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Abstract

DNA sequencing is the process of determining the sequence of chemical basesin a particular
DNA molecule—nature’s blueprint of how life works. The advancement of biological sci-
ence in has created a vast demand for sequencing methods, which needs to be addressed by
automated equipment. Thisthesistriesto address one part of that process, known as base
calling: it isthe conversion of the electrical signa—the electropherogram—collected by the
seguencing equipment to a sequence of letters drawn from { A,T,C,G} that corresponds to the
sequence in the mol ecul e sequenced.

Thiswork formul ates the problem as a pattern recognition problem, and observesits striking
resemblance to the speech recognition problem. We, therefore, propose combining Hidden
Markov Models and Artificial Neural Networksto solveit. Inthe formulation we derive an
algorithm for training both models together. Furthermore, we devise amethod to create very
accurate training data, requiring minimal hand-labeling. We compare our method with the de
facto standard, PHRED, and produce comparable results. Finaly, we propose alternative
HMM topologies that have the potential to significantly improve the performance of the
method.
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CHAPTER 1 | ntroducti on, Problem
Satement, and
Background

Theintroduction of methods for DNA sequencing has revol utionized the prac-
tice of biology, leading to projects such as the Fruitfly Genome project, the
Mouse Genome project and—most significant of all—the Human Genome
project. The ability to decode the genetic material is of prime importance to
researchers trying among other to cure diseases, improve the resistance of
crops to parasites, and explore the origin of species. Moreover, the explosion
of fields such as computational biology and the demands of these fields for
rapid and cheap sequencing has created a great need for automation. This
need is addressed by the development of modern equipment with the ability to
run unattended for along time. These systems feed their output to computer
systems for processing without human intervention.

In this thesis we will focus on one small part of the whole process: basecall-
ing. Itisthe processof converting the signal generated from the equipment to
astring of letters representing the sequence of bases that compose the pro-
cessed DNA sample. The problem will be formulated as a pattern recognition
problem. To solveit wewill propose a method similar to the ones commonly
used in speech recognition, combining Hidden Markov Models (HMMs) and
Artificial Neural Networks (ANNS).
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Introduction, Problem Statement, and Background

Since thisthesis is addressed both to the biological and the signal processing
community, the background development is quite extended. Sections that
might seem basic to one community are completely unknown to the other.
The main work for thisthesisis presented starting at the end of chapter 2, at
page 54. Anything before that has the form of atutorial, with the intent of
presenting some necessary background, establishing notation and building a
broader perspective for some existing concepts. This perspective will be use-
ful in the development of the key contributions of this work.

This chapter will present how the process of DNA sequencing works, and give
abrief overview of Hidden Markov Models and of Artificial Neural Net-
works. In addition, the problem will be posed as a pattern recognition prob-
lem and show why HMMs are suited for solving it. Finally, we will explore
existing work in both DNA sequencing and pattern recognition that is related
to this project.

The DNA Sequencing Process

Before presenting the DNA sequencing process, it isimportant to understand
the structure and the function of the molecule. DNA isalong double stranded
molecule that encodes the structure of specific proteinsin the cell, aswell as
information about how these proteins should be manufactured. Thisinforma-
tion is stored in the sequence of bases (nucleotides) that compose the mole-
cule. These bases can be one of the four: adenine, thymine, cytosine, and
guanine—which we can denote as A, T, C, and G respectively. They are
located on a deoxyribose and phosphate based backbone, and are paired as
shownin Figure 1. It isimportant to note that the only electrochemically sta-
ble pairings are A-T, and C-G, independent of the orientation. Therefore, the
composition of one strand uniquely determines the composition of the other.
The goal of the DNA sequencing process is to determine the sequence of
basesin a given DNA molecule.

We can abstract this picture of DNA if we think of it as along tape on which
the genetic information is stored sequentially. For storing thisinformation,
nature does not use a binary system but a quarternary one, where each string
isasequence of letters drawn from the alphabet { A, T, C, G} . DNA sequenc-
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The DNA Sequencing Process

adenine

cytosine

guanine

thymine

phosphate
deoxyribose (sugar)

€1 995 Encyclopasdia Britannica, Inc.

Ficure 1. The 2-D structure of the DNA molecule. Note the pairings of the
bases: A-T, and C-G (Image copyright: Encyclopaedia Britannica,
[6]).

ing isthe process of reading the sequence of letters on a piece of DNA. We
may ignore the presence of a second strand, since it isuniquely determined by
thefirst one. This picture will be useful when we pose the problem as a pat-
tern recognition one.

The sequencing process involves three steps: DNA sample preparation, elec-
trophoresis, and processing of the electrophoresis output. We will briefly
explore them, since they are important to our problem.

DNA Sample Preparation

Thefirst step is quite straightforward but significant for the success of the pro-
cess. For that step we will assume that we have afew copies of the same
DNA moleculein asolution. We will not explore how to get these copies: it is
beyond the scope of thiswork, in the realm of biological science. The goal of
this processis to produce several copies of the DNA molecule, truncated at
different lengths, and tagged with specific fluorescent tags.

13



Introduction, Problem Statement, and Background

In this step the original DNA molecules arefirst replicated several times using
abiochemical process known as polymerase chain reaction (PCR). PCR
involves cycling between three steps. DNA denaturation, annealing, and DNA
synthesis, as shown in Figure 2. PCR is performed in the presence of DNA

D& prlmers e nucleotides
e rE ] po]gmerase (dTTF, dCTF, dATF, dGTF)

il
| parent D& - Taq

step 1: DMA template strand 0/
denaturing .
(95°c) 5
step 2:
anneallng

tuo DNA strands section of DN&
(55 c) 5 = to be amplified

> I - s

-

5 _‘acl Ed
S— IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII (TN
(20-40 times) ‘_/\_/‘\/‘\/\lr [[INER 5

new DNA strands

5’ ~ /0 Pa Ve We Vel
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII . .

four DN& strands Taq

(3,28 Burzisayyuhs: ¢ days

€995 Encyclopaedia Britannica, Inc.

FIGURe 2. The three steps of the polymerase chain reaction (Image
copyright Encyclopaadia Britannica, [7]).

primers, DNA polymerase, and nucleotides. These are chemical species nec-
essary to perform the reaction. Their function and usefulness will be
explained below.

DNA denaturation: In this step the solution is heated to 95°C. This causes
the two strands of the molecule to separate to two complementary ones.
These strands are the templates that will be used to create the two replicas of
the molecule. Aswe mentioned before, because of the unique pairing of the
bases, each strand uniquely defines the composition of its complementary
one, and, therefore, one strand is sufficient to recreate the molecule.

Annealing: The purpose of this step istoinitiate the replication of each

strand. The solution cools down to 55°C. At thistemperature, the primersare
ableto attach to the 3' ends of the template strands. The primers are DNA
fragments roughly 20 bases long, that are complementary to the ends of the
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The DNA Sequencing Process

strands. This assumes that the sequence of these ends is known, in order to
create the corresponding primers. Indeed, the method used to isolate the
DNA from the cell provides for away to know the sequences at the two ends
of the molecule, or, at least, attach known sequences at both ends.

DNA synthesis: Thefinal step occursat 72°C. At thistemperature the
enzyme responsible for DNA synthesis, DNA polymerase, attachesto the
strands, at the end of the primers. The function of thisenzymeisto extend the
primers by attaching nucleotides, i.e. bases, according to the template strand.
The nucleotides are attached one by one until the polymerase reaches the end
of the strand and drops off the molecule. The DNA is now ready to undergo
another cycle of replication.

Since from every DNA strand the reaction produces one molecule, and since
each molecule has two strands, it is obvious that each cycle doubles the
amount of DNA in solution. Therefore, assuming perfect yield, repeating the

cycle N times yields 2N times the original amount.

The replicas are subsequently treated with asimilar process. The resulting
solution contains pieces of the original strand, all with the same origin, but
truncated at different lengths. These pieces are chemically labelled according
to the final letter of the string with one of four fluorescent colors—say red,
green, blue, and yellow. For example, if the sequence of the original strand
was ATACG, the product of that process would be a chemical solution con-
taining several replicas of five different strands. A, AT, ATA, ATAC, ATACG.
The first, and the third strands would be |abeled with the same fluorescent
dye—red, for example—while the remaining three with the three remaining
dyes—green, blue and yellow respectively, in our case.

To create this solution, one more cycle of the original PCR reactionis
repeated, in a solution that contains not only nucleotides, but also “defective”
nucleotides, labelled with the respective fluorescent tag. The role of the
defective nucleotidesisto fool the DNA polymerase to use them instead of
the proper ones, effectively ending the synthesis step after the DNA strand
has only been replicated partly. The position where the defective nucleotide
will be inserted is random—the DNA polymerase will have to “select” it
among regular and defective ones of the same type. Thus, the result will be
different for each of the strands replicated, creating the solution described

15



Introduction, Problem Statement, and Background

above. Note, that the strands in the solution have different lengths, but all
start from the same point. Also note that only the last nucleotide of each
strand in the solution is a defective one. Therefore, each strand carries the flu-

orescent label of its last nucleotidel.

Electrophoresis

The goal of the electrophoresis reaction is to separate, according to their size,
the DNA fragments that were produced in the previous step. We can think of
this reaction as a miniaturized and exaggerated version of Galileo’s experi-
ment from the leaning tower of Pizza. Galileo threw two balls of different
sizes from the top of the tower. The smaller one, facing less air drag than the
larger one, reached the bottom of the tower first. Effectively, the two balls
were separated by size, precisely what our goal is for electrophoresis. Of
course, we need to separate DNA in solution, and in equipment much smaller
than the leaning tower of Pizza. Furthermore, we would like to control the
force driving the molecules, therefore gravity is not an attractive option.
Instead, we separate the moleculesin aviscous gel using an electric field to
produce the driving force.

Indeed, the reaction is based on the simple principle that under constant
attractive force, larger molecules take longer time to traverse a viscous gel.
Since DNA isanegatively charged molecule, in an electric field it will tend to
move towards the positive electrode. By combining these two principles, we
can create a simple electrophoresis apparatus: a simple container holding the
gel, and apair of electrodes generating the eectric field, asshownin Figure 3.
We place the solution of DNA fragments near the negative electrode and a
detector near the positive end. When we turn on the electric field, DNA starts
to move towards the positive electrode, and, hence, towards the detector.
However, as shown in the figure, the smaller fragments can move easier and
reach the detector faster. Given the right electric field strength and enough
distance for DNA to travel, we can achieve compl ete separation between mol-

1. We should note here that there is an alternative process where the fluorescent tag is
attached at the beginning of the strand. Although the details might be significant
for achemist or abiologist, they are not important to the devel opment of the thesis,
so they will not be discussed further.
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FiIGURe 3. The electrophoresis process in a simple electrophoresis
apparatus.

ecules of size differences as small as one nucleotide. Thus, we only need to
read the fluorescent tags to determine the sequence.

Thisisthe function of the detector. Usually the detector induces fluorescence
using alaser to excite the fluorescent tags. It collects the data using a photo-
detector. There are several photodetector technologies, ranging from photo-
multiplier tubes (PMTSs) to charge-coupled devices (CCDs). Each hasitsown
trade-off in terms of simplicity to use, efficiency of fluorescence detection and
spectral resolution. What is common, however, is the output of the detector:
A four-channel signal—one channel per base—that represents the fluores-
cence of each of the four tags at each instant in time; it looks like Figure 4.
Usually there is some linear cross-talk between the channels, due to imperfec-
tionsin the optics of the equipment. Furthermore, there is some noise in the
signal, both because of fluorescence from the gel and the container, and
because of the noise in the electronics.

One small complication arises by the presence of the fluorescent tags on the
molecules. Thetagsare quite big and different in size, depending on their flu-
orescent frequency. Therefore, the tags affect significantly the ability of the
DNA moleculeto find itsway through the gel—a quantity known as mobility.
Moreover, the effect will be different for molecules ending at different bases
because they each carry a different tag. Hence, the fragments will not arrive
in the correct sequence anymore. Fortunately, the effect is well understood,
and can be undone using time warping on each of the four signals. This, how-
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FIGURE 4. Sampleraw €electropherogram data

ever, is part of the signal processing, and we will exploreit further in the next
section.

Signal Processing

Thisisthe last stage of the process and it involves processing the signal to
produce the sequence of basesin the target molecule. This stageinvolvesfive
processing functions. denoising, color separation, baseline correction,
mobility shift correction, and base calling. Thefirst four steps aim to condi-
tion the signal for the fifth one, without losing any useful information. They
are necessary in order to undo all the imperfections in the chemistry, the
optics, and the electronics of electrophoresis, as much as possible. The result
of the whole process should be a sequence of |etters and a confidence esti-

18



The DNA Sequencing Process

mate—usually in the form of probability of error or likelihood of the
sequence.

Denoising: Thisprocessisaimed at removing any noise introduced in the sig-
nal. The sources of noise are many. For example, the gel often has fluores-
cent impurities. Furthermore, the electronics are imperfect and noisy. Even
scattered light might make it back into the detector. Although the designers of
the equipment try to reduce the noise presence, complete elimination is
impossible. We usually model the noise as awhite gaussian process. Since
the actual DNA fluorescence is avery slowly varying signal—i.e. has signifi-
cant power at low frequencies—Ilow pass filtering is usually enough to filter
the noise out.

Color Separation: Thisisalinear operation, which aimsto eliminate the
crosstalk between the four channels of the signal. This cross-talk is due to
the imperfections of the optical filtersthat separate the fluorescence from each
of thefour tags. It iseffectively alinear mixing of the four signals that can be
undone trivially, assuming that the mixing coefficients are known. If we use
the vector x to denote the desired signals, matrix M to denote the mixing
matrix and the vector X, to denote the mixed signals, then we can express x

using X,y=Mx. Assuming that M is invertible—which is true since the mixing
can be thought of as arotation and a scaling, both invertible operations—we
can calculate x using x=M1x, The matrix M, however, is not known, and
should be determined. A number of techniques to determine the mixing

matrix exist, mostly based on analysis of the second order statistics of the sig-
nal.

Baseline correction: This step aimsto remove constant and very slowly vary-
ing offsets that occur to the signal due to a constant value of background fluo-
resecne. This fluorescence often depends on the experimental conditions,
such as the temperature of the electrophoresis. Since these might not be con-
stant during the run, there might be asmall drift in the DC value of the signal.
Furthermore, the background fluorescence is different for the four channels,
so the DC value is different. The goal of this processis to remove aroughly
constant waveform from the recorded signal; it is effectively ahigh-passfilter.
The resulting signal should be zero—assuming that all the noise has been
cleared in the first step—when no DNA is present in front of the detector.
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Introduction, Problem Statement, and Background

Mobility Shift Correction: Aswe mentioned before, the presence of the flu-
orescent tags affects the mobility of the DNA molecules. This step aimsto
undo this effect by atime warping process. |deally, the resulting signal
should be equivalent to the signal that would have been obtained if all four of
the tags had the same effect on the mobility of the DNA fragments.

Frequently, this step is combined with another time warping aimed at creating
asignal with uniform peak spacing. Because of the nature of the experiment,
the peak spacing near the end of the signal is much wider than the peak spac-
ing at the beginning. In order to undo this effect, time can be warped so that it
runs faster near the end of the run and slower at the beginning. This will
result to asignal with uniform peak spacing. Uniform peak spacing might or
might not be necessary, depending on the requirements of the next step.

Base Calling: Thisisthefinal step of the processing. The goal of thisstepis
to trandlate the processed signal—which looks like Figure 5—into the
sequence of |etters that describe the DNA sequenced. This sequence should
be accompanied by some form of confidence estimates. The confidence mea-
sures are usually in the form of likelihood measures or probability of error
estimates. These measures usually reflect the quality and the resolution of the
signal. Furthermore, they are very useful in further stages of processing of the
output and in the quality control of the sequencing process. Base callingis
the problem we try to address in this thesis.

A Brief Introduction to Pattern Recognition

Aswewill discusslater in this chapter, base calling is an example of aclass of
problemsin the field of pattern recognition. Loosely speaking, this field—
aso known as patter n classification—examines ways to categorize data to
severa different classes. A typical problem, for example, is speech recogni-
tion, where speech utterances are translated—i .e. classified—to sequences of
letters or words. Another example is face recognition: the face of a person
must be recognized in an image, or an image must be categorized as ‘face’ or
‘not-face’
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FIGURE 5. Processed el ectropherogram data, ready to be basecalled.

Modern techniquesrely heavily on statistical models and probability theory to
perform classification. Usually, a statistical model is assumed about the for-
mat and the distribution of certain featuresin the data. The parameters of the
model are estimated using some example data, a process known as training.
Once the parameters are estimated, the model can be used to classify new
data. Sometimes the model is not trained with example data but it is formu-
lated to find some ‘natural’ classification, by adjusting its parameters. The
former way of training is often called supervised learning, while the latter is
known as unsupervised learning.

In the rest of this section we will discuss some common considerationsin the
design of pattern recognition systems. We will proceed to examine two very
effective techniques for parameter estimation, which we will usein the rest of
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Introduction, Problem Statement, and Background

the thesis. Finally we will present two powerful tools used in pattern recogni-
tion: Artificial Neural Networks and Hidden Markov Models.

Considerationsin the Design of Pattern Recognition Systems

When designing a pattern recognition system, there are several issues to con-
sider. The success of the system depends on how well it can classify the data,
and on how well it can generalize based on the training data. Therefore, the
selection of the statistical model, and of the features of the data that the model
will use are of prime importance. Furthermore, care should be taken in the
training of the model, to ensure that it will perform well on actual data.

Modéd Selection: It might sound obvious that the statistical model selected
should fit the actua statistics of the data. However, it isnot trivial to formu-
late such amodel, and ensure that its parameters can be estimated. Therefore,
simplifications might often be needed. Furthermore, amodel with abig
parameter space might train very slowly, and might be prone to overfitting—
which we will discuss later. On the other hand, a model with avery small
parameter space might not be sufficient to describe the data; such a model
would perform poorly. A general rule of thumb isto use amodel assimple as
needed to describe the data, but not smpler. Thisheuristic ruleisaso known
as Occam’'srazor ([14] describes the rule in more detail).

Feature Selection: A separate, but very related, aspect of the designisthe
selection of the features—i.e. the functions of the raw data—that will be used
for the classification. For example, the pitch of avoice signal might be the
feature used to distinguish male from female voicesin a classifier. Thus, a
function of the raw waveform is used, and not the waveform itself.

While the unprocessed data can be used as features, thisis often a bad choice
for pattern recognition. For example, the data might have avery peculiar
probability distribution, but a nonlinear function of the data might be nor-
mally distributed, making the models very easy to train. Also, the data might
be multidimensional, while a function of the data might reduce the dimen-
sionality, without throwing out useful information. Significant literatureis
devoted to feature selection, sinceit is atopic that often makes the difference
between maodels that work and models that do not.
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Overfitting: Thisissue often occurs when the model adjusts too much to the
data given as examples, and is not able to generalize. Trying to achieve per-
fect classification rates on the training data is often a cause for overfitting.
Complex models are prone to this problem, since they have alarge parameter
space, and thereforeit is easier to find a parameter combination that classifies
the training data very well. However, thisis not the parameter combination
that achieves good generalization.

There are acouple or waysto reduce overfitting. The simplest isto reducethe
parameter space of the model, leading to models less prone to the problem.
Thisis another instance of Occum’srazor. An alternative way isto use aval-
idation set of data, independent of the training set, on which the classification
performance istested. The performance of the model on the validation set
should improve as training proceeds. Once the performance on the validation
test starts deteriorating, thisis an indication that the model is overfitting to the
training data, and the training should be stopped.

Sear ching the Parameter Space

As we described above, in order to train the models we need to calibrate
parameters based on the training data. Usually, parameters are selected so as
to minimize some cost function, based on the model and the training set.
Unfortunately, the parameter space of the functionsis often very large, if not
infinite, and an exhaustive search impossible. Several optimization tech-
niques exist to perform such asearch. | will present only two here: gradient
descent, and expectation-maximization (EM). These are the optimization
methods most often used with the types of models | will consider later.

Gradient Descent: Thisisthe simplest method to search the parameter
space, but one of the most frequently used. The general ideaisthat the search
starts at a random point in the multidimensional cost surface and perform a
descent towards the steepest downhill path. We can picture a 1D version of
this method by examining a gradient descent on the cost function depicted in
Figure 6. Starting from arandom point in the real axis, we get to the mini-
mum of the cost function by following the derivative of the function.

It is obvious from the picture that this method does not guarantee settlement
to the global minimum of the cost function, but only to alocal one. This
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Cost (y)

Cost function f(x)

/

<<««\ Parameter ()5

Random Initial point

FiIcure 6. A simple one dimensional gradient descent example

might be an issue in certain cases. There exist waysto search around alarger
local area, but not aglobal one. Inthisthesis, this method will be used to train
Artificial Neural Networks.

An important parameter in the descent isthe step size. Using avery small
step size might result to alarge number of iterations until the minimum is
reached. Using alarge one might result in oscillations around the minimum,
without ever reaching it. Several tricks exist to overcome that difficulty.
Theseinclude using alarger stepsize at the beginning and a smaller one asthe
training progresses. Also one could add momentum, which uses the previous
step’s direction and size to influence the current step’s direction and size,
effectively reducing the stepsize as the training approaches the minimum.

Expectation-Maximization: Thisis atwo step iterative process especialy
designed for probability optimizations. The agorithm starts from certain
parameter estimates, and cal culates the expectations of the probability func-
tions of the model based on these estimates (Expectation step). Then it esti-
mates a new set of parameters that maximize the cost function given the
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probabilities calculated before (Maximization step). The two steps are iter-
ated until convergence is achieved.

Aninteresting view of the algorithm is that of alower bound maximization.
Indeed, as[17] shows, given apoint in the parameter space, EM constructs a
function of arbitrary form that is alower bound to the cost function, such that
they both have the same value at the specific point. The M-step chooses the
step that maximizes over the lower bound function (the assumption is that the
lower bound is easier to maximize), which guarantees improvement over the
cost function. A version of the algorithm known as generalized EM only
improves over the lower bound, which still improves over the cost function
but less aggressively.

The agorithm exhibits the problem of locality that we observe in gradient
descent. Although here convergence is guaranteed, we still have no guarantee
that the global minimum will be achieved. However, it has the advantage of
much faster convergence than gradient descent. Unfortunately, it is not appli-
cable aswidely as gradient descent.

Recognizing Static Patternsand Time Series

Since we are interested in processing DNA signals, we need to use a model
that incorporatestime. However, these models are easier to develop once we
understand static models, and extend them to cover time series. Therefore, we
will first examine Gaussian mixture models and artificial neural networks as
probability estimators. Next we will combine these estimators and markov
chainsto create Hidden Markov Models. These are very powerful models,
commonly used in speech recognition. In the remaining of this section | will
present a brief overview. An expanded analysis will follow in the next chap-
ter.

Gaussian Mixture Models: Thisisone of the simplest models for describing
data. The assumption for such modelsis that the probability distribution of
the features is a Gaussian mixture, with different parameters for each class.
The distribution of a Gaussian mixture is the sum of scaled Gaussian density
functions with different means and covariance matrices, such that the sum of
the scale factorsis equal to 1.
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Training and classification is very easy with thistype of model. To train this
model, we only need to estimate the scale factor, the mean, and the covariance
matrix for each of the Gaussians in the mixture. Training isusually per-
formed using an EM strategy, devel oped further in the next chapter. Classifi-
cation is done by selecting the most likely class given the data.

Artificial Neural Networks: These types of models were originally con-
ceived as imitations of biological neural networks. However, the state of the
art has evolved, and the field has been formalized and has progressed beyond
the origina simplicity. ANNsare usually comprised of layers of fundamental
units, the neurons, that exhibit certain properties. It can be shown that under
certain conditions, ANNSs can be universal function estimators, a quality we
will use for pattern recognition. Indeed, given that property, there are two
ways to perform classification using an ANN: use them as functions that esti-
mate the class directly, or use them asfunctionsthat estimate the likelihood of
the class.

There are several advantages in using ANNS, and several drawbacks. The
main advantage is that they can be trained to model any kind of data. How-
ever, because of this universality, the parameter spaceishuge. This often
calises convergence issues: there is no guarantee that the gradient descent
used to train aneural network will converge to a meaningful local minimum.
For the same reason, ANNSs are very prone to overtraining, an effect knownin
the literature as the curse of dimensionality (for more details see [14], p. 210-
211).

Hidden Markov Models. These models are very good at describing continu-
oustime processes. The assumption in these modelsis that the underlying
process that produces the signal isaMarkov chain. Markov chains are non-
determinigtic finite state machines that have state transitions governed by cer-
tain probability distribution functions. The Markov chainis‘hidden’ in the
following sense: the signal we observe is not deterministically related to the
state of the Markov chain. Hence, we cannot have a certain mapping from the
signal to the state transitions. Instead, each state emits the signal stochasti-
cally, with a certain probability model. The models used for these emissions
are usually Gaussian mixture models or Neural Networks. The hidden
markov chains are very effective in modeling time series, thus HMMs are
often encountered in the speech recognition literature.
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Training the model involves estimating the transition probabilities, and the
emission probability density functions. Thisis usually performed by an
instance of the EM a gorithm known as the Baum-Welch algorithm. When
Gaussian mixture models are used for the emission probahilities, the estima-
tion can be incorporated into the Baum-Welch algorithm. However, when
Neural Networks are used, they are usually trained separately from the
remaining model, using manually labeled data. In thisthesis we will develop
away to incorporate the ANN training into the whole training method, elimi-
nating—at least, partly—the need for manual labeling.

Background

Before devel oping the proposed solution it is necessary to present the existing
work in the field. This presentation will motivate the use of HMMsto solve
the basecalling problem. Furthermore, it will provide us with some bench-
mark to compare our results. First we will examine existing work in DNA
sequencing, and then we will give some necessary background on HMMs and
attempts at combining them with ANNSs.

DNA Sequencing

Existing work in the field is mostly concentrated in signal conditioning and
basecalling. Giddingset a. [13] provide an overview of the signal processing
steps described above, and propose a modular approach to building the base-
calling system. Also, Giddingset al. [12] present a software system for data
analysisin older dab gel electrophoresis machines. Berno [2] proposes a
graph-theoretic approach to basecalling. Ewing et al. [9] describe Phred, the
software mainly used by the Human Genome Project for analysis of the sig-
nals. Furthermore, Ewing and Green [10] describe how Phred assigns confi-
dence estimates to the basecalled data. Lipshutz et al. [16] propose a method
based on classification trees to perform the confidence estimation and correct
uncalled parts of the signal. Finaly, Lawrence et a. [15] suggest alinear dis-
criminant analysis approach to assign position-specific confidence estimates
on basecalled data. However, all approaches are empirical and depend signif-
icantly on heuristic rules.
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More recently, Nelson [18] described someinitial effortsto put statistical
foundations on the problem, an approach that will isolate basecalling from the
particular instrument used and provide confidence estimates derived straight
from the methods used to basecall. Thisthesisintendsto proceed in asimilar
direction.

Pattern Recognition

Pattern recognition is a very mature field, compared to DNA sequencing.
Indeed, several good books, such as[5] and [14] exist to guide a beginner
through the fundamentals of statistical pattern recognition, Gaussian mixture
models, and artificial neural networks. Hidden Markov Models have been
extensively studied in the field of speech recognition, and a very good review
of the work can be found in Rabiner’stutorial [20]. Finally, some work on
integrating HMMs with ANNSs has appeared in [4] but the training methods
used are not suitable for our case.
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CHAPTER 2 Pattern R&Ignltl on for
Satic and Time-Varying
Data

In this chapter we will develop further the pattern recognition techniques pre-
sented in theintroduction. After developing the training methods for Gauss-
ian Mixtures and Artificial Neural Networks, as usually developed in the
literature, we will show how Markov Chains can be used to create a Hidden
Markov Model framework for time varying signals. In this development we
will follow closely but not exactly Rabiner’s presentation in [20]. Finally, we
will combine ANNs with the HMM framework and provide a method to train
the system with sample data.

Gaussian Mixture Models

These models assume that the featuresin each class are distributed according
to amixture of M Gaussians. The advantage of such amodel isthat it can be
trained using the EM algorithm, which usually implies rapid convergence.
Still, unless the number of mixturesis large the model’s descriptive power is
limited. Furthermore, unlessthe amount of training dataislarge, convergence
might become problematic. Nevertheless, these models are simple and pow-
erful enough to bewidely used. Therefore, we will examine them asthe basic
model for pattern recognition.
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Model Parameters

As mentioned above, we will assume that there are M components in the mix-
ture for each class. In other words, we will assume that if x isthe feature vec-
tor we would like to classify, then the density of x originating from classj is:

M
pj(x) = z ijN(X, “jm’ Ujm) (1)
m=1

Training this model involves estimating the parameters c;,,, 1, and U;, for
each component mand classj. These parameters represent the mixture coeffi-
cients, the mixture means, and the mixture covariance matrices respectively.
It can be shown that any distribution can be approximated arbitrarily well by a
gaussian mixture model with a sufficiently large number of components.
However, the number of components necessary is often extremely large for
practical implementation.

Training the M odel

The most common method to train a Gaussian Mixture model isthe EM algo-
rithm. The Expectation step of the two-step iterative algorithm involves esti-
mating p,(x;) for al the mixture components mand the data points x; in class
j. The estimate is calculated using the values of the parameters from the pre-
vious iteration.

The Maximization step estimates the parameters of the model using the fol-
lowing formulas:

R 2)
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N
Z Pm(X) (X —ﬁjm)(xi —ﬁjm)T
i=1

N
z ﬁm(xi)

Ujm =

3)

Zlr-

Cim =

1
N
S bul). @
i=1

where N is the number of training points x; that belong to the classj.

The two step algorithm should be repeated several times until the values of the
estimated parameters converge. We should note that a subtle issueisthe
selection of the parameters before the first iteration: unfortunately, arandom
selection might not always be the best choice since it might make the algo-
rithm to converge to a very inefficient local minimum of the cost function.
Usually amore educated guess for the initialization is required, but thisisan
issue we will swipe under the rug.

Artificial Neural Networks

Artificial Neural Networks evolved from mathematical models of the neural
networks in the human brain. Built from afundamenta block, the neuron,
ANNS can be universal function estimators. In this section we will examine
how these building blocks behave, how they are usually combined into net-
works, and how the networks are trained. Finally we will present avariation
of the building block, that is very useful in networks designed to estimate
probability mass functions. Since our approach to their development is not
often encountered, we will give arather extensive presentation compared to
the Gaussian mixture models. However, we believe that this approach
deserves the attention.
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The Fundamental Building Block

Similarly to their biological counterparts, ANNs are built from units that com-
bine several inputsinto one output. These unitslook likethe onein Figure 7.

FiGure 7. A neuron: the fundamental building block of a neural network

We will define the inputs as x; for i=0...N, and the weights as w; for the same
i. Conventionally, we define ig=1, and the corresponding weight w; is

called—for reasons that will be obvious later—the bias. Therefore, the unit
we just defined has N independent inputs. Under these definitions, the output
y of the neuron is defined as

O O O O
y = Oy x;wd = fw,+ X:W{], (5)
DZ 1 ID D 0 izz 1 I|:|

where the function f(.) is called the activation function. The second form of
the equation justifies the term bias used for wy: the term does not influence the
data; it isjust an additive constant that moves the sum in the input region of
the activation function.

The notation above is useful to see the functionality of the neuron: it passes a
weighted and biased sum of itsinputs through the activation function. How-

ever, it will be convenient to use a compact vector notation once we start
working with layers and networks of these units:

X = [XO XNT (6)

W= [wy .o wy ()
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Then, the sum may be replaced by the dot product. Thus, the output yisequal
to:

y = f(wix) (8)

The activation function f(.) can be anything we desire, but certain functions
are more popular than others. The original models used the unit step function:

_ [0,x<0
w09 =0 s )

This function matches the function of biological neurons. Artificial neurons
using this activation function are often called perceptrons.

The big disadvantage of the unit step activation function isthe discontinuity at
0, and the lack of aderivative. The discrete nature of this function does not
allow for a gradient descent algorithm to operate on it, in order to perform
training. This proved to be asignificant drawback. Research in the areawas
set back for along time, until theissuewasresolved. Infact, no good solution
has been found yet for this problem. Instead, avery useful alternativeis used,
the sigmoid function:

1

f(x) = 17 ox

(10)

The graph of thisfunction is shown in Figure 8. It is obvious that by scaling
the input it can approximate the unit step function arbitrarily well. However,
it has the added advantage that it is differentiable everywhere, it's derivative
being:

e—X
(1+e)?

f(x) = = 10(1-1(x) (11)

This property is used extensively in training ANNs using a simple gradient
descent algorithm.
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FIGURE 8. Thesigmoid function

These two functions are not the only useful ones. Several others, such asthe
linear function f(x)=x, or the hyperbolic tangent function are often used,
depending on the application. However, the sigmoid function is the most
common. For the purposes of our development we will only use two func-
tions: the sigmoid discussed above, and the softmax function. Becausethe lat-
ter exhibits some peculiarities, we will present it after we discuss how to
organize neurons into layers and then into networks.

Layersand Networks

In order to handle the complexity of arbitrary networks of neurons, it is often
desirableto limit their structure. We will assume that the networks are com-
posed of layers of neurons. Each layer has multiple inputs and multiple out-
puts, as shown in Figure 9. All the inputs of the layer are observed by all its
neurons, with different weight coefficients. In addition, all the neuronsin the
layer use the same activation function. The output of the layer isthe vector of
the outputs of each individual neuron of the layer. In fact we can extend the
vector notation to matrix notation to describe the whole layer. |f the layer has
M neurons, then we can define the MxN weight matrix W:

-w] -
W = : , (12)

T
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or

FIGURe 9. A multiple-input-multiple output layer of neurons. The right-
hand part of the figure is just a schematic simplification of the
left-hand part.

where w; is the weight vector for the i neuron in the layer. If we also define
y, the output vector of the layer as

Y=y v (13)
then the operation of the layer reduces to:
y = f(Wx) (14)
where the vector function f(X) isjust the activation function applied over all

the elements of the vector, concatenated to the constant term that will apply
the bias at the next layer:

1) = [1£0) o (x| (15)

Having defined a layer, we can now cascade multiple layers of different sizes
to create a network, as shown in Figure 10. The connection between each
neuron’s output to another neuron’sinput is often called a synapse.

Often, we consider the inputs as one extra layer—the input layer. Also, the
layer producing the outputsis called the output layer. Any layers between
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Ficure 10. Two layers of neurons combined to give aneural network

these two are called hidden layers. These distinctions are important when
deriving the formulas to train the network.

A multilayer network is a great function approximation tool. It can be shown
that a single hidden layer is able to approximate any given function, if the
layer has the right number of neurons (for details see[14], p. 208). Thistheo-
rem provides a good justification for using ANNSs to approximate functions.
We should note however, that the size of the networks suggested by the theo-
remislarge. In practice this makes networks proneto overfitting and less able
to generalize—a great example of the curse of dimensionality: the network
essentialy ‘memorizes thetraining data. 1n applications we often encounter
smaller networks. These are not good in memorizing the training data, there-
fore generalize better.

Error Backpropagation

Having discussed the network topology, we can use a very easy technique for
training the network, caller error backpropagation. Although this method is

just agradient descent, wewill see shortly how the network topol ogy provides
for aconvenient way to find the gradient for each of the network weights w,—

the parameters of the model.

Before we discuss the method, it isimportant to establish some notation. We
will denote each layer by a superscript to the appropriate parameter. The net-

work will have L layers, each layer having aweight matrix W', N! inputs, and
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M! outputs. The input will be denoted by x!, and the output by y'=x'*1 for
I>1. Thefirst layer will betheinput layer, and the last layer will be the output
layer. The input-output relationship at each layer is given by

y = flw'xhy, (16)

where f'(x) = [1 (%) ... f'(xM)T’ (17)

and f'(x) isthe activation function of the |th layer. It iseasy to show that
given x! for any layer I, then the output of the network will be

y- = fR WL W X)) (18)

The cost function we will optimize is the magnitude squared of the error.
Specifically, we define the error vector e to be

e = yL_yD. (19)

where yp, is the desired output vector—taken from the training set. The mag-
nitude squared of the error vector is given by:

NL

P L )

c—ZHeH _ZZe" (20)
i=1

The factor of 1/2 at the beginning of the expression does not affect any opti-
mization; itistherein order to eliminate a factor of two that will appear when
differentiating the cost function to perform the gradient descent. Indeed, to

find the parameters w! ; —the weight coefficients for each synapse—we will
need to find the derivative of ¢ with respect to each parameter.

In addition, we will define the derivative—also known as the gradient—of the
cost function with respect to any matrix as the matrix with elements:;
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