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Abstract

One contribution of chaos theory to the engineering research community is the notion
that complex, erratic behavior in physical systems need not be the result of stochastic
phenomena—such phenomena may result from deterministic mechanisms. This idea has
been used in the analyses of several engineering systems. Perhaps more interesting are the
several proposed engineering applications that take advantage of the structure of signals
generated by chaotic systems. In order to take full advantage of the unique properties of
chaotic signals in future applications, this structure must be well characterized. This thesis
explores two aspects of this issue—the statistical structure of chaotic signals and the to
linear distortion of chaotic signals.

In the first portion of the thesis, we concentrate on the time-average behavior of signals
generated by chaotic systems with one state variable. Using an analogy between such signals
and stationary stochastic processes, we present a framework for analyzing the statistical
properties of these chaotic signals. In particular, we provide readily computable analytic
expressions for a broad class of statistics of a large class of chaotic signals. We also present
a technique for approximating the statistics of certain chaotic signals for which exact results
are unavailable. As an example of the utility of these results, we use them to determine
the power spectra of chaotic signals and to analyze a model of a switching DC-DC power
converter operating in a chaotic regime.

In the second portion of the thesis, we concentrate on chaotic signals that have been
linearly filtered. Such signals may arise, for example, when chaotic phenomena are measured
through sensors with linear dynamics. We present results relating certain parameters of the
original and distorted signals. These results have several useful consequences. For example,
they are used to synthesize a family of systems that generate ”chaotic white noise” and to
deconvolve a chaotic signal from a filtered observation.
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Chapter 1

Introduction

Chaotic models have been applied to the description of physical phenomena ranging from
turbulence in fluids [1] to population dynamics [2]. Each of these applications, has provided
a deterministic explanation for erratic phenomena that have traditionally been described
with stochastic models . What is more interesting from an engineering standpoint is that
chaotic systems and the signals they generate are potentially applicable in a wide range
of engineering settings. In fact, many engineering systems are known to display chaotic
behavior [10, 23, 32, 24].

Because of their special characteristics, chaotic systems also have the potential to be
useful in certain engineering systems. In this context, rather than using a chaotic system to
describe the behavior of an existing system, a chaotic system would be designed to perform
a specific function. Some proposed applications of this type include using chaotic systems
as random number generators and as waveform generators for conmunication systems.

Although nonlinear systems are quite common in engineering practice, the typical meth-
ods of studying them are often either too unsophisticated or too complex to be generally
applicable. For instance, nonlinear systems are often approximated by linear systems, which
cannot capture the inherently nonlinear phenomenon of chaos. More sophisticated tech-
niques are often cumbersome or inaccessible. It secems plausible then that chaotic signals
and systems would be more widely useful to engineers, both as models used for making
inferences about systems and as components for designing systems, if a precise description

of their properties and a set of convenient analytical tools were available. Given the scope



of the nonlinear systems theory, this goal may be too ambitious. However, as we shall see,
when attention is restricted to a sufficiently tractable class of systems, some sharp results
can be obtained.

This thesis presents a framework for the study of two of the salient aspects of systems in
two useful classes of chaotic systems. The two classes of systems are quite broad and include
systems that been previously used as models in several applications. The two aspects of
these systems that we will describe are their statistical and geometric structure. In particu-
lar, using an analogy between chaotic signals and stochastic processes, we develop analytic
and computational tools that describe can be used to study the statistics certain chaotic
signais. We then use these results to analyze one example of a real system exhibits chaotic
behavior—a switching power supply. Next we focus on the geometric properties of chaotic
signals and specifically how they are altered by linear convolution. Linear convolution is an
important operation in many signal processing applications and is hence worthy of study.
Moreover, understanding convolutional effects may have implications, for example, when
chaotic phenomena are measured using sensors with linear dynamics.

In the remainder of this chapter, we describe in more detail the contents of the thesis.

1.1 Statistics of Chaotic Maps

In the first portion of the thesis, we focus on signals generated by iterating from some initial

condition the nonlinear difference equation

zfn] = f(zln - 1]), (L1)

where f(-) is a real function of a real variable that is also a chaotic system. Although
such one-dimensional systems are in a sense the simplest ones exhibiting chaos, they are
important for two reasons: they have many of the same properties as higher dimensional
systems, and they have been proposed as models for several engineering systems.

We will see that the signals generated by systems of the form (1.1) are analogous to
stationary stochastic processes and as a result, that the notion of statistics is well defined.

The specific statistics can be expressed in terms of expected values taken with respect to
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a certain measure or probability distribution. Furthermore, using classical results from
ergodic theory, it can be shown that statistics of this type can be interpreted physically in
terms of the relative frequency of different events.

Using a statistical approach certain questions about the average operation of a noniinear
system may be addressed. Given that design specifications are often given in terms of
averages, this approach is potentially applicable in a wide variety of settings. Also, as we
will see, the average properties of a system often have useful physical interpretations.

We use the statistical approach in Chapter 3 and restrict attention to a class of systems
of the form ‘(1.1), called Markov maps, that are particularly amenable to analysis. These
maps have certain extremeiy useful qualities and naturally arise several times throughout
this thesis.

Among the more interesting properties of Markov maps is that many of their statistics
can be determined in closed form. We derive these closed form expressions, which depend
on the parameters of the Markov map, for a large class of statistics including all second
and higher-order moments of the signal. These expressions provide not only a readily
computable means of determining individual statistics of a Markov map, but also some
insight into its global statistical structure. For example, we will see that Markov maps
generate signals with rational power spectra which can be determined in closed form.

In Chapter 4 we consider a larger class of systems, called eventually-expanding maps,
which includes Markov maps as a subset along with several maps that have been proposed as
models for physical systems. In general, the statistics of an eventually-expanding map (that
is not also Markov) are difficult to express in closed form. However, we show how Markov
maps can be used to approximate any eventually-expanding map and its statistics arbitrarily
well. Again, the results provide both a computational framework for approximating these
statistics as well as some insight into their structure.

As an illustration of one application of the results of Chapter 3 and Chapter 4, we present
in Chapter 5 an analysis of a switching power converter that is well described by a one-
dimensional chaotic system. We derive a map that relates the currents and voltages within
the converter at consecutive switching times. We then demonstrate how these sampled-

data descriptions can be used to make inferences about the statistics of the converter’s
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continuous-time waveforms. In particular, we demonstrate that, even in a chaotic operating

regime, the continuous-time waveforms have cyclostationary statistics.

1.2 Geometric Changes Due to Measurement Effects

" In addition to its statistical structure, a chaotic signal often has a geometric structure
that is unique to the system generating it. However, when the signal is filtered by a
linear system this geometric structure may potentially be obscured. In Chapters 6 and 7,
we present a method of analyzing certain aspects of the effect of linear filtering on two
types of chaotic signals: those generated by one-dimensional maps, and those generated by
multidimensional, invertible systems. Since, in practice, chaotic signals may potentially be
measured through media that are well modeled as linear systems, this scenario is worthy of
study.

Chapter 6 concentrates on signals generated by one-dimensional chaotic systems. We
first examine the l;elation between the input and output of a filter driven by a such a signal.
As we will see, when the filter has a finite length impulse response, the input and output
time series are related by a scalar function, which we term the input-to-output map. We
use the properties of this map to draw several conclusions concerning filtered chaos. In
particular, we show that the output of certain filters may be governed by a one-dimensional
map when the input is governed by a one-dimensional map. For a given chaotic system, we
completely characterize this class of filters.

These results suggest several applications. In particular, using the characterization of
filtered chaos, we determine an algorithm that deconvolves a chaotic signal from a filtered
observation. Some preliininary results on the performance of the algorithm are also pre-
sented. As another application, we show how to construct, given an understanding of the
statistics of chaotic signals, a family of chaotic systems that generate waveforms that are
spectrally white.

In Chapter 7 we extend some of the results derived for one-dimensional noninvertible
systems to multidimensional, invertible systems. In particular, we examine filtered signals

generated by invertible, multidimensional chaotic systems and show that it is useful to inter-

12



pret such signals as the output of a composite system that consists of a cascade of a chaotic
system, which corresponds to the input signal, and a linear system, which corresponds to
the filter. We use this interpretation to relate the properties of filtered signal to those of
the unfiltered signal. For example, we will show that an attractor reconstructed from the
filter output is related to the attractor of the unfiltered chaotic signal by a nonlinear point
transformation and discuss some of the implications of this fact. In particular, we demon-
strate how one measure of the geometric structure of a chaotic signal, its so-called fractal
dimension, may potentially be changed by filtering, and determine filters that do not alter
the fractal The latter result has implications for the design of sensors to measure chaotic
signals since accurate sensors should not alter geometric structure.

Many of the results of the thesis depend on classical results from the theory of nonlinear

systems. In Chapter 2, we review some of the relevent results.
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Chapter 2

Random and Deterministic

Dynamics

One contribution of chaos theory to the signal processing community is the notion that com-
plex, erratic behavior in physical systems need not be the result of stochastic phenomena-—a
deterministic, norlinear mechanism may cause such behavior. As a consequence, determin-
istic models may potentially describe these systems more precisely than traditional stochas-
tic models. However, the analysis of such nonlinear models typically requires mathematical
tools and concepts that are not used in traditional signal processing tasks. In this chapter,
we collect some of the less familiar definitions and results from the theory of nonlinear
systems that are most useful in the remainder of the thesis.

We will concentrate on the properties of time series generated by the discrete time

difference equation
x[n] = F(x{n-1]) (2.1)
y[n] = g(x[n]) (2.2)
where x[n] € RV is the state vector of the dynamical system F : RV —+ RV, and g : RN =+ R
models a scalar observation of the state. A variety of physical systems evolving in discrete

time steps with no input are well modeled by systems of this form [3].

The time evolution of the model is computed by iterating F to generate the set of state
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vectors, called the orbit associated with x[0], of the form

{x[0], F(x[0]), F*(x[0]), F*(x[0]), .. .}

where F™ denotes the n*" iterate of F.

Broadly speaking, the goal of a large body of nonlinear systems theory is to determine
the behavior of the sequence x[n] = F"(x[0]) as n gets large. Accordingly, the questions
that have been addressed in this respect concern the asymptotic or steady-state behavior
of the system (2.1) starting from a given initial condition. Ideally, for each initial condition
x[0] the state sequence could be determined and its features classified. However, this goal
is too ambitious in the sense that no general analytical tools are available to provide such
information. Nevertheless, some issues related to the long term behavior of the sequence
x[n] can be addressed, at least qualitatively.

Two particularly important issues are what portion of the state space is visited by the
state sequence in the long time limit and with what relative frequency subsets of the state
space are visited by the state sequence. Significant information about the dynamic behavior
of the nonlinear system may be provided by the resolution of these two issues. Indeed, the
two approaches to the study of nonlinear systems that are most useful for the purposes of this
thesis divide roughly along the lines of these two issues. Loosely speaking, the first approach
examines the geometry of orbits generated by (2.1). This is the subject of topological
dynamics. Some useful results from topological dynamics are presented in Section 2.1. The
second approach examines the average properties of state sequences generated by (2.1).
This is the subject of ergodic theory or measurable dynamics. Some results from ergodic

theory are presented in Section 2.2.

2.1 Geometry of Solutions

In this section, we concentrate on ideas related to the geometric properties of solutions.
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2.1.1 Steady State Behavior: Invariant Sets

As an initial step toward understanding the long term behavior of (2.1) it is convenient to
single out some common types of orbits. The simplest orbit consists of only one point. A
state vector, X, that is invariant under F—that is, one with the property that F(x) = x—is
called a fized point of F. Similarly, a fixed point of F* is called a periodic point and satisfies
F¥(x) = x. The period of a periodic point is the smallest integer p such that F?(x) = x. The
crbit of a periodic point x with period p, i.e., the p-element set V = {x, F(x),.. ., FP(x)},
is invariant under the action of F since each set element’s image remains in the set.

Sets more complicated than periodic orbits may be invariant under the action of F. In
general, an invariant set is any set V' with the property that F(z) € V whenever z € V.
Invariant sets are of interest because they often provide insight into the the steady-state
behavior of nonlinear difference equations. In particular, many nonlinear models have the
property that state sequences generated from initial conditions in a certain region of the
state space approach a well defined, invariant subset of the state space known as an attractor.

Although several definitions of attractor are used in the literature, they commonly de-
fine an invariant set to which all nearby orbits converge [4]. One more formal definition,
presented here to illustrate the components of a definition of attractor, is a follows: We
denote the image of a set V by F(V), i.e.,, F(V) = {x|x = F(v),ve V}. Aset AC RN is
called an attractor for F if there is a neighborhood N of A with closure N such that F(N)

is contained in the interior of N and

A = NxoF™ (V). (2.3)

The operational definition presented above is made precise by this more technical definition.
However, because we will not need a particular definition of attractor for what follows, the

operational definition will serve our purposes.

2.1.2 Fractal Dimension of Attractors

Attractors associated with many important nonlinear systems are complex, fractal subsets

of state space that have no volume (i.e. they are set of zero Lebesgue measure) and are
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correspondingly difficult to precisely describe. One property commonly used to characterize
these sets is their fractal dimension. In essence, fractal dimensions quantify the difference
in “size” of sets cf zero volume.

Although there are many definitions of fractal dimension (see e.g. [5]), we shall con-
centrate on only two: the Hausdorff dimension and the box dimension. The Hausdorff
dimension is often the easier of the two to manipulate analytically, however, there is no way
to estimate it from data. Conversely, the box dimension is more applicable to real data but
has several analytically inconvenient features. In this section, we will present the definitions
of these two notions of dimension.

Before defining a fractal dimension, we examine a shortcoming in one intuitive approach
to volume and dimension. Consider a line segment, a plane segment, and a cube in R3.
Although it is perhaps natural to assign these objects dimensions one, two, and three
respectively, only the cube has nonzero volume when viewed as a subset of R3. Thus, the
three dimensional Lebesgue measure is not sufficiently sensitive to distinguish between a
plane and a line. Part of the usefulness of Hausdorff dimension and its associated measure
is that it can distinguish between many sets of Lebesgue measure zero.

From one point of view, the Hausdorff dimension is defined as an byproduct of a gen-
eralized notion of volume. Consider the s-dimensional volume of a subset V of RV, with
s nonnegative, defined by the following two step procedure. First, for any small § > 0 we
define

00
H5(V) = inf {Z |Uif? : V c U2, U;, 0 < U] < 6} (2.4)

i=1
where |U;| is the diameter of U; and each U; is open. Intuitively, #}(V'} is an approximation
to the volume of V computed summing the volumes of the small sets U; that cover V. The
term |U;|® quantifies the intuitive notion that volumes in s dimensions should depend on
length raised to the power of s. In this definition however, s need not be an integer.
As § decreases, H3(V) must increase and so approaches a limit. The s-dimensional

Hausdorff measure of V' is defined as this limit, i.e.,

HH(V) = fim H3(V). (2.5)
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It can be shown that #*(V') is a measure and many of its properties follow from the results of
classical measure theory. However, the infimum on the right side of (2.4) cannot in general
be implemerted numerically. Thus, although Hausdorff measure is analytically convenient,
it is not useful for the numerical study of attractors.

The Hausdorff dimension is defined by noting that the limit (2.5) exists for any subset
V in R™ but may be 0 or oo. Intuitively, if a set is measured in too large a dimension, it
appears to have no volume; if the dimension is too small, it appears to have infinite volume.
The Hausdorﬁ' dimension of V is defined as the smallest s such that the measure is 0 or

equivalently, the largest s yielding an infinite measure, i.e.,
dimyg V =inf {s: H*(V) = 0} = cup {s : #*(V) = oo}

The Hausdorff dimension of a set may take a noninteger value, but for well behaved sets its
value agrees with intuition. For example, a smooth surface in R> has a Hausdorff dimension
of two.

Although the Hausdorff dimension has analytically convienent properties due to its
definition in terms of a measure, it is difficult to apply to real data. Another fractal
dimension, the box dimension, is more easily applied to data. The box dimension is defined
as follows. Let Nj(V) be the smallest number of cubes of diameter § that cover V. Then

the upper and lower box dimensions of V are defined by

X
dimgV = lim inf B0V
60 —logé
= o _ log(Ns(V))
R

If these are equal we refer to the common value as the box dimension of V. The Hausdorff
and box dimensions differ in that the former uses a more general cover in its definition.

It can be shown that the box dimension of a set has many of the properties that are
expected from a quantifier of dimension. For example, the box dimension of the unit cube
in RN can be shown to be N. The box dimension does have some undesirab!. p:roperties as

well. For instance, there are examples of countable sets with nonzero box dimension (see

18



e.g. [5, 6]).

When we examine the effects of linear convolution on chaotic signals in Chapter 7, we
will need to understand how the Hausdorff and box dimensions of a set are altered when
the set is nonlinearly transformed. As we will presently see, one property that is shared by
both of these dimensions is that they are not altered by invertible transformations that are
sufficiently smooth. We now define the specific notion of smoothness that is most useful in

the sequel. A function P : A — RN*M is Lipschitz if it satisfies

iIP{x) - Pl < aallx -yl

where the norms are defined on the appropriate spaces. Intuitively, Lipschitz functions have

a bounded growth rate. A function is bi-Lipschitz if it satisfies

eollx - yll < IP(x) - P)Il < erlix -yl

Thus, the growth rate of a bi-Lipschitz function is bounded from below as well as from
above.
The significance of bi-Lipschitz transformations in relation to fractal sets is the following

theorem.

Theorem 1 IfP : A = RVtM {3 a bi-Lipschitz transformation, then the Hausdorff dimen-

sions of A and P(A) are equal.

Thus, bi-Lipschitz transformations do not change fractal dimension. It follows that smooth,

smoothly invertible coordinate changes cannot change the dimension of a set.

2.1.3 Relations Between System Properties and Time Series Properties

We now turn to properties of time series generated by scalar observations of the state of
a nonlinear system. It can be shown that, in this context, the class of nonlinear systems
is much too large to work with as a whole; virtually no precise statement can be made
about the entire class. In particular, with no restrictions on F and g, the class of models of

the form (2.1) and (2.2) can generate any bounded time series. This section presents two
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examples designed to illustrate this point.

If the dimension of the state space is infinite, then a there is a system F and observation
function g that can produce any finite, causal time series. Let the state space, X, be
the space of bounded, right sided sequences. If x is such a sequence, we denote its i-th

component by (x);. In other words, each element, x € X is of the form

x = (x)o, (X)1, (X)2,- ...

Now suppose F is the shift operator and g observes the 0-th component of a state vector,

i.e.

(F(x))i = (X)it1, ©=0,1,2,...

g(x) = (x)o.

With these definitions, F and maps the state space to itself. This system can generate any
bounded time series by a proper choice of initial condition. In essence, by choosing the
initial condition, the entire time series is chosen. The implication is that simply specifying
that a signal was generated deterministically does not significantly limit the possible range
of time series behavior.

One might guess that the complex behavior illustrated in the previous example is related
to the dimension of the state space. On the contrary, complex behavior is possible even in
one dimensional state spaces as the following example shows.

A system that is equivalent to the shift of the previous example can be constructed
on a one-dimensional state space. According to a classical result from real analysis, the
set of right-sided sequences of real numbers has the same cardinality as the unit interval
I = [0,1] (see, for example, [7]). This means that the points of the interval I can be put
into one-to-one correspondence with the points of the space X. Let ¢ : I — X denote
this correspondence. Since ¢ is one-to-one it is invertible. As a consequence, each state

sequence generated by F corresponds to a sequence in /. This corresponding sequence can
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be determined by the following map:
zfn] = ¢ (F(¢(eln — 11)))2/ (oln - 1]),

where f is a scalar function mapping I to itself. The corresponding output time series is

generated by the observation equation
A
y[n] = 9(¢(z))=h(z).

Thus, the one-dimensional map f along with the observation function h generate the same
collection of time series that the infinite dimensional map F and observation function g do.
A similar construction could establish this type of equivalence between any two systems
operating on subsets of finite dimensional spaces.

The construction presented in the previous example is not meant to suggest a practical
method for designing signal generators. Indeed, the correspondence function ¢ is exceedingly
complicated and could never be implemented by any finite precision machine. However, the
example does illustrate the point that without narrowing the scope of inquiry, virtually no
precise statements can be made about the behavior of nonlinear systems. Since both systems
produce the same time series, it follows that joint specifications on the state space, the map
and the observation function are necessary to constrain the possibilities. In general, these
specifications consist of some restriction on the dimension of the state space, and smoothness
conditions on F and g.

In the remainder of this thesis, we will concentrate on two classes of systems. The first
class is that of piecewise continous one-dimensional maps. Such maps appear in models
of many engineering systems and physical phenomena (8, 9, 10].The second class consists
of differentiable maps from RV to itself with a differentiable inverses, i.e., diffeomorphisms
of RN. Such mode!s appear for example in the study of the time sampled evolution of

continuous time differential equations [11].
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2.1.4 Observability of Nonlinear Systems

In many situations, the entire state of the map F cannot be measured, either because it is
inaccessible or because a full measurement would be prohibitively complex. It is natural to
ask then what information about the entire state can be inferred from a scalar measurement
like (2.2). For instance, we may be interested in whether the geometry of a system’s attractor
can be determined from a time series observation. We will see in this section that, loosely
speaking, when F is a diffeomorphism and g is a differentiable observation function, an
image of the system’s attractor can be recovered from a time series observation to within
a smooth, nonlinear coordinate change. An important consequence of this result is that
properties of an attractor that are invariant to smooth nonlinear coordinate changes may
be measured from a time series observation. We will present an application of this result
in Chapter 7 where we explore the effects of linear time invariant filtering on chaotic time
series.

One approach to inferring properties of the vector state sequence x[n] from the scalar
observation time series y[n] is to somehow transform y[n] into a sequence of vectors. A
widely used transformation of this type, called time delay reconstruction, maps y[n] into

the sequence of vectors defined by

y[n]
y[n - 1]

|yl - L+1] |

where L is an integer specifying the dimension of X[n]. The vector %{n} is referred to as the
reconstructed vector.

A relation between x[nr] and %[n] can be derived by substituting (2.1) and (2.2) into
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(2.6) to obtain
9(x[n])
9(F~" (x[n]))

%(n] = £ O 4,1 (x[n))- (2.7)

| g(F~"+ (x[n])) |
We refer to the map Q(F'Q,L)(x[n]) as the reconstruction transformation. Thus, the recon-
structed vector can be written as a nonlinear transformation of a state vector. As (2.7)
makes explicit, the properties of the reconstruction transformation depend on L, g and F.
What is remarkable about (2.7) is that, in general, for sufficiently large L and sufficiently
smooth F and g, the reconstruction transformation is smooth and invertible with a smooth
inverse. Thus, under certain conditions, the reconstruction transformation is a smooth
coordinate change.

The next theorem makes the last statement precise using the topological notion of a
generic property, which is defined as follows. Denote by D the set of all pairs (F,g), where
F is a twice differentiable diffeomorphism mapping a compact subset X of RV to itself and
g is twice differentiable. Open sets in D may be defined through an appropriate norm. A
property is generic for systems in D if it is possessed by systems in some subset of D that is
open and dense, or a countable intersection of open dense sets. Thus, generic properties are
typical in the sense that they are possessed by a large subset of systems in D. Furthermore,
if a system F € D does not possess a particular generic property, another system arbitrarily

close to F does.

Theorem 2 (Takens [1]) Let X be a compact subset of RN. For pairs (F,g), with F :
X = X a twice differentiable diffeomorphism and g : X — R a twice differentiable function,

it is a generic property that the map ‘I’(F,g,zN +) ¢ X — R?N+1, i3 g diffeomorphism of X
in R2V+L,

Thus, a large class of systems have the property that their state sequences may be
observed (to within a smooth invertible coordinate change) from a smooth scalar mea-
surement of the state. This has a major implication for chaotic time series analysis since

some properties of the state vectors are invariant to smooth coordinate changes and hence
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may be measured from time series observations. See [1],(12],{13], and [6] for more detailed

discussions of this issue.

2.1.5 Multiple Operating Regimes of Nonlinear Systems

Certain a nonlinear systems may operate in one of several qualitatively different regimes,
depending on its initial condition,. The simplest example of such behavior is a globally stable
system with two distinct attracting fixed points. As this system evolves, one collection of
initial conditions approaches one fixed point while another collection of initial conditions
approaches the other fixed point. In general, a system with multiple regimes of operation
can be analyzed using a “divide and conquer” strategy of examining the system separately
in each qualitatively different regime. Returning to the previous example, the system with
two fixed points has the property that, with respect to steady state behavior, it may be
decomposed into two separate systems, each with a single stable fixed point. These two
systems, obtained by restricting the definition of the original system to appropriate regions
of the state space, represent two different steady state operating regimes. In essence, this
procedure breaks the attractor (the two fixed points) into pieces which cannot be further
decomposed.

We will see below that the notion of breaking an attractor in to its smallest pieces
provides a helpful way of interpreting certain time series generated by nonlinear systems.
Of particular interest in this context are attractors which cannot be decomposed into smaller
pieces. A system with an indecomposable attractor is called topologically transitive. More
precisely, a map F : X — X is said to be topologically transitive if for any pair of open
sets U,V € X there exists an n > 0 such that F*(U)NV # 0. It can be shown that, as a
consequence of this definition, the attractor of a tupologically transitive system cannot be
decomposed [4].

Another important property of topologically transitive systems, which has implications
for time series analysis, is that their entire attractor geometry can be recovered from time
series observations. This result follows from the fact that these systems possess dense orbits
[3, 4]. In particular, suppose F has an attractor X and a state sequence z[n] that is dense in

X and a time series observation of the form (2.2) is available. By the embedding theorem,
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the vectors %[n] generated from y[r] by time delay reconstruction are in general related to
z[n] through a nonlinear coordinate change. Thus, since the set {x[n]} is dense in X and
because the the reconstruction transformation is smooth, the geometry of the attractor can

be observed from time series given sufficient data.

2.1.6 A Definition of Chaos

Because of the broad scope of nonlinear systems research, no standard definition of chaos
exists in the literature. However, many notions of chaos try to capture precisely the property
that two state sequences generated from arbitrarily close initial conditions will eventually
diverge to very different state values. This notion, called sensitive dependence on initial
conditions is defined as follows. A map F : X — X has sensitive dependence on initial
conditions if there exists a § > 0 such that for any z € X and any neighborhood U of z,
there exists a y € U and n > 0 such that ||F"(z) — F"(y)|| > é.

The definition of sensitive dependence on initial conditions does not say that all points
in a 'neighborhood of x generate state sequences that diverge. Some points may, in fact,
generate state sequences that converge to the state sequence generated by x. It is this
combination of divergence and convergence that results in the complicated structure of the
some chaotic attractors.

In the remainder of the thesis, we will concentrate on systems with a strong form of
sensitive dependence on initial conditions. These systems have the property that whenever
two nearby state sequences diverge, the distance between them increases exponentially, at
least in the short term. In Section 2.2.4 we shall describe a commonly used quantifier of

this exponential divergence called Lyapunov exponents.

2.2 Statistics of Solutions

Distinct from the geometric approach to nonlinear system analysis, is an approach based
on the system’s average properties. We will see that many nonlinear systems can be viewed
in the same framework as stochastic processes using the tools of classical ergodic theory.

In this context, we will refer to the statistical properties of chaotic signals even though the
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entire signal generation methed described by (2.1) and (2.2) is deterministic. An important
point, which will be revisited below, is that a statistical approach to the analysis of nonlinear
systems need not depend on the assumption of a random initial condition, although this
assumption may sometimes prove convenient.

As with stationary stochastic processes, time series derived from state sequences of many
chaotic systems have the property that their time averages are equivalent to ensemble av-
erage taken with respect to a distribution function. Through this equivalence, the average
properties nonlinear system can, at least in principle, be computed precisely without re-
lying on empirical time averages. Thus, certain chaotic systems may be analyzed without
resorting to exhaustive simulations. This is a great advantage, for example, for the many
chaotic system that are difficult to simulate on digital computers because of finite precision
effects.

The mixing of deterministic and stochastic notions is not as odd as it may first appear;
certain natural questions concerning deterministic systems, such as what fraction of time a
state sequence spends in any given region of the state space, have decidedly probabilistic
connotations. Ergodic theory, which concerns among other things the statistical proper-
ties of certain nonlinear systems, is the natural framework within which to answer such
questions. The key property of the nonlinear system F of (2.1) that allows ergodic theory
to be applied is that there exists a probability distribution g that is invariant to F; that
is, at each time n, the state vector x[n] is distributed according to p whenever the initial
condition x[0] is distributed according to u. Such systems are called measure preserving
transformations and p is called an invariant measure.

Ergodic theory is flexible enough to be applied to both deterministic and stochastic
systems primarily because is was developed using highly abstract models for the systems
involved. Accordingly, many of its results are qualitative in nature. However, we will see in
subsequent chapters that these qualitative results form the basis of a quantitative analysis
of a large class of chaotic systems.

The statistical approach models the state space of a nonlinear system as a measure
space, i.e. a triple (2, S, u) consisting of a set , a o-ring S and a probability distribution

or measure u defined on S. This is a more detailed model than that used in Section 2.1 in
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that the state space is assumed to consist not only of a set of states (§2), but also a measure
(1) describing the distribution of states, and a collection of measurable sets (S) for which
the measure is defined. The measure of a measurable set A is denoted p(A).

Because we will always work with measures that are normalized to 1 in what follows (i.e.
, 1(2) = 1) the triple (R, S, p) is a probability space. Thus, u gives the size of any set in S
as a fraction of the size of 2. Note that this the designation of p as a probability r:easure
does not mean that the states are “random”. However, we will often use the probabilistic
terms event and probability to refer to a particular measurable set and its measure.

We will restrict our attention to maps that have certain properties that allow them
to be conveniently analyzed. In particular, the tools of ergodic theory naturally apply
to systems (2.1) and (2.2) with the property that sets that map to measurable sets in
Q or R are themselves measurable. Such F and g, called measurable transformations,
satisfy F~!(A) € S whenever A € S and g~!(E) € S whenever E is a Borel subset of
the real line. It is also useful to restrict attention to systems that that do not map sets of
nonzero probability map onto sets of zero probability. Such a map F, so-called a nonsingular
transformation, has the property that u(A) = 0 implies that u(F~!(A4)) = 0. Finally, to
ensure that expected values are well defined in terms of integrals, we often require that ¢

be integrable with respect to u, that is, that g must satisfy

A
ol [ 1ol du < .

Such a g is said to be p-integrable with norm ||g||. The collecticn of such integrable functions

is denoted L'(2, u) or simply L! hen the measure is obvious from context.

2.2.1 Invariant Measures and the Frobenius—Perron Operator

A central issue in the statistical approach to nonlinear system analysis concerns how a
distribution of states evolves as the map F is repeatedly applied. As mentioned previously,
certain distributions have the property that they are invariant to the application of F.
Because these invariant distributions are important for what follows, we define them more

precisely and describe some of their properties.
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Suppose that the measure p describes a distribution of initial conditions x[0] and that
py describes the distribution of x[1], i.e., the points of the form F(x[0]). Then g, is defined
by the relationship

p(A) = p(F~1(4)).

for all measurable sets A. More generally, p,, the distribution of x[n], is defined by

pn(A) = p(F7"(4)). (2.8)

An invariant measure is one satisfying p, = p for all n > 0. Equation (2.8) implies that

when y is invariant with respect to F, it satisfies the relationship,

H(A) = u(F1(4)). (2.9)

Although all of the systems that we will study in this thesis have invariant measures, it is
important to emphasize that, in general, this need not be the case. Examples of systems
with no invariant measure can be found is [14].

The evolution of measures described by (2.8) has a probabilistic interpretation. Suppose
for the moment that the initial condition x[0] of the map F is random and described by the
probability distribution p. Then x[n] = F"(z[0]) is random with probability distribution
Un. When g, = pu for all n the state vector has the same probability law for all time.
We will presently see that this probabilistic analogy allows certain nonlinear systems to be
viewed as stochastic processes.

When x4 has a density p, the measure of a set is defined by

n(A) = /A p(z) dz

for all measurable sets A. Since F is nonsingular, p; also has a density, which we denote

by p;. According to (2.8), the two densities satisfy

_/Apl(:c) dz = ./F"‘(A) p(z) dz. (2.10)
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Because (2.10) holds for any probability measure y defined by a density, it can be shown
[15]) that (2.10) defines a unique linear operator which we denote by Pp. The operator Pp

maps integrable functions to integrable functions and satisfies

/A Ppp(z) dz = /F_,(A) p(z) dz. (2.11)

With this definition of Pp, the initial and time one densities are related by

Ppp=p1.

The operator defined in (2.11), commonly called the Frobenius-Perron (FP) operator,
compactly describes how densities of states evolve under the application of F. Again,
speaking probabilistically, when x[0] is random and governed by a probability density p,
then x[1] = F(x[0]) is random and governed by the probability density Pgp.

An invariant density, i.e. one associated with a measure satisfying (2.9), satisfies the
equation

Ppp=p.

This is a fixed point equation in the infinite dimensional space of integrable functions and
is difficult to solve in general. However, we will see in Chapters 3 that for certain maps
the invariant density can be determined exactly. We will also see how the invariant density

forms the basis for a numerical approach to the statistical analysis of chaotic systems.

2.2.2 Relating Chaotic behavior and Stochastic processes

In this section, we will explore the connection between nonlinear systems and stochastic
processes and in particular, the manner in which their associated time series are generated.

A discrete time stochastic process is an indexed set of random variables. More specifi-
cally, suppose (R, S, ) is a measure space. A sample sequence of the stochastic process is

determined by choosing a point of w € Q randomly according to the probability distribution
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p. Associated with each w is a sequence

fol0], £u(1), £u12), ... . (2.12)

The stochastic process is comprised of sequences of the form (2.12). For fixed k, f,[k] may
be viewed as a random variable. From this point of view, properties of the stochastic such as
stationarity, independence and correlation are relation between the random variables f,[k].
For example, one implication of stationarity is that E{f,[k]} is independent of k.

Once the random experiment is performed, w is fixed and the sequence (2.12) is deter-
mined for all k. Thus, the properties of any particular sequence can be studied outside of
any probabilistic framework. One subset of the theory of stochastic processes seeks to relate
the properties of individual sequences—typically a time average—to those of the ensemble—
typically an average over Q. As we shall see in the next section, such an approach can be
applied to chaotic siénals as well.

A chaotic seﬁuence with random initial condition is a stochastic process whenever the
nonlinear system is a measurable transformation. Each member of the ensemble of sequences

generated by (2.1) and (2.2) is of the form

g(x[0]), 9(F(x[0))), 9(F*(x[0))), - .. (2.13)

A relation between the sequences of (2.12) and (2.13) is determined by the correspondences
w = x[0] and
flk] = g(F*(x[0]))-

Again, as above, once the initial condition is chosen, the chaotic sequence is determined for
all time.

The primary feature distinguishing chaotic sequences generated by smooth ronlinear
systems from more general stochastic processes is that for different values of k, the functions
g o F¥ of (2.13) are necessarily closely related to one another because of the smoothness of
F and g. dn the other hand, more general measure preserving transformations need have

no structure other than measurability and nonsingularity.
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It can be shown that if F is a measure preserving transformation and the initial con-
dition x[0] is distributed according to the invariant measure, the resulting process, (2.13),
is stationary. In fact, it can be shown that every stationary process can be modeled by
an observation of a measure preserving transformation of the form (2.13) [16]. Again, the
general stationary stochastic processes and ensembles of chaotic sequences differ primarily

because of the smoothness of F and g.

2.2.3 Relating Time and Ensemble Averages

Given the close relationship between chaotic time series and stochastic processes, it is not
surprising that similar analysis techniques appiy to both areas. In particular, time averages
of chaotic signals can be related to ensemble averages taken with respect to an invariant

measure.
Before proceeding to relate time averages to ensemble averages, the existence of time

averages must be established. The existence of the limit

_ . 1 n-1 "

g(x[0)) = lim — kX::,)y(F (x[0]))- (2.14)
for arbitrary measurable functions g is a classical problem of ergodic theory. The Birkhoff
ergodic theorem asserts that the average (2.14) converges when F is measure preserving.

Theorem 3 (see e.g. [16]) Let (Q,S,p) be a probability space, F : Q — Q a measure
preserving transformation, and g € L} (2, p). Then

1. limpyeo 157220 g(F¥(x)) = §(x) ezists almost everywhere;
2. g(F(x)) = g(x) almost everywhere;

3. §(x) € L', and ||g]| < |lg]l;

4. if A€ S with F~1(A) = A, then [, gdp = [, §dy;

5. limpoyoo £ 720 g(F*(x)) = §(x) in L.

Note that the time average §(x) may depend on the initial condition of F. When g(x) is in-

dependent of x, i.e., when its value is constant, F is referred to as an ergodic transformation.
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We will define ergodicity more formally below.

As discussed in Section 2.1.5, a nonlinear system may potentially operate in one of
several different regimes depending on its initial condition. We saw that this could occur
when the attractor of the system is decomposable. The notion of indecomposable attractors
lead to the definition of topological transitivity. The analogous notion in ergodic theory is
metric transitivity or ergodicity. Ergodic transformations are those for which the invariant
measure is indecomposable. The property of ergodicity also isolates the important class of
systems for which the time averages (2.14) are independent of initial condition.

In order to formally define ergodicity, we first require a definition of invariant set which
takes into account the measure space setting of the current discussion. A set B € § is called
invariant if u(f~!(B)AB) = 0 where A is the symmetric difference AAB = (A-B)N(B-A).
Note that this definition of invariant set differs from that given in Section 2.1.1. A measure
preserving transformation is ergodic or metrically transitive if the only invariant sets have
measure either 0 or 1. A consequence of the definition of ergodicity is that an invariant
measure, g, cannot be decomposed into smaller nontrivial measures. In other words, if F is
ergodic and p = p,/2 + ps/2 with p, and pp defined on disjoint invariant sets, then either
pa =0o0r pp =0.

When F is ergodic, it can be shown that the time average g(x) is constant almost
everywhere, i.e. it is almost everywhere independent of the initial condition. It follows from

the Birkhoff ergodic theorem that for ergodic transformations,

.¢7=/ﬂgdu. (2.15)

Thus time and ensemble averages are equal only for ergodic systems.

Birkhoff’s theorem implies a s} ecial role for integrals with respect to the invariant density
of a system as in (2.15). We will often refer to such integrals as expected values. Using
this terminology, it is now possible to refer to many statistics of deterministic systems in

familiar terms. For example, the autocorrelation sequence of a chaotic signal is of the form

Ryc[k] = E{z[n]z[n + k]}
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where E denotes expectation. Similarly, a chaotic signal’s power spectrum is the Fourier
g P

transform of its autocorrelation sequence.

2.2.4 Quantifying Sensitivity to Initial Conditions

In addition to arithmetic averages of the form (2.14), geometric average also arise occasion-
ally in the study of stochastic processes. In the case of matrix functions of a stochastic

process, these averages are of the form
AG0)) = lim (M(n, x[0))"M(r, x[0])25, (2.16)

where

M(n, x[0]) = M(x[n — 1])M(x[n — 2]) - - - M(x]0]).

The Multiplicative Ergodic Theorem, due to Oseledec [17], asserts that under some mild
restrictions, geometric averages of the form (2.16) exist.

The Multiplicative Ergodic Theorem (MET) is phrased in terms of general measure
preserving transformations. However, when F is also differentiable, the MET has an inter-
pretation in terms of quantifying sensitivity to initial conditions. Specifically, consider a
nominal state state sequence generated from an initial condition x[0] and a state sequence
generated from the perturbed initial condition x[0]+A . We wish to quantify how these two
state sequences diverge from or converge to one another. To this end, define the difference

between state values

d(n, A, x[0]) = F*(x[0] + A) — F*(x[0]). (2.17)

By linearizing d{n, A,x[0]) in its second argument, first order information concerning its
may be obtained for the case of small perturbations A . Differentiating (2.17), we obtain

that the linearized difference is of the form

d(n, A, x[0]) = DF™(x[0))A, (2.18)
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where DF is the Jacobian of F. Using the chain rule , (2.18) can be written in the form
d(k, A, x[0]) = DF(F"~1(x[0])) DF(F™~2(x[0])) - - - DF (x[0]) A. (2.19)

Setting M(x) = DF(x), we see that the conclusions of the the MET hold for the product
(2.19).
In particular, the MET asserts that there are numbers a;(x), commonly called the

Lyapunov exponents of F, such that for large n
lld(n, x[0], A)]| = | DF™(x[0]) A[| = £ )" (2.20)

It follows from (2.20) that when a; > 0, the norm of the linearized difference grows expo-
nentially for large n. The implication is that state sequences generated from nearly identical
initial conditions may diverge exponentially.

By definition, the expression for the linearized difference d(n,x[0],A) holds only for
small A, so the exponential divergence of state sequences will occur cnly until the linear
approximation ceases to be accurate. It should not be surprising that systems with positive
Lyapunov exponents have sensitive dependence on to initial conditions [3]. The Lyapunov
exponents provide a quantitative measure of this sensitivity by providing rates of divergence.

Because they address very different types of questions, the geometric approach and
the statistical approach to nonlinear systems analysis are complementary. In subsequent
sections we shall use both as a framework for a quantitative study of the statistical behavior
of a specific class of chaotic systems as well as an investigation into the effects of linear

distortions on chaotic signals.
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Chapter 3

Statistical Properties of Markov
Maps

In this chapter and the next, we consider signals generated by what are arguably the
simplest chaotic systems — those with only one state variable. Such signals are generated

by the recursion

z[n] = f(z[n - 1)), (3.1)

where f maps scalars to scalars.

As demonstrated by the examples of Chapter 2, restricting attention one-dimensional
~ systems may be no restriction at all; one-dimensional systems can generate the same signals
that higher dimensional systems can. A less general approach allows some sharp statements
to be made. In particular, we shall concentrate on a class of one-dimensional systems that
are piecewise-smooth. The detailed definition of the class will be deferred until a subsequent
section. For now, it suffices to say that the class includes systems that have been proposed
as models for a variety of engineered systems and physical phenomena.

This chapter and Chapter 4 have the specific goal of determining the statistics of certain
one-dimensional systems. We consider a class of statistics broad enough to include those of
interest to signal processors — for example the autocorrelation and all higher order moments
of the process generated by the system. The chapters differ in the class of systems consid-

ered. In this chapter, we consider a class of piecewise-linear systems that can be analyzed
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a 1

Figure 3-1: The Tent Map of Eq. (3.2)

exactly. In Chapter 4, we consider a much larger class of piecewise-continuous systems that
admit an approximate analysis.

We begin this chapter with a motivating example. The remainer of the chapter factors
into three parts. First, we define the class of maps and the class of statistics that will be
studied. Next, we determining analytical expressions for the statistics. Finally, we make

some general observations concerning the structure of the statistics.

3.1 A Motivating Example

In this section we motivate the results in the remainder of the chapter by deriving an
expression for the power spectrum of a simple chaotic map. The result presented here is
not new—it was first reported in [18). However, our derivation has two advantages over
that of [18] : it is substantially simpler and, more importantly, it can be generalized to
apply to a much larger class of maps.

We wish to determine the power spectrum of the stationary process generated by the

map
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by computing the Fourier transform of its autocorrelation sequence. The map f generates

time series of the form z[n] = f(z[n — 1]) so the k-th autocorrelation lag of the process is
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of the form

R..[k] = E{z[n]z[n+ K]}
= E{z[nf*(z(n))}. (3.3)
The expected value (3.3) is taken with respect to the marginal density of z[n] or more
precisely, the invariant density of the map f.
The invariant density must be determined in order to compute the expected value (3.3).
According to the discussion of Section 2.2.1, the invariant density of f is a fixed point its
Frobenius—Perron operator. Although this fixed point is difficult to determine for general

maps, in this special case a solution straightforward. The FP operator corresponding to f

relates the probability density of z to that of y = f(z) and has the form

Pyp(z) = ap(az) + (1 - a)p(1 — (1 - a)z). (3.4)

It follows that invariant density satisfies

p(z) = ap(az) + (1 - a)p(1 - (1 - a)z). (3.5)
A solution is the uniform density

1 0<z<1
p(z) = (3.6)
0 otherwise

as can be verified by substitution into (3.5). We shall take the expected value with respect
to this density.
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Using (3.6), we can relate consecutive autocorrelation values through the following series
of manipulations:
R.:[k] = E(z[n]z[n+ k]) (3.7
= / zf*(z)dz
[0.1]
= / a:f"(a:)dx+/ zf*(z)dz
[O,a] [“vl]
= @ / 2f*(z/a)dz ~ (1 — a)? / of*(1 = (1 - a)z)ds
fo,1] [0.1]
+[ (-0 Q- - o)
(0,1
= a2/ zf*(z)dz - (1 - a)2/ zf* 11 - (1 - a)z)dz
[0.1] [o,1]

+ ](1 ~ a)f*"}(z)dz

0,1
= (2a-1) '/M zf*(z)dz + fm(l — a)f*1(z)do
= (2a-—1)R; [k - 1]+ (1 - a)E(z). (3.8)

The second equality is a result of the definition of the expected value and the uniform
invariant density; the third is obvious; the fourth is a result of the substitution y = £ in the
first term and y = ﬁ in the second; the fifth follows from the the definition of the map f;
collecting terms yields the sixth ; and the seventh is an application of the definition of the
autocorrelation.

The derivation of (3.8) is valid for £ > 0. For k < 0, we have R;[k] = R:z[—k] since
the autocorrelation sequence is conjugate symmetric and z[n] is real. Using in (3.8) the
quantities R,,[0] = E(z?) = 1/3 and E(z) = 1/2, which both follow from the form of the

invariant density (3.6), we obtain that the Fourier transform R[] is of the form

1
(1-(2a-1)2)(1 - (2a-1)z7Y)|,_ v

Sez(e) = o + m8(w).

Thus, the power spectrum associated with f is that of a first order autoregressive process
with mean 1/2.

The technique presented in the sequel is more general than the example of this section—
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it computes a larger class of statistics for a larger family of maps. The present example does,
however, illustrate the approach we will take in the sequel. In particular, the derivation
relied on the explicit form of f and its piecewise linearity. In the next section, a class
of piecewise-linear systems called Markov maps, unique because their statistics can be
determined in closed form, is introduced and analyzed. As the Markov maps include the
tent maps presented in this section, the results of this section will be special cases of more

general results.

3.2 Piecewise-Linear Markov Maps

The main objects of study in this chapter are the eventually-expanding, piecewise-linear
Markov maps. These maps, which are defined below, were first introduced because their
invariant densities exist and can be exactly determined [19, 20]. Very little subsequent
work has been directed toward understanding their more general statistical properties. The
following sections explore these more general properties.

Eventually-expanding, piecewise-linear, Markov maps are one-dimensional chaotic sys-

tems which are amenable to analysis. They are defined as follows.

Definition 1 A map f : [0,1] = [0, 1] is an eventually-ezpanding, piecewise-linear, Markov

map if and only if

1. There is a set of partition points 0 = ag < a1 < --+ < ay = 1 such that restricted to

each of the intervals (a;-1,a;), the map f is affine, i.e. f(z)|(a;_,,a,) = 8i% + bi.
2. For each i, f(a;) = a; for some j.
3. There is an integer k > 0 such that inf¢[o ) |%f"(z)| > 1.

Thus, an eventually-expanding, piecewise-linear Markov map consists of a finite number of
affine segments; maps partition points to partition points; and is strictly expanding after
a finite number of iterations. For example, the tent map (3.2) is an eventually-expanding,
piecewise-linear, Markov map. In fact, all of the maps we will examine in this chapter are

eventually-expanding, piecewise-linear Markov maps. Rather than repeatedly using this
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1 +

f(x)

Figure 3-2: An Example of a Piecewise-Linear Markov Map with Two Partition Elements

cumbersome but precise name, the abbreviated name “Markov maps” will be used when
there is no possible ambiguity.

It is appropriate here to introduce some notation that is useful in the subsequent devel-
opment. The interval [a;_;,a;] is called the i-th partition element and denoted by I;. By
definition, Markov maps take partition points to partition points and hence map partition
elements onto unions of partition elements. We denote by Z; the set of indices of partition

elements in the image of I;. With this notation, the image may be expressed in the form
f(I) = Ujer, ;-
Figure 3-2 shows the graph of the simple Markov map

I8z;4+a 0<z<a
L(l-z) a<z<1

1—-a

f(z)= (3.9)

This map has partition elements I; = [0,a] and I, = [a,1]. The index sets associated with
the partition elements are Z; = {2} and I, = {1,2}.

More generally, the dependence of a Markov map on its parameters is made explicit in
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the following functional form:

N
f(z) =Y (siz + bi)Xi(z), (3.10)

i=1

where the X;(z) is the indicator function

1 ifzel;
Xi(z) = b (3.11)
| 0 otherwise
As a result of the eventually-expanding property, the slopes satisfy |s;| > 0. It follows that
Markov maps are nonsingular transformations (see Section 2.2).
As mentioned in Section 2.2.1, analyzing a chaotic systems using a statistical approach

requires it to have an invariant measure. All Markov maps have invariant measures (see

[19] for a proof). The next section shows how these measures can be explicitly determined’.

3.3 Computing the Statistics of Markov Maps

An important property of Markov maps is that many of their statistics can be calculated
in closed form. Section 3.1 presented an example calculation for the special case of the
autocorrelation of the tent map. This section, introduces a broad class of statistics that

can be solved for in closed form.

We will derive closed form expressions for statistics of the form

Rpiho bt [brs - -1 k) = E{ho(z[n])ha(z[n + k1)) - -hr(z[n + K]}, (3.12)

when z[n] is a time series generated by a Markov map f. These statistics, which we
call correlation statistics, include the autocorrelation and all higher order moments of the
process generated by f. The broad definition of correlation statistics makes them potentially

applicable in a number of chaotic data analysis and synthesis problems. Two applications

! An invariant measure of a Markov map is smooth with respect to Lebesgue measure. Coupled with the
piecewise-linearity of the map, this implies that, formally, the rules of classical calculus can be used rather
than those of measure theory for our statistical calculations in the following sections.
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are presented in this thesis: Chapter 5 presents a statistical analysis of a switching power
converter; Chapter 6 presents a method of synthesizing Markov maps with white power
spectra.

The statistics of a chaotic system depend on its Frobenius—-Perron operator. One con-
nection between statistics and the FP operator is that the expectation of (3.12) is taken
with respect to an invariant density that is in turn a fixed point of the FP operator. Invari-
ant density aside, the FP cperator is involved in the computation of correlation statistics
at a more fundamental leve!. In particular, it can be shown that the FP operator satisfies

the relationship

/(0.11 hy(z) Prho(z)dz = /m hy(f(z))ho(z)dz (3.13)

for all integrable A;. The correlation statistic of (3.12) can be written in the form

Rpnohysnhelkry .o ke = f[o 4 ho(2)h1(f*(2)) - - he (f* (2))p(2)dz (3.14)

where p(z) is the invariant density of the map f. Repeated application (3.13) to (3.14)
yields

Rf;ho,hl,...,h,.[kl, ey k,.] =
/{; . hr(z)(Pfr"kr—l (hr—l(z) .o .sz-'kl (hl(ﬂ:)P}l (ho(x)p(z))) .. )dm (315)

Equation (3.15) explicitly displays the relationship between the FP operator of a map and
its correlation statistics. This relationship is valid not only for Markov maps but for all
nonsingular one-dimensional maps—a fact we shall make use in Chapter 4. For Markov
maps we will show below that (3.15) suggests a strategy for computing the integral in

closed form. As a first step toward this end, the invariant density must be determined.

3.3.1 Invariant Densities of Markov Maps

Markov maps have invariant densities that can be determined in closed form. As the
invariant density must be known in order to determine the correlation statistics (3.15), this

result is of significant interest. The derivation of the closed form solution for the invariant
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density of a Markov map was first reported in [20] and later in [19]. We include it here for
primarily for completeness and to lead into the discussion of more general statistics.

The FP operator for nensingular, one-dimensional maps of the form

N

f(z) =) flz)Xi(z)

=1

is (see [15])

2 = S AU @)X (2)
(PA)@ =2 50y

The FP operator for a Markov map follows by substituting (3.10) into (3.16) to obtain

(3.16)

N h(ESE)X 1) (2)

(Prh)(z) =) o
i=1 ¢

(3.17)

Our goal is to determine invariant density of a Markov map, or phrased differently, to
find a fixed point of (3.17). A fact that is instrumental in finding such a fixed point is that
the invariant densities of a Markov map is constant on each partition element [19]. More

specifically, p(z) is of the form

N
p(z) =) piXi(z),

i=1
where p; > 0 is a constant. It is thus natural to examine the structure of the FP operator
acting on functions that are constant on the partition elements.
We proceed by examining the FP operator acting the indicator functions X;. Its action
on linear combinations of indicator functions follows from its linearity. Substituting h(z) =

X;(z) into (3.16) and simplifying yields
1
Pij(:c) = -'?-l- Z X,-(z). (3.18)
IV ieT;

Thus, the image of the indicator function of a partition element is a sum of indicator func-
tions of partition elements. As a consequence of its linearity and (3.18), the FP operator
maps linear combinations of the indicator functions {X;}, to linear combinations of indi-

cator functions.
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In what follows, it is convenient to denote by Py the N dimensional space spanned by

{x;}X,. Each point in a Pp is of the form

N
h(z) = Zh,-x,-(z). (3.19)
=1
where h; is a constant. Each point of Py can thus be uniquely represented by the N-tuple
h =[hy,..., hn]T. So for example, the characteristic functions X; and X correspond to the
N-tuples X; =[1,0,...,0]7 and X; =[0,1,0,...,0]7 respectively.

By the previous discussion, a Markov map’s FP operator maps Py to itself and thus,
when restricted to Pp, can be represented by an N x N matrix. We denote this matrix by
Py. With respect to the vectors {X;}V,, the i-th column of the matrix is the coordinate
vector of the image of X;(z) under P; as in (3.18). More specifically, the elements of P, are

_ L ifieZ;
[Polij=4{ ™ o (3.20)
6 otherwise
where s; is the slope of the j-th affine segment of f (see (3.10)).
The matrix P, is the basis for an analytic solution for the invariant density of a map f.

An invariant density is a solution to the fixed point equation

Pyp(z) = p(z) (3.21)

Suppose p(z) is piecewise-constant on the partition {I;}),. Then (3.21) can be expressed

in terms of Py as

Fop = b, (3.22)

where p is the coordinate vector of the invariant density p(z). In other words, according to
(3.22), the coordinate vector of an invariant density is the eigenvector of Py corresponding
to the eigenvalue 1.

That such an eigenvector/eigenvalue pair always exists has been shown by Friedman

and Boyarsky [21]. Specifically, they have shown:
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Lemma 1 The matriz Py is diagonally similar to a column stochastic matriz, i.e.
T =D 'BRD, (3.23)

where, D is diagonal and has positive eniries. The matriz T has posiiive elements and each

of its columns sums to unity.

Similar matrices have the same eigenvalues. It follows that P has the same eigenvalues
as some stochastic matrix. Frobenius’s theorem [22] asserts that all stochastic matrices,
and hence Py, have an eigenvalue equal to unity and further that this is an eigenvalue
of maximum magnitude. Because the elements of Py are nonnegative, the eigenvector
corresponding to the eigenvalue 1 has positive components. The invariant density resulting
from this eigenvector is thus nonnegative in accordance with intuition.

Suppose that the solution to the fixed point equation (3.22) is 5 = [p1,...,pn]T. An

invariant density of f is of the form

p(z) = Z piX (3.24)

l-l p‘II | =1

where |I;| = a; — a;-; is the length of the i-th partition element and the leading constant

ensures that the density has an integral equal to one.

Example

Consider again the piecewise-linear Markov map of (3.9) shown in Figure 3-2. When re-
stricted to the two-dimensional space of piecewise-constant functions, the FP operator as-
sociated with f is represented by the 2 x 2 matrix

0 1-a

Po=

a
T—a l1-a
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Figure 3-3: A Comparison of the Analytic and Empirical Density for the Markov Map of
the Example

The eigenvector associated with the eigenvalue 1 is p = [(1 — a), 1]7. Referring to (3.24),

the invariant density is the piecewise-constant function

=
IA
4
IA
- Q

p(z) =

J_ 3
=)
1A
8
IA

l=-a

In Figure 3-3 this density is compared with an empirically estimated density computed via

a histogram of 50000 points generated by the map f with parameter a = 8/9.

3.3.2 Matrix Representations for the FP operator

In light of the relationship (3.15) between the FP operator and correlation statistics, a
compact representation of the correlation statistic relies on a compact representation of the
FP operator. By definition, the FP operator is an infinite dimensional linear operator since
it maps the infinite dimensional space of integrable functions to itself. However, as we have
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