm

yields a larger performance gain in the colored-noise because at least some portion of

the noise is predictable from sample to sample, and is therefore removable.

From Figure 4-3, we see that in order to achieve an accuracy score of 0.6 in the

experiment that includes a speech enhancement stage, the system requires input with

an SNR of approximately 6 dB; by contrast, to achieve the same level of accuracy in

the experiment that does not include a speech enhancement stage, the system requires

input with an SNR of about 17 dB. Thus, in this instance the speech enhancement

operation yields an improvement in noise immunity of approximately 11 dB, which is

significantly greater than the 6 dB gain observed in the white-noise experiments at

the same accuracy rate of 0.6.
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4.2.2 Word Recognition Results

In Figure 4-4, we show experimental results for the case in which the recognizer was

configured to perform word recognition in the presence of additive colored noise. A

comparison of this figure to Figure 4-2 indicates that the recognizer performs better

at the task of word recognition in each of the colored-noise experiments than in

the corresponding white-noise experiments. In addition, just as we observed in the

phone classification experiments, the inclusion of a speech enhancement stage prior to

recognition leads to a greater performance gain in the colored-noise case than in the

white-noise case. For example, to achieve a word recognition accuracy of 0.5 in the

experiment that includes a speech enhancement stage, the system requires an input

SNR of approximately 10 dB; however, to achieve the same level of accuracy in the

experiment that does not include a speech enhancement stage, the system requires the

much higher input SNR of about 22dB. Thus, in this case the enhancement operation

yields an improvement in noise immunity of about 12dB, which is significantly greater

than the 2 dB gain observed in the white-noise experiments at the same accuracy rate

of 0.5.

It is instructive to examine the differences between the phone classification perfor-

mance curves shown in Figure 4-3 and the word recognition performance curves shown

in Figure 4-4. In particular, note that the curves in Figure 4-3 are flat at the upper

end of the SNR scale, and then fall off steadily in the lower SNR range; the curves in

Figure 4-4 have approximately the same shape as those in Figure 4-3 for large SNR

values, but then drop off dramatically in the middle SNR range. This suggests that

there is a minimum percentage of phones that must be classified correctly in order

to guarantee a suitably high level of word recognition accuracy. By inspection, it

appears that this critical threshold for phone classification accuracy is slightly higher

than 0.6; the corresponding word recognition accuracy at this critical threshold is

approximately 0.5. This result must be interpreted with care, however, because the

classification and recognition tasks are performed and evaluated very differently.
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4.3 Measuring Improvement in Speech Quality

From the material presented in Sections 4.1 and 4.2, we observed that gains in recog-

nition performance after enhancement were greater in each of the colored-noise ex-

periments than in the corresponding white-noise experiments. This suggests the pos-

sibility that the speech enhancement algorithm designed for the colored-noise case

yields a higher-quality output signal for a given input SNR level than does the al-

gorithm designed for the white-noise case. In this section, we investigate a method

for measuring the isolated performance of each speech enhancement algorithm, and

compare the gains in speech quality afforded by each algorithm as a function of the

input SNR.

Recall that the time-adaptive signal enhancement algorithms derived in Chapter 2

were based on the assumption that speech can be accurately modeled as an autore-

gressive process over relatively brief intervals. Each algorithm makes use of this

autoregressive model to sequentially estimate the present underlying speech sample

based on past noisy observations, while incurring a minimum average squared error.

Given this general model-based approach, together with the minimum-error design

criterion, one might expect (at least for moderate levels of signal corruption) that

the output waveform produced by such an algorithm will in some sense be a better

representation of the original speech signal than will the input waveform. One might

conjecture, for example, that in a subjective speech quality test a human listener

would judge the output waveform to be more speech-like and to "sound" more like

the original than the input waveform.

Because good speech quality is crucial for good speech recognition results, we

would like to have a method of measuring the improvement in speech quality afforded

by our signal enhancement algorithms. Moreover, we would like such a measure to

be objective, so that it is automatically computable, yields consistent and predictable

results, and is independent of any human judgment or interpretation. This objective

measure should, however, give results that correlate fairly well with those obtained

through subjective tests, so that it remains a reliable indicator of speech quality as
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determined by human listeners.

Many objective measures of signal purity involve some definition of signal-to-

noise ratio. These signal-to-noise measures are generally used to quantify amounts

of signal distortion introduced by waveform coders, signal estimation algorithms,

and a variety of other signal processing systems, and they are often applied to the

basic problem of determining changes in speech quality that result from such signal

processing operations. Of course, a measure of signal-to-noise improvement can only

be applied to a system whose input and output waveforms are reasonable facsimiles

of the original undistorted waveform, so that all of these waveforms can be aligned in

time and the signal and noise components in each can be unambiguously identified.

The most popular of these signal-to-noise measures is the classical signal-to-noise

ratio (SNR). To compute the SNR for a particular waveform that has undergone

distortion, we require the distorted waveform itself along with the original version of

this waveform, which serves as a reference pattern. For the specific case of measuring

speech quality, let us suppose that we have available a clean speech signal s(t) and

a time-aligned but distorted version of this signal d(t). (Such a distorted speech

signal could arise in many ways, but in the present case we shall assume that the

distortion results either from adding noise to the clean speech or from subsequently

processing this speech-plus-noise signal with a signal enhancement algorithm.) The

classical SNR for the waveform d(t) is then given by

EN-l S2(t)SNR = 10 log10 ( t) 2 (4.1)rN- i- St)
_t=0 ((t)- t)I

where N is the length in samples of each signal. This is precisely the measure we

used to quantify the amount of corruption present in the input signal for the speech

recognition experiments described in Chapter 3. However, while it may be true that

this measure is suitable for studying system performance as a function of input signal

purity, many researchers have consistently demonstrated that classical SNR is not a

good indicator of subjective speech quality as measured through listening tests [30].

A much more accurate estimator of subjective speech quality is the segmental signal-
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to-noise ratio (SEGSNR), which is obtained by computing the classical SNR over

short nonoverlapping segments of the waveform and then averaging these SNR mea-

surements over all such segments. Thus, assuming that our signals s(t) and sd(t)

consist of M adjacent segments with K samples each, the segmental SNR is given by

1 M-1 miK+K-1 S2(t )
SEGSNR = - > 101og 10 t s4(t)S M omK+K-1 (s(t)- sd(t)) (4.2)

For this measure, the segment length K is usually chosen such that it represents

a time interval of approximately 15 to 30 milliseconds. Clearly, for a prespecified

segment length K, we will rarely have that N = MK for some integer M; thus, in

practice, when the overall waveform length is not an exact multiple of the segment

length, the remaining samples at the end of the waveform are typically discarded.

The segmental SNR is a successful estimator of subjective speech quality because

it accounts for the fact that speech signals are inherently nonstationary and are

often processed by systems that are time-adaptive. Thus, it captures important and

subtle aspects of speech quality by giving equal weight to high-energy and low-energy

sections of an utterance. This is in contrast to the classical SNR measure, which

generally does not provide a good indication of signal quality unless the signals of

interest are stationary and are processed by time-invariant systems.

Since we now have an appropriate objective measure for speech quality, we can

meaningfully analyze the effect of our signal enhancement algorithms on corrupted

speech signals. To this end, we conducted a series of experiments to determine the

gain in speech quality afforded by each of the enhancement algorithms as a function

of classical SNR. These experiments were performed using a collection of 100 speech

signals from the TIMIT data base, which comprised a subset of the signals used for

the speech recognition experiments described earlier.

Each experiment was conducted in the following way. First, a classical SNR level

was fixed and a set of distorted input signals was created by adding the appropriate

amount of noise to each of the original clean speech signals. The average value

of the segmental SNR was computed for this set of input signals, and then, after
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Figure 4-5: Improvement in speech quality (measured in terms of segmental SNR gain)
yielded by the adaptive enhancement algorithms for the white-noise and colored-noise
cases.

application of the signal enhancement algorithm, the average segmental SNR was

computed for the resulting set of output signals. The average gain in segmental SNR,

defined as the mean output SEGSNR value minus the mean input SEGSNR value,

was then computed. This basic experiment was performed over a range of classical

SNR levels from -10 dB to +30 dB in increments of 10 dB, and was also performed

at a classical SNR of +oo dB by using the clean speech signals with no added noise.

By conducting this suite of experiments for the separate cases in which white noise

or colored noise is added to the speech, performance curves were generated for each

of the signal enhancement algorithms derived in Chapter 2. These plots of segmental

SNR gain versus classical SNR are shown in Figure 4-5. Note from this figure that

the gain in speech quality provided by the colored-noise algorithm is greater than the

gain provided by the white-noise algorithm at each classical SNR level; hence, these

results are consistent with the recognition performance results observed in Sections 4.1

and 4.2.
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Chapter 5

Conclusions and Future Directions

In this thesis, we have addressed the fundamental issue of how to increase the robust-

ness of an automatic speech recognition system with respect to stationary additive

environmental noise. The general approach adopted for improving recognition per-

formance was to use a two-stage system, in which: (1) the noisy input waveform is

filtered in order to enhance the underlying speech, and (2) the enhanced waveform

is processed by the recognizer in an attempt to decode the utterance. Two adap-

tive speech enhancement algorithms were derived for use in the initial stage of the

two-stage system; one of these algorithms was designed to operate in a white-noise

environment, and the other in a colored-noise environment. A number of experiments

were conducted to evaluate the performance of the recognizer in the presence of noise,

with and without the use of a front-end speech enhancement stage. Recognition per-

formance was evaluated at the phone and word levels, and at wide range of SNR

values for both white and colored additive noise.

We found, for each kind of noise that was added, that the inclusion of a front-

end speech enhancement stage uniformly improved recognition performance at each

linguistic level. For a fixed word recognition accuracy of 0.5, the noise immunity

of the system improved only slightly in the white-noise case (approximately 2 dB),

but improved quite substantially in the colored-noise case (approximately 12 dB).

The larger gain achieved in the colored-noise case was attributed to the fact that

colored noise, unlike white noise, is in part predictable from sample to sample, and
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hence is more readily suppressed. Moreover, it was demonstrated empirically that the

enhancement algorithm designed to operate in colored noise produced better output

speech quality for each input SNR level than did the algorithm designed to operate

in white noise. However, even with the relatively large performance gain achieved

in the colored-noise case, the two-stage system still required an input SNR of at

least 10 dB (not a severe noise level when the noise is highly correlated in time) in

order to keep word recognition accuracy above the critical level of 0.5. Thus, for the

particular recognition task considered in this thesis, the adaptive speech enhancement

algorithms are suitable for use only in environments with low noise levels.

The basic approach proposed herein for improving recognition performance is ul-

timately limited by the division of functionality (i.e., speech enhancement followed

by speech recognition) inherent in its two-stage structure. For example, if the speech

recognition component remains fixed, then overall performance of the two-stage sys-

tem can be improved only by incorporating a better noise-suppression component at

the front end. One straightforward approach for boosting noise immunity, aside from

the development of new single-sensor enhancement algorithms, is to combine mea-

surements from multiple microphones placed in different locations throughout the

environment. Indeed, this multi-sensor approach has already received some attention

in the literature [7, 38, 44].

Regardless of whether single or multiple microphone measurements are available

for processing, however, the basic two-stage approach for improving speech recogni-

tion performance need not be used. Clearly, better performance could be achieved by

estimating the content of the entire utterance directly from the noisy measurements,

rather than by first estimating the underlying speech signal values and then estimat-

ing the content of the utterance based on the assumption that the enhanced speech

signal is in fact completely free of noise. A direct utterance estimation problem of this

kind poses a formidable challenge, since it requires a strong interaction between the

technologies of signal processing and speech recognition; nonetheless, consideration

of this complex problem will be an important element of future research in robust

speech recognition.
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