
Signal Processing for DNA Sequencing

by

Petros T. Boufounos

Submitted to the Department of Electrical Engineering and
Computer Science in partial fulfillment of the requirements for

the degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 2002

 Massachusetts Institute of Technology, 2002. All Rights Reserved.

Author ...
Department of Electrical Engineering and Computer Science

April 4, 2002

Certified by ..
Alan V. Oppenheim, Ford Professor Of Engineering

Department of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by ...
Arthur C. Smith

Chairman, Department Committee on Graduate Theses
Department of Electrical Engineering and Computer Science

2

Signal Processing for DNA Sequencing
by

Petros T. Boufounos

Submitted to the Department of
Electrical Engineering and Computer Science

on April 4, 2002
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Engineering and Computer Science and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

DNA sequencing is the process of determining the sequence of chemical bases in a particular
DNA molecule—nature’s blueprint of how life works. The advancement of biological sci-
ence in has created a vast demand for sequencing methods, which needs to be addressed by
automated equipment. This thesis tries to address one part of that process, known as base
calling: it is the conversion of the electrical signal—the electropherogram—collected by the
sequencing equipment to a sequence of letters drawn from {A,T,C,G} that corresponds to the
sequence in the molecule sequenced.

This work formulates the problem as a pattern recognition problem, and observes its striking
resemblance to the speech recognition problem. We, therefore, propose combining Hidden
Markov Models and Artificial Neural Networks to solve it. In the formulation we derive an
algorithm for training both models together. Furthermore, we devise a method to create very
accurate training data, requiring minimal hand-labeling. We compare our method with the de
facto standard, PHRED, and produce comparable results. Finally, we propose alternative
HMM topologies that have the potential to significantly improve the performance of the
method.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor Of Engineering
3

4

Acknowledgements
I could have never achieved something like that without my parents. They
have always supported me and my decisions, both financially and morally.
They have given me valuable advice, and treated me like a mature adult.
Mom, dad, thank you for everything you have done for me.

I would also like to thank the greek community at MIT, and especially the
group of κωλοβαρεs. More specifically, Carl, Maria, Paris (the boss), Karrie,
Elias, Andy (the big ‘O’), Ilias, George (a.k.a. Lysi), and Nicolas for accept-
ing me as a friend in my first days here, five and a half years ago, and for giv-
ing me helpful advice at my first steps in MIT. The next wave of students
include George (Kotsalis), Alex, Stelios, Nikos, Marios, Peggy, Christina, and
Theodore, all of whom I would also like to thank for their friendship and sup-
port at hard times.

Equally important was the international ‘happybunch,’ especially Arin,
Joanna, and Kavita for reminding me every so often that Greeks are not the
only nationality in this school. I will remember the endless conversations, and
I am looking forward to their encyclopaedia analyzing anything you can
imagine (and some things you can’t...). Also, many thanks to Ozge, Danielle,
Mike, Hugo, Emanuella, Ozlem, and Zeynep, all of whom are great friends to
have.
5

6

Of course, my list of friends would not be complete if I did not include the
bunch in Greece. Hip, George G., George F. P. (yes, George is a common
Greek name!), Apostolos, Dafni, Anastasia, Yiannis, Elena L., Elena G.,
Christos, Despina, and my cousins (especially Costas, Vicky and Eleni) made
sure I have no time to rest during my vacations.

I would also like to thank all the people in the Ehlrich lab, especially Sameh,
Aram and Mark, for believing in me and making this research possible. With-
out them I wouldn’t even have know about the existence of such a beautiful
field at the intersection of electrical engineering, computer science, and biol-
ogy. They have been a key factor in the way I think about research now.

I am also grateful to all the members of the DSP group at the RLE, especially
to my advisor, Al Oppenheim. His teaching formally introduced me to the
world of signal processing, giving a solid background to my intuition and to
my experimental learning of signal processing. The DSP group is my new
home for the Ph.D. thesis, and I am really looking forward to working with
such a great bunch.

Of course, nothing would be possible if I did not have some great teachers in
school and college, and I have something to remember from all of them. If I
start enumerating, I am sure I will forget someone, that’s why I will not do it.
But they all put a lot of effort to make us, stubborn kids, learn something. I
thank them for that.

Last but not least I would like to thank all the MIT faculty and administrative
staff. They have a very hard job to do with all the students trying to outsmart
them, and they are doing it very well.

Of course, I probably have forgotten a bunch of important people, and I would
like to apologize for that. It is a daunting task to list everyone and I am only a
human.

Table of Contents
CHAPTER 1 Introduction, Problem Statement, and Background11

The DNA Sequencing Process. .12
DNA Sample Preparation . 13

DNA denaturation. 14
Annealing . 14
DNA synthesis. 15

Electrophoresis . 16
Signal Processing . 18

Denoising . 19
Color Separation . 19
Baseline correction. 19
Mobility Shift Correction . 20
Base Calling . 20

A Brief Introduction to Pattern Recognition .20
Considerations in the Design of Pattern Recognition Systems 22

Model Selection . 22
Feature Selection . 22
Overfitting. 23

Searching the Parameter Space. 23
Gradient Descent . 23
7

Expectation-Maximization. .24
Recognizing Static Patterns and Time Series .25

Gaussian Mixture Models .25
Artificial Neural Networks. .26
Hidden Markov Models .26

Background . 27
DNA Sequencing. .27
Pattern Recognition .28

CHAPTER 2 Pattern Recognition for Static and Time-Varying Data . 29

Gaussian Mixture Models . 29
Model Parameters. .30
Training the Model .30

Artificial Neural Networks . 31
The Fundamental Building Block .32
Layers and Networks .34
Error Backpropagation. .36
The softmax Activation Function .43

Hidden Markov Models . 45
An Introduction to Markov Chains .46
Hiding the Chain .48
“The Three Basic Problems” .49

Estimating the probability of the observation sequence49
Estimating the model parameters .49
Estimating the state transitions .49

And Their Solutions .50
Estimating the probability of the observation sequence50
Estimating the model parameters .50
Estimating the state transitions .53

Combining HMMs and ANNs . 54

Summary . 56

CHAPTER 3 DNA sequencing as a Pattern Recognition Problem . . . 59

The Pattern Recognition Problem . 59
8

HMM Topology .61
The Bases Model . 62
The Basecalling Model . 63

System Training .65
The consensus sequences. 66
The training method. 67

Executing Queries .67
The variation to the Viterbi algorithm. 68

Alternative Topologies. .68
Accommodating sequences of identical bases. 69
Accommodating molecule compression effects . 70
Accommodating concurrent bases. 71

Summary .73

CHAPTER 4 Results, Conclusions, and Future Work75

Results .75
Error Evaluation . 76

Undercalls (Deletions) . 76
Overcalls (Insertions) . 76
Miscalls (Substitutions) . 76

Evaluation Results. 77

What needs to be Done .79
Preprocessing . 79
HMM Topologies . 79
Features and Emission models selection . 80
Extensions . 80

Conclusions .80

References .83
9

10

CHAPTER 1 Introduction, Problem
Statement, and
Background
The introduction of methods for DNA sequencing has revolutionized the prac-
tice of biology, leading to projects such as the Fruitfly Genome project, the
Mouse Genome project and—most significant of all—the Human Genome
project. The ability to decode the genetic material is of prime importance to
researchers trying among other to cure diseases, improve the resistance of
crops to parasites, and explore the origin of species. Moreover, the explosion
of fields such as computational biology and the demands of these fields for
rapid and cheap sequencing has created a great need for automation. This
need is addressed by the development of modern equipment with the ability to
run unattended for a long time. These systems feed their output to computer
systems for processing without human intervention.

In this thesis we will focus on one small part of the whole process: basecall-
ing. It is the process of converting the signal generated from the equipment to
a string of letters representing the sequence of bases that compose the pro-
cessed DNA sample. The problem will be formulated as a pattern recognition
problem. To solve it we will propose a method similar to the ones commonly
used in speech recognition, combining Hidden Markov Models (HMMs) and
Artificial Neural Networks (ANNs).
11

Introduction, Problem Statement, and Background

12
Since this thesis is addressed both to the biological and the signal processing
community, the background development is quite extended. Sections that
might seem basic to one community are completely unknown to the other.
The main work for this thesis is presented starting at the end of chapter 2, at
page 54. Anything before that has the form of a tutorial, with the intent of
presenting some necessary background, establishing notation and building a
broader perspective for some existing concepts. This perspective will be use-
ful in the development of the key contributions of this work.

This chapter will present how the process of DNA sequencing works, and give
a brief overview of Hidden Markov Models and of Artificial Neural Net-
works. In addition, the problem will be posed as a pattern recognition prob-
lem and show why HMMs are suited for solving it. Finally, we will explore
existing work in both DNA sequencing and pattern recognition that is related
to this project.

The DNA Sequencing Process

Before presenting the DNA sequencing process, it is important to understand
the structure and the function of the molecule. DNA is a long double stranded
molecule that encodes the structure of specific proteins in the cell, as well as
information about how these proteins should be manufactured. This informa-
tion is stored in the sequence of bases (nucleotides) that compose the mole-
cule. These bases can be one of the four: adenine, thymine, cytosine, and
guanine—which we can denote as A, T, C, and G respectively. They are
located on a deoxyribose and phosphate based backbone, and are paired as
shown in Figure 1. It is important to note that the only electrochemically sta-
ble pairings are A-T, and C-G, independent of the orientation. Therefore, the
composition of one strand uniquely determines the composition of the other.
The goal of the DNA sequencing process is to determine the sequence of
bases in a given DNA molecule.

We can abstract this picture of DNA if we think of it as a long tape on which
the genetic information is stored sequentially. For storing this information,
nature does not use a binary system but a quarternary one, where each string
is a sequence of letters drawn from the alphabet {A, T, C, G}. DNA sequenc-

The DNA Sequencing Process
ing is the process of reading the sequence of letters on a piece of DNA. We
may ignore the presence of a second strand, since it is uniquely determined by
the first one. This picture will be useful when we pose the problem as a pat-
tern recognition one.

The sequencing process involves three steps: DNA sample preparation, elec-
trophoresis, and processing of the electrophoresis output. We will briefly
explore them, since they are important to our problem.

DNA Sample Preparation

The first step is quite straightforward but significant for the success of the pro-
cess. For that step we will assume that we have a few copies of the same
DNA molecule in a solution. We will not explore how to get these copies: it is
beyond the scope of this work, in the realm of biological science. The goal of
this process is to produce several copies of the DNA molecule, truncated at
different lengths, and tagged with specific fluorescent tags.

FIGURE 1. The 2-D structure of the DNA molecule. Note the pairings of the
bases: A-T, and C-G (Image copyright: Encyclopædia Britannica,
[6]).
13

Introduction, Problem Statement, and Background

14
In this step the original DNA molecules are first replicated several times using
a biochemical process known as polymerase chain reaction (PCR). PCR
involves cycling between three steps: DNA denaturation, annealing, and DNA
synthesis, as shown in Figure 2. PCR is performed in the presence of DNA

primers, DNA polymerase, and nucleotides. These are chemical species nec-
essary to perform the reaction. Their function and usefulness will be
explained below.

DNA denaturation: In this step the solution is heated to 95oC. This causes
the two strands of the molecule to separate to two complementary ones.
These strands are the templates that will be used to create the two replicas of
the molecule. As we mentioned before, because of the unique pairing of the
bases, each strand uniquely defines the composition of its complementary
one, and, therefore, one strand is sufficient to recreate the molecule.

Annealing: The purpose of this step is to initiate the replication of each

strand. The solution cools down to 55oC. At this temperature, the primers are
able to attach to the 3’ ends of the template strands. The primers are DNA
fragments roughly 20 bases long, that are complementary to the ends of the

FIGURE 2. The three steps of the polymerase chain reaction (Image
copyright Encyclopædia Britannica, [7]).

The DNA Sequencing Process
strands. This assumes that the sequence of these ends is known, in order to
create the corresponding primers. Indeed, the method used to isolate the
DNA from the cell provides for a way to know the sequences at the two ends
of the molecule, or, at least, attach known sequences at both ends.

DNA synthesis: The final step occurs at 72oC. At this temperature the
enzyme responsible for DNA synthesis, DNA polymerase, attaches to the
strands, at the end of the primers. The function of this enzyme is to extend the
primers by attaching nucleotides, i.e. bases, according to the template strand.
The nucleotides are attached one by one until the polymerase reaches the end
of the strand and drops off the molecule. The DNA is now ready to undergo
another cycle of replication.

Since from every DNA strand the reaction produces one molecule, and since
each molecule has two strands, it is obvious that each cycle doubles the
amount of DNA in solution. Therefore, assuming perfect yield, repeating the

cycle N times yields 2N times the original amount.

The replicas are subsequently treated with a similar process. The resulting
solution contains pieces of the original strand, all with the same origin, but
truncated at different lengths. These pieces are chemically labelled according
to the final letter of the string with one of four fluorescent colors—say red,
green, blue, and yellow. For example, if the sequence of the original strand
was ATACG, the product of that process would be a chemical solution con-
taining several replicas of five different strands: A, AT, ATA, ATAC, ATACG.
The first, and the third strands would be labeled with the same fluorescent
dye—red, for example—while the remaining three with the three remaining
dyes—green, blue and yellow respectively, in our case.

To create this solution, one more cycle of the original PCR reaction is
repeated, in a solution that contains not only nucleotides, but also “defective”
nucleotides, labelled with the respective fluorescent tag. The role of the
defective nucleotides is to fool the DNA polymerase to use them instead of
the proper ones, effectively ending the synthesis step after the DNA strand
has only been replicated partly. The position where the defective nucleotide
will be inserted is random—the DNA polymerase will have to “select” it
among regular and defective ones of the same type. Thus, the result will be
different for each of the strands replicated, creating the solution described
15

Introduction, Problem Statement, and Background

16
above. Note, that the strands in the solution have different lengths, but all
start from the same point. Also note that only the last nucleotide of each
strand in the solution is a defective one. Therefore, each strand carries the flu-

orescent label of its last nucleotide1.

Electrophoresis

The goal of the electrophoresis reaction is to separate, according to their size,
the DNA fragments that were produced in the previous step. We can think of
this reaction as a miniaturized and exaggerated version of Galileo’s experi-
ment from the leaning tower of Pizza. Galileo threw two balls of different
sizes from the top of the tower. The smaller one, facing less air drag than the
larger one, reached the bottom of the tower first. Effectively, the two balls
were separated by size, precisely what our goal is for electrophoresis. Of
course, we need to separate DNA in solution, and in equipment much smaller
than the leaning tower of Pizza. Furthermore, we would like to control the
force driving the molecules, therefore gravity is not an attractive option.
Instead, we separate the molecules in a viscous gel using an electric field to
produce the driving force.

Indeed, the reaction is based on the simple principle that under constant
attractive force, larger molecules take longer time to traverse a viscous gel.
Since DNA is a negatively charged molecule, in an electric field it will tend to
move towards the positive electrode. By combining these two principles, we
can create a simple electrophoresis apparatus: a simple container holding the
gel, and a pair of electrodes generating the electric field, as shown in Figure 3.
We place the solution of DNA fragments near the negative electrode and a
detector near the positive end. When we turn on the electric field, DNA starts
to move towards the positive electrode, and, hence, towards the detector.
However, as shown in the figure, the smaller fragments can move easier and
reach the detector faster. Given the right electric field strength and enough
distance for DNA to travel, we can achieve complete separation between mol-

1. We should note here that there is an alternative process where the fluorescent tag is
attached at the beginning of the strand. Although the details might be significant
for a chemist or a biologist, they are not important to the development of the thesis,
so they will not be discussed further.

The DNA Sequencing Process
ecules of size differences as small as one nucleotide. Thus, we only need to
read the fluorescent tags to determine the sequence.

This is the function of the detector. Usually the detector induces fluorescence
using a laser to excite the fluorescent tags. It collects the data using a photo-
detector. There are several photodetector technologies, ranging from photo-
multiplier tubes (PMTs) to charge-coupled devices (CCDs). Each has its own
trade-off in terms of simplicity to use, efficiency of fluorescence detection and
spectral resolution. What is common, however, is the output of the detector:
A four-channel signal—one channel per base—that represents the fluores-
cence of each of the four tags at each instant in time; it looks like Figure 4.
Usually there is some linear cross-talk between the channels, due to imperfec-
tions in the optics of the equipment. Furthermore, there is some noise in the
signal, both because of fluorescence from the gel and the container, and
because of the noise in the electronics.

One small complication arises by the presence of the fluorescent tags on the
molecules. The tags are quite big and different in size, depending on their flu-
orescent frequency. Therefore, the tags affect significantly the ability of the
DNA molecule to find its way through the gel—a quantity known as mobility.
Moreover, the effect will be different for molecules ending at different bases
because they each carry a different tag. Hence, the fragments will not arrive
in the correct sequence anymore. Fortunately, the effect is well understood,
and can be undone using time warping on each of the four signals. This, how-

FIGURE 3. The electrophoresis process in a simple electrophoresis
apparatus.

A*
A*A

*

A*
A*

A*
A* A*

A*
A* A*

A*

A*
AT^

AT^AT^
AT^

AT^
AT^

AT^
AT^AT^

AT^ AT^AT^

A*

AT^
A*AT^

ATA*

ATA*
ATA*

ATA*ATA*
ATA*

ATA*
ATA*ATA*

ATA*
ATA*ATAC$

ATAC$

ATAC$

ATAC$
ATAC$

ATAC$

ATAC$

ATAC$

ATAC$
ATACG#

ATACG#

ATACG#

ATACG#
ATACG#

ATACG#

ATACG#

ATACG# ATACG#

ATACG# ATACG#
ATAC$

Original sequence: ATACG

*,^,$,#: Fluorescent Tags for A,T,C,G respectively

Viscous Gel
DNA velocity direction

Detection Area

Electric Potential

+-
17

Introduction, Problem Statement, and Background

18
ever, is part of the signal processing, and we will explore it further in the next
section.

Signal Processing

This is the last stage of the process and it involves processing the signal to
produce the sequence of bases in the target molecule. This stage involves five
processing functions: denoising, color separation, baseline correction,
mobility shift correction, and base calling. The first four steps aim to condi-
tion the signal for the fifth one, without losing any useful information. They
are necessary in order to undo all the imperfections in the chemistry, the
optics, and the electronics of electrophoresis, as much as possible. The result
of the whole process should be a sequence of letters and a confidence esti-

FIGURE 4. Sample raw electropherogram data

1600 1700 1800 1900 2000 2100 2200
1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

Time (Samples)

A
m

pl
itu

de

Raw data

A
T
C
G

The DNA Sequencing Process
mate—usually in the form of probability of error or likelihood of the
sequence.

Denoising: This process is aimed at removing any noise introduced in the sig-
nal. The sources of noise are many. For example, the gel often has fluores-
cent impurities. Furthermore, the electronics are imperfect and noisy. Even
scattered light might make it back into the detector. Although the designers of
the equipment try to reduce the noise presence, complete elimination is
impossible. We usually model the noise as a white gaussian process. Since
the actual DNA fluorescence is a very slowly varying signal—i.e. has signifi-
cant power at low frequencies—low pass filtering is usually enough to filter
the noise out.

Color Separation: This is a linear operation, which aims to eliminate the
cross-talk between the four channels of the signal. This cross-talk is due to
the imperfections of the optical filters that separate the fluorescence from each
of the four tags. It is effectively a linear mixing of the four signals that can be
undone trivially, assuming that the mixing coefficients are known. If we use
the vector x to denote the desired signals, matrix M to denote the mixing
matrix and the vector xm to denote the mixed signals, then we can express x
using xm=Mx. Assuming that M is invertible—which is true since the mixing
can be thought of as a rotation and a scaling, both invertible operations—we

can calculate x using x=M-1xm. The matrix M, however, is not known, and
should be determined. A number of techniques to determine the mixing
matrix exist, mostly based on analysis of the second order statistics of the sig-
nal.

Baseline correction: This step aims to remove constant and very slowly vary-
ing offsets that occur to the signal due to a constant value of background fluo-
resecne. This fluorescence often depends on the experimental conditions,
such as the temperature of the electrophoresis. Since these might not be con-
stant during the run, there might be a small drift in the DC value of the signal.
Furthermore, the background fluorescence is different for the four channels,
so the DC value is different. The goal of this process is to remove a roughly
constant waveform from the recorded signal; it is effectively a high-pass filter.
The resulting signal should be zero—assuming that all the noise has been
cleared in the first step—when no DNA is present in front of the detector.
19

Introduction, Problem Statement, and Background

20
Mobility Shift Correction: As we mentioned before, the presence of the flu-
orescent tags affects the mobility of the DNA molecules. This step aims to
undo this effect by a time warping process. Ideally, the resulting signal
should be equivalent to the signal that would have been obtained if all four of
the tags had the same effect on the mobility of the DNA fragments.

Frequently, this step is combined with another time warping aimed at creating
a signal with uniform peak spacing. Because of the nature of the experiment,
the peak spacing near the end of the signal is much wider than the peak spac-
ing at the beginning. In order to undo this effect, time can be warped so that it
runs faster near the end of the run and slower at the beginning. This will
result to a signal with uniform peak spacing. Uniform peak spacing might or
might not be necessary, depending on the requirements of the next step.

Base Calling: This is the final step of the processing. The goal of this step is
to translate the processed signal—which looks like Figure 5—into the
sequence of letters that describe the DNA sequenced. This sequence should
be accompanied by some form of confidence estimates. The confidence mea-
sures are usually in the form of likelihood measures or probability of error
estimates. These measures usually reflect the quality and the resolution of the
signal. Furthermore, they are very useful in further stages of processing of the
output and in the quality control of the sequencing process. Base calling is
the problem we try to address in this thesis.

A Brief Introduction to Pattern Recognition

As we will discuss later in this chapter, base calling is an example of a class of
problems in the field of pattern recognition. Loosely speaking, this field—
also known as pattern classification—examines ways to categorize data to
several different classes. A typical problem, for example, is speech recogni-
tion, where speech utterances are translated—i.e. classified—to sequences of
letters or words. Another example is face recognition: the face of a person
must be recognized in an image, or an image must be categorized as ‘face’ or
‘not-face.’

A Brief Introduction to Pattern Recognition
Modern techniques rely heavily on statistical models and probability theory to
perform classification. Usually, a statistical model is assumed about the for-
mat and the distribution of certain features in the data. The parameters of the
model are estimated using some example data, a process known as training.
Once the parameters are estimated, the model can be used to classify new
data. Sometimes the model is not trained with example data but it is formu-
lated to find some ‘natural’ classification, by adjusting its parameters. The
former way of training is often called supervised learning, while the latter is
known as unsupervised learning.

In the rest of this section we will discuss some common considerations in the
design of pattern recognition systems. We will proceed to examine two very
effective techniques for parameter estimation, which we will use in the rest of

FIGURE 5. Processed electropherogram data, ready to be basecalled.

1120 1140 1160 1180 1200 1220 1240 1260 1280 1300
0

200

400

600

800

1000

1200

Time (Samples)

A
m

pl
itu

de

Processed data

A
T
C
G

21

Introduction, Problem Statement, and Background

22
the thesis. Finally we will present two powerful tools used in pattern recogni-
tion: Artificial Neural Networks and Hidden Markov Models.

Considerations in the Design of Pattern Recognition Systems

When designing a pattern recognition system, there are several issues to con-
sider. The success of the system depends on how well it can classify the data,
and on how well it can generalize based on the training data. Therefore, the
selection of the statistical model, and of the features of the data that the model
will use are of prime importance. Furthermore, care should be taken in the
training of the model, to ensure that it will perform well on actual data.

Model Selection: It might sound obvious that the statistical model selected
should fit the actual statistics of the data. However, it is not trivial to formu-
late such a model, and ensure that its parameters can be estimated. Therefore,
simplifications might often be needed. Furthermore, a model with a big
parameter space might train very slowly, and might be prone to overfitting—
which we will discuss later. On the other hand, a model with a very small
parameter space might not be sufficient to describe the data; such a model
would perform poorly. A general rule of thumb is to use a model as simple as
needed to describe the data, but not simpler. This heuristic rule is also known
as Occam’s razor ([14] describes the rule in more detail).

Feature Selection: A separate, but very related, aspect of the design is the
selection of the features—i.e. the functions of the raw data—that will be used
for the classification. For example, the pitch of a voice signal might be the
feature used to distinguish male from female voices in a classifier. Thus, a
function of the raw waveform is used, and not the waveform itself.

While the unprocessed data can be used as features, this is often a bad choice
for pattern recognition. For example, the data might have a very peculiar
probability distribution, but a nonlinear function of the data might be nor-
mally distributed, making the models very easy to train. Also, the data might
be multidimensional, while a function of the data might reduce the dimen-
sionality, without throwing out useful information. Significant literature is
devoted to feature selection, since it is a topic that often makes the difference
between models that work and models that do not.

A Brief Introduction to Pattern Recognition
Overfitting: This issue often occurs when the model adjusts too much to the
data given as examples, and is not able to generalize. Trying to achieve per-
fect classification rates on the training data is often a cause for overfitting.
Complex models are prone to this problem, since they have a large parameter
space, and therefore it is easier to find a parameter combination that classifies
the training data very well. However, this is not the parameter combination
that achieves good generalization.

There are a couple or ways to reduce overfitting. The simplest is to reduce the
parameter space of the model, leading to models less prone to the problem.
This is another instance of Occum’s razor. An alternative way is to use a val-
idation set of data, independent of the training set, on which the classification
performance is tested. The performance of the model on the validation set
should improve as training proceeds. Once the performance on the validation
test starts deteriorating, this is an indication that the model is overfitting to the
training data, and the training should be stopped.

Searching the Parameter Space

As we described above, in order to train the models we need to calibrate
parameters based on the training data. Usually, parameters are selected so as
to minimize some cost function, based on the model and the training set.
Unfortunately, the parameter space of the functions is often very large, if not
infinite, and an exhaustive search impossible. Several optimization tech-
niques exist to perform such a search. I will present only two here: gradient
descent, and expectation-maximization (EM). These are the optimization
methods most often used with the types of models I will consider later.

Gradient Descent: This is the simplest method to search the parameter
space, but one of the most frequently used. The general idea is that the search
starts at a random point in the multidimensional cost surface and perform a
descent towards the steepest downhill path. We can picture a 1D version of
this method by examining a gradient descent on the cost function depicted in
Figure 6. Starting from a random point in the real axis, we get to the mini-
mum of the cost function by following the derivative of the function.

It is obvious from the picture that this method does not guarantee settlement
to the global minimum of the cost function, but only to a local one. This
23

Introduction, Problem Statement, and Background

24
might be an issue in certain cases. There exist ways to search around a larger
local area, but not a global one. In this thesis, this method will be used to train
Artificial Neural Networks.

An important parameter in the descent is the step size. Using a very small
step size might result to a large number of iterations until the minimum is
reached. Using a large one might result in oscillations around the minimum,
without ever reaching it. Several tricks exist to overcome that difficulty.
These include using a larger stepsize at the beginning and a smaller one as the
training progresses. Also one could add momentum, which uses the previous
step’s direction and size to influence the current step’s direction and size,
effectively reducing the stepsize as the training approaches the minimum.

Expectation-Maximization: This is a two step iterative process especially
designed for probability optimizations. The algorithm starts from certain
parameter estimates, and calculates the expectations of the probability func-
tions of the model based on these estimates (Expectation step). Then it esti-
mates a new set of parameters that maximize the cost function given the

FIGURE 6. A simple one dimensional gradient descent example

Cost function f(x)

Parameter (x)

C
os

t (
y)

Random Initial point

A Brief Introduction to Pattern Recognition
probabilities calculated before (Maximization step). The two steps are iter-
ated until convergence is achieved.

An interesting view of the algorithm is that of a lower bound maximization.
Indeed, as [17] shows, given a point in the parameter space, EM constructs a
function of arbitrary form that is a lower bound to the cost function, such that
they both have the same value at the specific point. The M-step chooses the
step that maximizes over the lower bound function (the assumption is that the
lower bound is easier to maximize), which guarantees improvement over the
cost function. A version of the algorithm known as generalized EM only
improves over the lower bound, which still improves over the cost function
but less aggressively.

The algorithm exhibits the problem of locality that we observe in gradient
descent. Although here convergence is guaranteed, we still have no guarantee
that the global minimum will be achieved. However, it has the advantage of
much faster convergence than gradient descent. Unfortunately, it is not appli-
cable as widely as gradient descent.

Recognizing Static Patterns and Time Series

Since we are interested in processing DNA signals, we need to use a model
that incorporates time. However, these models are easier to develop once we
understand static models, and extend them to cover time series. Therefore, we
will first examine Gaussian mixture models and artificial neural networks as
probability estimators. Next we will combine these estimators and markov
chains to create Hidden Markov Models. These are very powerful models,
commonly used in speech recognition. In the remaining of this section I will
present a brief overview. An expanded analysis will follow in the next chap-
ter.

Gaussian Mixture Models: This is one of the simplest models for describing
data. The assumption for such models is that the probability distribution of
the features is a Gaussian mixture, with different parameters for each class.
The distribution of a Gaussian mixture is the sum of scaled Gaussian density
functions with different means and covariance matrices, such that the sum of
the scale factors is equal to 1.
25

Introduction, Problem Statement, and Background

26
Training and classification is very easy with this type of model. To train this
model, we only need to estimate the scale factor, the mean, and the covariance
matrix for each of the Gaussians in the mixture. Training is usually per-
formed using an EM strategy, developed further in the next chapter. Classifi-
cation is done by selecting the most likely class given the data.

Artificial Neural Networks: These types of models were originally con-
ceived as imitations of biological neural networks. However, the state of the
art has evolved, and the field has been formalized and has progressed beyond
the original simplicity. ANNs are usually comprised of layers of fundamental
units, the neurons, that exhibit certain properties. It can be shown that under
certain conditions, ANNs can be universal function estimators, a quality we
will use for pattern recognition. Indeed, given that property, there are two
ways to perform classification using an ANN: use them as functions that esti-
mate the class directly, or use them as functions that estimate the likelihood of
the class.

There are several advantages in using ANNs, and several drawbacks. The
main advantage is that they can be trained to model any kind of data. How-
ever, because of this universality, the parameter space is huge. This often
causes convergence issues: there is no guarantee that the gradient descent
used to train a neural network will converge to a meaningful local minimum.
For the same reason, ANNs are very prone to overtraining, an effect known in
the literature as the curse of dimensionality (for more details see [14], p. 210-
211).

Hidden Markov Models: These models are very good at describing continu-
ous time processes. The assumption in these models is that the underlying
process that produces the signal is a Markov chain. Markov chains are non-
deterministic finite state machines that have state transitions governed by cer-
tain probability distribution functions. The Markov chain is ‘hidden’ in the
following sense: the signal we observe is not deterministically related to the
state of the Markov chain. Hence, we cannot have a certain mapping from the
signal to the state transitions. Instead, each state emits the signal stochasti-
cally, with a certain probability model. The models used for these emissions
are usually Gaussian mixture models or Neural Networks. The hidden
markov chains are very effective in modeling time series, thus HMMs are
often encountered in the speech recognition literature.

Background
Training the model involves estimating the transition probabilities, and the
emission probability density functions. This is usually performed by an
instance of the EM algorithm known as the Baum-Welch algorithm. When
Gaussian mixture models are used for the emission probabilities, the estima-
tion can be incorporated into the Baum-Welch algorithm. However, when
Neural Networks are used, they are usually trained separately from the
remaining model, using manually labeled data. In this thesis we will develop
a way to incorporate the ANN training into the whole training method, elimi-
nating—at least, partly—the need for manual labeling.

Background

Before developing the proposed solution it is necessary to present the existing
work in the field. This presentation will motivate the use of HMMs to solve
the basecalling problem. Furthermore, it will provide us with some bench-
mark to compare our results. First we will examine existing work in DNA
sequencing, and then we will give some necessary background on HMMs and
attempts at combining them with ANNs.

DNA Sequencing

Existing work in the field is mostly concentrated in signal conditioning and
basecalling. Giddings et al. [13] provide an overview of the signal processing
steps described above, and propose a modular approach to building the base-
calling system. Also, Giddings et al. [12] present a software system for data
analysis in older slab gel electrophoresis machines. Berno [2] proposes a
graph-theoretic approach to basecalling. Ewing et al. [9] describe Phred, the
software mainly used by the Human Genome Project for analysis of the sig-
nals. Furthermore, Ewing and Green [10] describe how Phred assigns confi-
dence estimates to the basecalled data. Lipshutz et al. [16] propose a method
based on classification trees to perform the confidence estimation and correct
uncalled parts of the signal. Finally, Lawrence et al. [15] suggest a linear dis-
criminant analysis approach to assign position-specific confidence estimates
on basecalled data. However, all approaches are empirical and depend signif-
icantly on heuristic rules.
27

Introduction, Problem Statement, and Background

28
More recently, Nelson [18] described some initial efforts to put statistical
foundations on the problem, an approach that will isolate basecalling from the
particular instrument used and provide confidence estimates derived straight
from the methods used to basecall. This thesis intends to proceed in a similar
direction.

Pattern Recognition

Pattern recognition is a very mature field, compared to DNA sequencing.
Indeed, several good books, such as [5] and [14] exist to guide a beginner
through the fundamentals of statistical pattern recognition, Gaussian mixture
models, and artificial neural networks. Hidden Markov Models have been
extensively studied in the field of speech recognition, and a very good review
of the work can be found in Rabiner’s tutorial [20]. Finally, some work on
integrating HMMs with ANNs has appeared in [4] but the training methods
used are not suitable for our case.

CHAPTER 2 Pattern Recognition for
Static and Time-Varying
Data
In this chapter we will develop further the pattern recognition techniques pre-
sented in the introduction. After developing the training methods for Gauss-
ian Mixtures and Artificial Neural Networks, as usually developed in the
literature, we will show how Markov Chains can be used to create a Hidden
Markov Model framework for time varying signals. In this development we
will follow closely but not exactly Rabiner’s presentation in [20]. Finally, we
will combine ANNs with the HMM framework and provide a method to train
the system with sample data.

Gaussian Mixture Models

These models assume that the features in each class are distributed according
to a mixture of M Gaussians. The advantage of such a model is that it can be
trained using the EM algorithm, which usually implies rapid convergence.
Still, unless the number of mixtures is large the model’s descriptive power is
limited. Furthermore, unless the amount of training data is large, convergence
might become problematic. Nevertheless, these models are simple and pow-
erful enough to be widely used. Therefore, we will examine them as the basic
model for pattern recognition.
29

Pattern Recognition for Static and Time-Varying Data

30
Model Parameters

As mentioned above, we will assume that there are M components in the mix-
ture for each class. In other words, we will assume that if x is the feature vec-
tor we would like to classify, then the density of x originating from class j is:

(1)

Training this model involves estimating the parameters , and for

each component m and class j. These parameters represent the mixture coeffi-
cients, the mixture means, and the mixture covariance matrices respectively.
It can be shown that any distribution can be approximated arbitrarily well by a
gaussian mixture model with a sufficiently large number of components.
However, the number of components necessary is often extremely large for
practical implementation.

Training the Model

The most common method to train a Gaussian Mixture model is the EM algo-
rithm. The Expectation step of the two-step iterative algorithm involves esti-
mating for all the mixture components m and the data points xi in class

j. The estimate is calculated using the values of the parameters from the pre-
vious iteration.

The Maximization step estimates the parameters of the model using the fol-
lowing formulas:

(2)

p j x() c jm x µ jm U jm, ,()N
m 1=

M

∑=

c jm µ jm, U jm

p̂m xi()

µ̂ jm

p̂m xi()xi

i 1=

N

∑

p̂m xi()
i 1=

N

∑
-----------------------------=

Artificial Neural Networks
(3)

, (4)

where N is the number of training points xi that belong to the class j.

The two step algorithm should be repeated several times until the values of the
estimated parameters converge. We should note that a subtle issue is the
selection of the parameters before the first iteration: unfortunately, a random
selection might not always be the best choice since it might make the algo-
rithm to converge to a very inefficient local minimum of the cost function.
Usually a more educated guess for the initialization is required, but this is an
issue we will swipe under the rug.

Artificial Neural Networks

Artificial Neural Networks evolved from mathematical models of the neural
networks in the human brain. Built from a fundamental block, the neuron,
ANNs can be universal function estimators. In this section we will examine
how these building blocks behave, how they are usually combined into net-
works, and how the networks are trained. Finally we will present a variation
of the building block, that is very useful in networks designed to estimate
probability mass functions. Since our approach to their development is not
often encountered, we will give a rather extensive presentation compared to
the Gaussian mixture models. However, we believe that this approach
deserves the attention.

Û jm

p̂m xi() xi µ̂ jm–() xi µ̂ jm–()T

i 1=

N

∑

p̂m xi()
i 1=

N

∑
--=

ĉ jm
1
N
---- p̂m xi()

i 1=

N

∑=
31

Pattern Recognition for Static and Time-Varying Data

32
The Fundamental Building Block

Similarly to their biological counterparts, ANNs are built from units that com-
bine several inputs into one output. These units look like the one in Figure 7.

We will define the inputs as xi for i=0...N, and the weights as wi for the same
i. Conventionally, we define i0=1, and the corresponding weight wi is
called—for reasons that will be obvious later—the bias. Therefore, the unit
we just defined has N independent inputs. Under these definitions, the output
y of the neuron is defined as

, (5)

where the function f(.) is called the activation function. The second form of
the equation justifies the term bias used for w0: the term does not influence the
data; it is just an additive constant that moves the sum in the input region of
the activation function.

The notation above is useful to see the functionality of the neuron: it passes a
weighted and biased sum of its inputs through the activation function. How-
ever, it will be convenient to use a compact vector notation once we start
working with layers and networks of these units:

(6)

(7)

FIGURE 7. A neuron: the fundamental building block of a neural network

w0

w

w

x

x

x

0

1

N

1

N

yΣ f

y f xiwi

i 0=

N

∑ 
 
 

f w0 xiwi

i 1=

N

∑+
 
 
 

= =

x x0 … xN

T
=

w w0 … wN

T
=

Artificial Neural Networks
Then, the sum may be replaced by the dot product. Thus, the output y is equal
to:

(8)

The activation function f(.) can be anything we desire, but certain functions
are more popular than others. The original models used the unit step function:

(9)

This function matches the function of biological neurons. Artificial neurons
using this activation function are often called perceptrons.

The big disadvantage of the unit step activation function is the discontinuity at
0, and the lack of a derivative. The discrete nature of this function does not
allow for a gradient descent algorithm to operate on it, in order to perform
training. This proved to be a significant drawback. Research in the area was
set back for a long time, until the issue was resolved. In fact, no good solution
has been found yet for this problem. Instead, a very useful alternative is used,
the sigmoid function:

(10)

The graph of this function is shown in Figure 8. It is obvious that by scaling
the input it can approximate the unit step function arbitrarily well. However,
it has the added advantage that it is differentiable everywhere, it’s derivative
being:

(11)

This property is used extensively in training ANNs using a simple gradient
descent algorithm.

y f wT x()=

u x()
0 x 0<,
1 x 0≥,




=

f x() 1
1 e x–+
----------------=

f ′ x() e x–

1 e x–+()2
----------------------- f x() 1 f x()–()= =
33

Pattern Recognition for Static and Time-Varying Data

34
These two functions are not the only useful ones. Several others, such as the
linear function f(x)=x, or the hyperbolic tangent function are often used,
depending on the application. However, the sigmoid function is the most
common. For the purposes of our development we will only use two func-
tions: the sigmoid discussed above, and the softmax function. Because the lat-
ter exhibits some peculiarities, we will present it after we discuss how to
organize neurons into layers and then into networks.

Layers and Networks

In order to handle the complexity of arbitrary networks of neurons, it is often
desirable to limit their structure. We will assume that the networks are com-
posed of layers of neurons. Each layer has multiple inputs and multiple out-
puts, as shown in Figure 9. All the inputs of the layer are observed by all its
neurons, with different weight coefficients. In addition, all the neurons in the
layer use the same activation function. The output of the layer is the vector of
the outputs of each individual neuron of the layer. In fact we can extend the
vector notation to matrix notation to describe the whole layer. If the layer has
M neurons, then we can define the MxN weight matrix W:

, (12)

FIGURE 8. The sigmoid function

−15 −10 −5 0 5 10 15
−0.5

0

0.5

1

1.5

x

f(x
)

W
- w1

T -

:

- wM
T -

=

Artificial Neural Networks
where wi is the weight vector for the ith neuron in the layer. If we also define
y, the output vector of the layer as

, (13)

then the operation of the layer reduces to:

(14)

where the vector function f(x) is just the activation function applied over all
the elements of the vector, concatenated to the constant term that will apply
the bias at the next layer:

(15)

Having defined a layer, we can now cascade multiple layers of different sizes
to create a network, as shown in Figure 10. The connection between each
neuron’s output to another neuron’s input is often called a synapse.

Often, we consider the inputs as one extra layer—the input layer. Also, the
layer producing the outputs is called the output layer. Any layers between

FIGURE 9. A multiple-input-multiple output layer of neurons. The right-
hand part of the figure is just a schematic simplification of the
left-hand part.

. .
 .

. .
 .

or . .
 .

. .
 .

y y1 … yM

T
=

y f Wx()=

f x() 1 f x1() … f xM()
T

=

35

Pattern Recognition for Static and Time-Varying Data

36
these two are called hidden layers. These distinctions are important when
deriving the formulas to train the network.

A multilayer network is a great function approximation tool. It can be shown
that a single hidden layer is able to approximate any given function, if the
layer has the right number of neurons (for details see [14], p. 208). This theo-
rem provides a good justification for using ANNs to approximate functions.
We should note however, that the size of the networks suggested by the theo-
rem is large. In practice this makes networks prone to overfitting and less able
to generalize—a great example of the curse of dimensionality: the network
essentially ‘memorizes’ the training data. In applications we often encounter
smaller networks. These are not good in memorizing the training data, there-
fore generalize better.

Error Backpropagation

Having discussed the network topology, we can use a very easy technique for
training the network, caller error backpropagation. Although this method is
just a gradient descent, we will see shortly how the network topology provides
for a convenient way to find the gradient for each of the network weights wi—
the parameters of the model.

Before we discuss the method, it is important to establish some notation. We
will denote each layer by a superscript to the appropriate parameter. The net-

work will have L layers, each layer having a weight matrix Wl, Nl inputs, and

FIGURE 10. Two layers of neurons combined to give a neural network

or

Artificial Neural Networks
Ml outputs. The input will be denoted by xl, and the output by yl=xl+1 for
l>1. The first layer will be the input layer, and the last layer will be the output
layer. The input-output relationship at each layer is given by

, (16)

where , (17)

and is the activation function of the lth layer. It is easy to show that

given xl for any layer l, then the output of the network will be

. (18)

The cost function we will optimize is the magnitude squared of the error.
Specifically, we define the error vector e to be

, (19)

where yD is the desired output vector—taken from the training set. The mag-
nitude squared of the error vector is given by:

. (20)

The factor of 1/2 at the beginning of the expression does not affect any opti-
mization; it is there in order to eliminate a factor of two that will appear when
differentiating the cost function to perform the gradient descent. Indeed, to

find the parameters —the weight coefficients for each synapse—we will

need to find the derivative of c with respect to each parameter.

In addition, we will define the derivative—also known as the gradient—of the
cost function with respect to any matrix as the matrix with elements:

yl f l W lxl()=

f l x() 1 f l x1() … f l xM()
T

=

f l x()

yL f L WL f L 1– … W l 1+ f l W lxl()()()()=

e yL yD–=

c
1
2
--- e 2 1

2
--- ei

2

i 1=

N
L

∑= =

wij
l

37

Pattern Recognition for Static and Time-Varying Data

38
. (21)

In most cases M will be one of the weight matrices Wl. Still, sometimes, we
might need to find the gradient with respect to a vector, in which case the
above definition will still hold, the result being a vector instead. We will also
need the gradient matrix of a vector function—we can think of it as the deriv-
ative of the function with respect to a vector—defined as the matrix with ele-
ments:

. (22)

The gradient matrix is the transpose of the Jacobian operator Jf(x), often used
instead in the literature:

. (23)

Finally, we will denote the conversion of a vector to a diagonal matrix using:

, (24)

where δij is equal to 1 for i=j and to 0 otherwise.

Given these definitions, it is easy to show that for any scalar function of a vec-
tor g(x) the following relationships hold for any vector y, any matrix A, and
any vector function f(x):

, (25)

, (26)

which we may combine to get:

cM∇ M∂
∂c
 
 

ij M()ij∂
∂c= =

f x()∇()ij x∂
∂ f x() 

 
ij xi∂

∂
f j x()= =

Jf x()()ij f x()∇()T()ij x j∂
∂

f i x()= =

x()diag()ij xiδij=

A∂
∂

g Ax()
y∂
∂

g y()
y Ax=

 
  xT=

x∂
∂

g f x()()
x∂
∂ f x()

y∂
∂

g y()
y f x()=

 
 =

Artificial Neural Networks
. (27)

Next, we may define the cost function as a function of the input at layer l:

, (28)

and easily show that

. (29)

Therefore the gradient with respect to the weight matrix is equal to:

. (30)

Furthermore, the gradient of the cost function with respect to the input is:

. (31)

We can see that in these two equations there is a common recursive vector, the

local error signal, denoted by el:

(32)

Substituting, the formulas for the gradients become:

, (33)

A∂
∂

g f Ax()()
y∂
∂ f y()

y Ax=
 
  xT

y∂
∂

g y()
y f Ax()=

 
 =

cl xl() 1
2
--- yL yD– 2 1

2
--- f L WL f L 1– … W l 1+ f l W lxl()()()() yD– 2= =

cl xl() cl 1+ f l W lxl()()=

W l∂
∂

cl xl()
x∂
∂ f l x()

x W l xl= 
 
 

xl

xl 1+∂
∂

cl 1+ xl 1+()

xl 1+ f l W l xl()=
 
 
 

=

xl∂
∂

cl xl()
x∂
∂ f l W lxl() 

 
xl 1+∂
∂

cl 1+ xl 1+()

xl 1+ f l W l xl()=
 
 
 

=

el

xl∂
∂

cl xl()
xl f l 1– W l 1– xl 1–()=

=

W l∂
∂

cl xl()
x∂
∂ f l x()

x W l xl= 
 
 

xlel 1+=
39

Pattern Recognition for Static and Time-Varying Data

40
and . (34)

These formulas prompt to a nice recursion. Indeed, starting with the output
layer we could calculate the gradient of the weight matrix and the local error
signal. This signal is passed on to the previous layer, so that its gradient and
local error signal is calculated, continuing the recursion until the input layer.
The only issue to be resolved is the initiation of the recursion at the output
layer. Specifically, we need to find formulas for the two gradients at l=L, as a
function of the output data and the desired output data. However, it is easy to
show that since

, (35)

then , (36)

where e is out error at the output, as defined originally. Thus, using the same
formulas as before we can show that:

, (37)

and . (38)

These equations also justify the term local error signal for el. Each layer cal-
culates the gradient of its weight matrix, and effectively propagates the error
to the layer preceding it. Thus, this algorithm is called error backpropaga-
tion.

Having calculated each of the weight matrix gradients, we need to descend
towards the bottom of the cost function. Therefore, we need to update all the

matrices Wl using the following update step:

xl∂
∂

cl xl()
x∂
∂ f l W lxl() 

  el 1+ el= =

c
1
2
--- yL yD– 2=

yL∂
∂c yL yD– e= =

WL∂
∂

cL xL()
x∂
∂ f L x()

x WL xL= 
 
 

xLe=

xL∂
∂

cL xL()
x∂
∂ f L WL xL() 

  e eL= =

Artificial Neural Networks
. (39)

The parameter η is the step size of the descent. As we mentioned in the intro-
duction, picking the right value is an empirical issue, and might affect conver-
gence.

To summarize, training reduces to the following two-pass algorithm:

1. Initialize the weight vectors to some values.

2. Select a sample point in the training data.

3. Pass that point through the network to calculate the output, storing all the
intermediate—hidden—outputs. This step is also known as the forward
pass.

4. Calculate the error at the output.

5. Use the backpropagation algorithm to calculate the gradients of the weight
matrices. This is the backward pass.

6. Update the weight matrices using equation (39).

7. Select the next training sample point and repeat from 3, until the mean
squared error is sufficiently low.

The first step in the process is quite significant. Current practice in the field
dictates that initialization should be done with small, random zero-mean
weights. Indeed, it is very difficult to find a good set of meaningful initial
weights, therefore a random assignment is the best solution. Furthermore, the
weights should have a small magnitude so that the derivative of the activation
function is large initially. Had the weights been large in magnitude, then the
algorithm would operate on areas of the sigmoid function where the derivative
is small—sometimes zero, if we consider numerical quantization issues—so
the gradient descent will not be able to move away from these points fast
enough.

The backpropagation algorithm can be summarized as follows:

1. Set l=L to select the output layer

2. Use equations (33) and (34) to calculate the gradient for the weight matrix
and the local error signal for the current layer.

∆W l Wnew
l W l– η

W l∂
∂c

–= =
41

Pattern Recognition for Static and Time-Varying Data

42
3. Set l=l-1 and repeat 2 until the gradients for all the layers have been calcu-
lated.

There are variations of these two algorithms that are often used in practice.
For example, to minimize the chances of the network falling into a small local
minimum, some implementations randomly permute the order of the data that
they present to the network. Other implementations use a set of data for
cross-validation only, and stop the training early if the error in the cross-vali-
dation set starts to increase. This ensures that the network will not overtrain
to the training data.

The are also variations aiming to protect the gradient descent from problems
in the data. Indeed, certain implementations present a set of data to the net-
work, calculate the gradients for each point in the set, and then use an average
of the gradients to perform the update. This shields the training algorithm
from aberrant or noisy data that might modify the cost landscape significantly,
and force the gradient descent to take an undesired step. Another approach is
to add momentum to the gradient, i.e. to update the matrices using a fraction
of the ∆W of the previous iteration together with the ∆W calculated at the cur-
rent iteration. Momentum, apart from the shielding it offers, often results in
faster training.

Having established the training method, we only need to calculate the formula
for the gradient of the specific functions we are going to use in the network.
However, using equations (11) and (17), it is very easy to show that

, (40)

i.e. (41)

where f(x) is the sigmoid function, and N is the length of the vector x. Indeed,
for all the hidden layers, this matrix is the correct derivative. However, in the
output layer there is no constant output to provide the bias for the next layer
since there exists no next layer. Therefore, the gradient at the output layer
will be:

x∂
∂ f x() 0 f x1() 1 f x1()–() … f xN() 1 f xN()–() 

 diag=

x∂
∂ f x() 

 
ij

0 i, 1=

f xi 1–() 1 f xi 1–()–()δij i 1>,



=

Artificial Neural Networks
, (42)

i.e. (43)

Given these matrices it is trivial to implement a neural network to approxi-
mate any function with outputs constrained to be between 0 and 1. Still, this
constraint will be sufficient to estimate probabilities of single events but not
sufficient to estimate probabilities of mutually exclusive ones. For that we
will introduce the softmax activation function for the output layer.

The softmax Activation Function

It is very often the case that a neural network will be used to estimate the
probabilities of mutually exclusive events. An example scenario is a network
that will recognize five kinds of classes. In that case, we might be interested
in obtaining probability estimates about the data point being from each of
these classes. The laws of probability would constrain such estimates to sum
up to 1. However, a neural network with a sigmoid output layer would not
guarantee such a constraint. For that we will introduce the softmax activation
function.

The development in the previous sections showed that a layer is nothing more
than a vector function. In the examples we examined, the output of a neuron
only depended on the weighted sum of its input, resulting to an activation
function with a diagonal gradient matrix, such as the one in equation (42).
Having approached the network, however, from a vector function perspective,
we may now define more complex activation functions at the same ease as the
simple ones. Indeed, we will define the softmax activation function as fol-
lows:

. (44)

x∂
∂ f L x() f x1() 1 f x1()–() … f xN() 1 f xN()–() 

 diag=

x∂
∂ f x() 

 
ij

f xi() 1 f xi()–()δij=

f x()
e

x1

e
xi

i 1=

N

∑
-------------- … e

xN

e
xi

i 1=

N

∑

T

=

43

Pattern Recognition for Static and Time-Varying Data

44
There are several nice properties associated with the softmax function. Its
construction guarantees that the output vector will sum up to 1, as required for
the probabilities of mutually exclusive events. Furthermore, it enhances the
dominant input, driving the respective output close to 1, while driving the
other outputs close to 0. Hence, it acts as a differentiable approximation of
the maximum function, which assigns 1 to the output corresponding to the
largest input and 0 to all other output. We should note here that the output of
the previous layer should not be multiplied by a weighting matrix W but by a
single constant α, which is the only parameter on which to perform the gradi-
ent descent. In other words, the output as a function of the output of the previ-
ous layer will be:

(45)

The magnitude of α determines how closely the function approximates the
maximum operation.

In order to implement a network with a softmax output, we need to calculate
the gradient of the function with respect to its inputs. The difference in this
case is that the gradient matrix will not be diagonal, since all the outputs
depend on all the inputs. However, it is easy to show that:

. (46)

We can also express that in a form that might be more suitable for implemen-
tation be defining 1, the Nx1 column vector that contains ones:

(47)

and I, the NxN identity matrix that contains ones in its diagonal, and zeros
elsewhere:

yl f α xl 1–()
e
α x1

l 1–

e
α xi

l 1–

i 1=

N

∑
---------------------- … e

α xN
l 1–

e
α xi

l 1–

i 1=

N

∑

T

= =

x∂
∂ f x() 

 
ij xi∂

∂
f j x()

f j x() 1 f j x()–() i, j=

f i x() f j x()– i j≠,



= =

1 1 … 1=

Hidden Markov Models
, (48)

then we can write the gradient as

. (49)

Indeed, this last form is very efficient to implement on matrix based systems.

Having formulated and analyzed the softmax activation function, we may
form an ANN classifier using any network topology we desire in the hidden
layers and appending a softmax layer at the end to ensure that the outputs
obey the probability rules. With this formulation we will conclude the presen-
tation of patter recognition techniques for static data and proceed to examine
Hidden Markov Models and time varying data.

Hidden Markov Models

Hidden Markov Models are a very powerful class to describe time varying
data. They have been successfully used in speech recognition engines. In
fact, speech recognition research has driven most of their development. The
models are extensions of a fundamental class of stochastic processes known
as Markov chains. Before we develop the models, therefore, we should
become familiar with these processes. After we do so, we will present the
extension to HMMs. Then we will present how training and classification is
performed using these models. Finally, we will combine HMMs with ANNs
to create a hybrid system, and show one approach to train it. For the develop-
ment of all but the two final sections we will follow closely, but not exactly,
Rabiner’s ([20]) approach, and as similar as possible notation. For further
information on HMMs, Rabiner’s tutorial is an excellent start.

I 1()diag

1 0 … 0

0 1 … 0

: : . :

0 0 … 1

= =

x∂
∂ f x() I f x() 1T()–() f x()()diag=
45

Pattern Recognition for Static and Time-Varying Data

46
An Introduction to Markov Chains

One very powerful property of time series is the Markov property. A time
series is Markov if knowledge of its value at some point in time incorporates
all the knowledge about times before that point. In more rigorous terms, a
process q[n] is Markov if:

. (50)

We can also show that given the condition above, the following is also true for
all values of k>0:

. (51)

In other words, the value of the time series at any point incorporates all the
history of the time series until that point. It is, therefore, said it incorporates
the state of the system

Based on that premise, one can formulate a stochastic model with a finite
number of states obeying the Markov property. A small such model can be
seen in Figure 11. The model has N states, denoted by Si, 1≤i≤N. The state of
the model at time t is the time series q[t]. Time is discrete, starts at t=1 and
extends until t=T. Furthermore, we will denote the probability of transition
from one state to the other using aij=P(q[t+1]=i|q[t]=j). Finally, we will use
πi to denote the probability that the model initially starts at state i. It is worth
mentioning here that, as with the neural networks, matrix notation will prove
very convenient. Therefore, we will use π to denote the initial probability col-
umn vector and the matrix A, with elements (A)ij=aij, to denote the transition
probability matrix.

We can show that if p[t] is the vector such that pi[t]=P(q[t]=i), then:

(52)

Furthermore, because of the laws of probability, all these quantities should
sum up to one:

p q n[] q n 1–[] q n 2–[] …, ,() p q n[] q n 1–[]()=

p q n[] q n k–[] q n k– 1–[] …, ,() p q n[] q n k–[]()=

p t[] At 1– π At k– p k[]= =

Hidden Markov Models
(53)

Another feature—or issue, depending on the application—of the model is an
implicit state duration assumption. In particular, the distribution of the state
duration di—that is, the number of times the state transitions back to itself—
follows the geometric distribution:

(54)

This distribution is a discrete approximation of the exponential distribution,
the only memoryless continuous distribution. The mean of the geometric dis-
tribution is:

, (55)

which implies that an estimate of the parameter aii may be calculated using an

estimate of the duration:

(56)

FIGURE 11. An example of a three-state markov chain. The numbers on the
arrows of the graph reflect the transition probabilities aij.

21

3

1/4

1/2

1/4 1

1/2

1/2

pi t[]
i 1=

N

∑ πi

i 1=

N

∑ aij

j 1=

N

∑ 1= = =

P di d=() aii
d 1– 1 aii–()=

E di() 1
1 aii–
--------------=

di
˜

aii 1 1

di
˜----–≈
47

Pattern Recognition for Static and Time-Varying Data

48
This will be used later to initialize the model parameters.

There are several other interesting properties of the markov chains—for
example the matrix A has positive eigenvalues all less than or equal to 1.
However, these are not used in the development of HMMs, so we will not dis-
cuss them here. An extensive presentation may be found in Gallager [11], or
in Papoulis [19]. For our purposes, we only need to “hide” the chain, to
develop the HMMs we are after.

Hiding the Chain

When we try to model observed signals and processes, we need to extend
Markov chains. Even if the process we observe can be closely approximated
by a Markov chain, it is usually not possible to observe the current state of the
process directly. Therefore, we have to make the assumption that the underly-
ing model is hidden: we only observe what each state emits. We will assume
that the emissions of each state follow a probabilistic model, and these are the
features we observe. To train the model we will need to estimate both the
parameters for the Markov chain and the parameters for the emission model.

To hide the chain, we will assume that there exists an observation vector O[t],
which is emitted from the model at time t. Each state has emission density
function bi(O)=p(state i emits vector O), which is independent of time and
independent of any previous state emission. In other word, when the model is
in state i, the state emits a random vector O, according to the density bi(O).
We can also think about this model as follows: each state emits a series of
i.i.d. random vectors Oi[t], and the vector O[t] gets the value of the vector
Oj[t], where j is the state of the model at time t. We will assume that the emis-
sion density of each state is a mixture of M Gaussians, M being the same for
all states. In other words:

, (57)

where

b j O() c jm O µ jm U jm, ,()N
m 1=

M

∑=

Hidden Markov Models
, (58)

so that the density has unit area.

It is obvious from the above discussion that the transition matrix A, the initial
probability vector π, and the set of state emission density functions bi(O),

 completely define a hidden markov model. Henceforth, we will use
λ to denote this set of parameters, i.e. to completely describe a model.

“The Three Basic Problems”

As Rabiner points out, there are three basic problems that are of interest when
a process is modeled using HMMs. The three problems are presented in a dif-
ferent order (“Problem 3” is presented before “Problem 2”) because this order
emphasizes the conceptual links between the problems, which are crucial to
understanding the intuition:

Estimating the probability of the observation sequence: Given an observa-
tion vector O[t], and a model λ, how can we estimate efficiently the likelihood
of the observation sequence?

Estimating the model parameters: Given an observation sequence pro-
duced by that model, how can we estimate the model parameters to maximize
the likelihood of that observation sequence?

Estimating the state transitions: Given an observation sequence and a
model, how can we determine a sequence of state transitions q[t] that corre-
sponds to that observation sequence?

Solving the second problem is equivalent to training the model. In practice,
this would be the first problem to tackle. However, the intuition we gain by
solving the first problem will be very useful in estimating the model parame-
ters. Therefore, we will examine how to classify using a trained model first—
i.e. how to solve the first problem. The third problem can also be used for
classification, depending on the application. In fact, we will use the third
method for DNA basecalling, later in the thesis.

c jm

m 1=

M

∑ 1=

1 i N≤ ≤
49

Pattern Recognition for Static and Time-Varying Data

50
And Their Solutions

I will present a brief solution to the three problems here, meant as a reference.
Rabiner presents a detailed treatment, a definite reading to obtain the full intu-
ition.

Estimating the probability of the observation sequence: To do so, we will
define the forward variable

(59)

This variable can be computed inductively, in order O(T) using:

, (60)

where

, (61)

and, at time T:

, (62)

where we denote the whole observation vector with O[1...T], and the condi-
tional density with .

Estimating the model parameters: Having defined and calculated the for-
ward variable, we also define the backward variable, which we can calculate
recursively:

, (63)

where , (64)

α i t[] p O 1[] O 2[] … O t[] q t[],, ,, i λ=()=

α j t 1+[] α i t[] aij

i 1=

N

∑ b j O t 1+[]()=

α i 1[] πibi O 1[]()=

p O 1…T[] λ() α i T[]
i 1=

N

∑=

p O 1…T[] λ()

βi t[] p O t 1+[] O t 2+[] … O T[] q T[], ,, i λ,=()=

βi T[] 1=

Hidden Markov Models
and . (65)

This recursion is backwards, starting from t=T, down to 1. Given , and ,
we can now define

, (66)

which can be easily calculated using:

. (67)

Finally, we define

, (68)

and we use:

. (69)

Note that,

(70)

which can be another way to compute , often more desirable for numerical
stability reasons.

Using these variables, we perform an update step:

(71)

βi t[] aijb j O t 1+[]()β j t 1+[]
j 1=

N

∑=

α β

γi t[] p q t[] i O 1…T[] λ,=()=

γi t[]
α i t[]β i t[]

p O 1…T[] λ()

α i t[]β i t[]

α j t[]β j t[]
j 1=

N

∑
----------------------------------= =

ξ ij t[] p q t[] i q t 1+[], j O 1…T[] λ,= =()=

ξ ij t[]
α i t[] aijb j O t 1+[]()β j t 1+[]

P O 1…T[] λ()
---=

γi t[] ξ ij t[]
j 1=

N

∑=

γ

π γi 1[]=
51

Pattern Recognition for Static and Time-Varying Data

52
(72)

(73)

(74)

, (75)

where . (76)

This quantity can be thought of as the probability of being in state j at time t,

with the kth component of the mixture accounting for O[t]. It is obvious that

. (77)

aij

ξ ij t[]
t 1=

T 1–

∑

γi t[]
i 1=

T 1–

∑
----------------------=

c jk

γ jk t[]
t 1=

T

∑

γ jl t[]
l 1=

M

∑
t 1=

T

∑

γ jk t[]
t 1=

T

∑

γ j t[]
t 1=

T

∑
-----------------------= =

µ jk

γ jk t[] O t[]⋅
t 1=

T

∑

γ jk t[]
t 1=

T

∑
---------------------------------------=

U jk

γ jk t[] O t[] µ jk–() O t[] µ jk–()T⋅
t 1=

T

∑

γ jk t[]
t 1=

T

∑
--=

γ jk t[] γ j t[]
c jk O t[] µ jk U jk, ,()N

c jm O t[] µ jm U jm, ,()N
m 1=

M

∑
---=

γ jk t[]
k 1=

M

∑ γ j t[]=

Hidden Markov Models
The two steps (calculating and , and updating) are repeated a num-
ber of times, until the model error in the data converges in a meaningful sense.
This algorithm is known as the Baum-Welch algorithm, and is essentially an
implementation of the EM idea. The expectation step—i.e. the calculation of

 and —is also known as the forward-backward procedure.

Before we continue we should point out that the update equations for the mix-
ture model parameters (73-75) are remarkably similar to the update equations
of the static mixture models (2-4), with being substituted by . We will

exploit this to justify the expansion of Hidden Markov Models to use ANNs
for density estimation.

Estimating the state transitions: To estimate the most likely sequence of
state transitions for a given observation sequence we will use the Viterbi algo-
rithm. Thus, we define:

, (78)

which can be recursively computed using

, (79)

(80)

We also need to keep track of the state sequence using:

(81)

(82)

After computing and for all i and t, we can backtrack to find the

estimated state sequence q*[t] using

(83)

α β γ, , ξ λ

α β γ, , ξ

p̂m γ jm

δi t[] P q 1[]… q t 1–[] q t[], i O 1[] … O t[] λ, ,,=()
q 1[] … q t 1–[], ,

max=

δ j t[] δi t 1–[] aij1 i N≤ ≤
max b j O t[]()=

δi 1[] πibi O 1[]()=

ψ j t[] δi t 1–[] aiji i N≤ ≤
argmax=

ψ j 1[] 0=

δi t[] ψ i t[]

q* T[] δi T[]
1 i N≤ ≤
argmax=
53

Pattern Recognition for Static and Time-Varying Data

54
and . (84)

The estimated state sequence is the most likely sequence to produce the obser-
vation sequence, subject to the sequence obeying the transition constraints of
the HMM. We could use from the forward-backward procedure to generate
the sequence of the most likely state at each point in time, but this might result
in state transitions that are not allowed.

Combining HMMs and ANNs

One of the first contributions of this thesis is the combination of HMMs with
ANNs using a variant of the Baum-Welch algorithm that calls the ANN Back-
propagation algorithm in the update step. ANNs are more powerful than
Gaussian Mixtures models. Therefore it is desirable to combine ANNs with
HMMs to model complicated signals such as electropherograms.

We will use a neural network that has a softmax output activation function. In
other words, the output vector y of the network will sum to 1, so it can be con-
sidered a vector of probabilities of mutually exclusive events. Indeed, we will
treat each component yi as the probability that the feature vector O—the input
to the ANN—is emitted from state i. Obviously, the output of the ANN will
have length N, the number of states in the HMM.

Given that network, we are able to use the forward-backward procedure
described above, using instead of equation (57). In other words,

we will use the ANN to model the emission probabilities of each state. This
substitution makes equations (73-78) obsolete. Still, it does not affect the
remaining equations which can be used to estimate

.

Now we can perform the update step of the Baum-Welch variation, which is
nothing more than treating as the target output points of our ANN for the

respective input vectors O[t]. These T sample points are fed to the error back-
propagation algorithm to reestimate the ANN weight matrices. The two step
backpropagation is executed for a couple of iterations, and then the new neu-

q* t[] ψ q* t 1+[] t 1+[]=

γ

b j O() y j=

γ j t[] p q t[] j O 1…T[] λ,=()=

γi t[]

Combining HMMs and ANNs
ral network is used to initiate a new iteration of the modified Baum-Welch
algorithm. A small variation that we should probably add to avoid training
bias is to present the training pairs in a different, random order to

the neural network each time we perform the backpropagation.

The training process of the HMM could be summarized in Figure 12. The fig-
ure emphasizes the observations we made on the HMMs with state emissions
modeled as mixtures of gaussians, and how these extended to train ANNs: the
training procedure is essentially a two step process treating the static model as
given in one step to determine the parameters of the markov chain, and treat-
ing the markov chain as given in the other step to train the static model. It is
very similar to the EM algorithm, and we could in fact classify it as general-
ized EM algorithm. We should note however that we have not proved conver-
gence and therefore cannot guarantee it for the general case.

The new method creates a number of new design parameters in the HMM-
ANN design space. Indeed, apart from the topology of the two networks, the
training step and the number of backpropagation iterations for every Baum-
Welch iteration also need to be specified. If we train the neural network
heavily at each step, then the succeeding forward-backward step of the Baum-

FIGURE 12. A schematic summary of the training process of the HMM. The
training process applies to HMMs with state emissions estimated
both using Gaussian mixtures and Artificial neural networks.

γi t[] O t[],()

Use from the
static model to estimate

P q t[] O t[]()

γ P q t[] O 1…T[] λ,()=

Use from
the HMM to train the static model
and estimate

γ P q t[] O 1…T[] λ,()=

P q t[] O t[]()

γ P q t[] O 1…T[] λ,()=

P q t[] O t[]()
55

Pattern Recognition for Static and Time-Varying Data

56
Welch algorithm might not be able to move the system significantly on the
parameter space, and the system will soon be stuck in a local minimum. If we
decide not to iterate the backpropagation many times for each update step,
then the algorithm will take a significant amount of Baum-Welch iterations to
converge to a stable point. The right balance is usually achieved empirically
by trial and error.

The scheme proposed above has some significant advantages over other simi-
lar HMM and ANN combinations such as [4] and [1]. Firstly, it trains the
HMM and the ANN in a combined way: alternative proposals use ANNs to
estimate state emission densities, but train them separately from the HMM,
usually on manually labeled data. These methods increase the potential of
human error or subjectivity and make the labeling process cumbersome and
expensive. If, for example, a state i in a model transitions to itself or to one
other terminal state i+1, it is not easy for a human to figure the exact transi-
tion point in the time series, leading to arbitrary state assignments and bias.
On the other hand, a Baum-Welch reestimation approach will move the transi-
tion point until the statistics agree with the data.

Still, other methods combine HMM and ANN training and do not require sep-
arate training of the models and human labeling. Compared to these, the pro-
posed method relies on integrating the most studied methods for training
HMMs and ANNs—Baum-Welch and Error Backpropagation, respectively.
This slows down the training process slightly, but allows us to exploit all the
developments in these two fields to improve both the results and the efficiency
of our implementation.

Summary

In this chapter we reviewed some basic probabilistic models, and examined
how we can combine them to build stronger models. Specifically, we exam-
ined pattern recognition on static data, using Gaussian Mixture models and
Artificial Neural Networks. We studied Markov chains and combined them
with static models to create Hidden Markov Models for pattern recognition.
To improve recognition ability, we designed a Hidden Markov Model using an
Artificial Neural Network to estimate the state emission probabilities. Finally,

Summary
we proposed a training mechanism for the system that exploits extensively
studied methods in both fields. This mechanism has several advantages—and
some disadvantages—over similar proposals. We are now ready to explore
the applications of these algorithms to DNA sequencing problems.
57

Pattern Recognition for Static and Time-Varying Data

58

CHAPTER 3 DNA sequencing as a
Pattern Recognition
Problem
Armed with the tools we developed in the previous chapter, we are ready to
tackle DNA basecalling. We will formulate the problem as a pattern recogni-
tion problem and acknowledge that HMMs are particularly suitable for the
solution. We will develop a network topology that fits the problem, and train
the model using sample data. For the training process we will need to develop
a method to create a large sample of training data, and for that we will also
create an algorithm to execute queries on databases using partly trained mod-
els. Finally, we will explore alternative topologies that can be used to
approach the problem.

The Pattern Recognition Problem

As we mentioned in the introduction, DNA can be represented using a finite
sequence of letters drawn from the alphabet {A, T, C, G}, with an

i.i.d. distribution. However, the DNA sequencing equipment returns a finite
length discrete-time signal produced by the sequencing process,
the electropherogram. To sequence this signal we need to assume that it is
emitted from the DNA sequence si under a probabilistic model. Given that

si 1 i B≤ ≤,

e t[] 1 t T≤ ≤,
59

DNA sequencing as a Pattern Recognition Problem

60
model, the basecaller needs to estimate the most likely number , and
sequence of bases. In other words it needs to solve the following maximi-

zation problem:

. (85)

A first issue directly arising with this problem is the size of the discrete search
space: A typical output of the equipment will correspond to about 700 bases,

creating on the order of 4700 possible combinations of letters. Since the space
is discrete, it is impossible to explore it with techniques such as gradient
descent. Still, we can see that this probabilistic formulation of the problem
hints to the use of pattern recognition techniques to model the data.

A deeper look at the problem will show that it is very similar to the speech
recognition problem. Indeed, in speech recognition we are trying to form the
most likely sequence of symbols from a set given the speech signal. Depend-
ing on the formulation, these symbols can be phonemes, syllables, or words.
A simple example is the recognition of numbers spelled out by the user. the
symbols are the set {‘zero’, ‘one’, ... ,‘nine’}, and we are trying to find a
sequence—for example ‘one’, ‘eight’, ‘zero’, ‘zero’,...—which corresponds
to what the user said.

This is a problem extensively studied by the speech recognition community,
and we will try their approach in tackling the—almost identical—DNA
sequencing problem. Note that we chose the simple number transcription
problem, as opposed to the full speech recognition one, to avoid complica-
tions such as the vocabulary probabilities and the grammar models that are
introduced in the complete speech recognition problems. These complica-
tions do not have a direct equivalent in DNA sequencing, since the fundamen-
tal assumption is that the sequence of symbols is an i.i.d. process with all the
four letters being equiprobable.

One final point we need to stress is that maximizing the likelihood of the data
is not necessarily the best thing to do. Ideally, we need to define a cost func-
tion of the predicted and the actual DNA sequence and try to minimize that
function. For example that function could assign a cost of 1 to every predic-
tion error, and a cost of zero to every correct call. The goal of the system,

B̂

ŝi

B̂ ŝi 1 i B≤ ≤, ,() P B s, i 1 i B e t[]≤ ≤,()
B si 1 i B≤ ≤, ,

argmax=

HMM Topology
then, should be to minimize the probability of base call error which is not
necessarily the same as maximizing the likelihood of equation (85). However,
this problem often becomes intractable for complex systems such as this one.
If indeed the problem is tractable for a given cost function, then it should be
easy to convert the algorithms to optimize the required metric. For more
details, see [8].

HMM Topology

Having established the similarity of basecalling with speech recognition, we
are ready to examine the particular structure of the HMMs we will use to
solve the problem. Our “words” will be the four DNA bases, {A, T, C, G}
and we can represent the i.i.d. sequence of bases as the markov model shown
in Figure 13, where all transition probabilities are equal to 1/4. We use the

boxes instead of circles for representing the states in that model because the
state transitions in that figure correspond to transitioning from one letter to
another in the sequence we are trying to determine, and not time transitions in

FIGURE 13. A model to produce an IID sequence of bases. All transition
probabilities are equal to 1/4.

A T

C G
61

DNA sequencing as a Pattern Recognition Problem

62
the observed electropherogram. Referring to our speech recognition analogy,
transitions in this model are equivalent to transitions from a word to the next.

The Bases Model

In order to implement a Hidden Markov Model we need to determine a model
for each base that replaces the box of Figure 13. Such a model should have
transitions that correspond to sampling time transitions and describe in more
detail the structure of the observed signal for each base. To develop that
model, we need to take a close look at the electropherogram and decide what
a base looks like. Indeed, from Figure 14 we can determine that a “typical”

FIGURE 14. A typical base, as it shows up on the electropherogram. The
figure is separated (somewhat arbitrarily here) into three
segments: the rise, the inflection, and the fall.

1720 1722 1724 1726 1728 1730 1732
0

100

200

300

400

500

600

Time (Samples)

A
m

pl
itu

de

An example of a peak

A
T
C
G

HMM Topology
base representation is just a peak. It is usually modeled as a gaussian peak
convolved with a decaying exponential. A simple model for this peak could
be a three state model, as shown in Figure 15: the base enters the detection

system, the base is in the system, and the base exits the detection system, cor-
responding to the rise, the plateau, and the fall of the gaussian. We will see
soon that it is a fairly good first order model.

The Basecalling Model

To determine the final HMM structure to be used for basecalling we can com-
bine Figures 13 and 15 to get Figure 16. This creates a 12 state model, which
we will use for the recognition once we determine the necessary parameters.
Note that Figure 16 is visually cluttered so we will simplify it to Figure 17.
Unfortunately, this model is useless for training since it is agnostic of the
DNA sequence of letters that produced the training sequences. To remedy
that, we will need to produce a model that incorporates this information.

The training model is best illustrated by an example. We will assume that the
training sample we have at hand is the electropherogram of AATCA. This
would produce a base sequence model as shown in the top part of Figure 18.
As above, we can substitute the individual bases model in the boxes, and get
the bottom part of the figure. We will feed that model to the training algo-
rithm to represent the corresponding electropherogram. These types of mod-
els, with sequential states that only self loop or transition to the next state but
never transition back to a previous state, are often called linear models.

FIGURE 15. A simple Markov model describing the state transitions of a peak
in time: rising, peaking, and falling.
63

DNA sequencing as a Pattern Recognition Problem

64
There is an important distinction between the linear model and the model of
Figure 16. In the linear model each state is tied to the specific letter position it
corresponds to. For example, consider the first and the fourth state of the lin-
ear model. Although they both have the same emission density functions,
they represent two different system states: the first A entering the system, and
the second A entering the system. The non-linear model above would cycle
back to A right after exiting from the third state of it, if it was used to recog-
nize that particular letter sequence. It is therefore obvious that the linear
model is constrained to the particular base sequence that generated it, which
makes it suitable for training.

FIGURE 16. The final 12-state model to be used for basecalling

A

G

T

C

System Training
System Training

In order to train the system we will need labelled electropherograms to create
a training set. Unfortunately, labelled electropherogram data are next to
impossible to find. Furthermore, hand labelling is a daunting and very expen-
sive task which we would like to avoid as much as possible. Another option
would be to use labelled data that have been generated by another base caller
to train our system. This option has a number of problems. First, basecallers
are not accurate enough for training purposes. Second, we train the system
based on another system’s decisions. This will result to a system emulating
the other basecaller, including its defects. Finally, it creates a circular logic
problem: if we need a basecaller to train another basecaller, then how do we

FIGURE 17. A schematic simplification of the model of Figure 16

A

T

C

G

65

DNA sequencing as a Pattern Recognition Problem

66
train the first basecaller? Fortunately, we were able to devise a method to
generate very good quality training sets with minor effort.

The consensus sequences.

To generate the data, we will exploit the availability of consensus sequences
of the M13mp18 and the PBluescript genes. These genes—with a sequences
of more than 7000 bases long—have been the subject of extensive study and
are the DNA sequencing benchmarks. The published (in [21] and [22]) con-
sensus sequences are the result of sequencing several times overlapping frag-
ments of the genes, labelling them either by hand or by basecalling programs,
and then combining the fragments to form consensus sequence that are correct
with almost certainty for our purposes. Therefore, we can use electrophero-
grams produced from sequencing these particular genes to train our system.

The solution is not perfect, yet. The problem is that electropherograms are
usually on the order of 700 base pairs long but the exact starting point in the
consensus sequence and their exact length is not known. The differences are
due to variations to the conditions and the chemistry of the experiments, and
are hard to predict. In order to generate a labelled training set from a set of
electropherograms we will need first to identify which part of the sequence
the electropherogram corresponds to.

FIGURE 18. The linear model to be used for training purposes

A A T

C A

A T C AA

Executing Queries
This is an easier, but still laborious task. However, it could be automated if
we had a trained Hidden Markov Model—which we do not. Still, we will
show that instead we can use a poorly trained HMM to locate the electro-
pherogram fragment in the consensus sequence. Thus we can bootstrap a
poorly trained model to generate its own training data, by exploiting the side-
information of the consensus sequence.

The training method.

In order to train our model, we will pick very few electropherograms and
manually locate the corresponding fragments in the consensus sequence. We
will use these electropherograms to train an HMM. This will produce a
model that would make a poor basecaller. Still, this model is sufficient to run
queries—which we will describe bellow—and match the unlabeled electro-
pherograms to fragments in the consensus sequence. Thus, we can generate a
significant number of electropherogram-sequence pairs to be used for training
purposes. We will use the newly generated data to train a model that we can
use afterwards for basecalling.

In order to train the basecalling model from labeled sample data, we will need
to form one specific linear model for each training sequence. This model
should encode the state sequence as defined by the base sequence of the train-
ing sample. A 100-bases long training sample will result to a 300-states long
linear model. These models, together with the corresponding electrophero-
grams will be passed trough the modified Baum-Welch reestimation proce-
dure several times, until convergence of the parameters is achieved.

Executing Queries

Linear models are also the key to executing queries in the consensus sequence
to find the location of an electropherogram. Indeed, we will use a variation of
Viterbi algorithm on a linear model that corresponds to the consensus
sequence. Although we will use this method for the specific purpose of creat-
ing training data, we believe that there might be a wide number of uses for it,
especially for querying databases of discrete data using a continuous time sig-
nal.
67

DNA sequencing as a Pattern Recognition Problem

68
Furthermore, the method can be extended in a trivial way to perform a query
of a sequence into a signal, i.e. find a specific, small, state sequence—which
will represent a base sequence—inside the electropherogram. This can have a
number of applications, from SNP (single nucleotide polymorphism) detec-
tion to DNA figerprinting. Unfortunately, we do not have the time to explore
these in this thesis.

The variation to the Viterbi algorithm

To perform the query, we will create a linear model of the corresponding con-
sensus sequence. The model will have N=3B states, where B is the number of
bases of the sequence. The only variation we need to introduce is the initial-
ization of the Viterbi algorithm to

, (86)

instead of equation (80) of page 53.

The change reflects the fact that we do not really know where in the linear
model our sequence starts. Therefore, we assign an equal probability to all

the states of the model being the starting state, i.e. . On that model we

can run the Viterbi algorithm to find the optimal state sequence for the
given electropherogram. That state sequence can easily be converted to the
base sequence corresponding to the electropherogram and create a labelled set
to be used for training.

Alternative Topologies

The topologies we have proposed for basecalling are by no means the only
possible topologies. In fact, our proposals could be modified—at the expense
of complexity—to model the sequence better. We will mention some possible
modifications here, but we will not explore them further. The goal of this
work was to demonstrate that HMMs can be make good models for basecall-
ing, not to find the best HMM topology.

δi 1[]
bi O 1[]()

N
----------------------=

πi
1
N
----=

q* t[]

Alternative Topologies
Accommodating sequences of identical bases

Our models until now treat the transition from one base to another in the same
way as the transition from one base to the same base. However, it is obvious
from Figure 19 that the electropherogram of, for example, an AA sequence

has very different transition statistics than a TA sequence. That can be incor-
porated in the recognition model by modifying Figure 15 to look like one of
the two models of Figure 20. Of course, the corresponding linear models
used for training need to be modified accordingly. This model should
improve the recognition performance in cases of repeated bases, at the
expense of recognition—not of training—model complexity.

FIGURE 19. A sample electropherogram. It is obvious that the statistics of
transition through consecutive peaks of the same base are much
different that transitioning from a peak of one base to a peak of
another.

1650 1660 1670 1680 1690 1700 1710 1720 1730 1740 1750
0

100

200

300

400

500

600

700

Time (Samples)

A
m

pl
itu

de

Sample Elegtropherogram Portion

A
T
C
G

69

DNA sequencing as a Pattern Recognition Problem

70
Accommodating molecule compression effects

Our models assume that the transition statistics form one peak to the other in
an electropherogram only depend on what the next peak is. That assumption
partly implies that the width and the location of a peak only depends on the
base creating that peak and not on what bases are around it. Although this is
correct as a first order approximation, [3] shows that there is a correlation
between interpeak spacing and the base before the one currently passing
through the detector. They show that certain ending base pairs create com-
pressions, making the fragments easier to pass through the gel. Thus the
peaks arrive slightly earlier. For example, the peak corresponding to the final
C in ATGATGC would be slightly advanced—but not out of order—com-

FIGURE 20. Two candidate base models to increase the recognition accuracy
in sequences of identical bases.

or

Alternative Topologies
pared to a similar electropherogram for ATGATAC. They also show that there
was no statistical evidence that earlier bases play a role, i.e. there is no reason
to believe that as far as the peak for the final C is concerned, ATGATGC looks
any different from ATGAAGC.

This destroys the Markov property of the model of Figure 13 since the statis-
tics of any box in the model depend on where the transition happened from.
However, it is easy to incorporate that in our model by augmenting the state
space to include the previous base in the state. The resulting model is shown
in Figure 21. The notation A|G means that the current peak corresponds to an
A, given that it follows a G. Again, every box in the figure corresponds to a
three state sequence, as in Figure 15.

The model is a very big improvement over our standard model, but at a cost.
In fact, this model not only accommodates second order effects, but handles
identical bases in a similar way as the model of Figure 20. The cost is that the
state space of that model has increased fourfold. Still, this is not a significant
issue: speech recognition models have significantly larger state spaces, of 42
phonemes and thousands of words, and the community has developed tech-
niques to deal with such huge spaces.

Accommodating concurrent bases

In a different track than the previous models, one issue that often occurs in
DNA sequencing problems is the concurrency of the peaks. Specifically,
peaks near the end of the electropherogram might arrive with a very small
time delay, not enough for the model to switch from one base to another.
Figure 22 shows an instance of that problem. In this case our original model
will just skip one of the two bases, making an error.

One possible modification to accommodate that issue is to run four different
models on the same electropherogram, one for each base. The models should
have inputs from all the signals of the electropherogram but only recognize
the peak of their corresponding base. Furthermore, in order to be able to
reconstruct the sequence from the individual outputs, it is important for the
model to specify exactly where the peak location is. This can be accom-
plished by running four instances of the model in Figure 23, one for each
base. We should notice that no self transitions are allowed in the middle state
71

DNA sequencing as a Pattern Recognition Problem

72
of the base recognition sequence, so that the exact location of the peak is
determined uniquely by the time instance that state is visited.

This model does not accommodate the issues that the first two models dealt
with, only the base concurrency issue. However, one could extend this model,
in a manner similar to the extensions above, to accommodate double peaks
and second order effects.

FIGURE 21. A more complicated model to accommodate second order effects
in the electropherogram, such as GC compressions and sequences
of identical bases.

A|A T|A A|T T|T

C|TG|TC|AG|A

A|G T|G A|C T|C

C|G C|CG|G G|C

Summary
Summary

In this section we posed basecalling as a pattern recognition problem. We
observed the striking similarities with the speech recognition problems and
noticed that similar techniques can be used. Furthermore, we developed a
very efficient method to execute queries in a long sequence to locate the posi-
tion of an electropherogram, even using only partially trained models. This
was a very good way to create labeled data, that are scarce and difficult to pro-
duce manually but are necessary for training the system. In addition, we

FIGURE 22. An instance of two peaks corresponding to different bases
arriving very close in time. The model we initially proposed
might not be able to transition in time, and ignore the existence of
one of the peaks.

1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425
0

100

200

300

400

500

600

700

Time (Samples)

A
m

pl
itu

de

Sample Electropherogram Portion

C
A
T
G

73

DNA sequencing as a Pattern Recognition Problem

74
explored alternative topologies for our Hidden Markov Models, that can be
used to accommodate effects that might cause error in the original model
topology. We are now ready to run our models, see the results and draw the
final conclusions for the project.

FIGURE 23. A suggestion to eliminate the concurrency problem. Four
instances of the above model, one for each base, will be run
concurrently on the electropherogram.

No Base

CHAPTER 4 Results,Conclusions,and
Future Work
The main focus of this work is the method used. Still, it is important to pro-
vide some results to verify that the method works, and plant the seed for fur-
ther research in the field. In this last chapter we will present the success rate
we had on test samples using our models. From that we will conclude that the
method is indeed promising, and we will give some directions for potential
future research in the area.

Results

In order to evaluate the performance of our proposals we need to basecall
electropherograms of known sequences. Again, we will resort to the
M13mp18 and the PBluescript consensus sequences as benchmarks. It is
important, however, not to use the same electropherograms as the ones used
for training; the results in that case might be good just because the system
overtrained and memorized them.

Having established the sequence to be used in the performance evaluations,
we need to devise a strategy. To do so, we need to consider the types of errors
that might occur in a basecalling system, and then figure out how to measure
75

Results, Conclusions, and Future Work

76
them. For all our comparisons we will use PHRED as a reference, the stan-
dard program used by the genome center [9]. We should note that PHRED is
heavily tuned and optimized, using a preprocessor tailored to the particular
basecalling method. Therefore it has very good recognition rates. Compari-
sons of any method with PHRED should take that into account.

Error Evaluation

There are several types of error that may occur during basecalling. We will
describe three of the here: undercalls, overcalls, and miscalls. All the other
ones (such as inversions) can be described as combinations of these three.
Here we will discuss briefly the three types of errors and then give a caution
about how these errors should be reported.

Undercalls (Deletions): These occur when a basecaller does not detect a base
that should be in the sequence. An example is the deletion of the second A in
the sequence ATACCG when the basecaller translates the signal of that
sequence to ATCCG instead.

Overcalls (Insertions): As the name suggests, these are the opposite of dele-
tions. The basecaller inserts a base when it does not exist. For example, an
insertion error would occur if the translation the electropherogram of the
above sequence was ATACACG.

Miscalls (Substitutions): The problem here would be the substitution of one
base for another. For example, if the electropherogram of ATACCG was
translated to ATATCG, the basecaller would have made a substitution error.

In general these errors should be reported as a function of the read length,
since the quality of the electropherogram degrades as the read length
increases. For example, suppose a basecaller reads only the first 400 bases off
a signal and has a 5% error rate and a second basecaller has the same error
rate reading the first 600 bases of the same electropherogram. Since the latter
part of the electropherogram is of much lower quality, one would expect the
error rate to be significantly higher. Therefore, if only the first 400 bases of
the second basecaller were evaluated, we would expect to have a significantly
smaller error rate than 5%, a result much better than that of the first basecaller.
Since some basecallers try to read electropherograms more aggressively (for

Results
example, an HMM basecaller would be able to produce a reading for a whole
electropherogram, even if the implementation decides not to present the last
bases), when comparing error rates one should be careful to do so at the same
read length.

Evaluation Results

Our initial evaluations showed that the basecaller based on Gaussian Mixture
Models did not deliver worthy results, so we focused our attention on the
basecaller based on ANNs. In order to evaluate its performance we called 10
different electropherograms of PBluescript, gathered from an ABI 3700
sequencing machine. To preprocess the data for our basecaller we used the
preprocessor of the ABI software. We processed the same electropherograms
using PHRED (which uses its own preprocessor).

The results were compared to the published PBluescript sequence using
CROSS_MATCH [9], a program that implements the Smith-Waterman algo-
rithm to compare text sequences. The implementation is specific to DNA
sequences, an the program detects and reports the errors discussed above.
The results were then tallied and averaged over the 10 sequences.

For features we used a 33-samples long window of the electropherogram
(resulting to a feature vector of size 4x33=132), extending evenly around the
current sample, i.e. 16 samples in each direction. The window was always
normalized such that the maximum value is 1.

The neural network we used had three hidden sigmoid layers of size 120, 60,
and 12 nodes from the input to the output respectively. The output layer was
a softmax one. We chose three instead of two hidden layers that is usually the
case because the output layer was a softmax function that only has one train-
ing parameter.

The results of our experiments are shown in Figure 24. Our basecaller had a
significant number of deletion errors. However, PHRED made many more
substitution and insertion errors. The total error rate is comparable, despite
the fact that PHRED is heavily optimized, while our system is just a quick
implementation with MatLAB scripts. We believe this figure is enough evi-
dence for the validity of this proposal.
77

Results, Conclusions, and Future Work

78
The number of deletion errors puzzled us, and we decided to look further.
Our analysis showed that the largest number of deletion errors occurred in
cases of repeated bases. For example, often in a sequence of four or five As,
one or two As were dropped by our basecaller. The problem was traced to the
difference in the transition statistics of AA compared to, say, AT. As dis-
cussed in the previous chapter, we believe that we can increase the accuracy
of the basecaller just by implementing the model of Figure 20 on page 70.

FIGURE 24. The results of comparing PHRED to a basecaller based on
HMMs. We can see from the bottom figure that the total errors
are comparable.

0 100 200 300 400 500 600 700 800 900
0

2

4

6

In
se

rt
io

ns

Cumulative number of errors as a function of read length

HMM basecaller
PHRED

0 100 200 300 400 500 600 700 800 900
0

20

40

D
el

et
io

ns

HMM basecaller
PHRED

0 100 200 300 400 500 600 700 800 900
0

10

20

S
ub

st
itu

tio
ns HMM basecaller

PHRED

0 100 200 300 400 500 600 700 800 900
0

20

40

T
ot

al
 E

rr
or

s

Read length (bases)

HMM basecaller
PHRED

What needs to be Done
What needs to be Done

Several issues have not been addressed in this thesis. Although we believe
that our stated goal—to show that HMMs can be used successfully in base-
calling—has been achieved, we have by no means exhausted the subject.
There is research to be done in sever areas related to this topic. Furthermore,
implementations need to address several details.

Preprocessing

One of the assumptions of this thesis was that the preprocessing of the electro-
pherogram could not be affected. However, the preprocessing currently per-
formed has the potential to eliminate useful information from the signal. We
believe that most of the preprocessing can be removed, apart from the base-
line correction and the mobility shift correction steps. The noise in the data is
not significant to merit a low-pass filter that might destroy salient data fea-
tures, especially when two bases of the same type arrive together and create
two peaks that are very close to merging. Furthermore, the color separation
step is unnecessary, since we do not base our predictions on the absolute
height of each peak but on the statistics of the whole electropherogram.
Although it is a linear transformation, and can always be inverted, it might
pronounce some features that confuse the later steps of basecalling. In any
case if these steps are necessary, the trained neural network should train to
perform them internally, in a much better way than the rather heuristic
approach currently used.

HMM Topologies

Another issue that deserves further research scrutiny is the HMM topology
that delivers the best basecalling results. For example, apart from the simple
three state per base model we have implemented, we have also proposed other
models which we have not tested (see “Alternative Topologies” on page 68).
These are motivated by the physical properties of the system, and have some
potential to improve the accuracy. Furthermore, other topologies which we
have not considered might provide better results.
79

Results, Conclusions, and Future Work

80
Features and Emission models selection

The features we used for the Gaussian Mixture models were overly simplistic.
On the other hand, the brute force approach we took with the neural network
improved the results, at the expense of computation. By carefully selecting
the feature set we could probably achieve a computational middle ground,
with even better results. The computation complexity might be also be
improved by using parametric models other than Gaussian Mixtures that are
better at describing the data.

Extensions

One of the most intriguing aspect of this work, which we had no time to touch
on, is the extension of these models to other biological applications. Specifi-
cally, single nucleotide polymorphism (SNP) detection involves analyzing
similar electropherograms, looking for different things. Furthermore, DNA
fingerprinting for forensic or other reasons can also exploit HMMs. Finally,
recent developments in the field of proteomics require protein sequencing, a
task performed essentially in the same way as DNA sequencing. This field
too can exploit this work.

Conclusions

After formulating the DNA basecalling problem as a statistical pattern recog-
nition one, we have noticed that it is strikingly similar to a subset of the
speech recognition problems. Therefore, we exploited the extensive research
in the field, specifically in the area of Hidden Markov Models. Our desire to
use artificial neural networks for density estimation lead us to develop an
embedded training method that treats the HMM and the ANN together,
instead of training them separately and then combining them. This resulted to
a system that exhibited a good performance compared with existing ones.

Furthermore, we developed a method to perform queries in a long sequence,
even using only partially trained models. Even though we only used this
method to generate training data, it can have a large variety of applications.

Conclusions
We believe that the field has by no means been exhausted. Alternative HMM
topologies might have a significant impact in the quality of the results. Also,
better feature selection might eliminate the need for ANNs as the emission
model, which will significantly decrease training time and model complexity.
Better signal preprocessing, tailored to an HMM basecaller, might improve
the results further. Finally, there is a potential for these models to be applica-
ble to other biological applications such as mutation detection, forensic analy-
sis, and proteomic sequencing.

As the field of Biology uses more and more information processing as a tool,
the importance of statistical models will increase rapidly. We believe that this
work is a small step towards that direction.
81

Results, Conclusions, and Future Work

82

References
[1] Bengio Y, De Mori R, Flammia G, Kompe R. Global Optimization of a
Neural Network-Hidden Markov Model Hybrid. IEEE Trans. on Neu-
ral Networks. 1992 Mar; 3(2); 252-259.

[2] Berno AJ. A graph theoretic approach to the analysis of DNA sequenc-
ing data. Genome Res. 1996 Feb;6(2):80-91.

[3] Bowling JM, Bruner KL, Cmarik JL, Tibbetts C. Neighboring nucle-
otide interactions during DNA sequencing gel electrophoresis. Nucleic
Acids Res. 1991 Jun 11;19(11):3089-97.

[4] Cohen M, Franco H, Morgan N, Rumelhart D, Abrash V, Konig Y. Com-
bining Neural Networks and Hidden Markov Models. Proceedings of
the DARPA Speech and Natural Language Workshop 1992, Harri-
man, NY.

[5] Duda RO, Hart PE. Pattern Classification and Scene analysis. 1973 John
Willey& Sons, Inc. USA.

[6] Encyclopædia Britannica Online. DNA. <http://search.eb.com/bol/
topic?eu=31232&sctn=1> [Accessed Feb 2002].

[7] Encyclopædia Britannica Online. polymerase chain reaction. <http://
search.eb.com/bol/topic?eu=2536&sctn=1> [Accessed Feb 2002].
83

References

84
[8] Ephraim Y, Rabiner LR. On the relations between modeling approaches
for information sources. IEEE Transactions on Information Theory,
36(2):372--380, March 1990.

[9] Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated
sequencer traces using phred. I. Accuracy assessment. Genome Res.
1998 Mar;8(3):175-85.

[10] Ewing B, Green P. Base-calling of automated sequencer traces using
phred. II. Error probabilities. Genome Res. 1998 Mar;8(3):186-94.

[11] Gallager R. Discrete Stochastic Processes. 1996 Kluwer Academic
Publishers, Norwell, MA.

[12] Giddings MC, Brumley RL Jr, Haker M, Smith LM. An adaptive, object
oriented strategy for base calling in DNA sequence analysis. Nucleic
Acids Res. 1993 Sep 25;21(19):4530-40.

[13] Giddings MC, Severin J, Westphall M, Wu J, Smith LM. A software sys-
tem for data analysis in automated DNA sequencing. Genome Res.
1998 Jun;8(6):644-65.

[14] Haykin S. Neural Networks, A comprehensive Foundation, 2nd ed. 1999
Prentice Hall, Upper Saddle River, NJ.

[15] Lawrence CB, Solovyev VV. Assignment of position-specific error prob-
ability to primary DNA sequence data. Nucleic Acids Res. 1994 Apr
11;22(7):1272-80.

[16] Lipshutz RJ, Taverner F, Hennessy K, Hartzell G, Davis R. DNA
sequence confidence estimation. Genomics. 1994 Feb;19(3):417-24.

[17] Minka TP. Expectation-Maximization as lower bound maximization,
Nov. 98; revised Nov 99; http://www-white.media.mit.edu/~tpminka/
papers/em.html [Accessed Jan 2002].

[18] Nelson D, Improving DNA Sequencing Accuracy And Throughput.
Genetic mapping and DNA sequencing. New York: Springer, c1996;
183-206

[19] Papoulis A. Probability, Random Variables, and Stochastic Processes,

3rd ed. 1991 WCB/McGraw-Hill, USA.

[20] Rabiner LR, A tutorial on hidden Markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE, 1989
Feb.;77(2):257-286

[21] Short JM, Fernandez JM, Sorge JA, Huse WD. Lambda ZAP: a bacte-
riophage lambda expression vector with in vivo excision properties.
Nucleic Acids Res. 1988 Aug 11;16(15):7583-600.

[22] Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning
vectors and host strains: nucleotide sequences of the M13mp18 and
pUC19 vectors. Gene 1985;33(1):103-19
85

References

86

	Signal Processing for DNA Sequencing
	Acknowledgements
	CHAPTER 1 Introduction, Problem Statement, and Background
	The DNA Sequencing Process
	DNA Sample Preparation
	DNA denaturation
	Annealing
	DNA synthesis

	Electrophoresis
	Signal Processing
	Denoising
	Color Separation
	Baseline correction
	Mobility Shift Correction
	Base Calling

	A Brief Introduction to Pattern Recognition
	Considerations in the Design of Pattern Recognition Systems
	Model Selection
	Feature Selection
	Overfitting

	Searching the Parameter Space
	Gradient Descent
	Expectation-Maximization

	Recognizing Static Patterns and Time Series
	Gaussian Mixture Models
	Artificial Neural Networks
	Hidden Markov Models

	Background
	DNA Sequencing
	Pattern Recognition

	CHAPTER 2 Pattern Recognition for Static and Time-Varying Data
	Gaussian Mixture Models
	Model Parameters
	Training the Model

	Artificial Neural Networks
	The Fundamental Building Block
	Layers and Networks
	Error Backpropagation
	The softmax Activation Function

	Hidden Markov Models
	An Introduction to Markov Chains
	Hiding the Chain
	“The Three Basic Problems”
	Estimating the probability of the observation sequence
	Estimating the model parameters
	Estimating the state transitions

	And Their Solutions
	Estimating the probability of the observation sequence
	Estimating the model parameters
	Estimating the state transitions

	Combining HMMs and ANNs
	Summary

	CHAPTER 3 DNA sequencing as a Pattern Recognition Problem
	The Pattern Recognition Problem
	HMM Topology
	The Bases Model
	The Basecalling Model

	System Training
	The consensus sequences.
	The training method.

	Executing Queries
	The variation to the Viterbi algorithm

	Alternative Topologies
	Accommodating sequences of identical bases
	Accommodating molecule compression effects
	Accommodating concurrent bases

	Summary

	CHAPTER 4 Results, Conclusions, and Future Work
	Results
	Error Evaluation
	Undercalls (Deletions)
	Overcalls (Insertions)
	Miscalls (Substitutions)

	Evaluation Results

	What needs to be Done
	Preprocessing
	HMM Topologies
	Features and Emission models selection
	Extensions

	Conclusions

	References

