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Abstract—We develop coding strategies for estimation under ~ While one might think that coupling estimation and com-
communication constraints in tree-structured sensor networks. munication would require global coordination, we show how
The strategies have a modular and decentralized architecture. 1 affact such coupling in a distributed manner. We present a
This promotes the flexibility, robustness, and scalability that dul dd tralized strat that iointly add th
wireless sensor networks need to operate in uncertain, changing, mo u_ar gn ecen ra_|ze_ strategy _a ]qln y addresses the
and resource-constrained environments. The strategies are quantization, COmmUOICé}t!On, and estimation aSpe(_?tS of the
based on a generalization of Wyner-Ziv source coding with problem. Our design significantly outperforms strategies where
decoder side information. We develop solutions for general data communication and signal estimation are decoupled.
trees, and illustrate our results in serial (pipeline) and parallel As the simplest model from which we can obtain useful

(hub-and-spoke) networks. Additionally, the strategies can be . . . , .
applied to other network information theory problems. They insight, we consider the sourse= x" to be estimated to be

have a successive coding structure that gives an inherently less@ lengthn vector of independent identically distributed (i.i.d.)
complex way to attain a number of prior results, as well as random variables, where is sufficiently large. Many of the

some novel results, for the CEO problem, multiterminal source nsights derived carry over naturally to more elaborate source

coding, and certain classes of relay channels. models. The sensor network consistslo$ensor nodes where

Index Terms — sensor networks, distributed estimation, data n,OdFj‘l measurey;. The source and observations are jointly

fusion, side information, Wyner-Ziv coding, rate distortion the-  distributed, but memoryless.

ory, CEO problems, multiterminal source coding, distributed We llustrate our ideas in the context of tree-structured

detection, relay channels. networks. In a “sensor tree”, the tree implies a data routing
from “leaf” nodes to a “root” node. Figure 1 depicts such a
network. Each node receives messages from neighboring nodes

|. INTRODUCTION above it in the tree, and sends a message to the next node

Starting from a set of architectural principles appropriafé®Wn the tree. In the figure, Nod& measurey;, receives
for wireless sensor networks, we develop and analyze effiéssages from Nodeb and 2, and sends message; to
cient coding techniques for estimation under communicatidiPde 6. Depending on the application, our objective may be
constraints. We base our approach on information-theoref:€Stimatex at all nodes, or perhaps only at the root node.
ideas of source coding with decoder side information. We focus on a digital model for inter-node communications,

The central characteristic differentiating estimation in sensgP"Sisting of fixed-rate links. Thus, in Fig. 1, if message
networks from more traditional contexts is that data is nét imited Igo rate?, bits per observation sample, them <
co-located. Limits on communication between sensor nodes -+ 2" }- This model decouples the application-layer
typically prevent us from conveying all data losslessly to gstimation problem from the physw_al-layer communication
central location for processing. Hence, many standard estinfsoblem, and allows us to focus directly on the effect of
tion techniques cannot be directly applied. Instead, we mifgmmunication con;tralnts on estimate quality. The glgorlthms
determine what is the most important information for noded€ develop can be implemented on top of any physical layer.
to share, and design quantizers to encode that informatidfiturally, more advanced physical layer implementations will
This leads to a required coupling of the estimation arjgad to_hlgher data rates, and better estlmatlon performance.
communication subtasks for efficient implementation. In this paper we concentrate on scenarios where the sensor

tree is given. Routing and rate allocations would have to be
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Source signal, x indirect (noisy) observations, and as extending the hub-and-

N . - Sensor node spoke CEO model to sensor trees. In Sec. V-A we show that
R @ the coding strategy we introduce gives a novel and inherently
less complex way to achieve the rate-distortion optimal CEO
results of [21]. We also note that in certain situations where
sources, channels, and distortion measures are well matched,
very efficient joint source-channel coding approaches [13]
present an attractive alternative to rate-constrained schemes.

L A,mzl_@ @
@ Multiterminal source coding is another research area re-
lated to the problems and approaches considered herein. In
\ K\ it rate this case, the goal is to jointly estimate all observations

, ¥, rather than some underlying source signal. This

my

Y

y @ communication link yi,¥2, .- nan .
6 vein of research was initiated by Slepian and Wolf [31] for the

@ lossless encoding of a distributed pair of correlated source
\ signals. Their elegant solution motivated many extensions,
\ both lossless [36], [16], [15], [2] and lossy [33], [3], [20], [41].
@ The full solution to the latter remains unsolved. In comparison
Root node with multiterminal source coding, in our context we have no

Fig. 1. A sensor network is shown consisting of nine sensor noda ecific interest in the observations, y», ..., yr, other than
1g. 1. .
and tree-structured data routing. Sensor nbaddservesy; (shown M how they can be used to estimateln Sec. V-B, however,

explicitly for nodes 1,2,3,6), receives messages from neighbori¥g® Show how to attain the rate-distortion region of [33], [3]
nodes higher up the tree, and sends a rate-constrained messagésing the coding strategies developed in this paper.
to the next node down the tree. Finally, a related thread of work focuses on problems of
detection with distributed sensors (e.g., [32], [35]). In this case,
- . oo tqe objective is to make a decision about the source, rather than
for unanticipated or changing tasks, e.g., when individua : : . o :
. . n estimate of it. We briefly connect to distributed detection
nodes are unreliable, or when the location of phenomena under . .
. problems in Sec. V-C where we apply our results to certain
observation changes.

We design our algorithms to have decentralized knowledé:!éaISSes of relay channels [3]

requirements so that the network can operate successfully even
when each node’s knowledge is restricted to local netwotk Paper Insights and Contributions

conditions. In contrast, if each nod.e. were required to haver, insights and contributions of this paper are both archi-
knowlgdge of glpbal r_1etV\_/ork c_onc_J|t|ons, Fhen_ the cost %ctural and technical. First, we show that techniques of coding
collecting and d|ssem|nat|ng _th's '”fo”‘_“?“"” N an Up-tQuin decoder side information (and the “binning” ideas that

date manner could.be proh|p|t|ve. Ata m'”!m“m’ nel(‘:’hbormgnderlie them) have an important role to play in the design of
nodes must coc_)r(jmate their commumcatlon_ rate; and MUliistical inference algorithms for communication-constrained
have some statistical knowledge of the relationship betweghy <, networks. While a similar point is made, e.g., i
their data sets (perhaps, e.g., in the form of signal-to-noise&;mext of the CEO problem, this paper shows how to apply

distortion-to-noise ratios). Without the former they could nq} o<o ideas to the more general topologies of sensor trees.
agree on a communication protocol, anq without the Iqtter th e employ well-understood random coding techniques but, as
would have no basis on which to combine data to estimate Scussed in Sec. II-B, the extension to trees relies on a less

source. We focus on algorithms that rely on this bare minimuv\n?ell—known generalization of Berger's Markov Lemma [3].

of knowledge. Our second point is that modularity and decentralization are
important principles underlying the design of flexible, robust,
B. Related Work and scalable sensor networks. While in some cases (though, as
The coding strategies of this paper build, in part, upone show, not all) performance may be lowered in comparison
Wyner and Ziv's [38] approach to coding with decodewith non-modular and centralized designs, gains in these other
side information. In this context, this paper ties in with @ystem criteria will often outweigh such losses.
growing body of work focusing on side-information coding Thirdly, the estimation strategies we present are examples of
fundamentals, constructions, and dualities (see, e.g., [1], [8pft” coupling across traditional network layers. The strate-
[25], [26], [42]). A related set of work considers the CEQies require an “awareness” both of what is going on at the
problem [4]. In the CEO problem a number of sensor nodghysical layer of the network, in terms of communication rate,
make noisy observations of an underlying source signal. Eaahd at the application layer of the network, in terms of side
then sends a message to a central hub node (the “Chigbrmation quality. We show that such coupling can lead to
Executive/Estimation Officer”) that estimates the source. Tlsgynificant performance gains, but can be implemented without
CEO problem is studied further in [34], [21], [41]. Theviolating the traditional layering paradigm of networks.
perspective taken in this paper can be thought of as viewingFinally, as mentioned in Sec. I-B, we show that the coding
the CEO problem as a generalization of Wyner-Ziv to multiplstrategies introduced can be profitably applied to a number of
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0 - - Estimate-and—quantize a final point of comparison, the dashed line plots the infinite-
4 —- Side-intormation-anare | rate boundgilyh“%, which is only achievable by relaxing all
oF communication constraints.
§ -3 N E. Paper Outline and Notation
;— ” ‘\\\\ | The paper is organized as follows. Sec. Il describes the
g N e main results needed to develop the side-information-aware
f -5t N\ 7 - strategies. In Sec. lll we apply these results to sensor trees
% and develop simple cut-set bounds. Sec. IV discusses Gaussian
£ o 1 sources with quadratic (mean-squared) distortion measures,
= and presents illustrative examples. Sec. V discusses connec-

N tions to other network information theory problems: the CEO
o = o problem, multiterminal source coding, and relay channels.
Node number, | We useI(-;-) to denote mutual information, and, to

o ) denote the set of al-strongly-typical sequences of length-
Fig. 2. Mean-squared estimation error versus node number in a dajgs, respect top,(z) (using standard definitions as presented,
pipeline example with constant fixed-rate links. e.g., in [10]). The superscript applied to an event denotes
its complement,|-| applied to a set denotes its cardinality,
?enotes the null sek~ is used to denote Markov chain

related problems. The resulting solutions have novel structurQ? i . )
ationships, and? [-] denotes expectation.

that displays attractive complexity and scalability properties.r.e

. Il. SIDE-INFORMATION-AWARE DIN
D. lllustrative Results S © © Cobine

To give a sense of the performance improvement that can bén this section we present the results that underlie our coding

effected by making a sensor network side information “aware' 2€gies developed in Sec. 1l In Sec. II-A we present an

we now give illustrative results for both side-informationfj‘Chievable distortion-rate trade-off for our canonical one-step
pled communication and estimation problem. In Sec. II-

aware and “unaware” strategies. We consider a data—pipelineCBFj ) i X o7
“serial” network, a class of networks discussed in some degthWe describe how this result relies on a generalization of
later in the paper and illustrated by node groupings, 6) in e Markov 'L.emm'ah which wehterm the S”engl Markov

Fig. 1 (and shown schematically later in Fig. 3). The sourdgMma to distinguish between the two. Finally, in Sec. II-C,

x to be estimated is an i.i.d. Gaussian sequence of variate discuss how these results relate to earlier work.

o2 = 4, observed at each node in independent equal-variance
additive white Gaussian noise of varianee4/3. The inter- A, One-Step Problem

node communication rates are set equalRte= 2.5 bits per , o .
The simplest communication-constrained sensor network

observation sample for all node pairs. . . .
P P c(§)n3|sts of a single encoder and a single decoder. The source

“Estimate-and-quantize” is a strategy that uses decoder si ! .
. . . g . ) 0 be estimated is observed gg at the encoder, and as
information at the application layer during estimation, but ng . .
at the decoder. Based on its observatignthe encoder

during communication. Communication occurs in a multi-st . ! e

. . ansmits a message over a fixed-rate bit pipe to the decoder.
fashion where each node forms a source estimate based _on . .
: . . : e decoder produces source estimatas a function ofm
its observation and the message it received from the node; . ) . o
. . . and its observation or “side information’s. In order to more
just upstream. It quantizes that estimate at a rate equal to Iis .

L . .__easily apply the results we develop to larger networks, we
communication rate, and sends the corresponding quantizatio . : ; .
) . include a third source observation, not available at either
index to the next node downstream. In Fig. 2 we plot the mean-

LT ; : ncoder or decoder. Eventualy will correspond to source
squared estimation error of estimate-and-quantize for the dafa- : ; .
S . observations elsewhere in the network. For this setup we have
pipeline example with the dash-dotted curve.

The side-information-aware strategies we present in trhhse following result:
9 P Theorem 1:Let a set of random source and observation

paper are more efficient than estimate-and-quantize because . .

- A ectors (x, yg,yp, yn), and a distortion measur®(-,-), be
the whole process — quantization, communication, and estk:
mation — is designed to make use of the encoder’s statistich
knowledge of the decoder’s data as decoder side informatid®) (X, YE,¥D,¥N) € Ty, fOT SOMEDs s 1y
in the sense of Wyner and Ziv. In Fig. 2, the performanc) D(x,%) =331 D(x;, ;).
achieved by the side-information-aware strategy is plottéd sequence of length- block encoder-decoder pairs can be
with the solid curve. For a target distortion, the number afesigned such that ifr is encoded at rate? then, with
nodes required by estimate-and-quantize can far exceed a@hkitrarily high probability as: grows to infinity, x can be
number required by the side-information-aware strategy. tacovered to within any average distortidrsatisfying
the example, the estimation performance of both strategies .
saturates because the pipeline is set to have equal-rate links. As d2 ffﬂlg}[E [Dx, f(y, u))]- @)

en such that:
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The minimization is over all functiong : Yp x U — X, and C. Relation to Earlier Results

the setlI consists of all random variablessuch that The one-step problem discussed in Sec. II-A can be thought

() v yr < X, yp, yN, of as an “indirect” (i.e., noisy encoder observations) Wyner-
(i) R>I(ys;u) —I(yp;u). Ziv problem. A memoryless version is posed by replacing the
Theorem 1 is an achievability result. Subsequently we sh@itong typicality condition of Thm. 1 with the memoryless

examples of certain networks where Thm. 1 leads to ratgondition discussed in Sec. II-B, and by settipg = 0.
distortion optimal performance. This memoryless version is discussed by Yamamoto and Itoh
We now describe how to achieve (1) to highlight thén [40]. They present the single-letter rate-distortion fron-
particular role played by a variant of the Markov Lemmaier, and discuss the binary-Hamming and quadratic-Gaussian

The argument is a relatively straightforward generalizatiathses. Because of the lack of availability of [39], which [40]
of earlier Wyner-Ziv type source coding with decoding sidgites for the development of its results, we give our full
information approaches to accommodate the lack of diregérivation of the rate-distortion frontier for this memoryless
source observations. First, construct a cadeonsisting of case in [11]. Flynn and Gray [12] also consider this system,
onllrei)+e) codewordsu(s), s € {1,2,...,2"b=%9} focusing on achievability results.

each selected uniformly from the s&}. The codewords are
randomly and uniformly partitioned int*® cosets or “bins”.
There are approximately*( (ve:v)—F+¢) codewords per coset.
The observatiolyr is block encoded (according g, ,)toa  In this section we describe how to apply Thm. 1 in an
jointly typical u(s), an element of some coset. This encodingerative manner to develop strategies for sensor trees. Then,
is successful sinc&| > 27/(=¥) | The indexm of the coset in Sec. llI-B, we develop a cut-set bound on estimation error.
containingu(s) is sent to the decoder. At the decoder, the

.codewor.d in cc_)setm that is jointly typicgl with the side A. Achievability

information yp is selected as the transmitteds). As we )
discuss next in Sec. II-B, because— yi < (x,yp,yn) the ~ We describe a strategy for sensor trees based on
Serial Markov Lemma ensures thai(s), yg, x, yp,yx) are Fhe observatloq that tree .networks can pe factored
jointly typical, whenceyp and the transmitted(s) are jointly N0 @ succession of canonical one-step estimation and
typical. Because all other codewords in bim are chosen COmmunication —problems of the form described by
independently o, by choosingk > I(yg; u)—I(yp; u)+3¢ 1hm. 1. As discussed in the introduction, we assume
we ensure that none of these non-transmitted codeworddhgt the source and observations are jointly distributed
jointly typical with yp. Because(u(s),x,yp) € Tu,p, the @nd memoryless so thabxy,,.y, (X, y1,...,yL) =
empirical joint distribution is close to the chosen distributiohli=1 Pxyi,...vs (Zis Y16+, yr.i). This ensures that with
Pu.n- Therefore, a source estimate formed element-wise H§h probability (x,y1,...,yr) € Ty, s -

% = f(yp.i,us(s)) has an expected distortion closedo We first sketch three steps of the successive coding process
’ for the network depicted in Fig. 1. Say that in Step A, Node

1 transmits and Node 3 receives. In the notation of Thm. 1,
setx = x, yg = y1, Yo = ¥3, YN = (¥2,¥4,---,¥0), and

The Serial Markov Lemma is required for the proof of, = 4. The two conditions of the theorem define a restricted
Thm. 1 because the set of vect@ss yg, yp, yx) is assumed set IT, of random variablesy; that satisfy the Markov
to be jointly strongly typical, but not memoryless. If thecondition u; < y; < x,y2,...,y and the rate constraint
vectors were memoryless, i.e.pif y. yo yx (X, ¥E, YD, YN) = Ry > I(y1; 1) — I(ys; up). Any distortiond, satisfyingd, >
[T 1 Pxye,yooyw (Tis YB3, YDLis yN,i), then Berger's Markov ming, . crr, E [D(x, fa(ys, u1))] is achievable. Furthermore,
Lemma [3] suffices to assert the joint typicality @fp, u(s)). the Serial Markov Lemma guarantees that at the end of the
Instead we need the following natural extension of the Mark@tep(x,yy,...,yr,u;) are strongly jointly typical which sets
Lemma developed by Chang and by Kaspi [5], [17], [18]. up Step B.

Lemma 1:Let pxy . (7,y,2) = px(2)pyx(y|2)P|y(2ly)  Say that in Step B, Node 2 transmits and Node 3 again
define a Markov chain over finite alphabets Y, Z. Let receives. Then we apply Thm. 1 a second time, but with
C. be a set of sequences chosen equally likely frimwith  different variables playing the role of encoder and decoder

IIl. STRATEGIES FORSENSORTREES

B. Serial Markov Lemma

replacement. Then the deterministic mappirtg = y) = z;, observations. This timer = yo, yp = (y3,01), YN =
wherez; is the firstz € C, (assume some arbitrary ordering)y,,y,....,ys), and u = wu,. The random variables, is
that is e-jointly-strongly-typical withy satisfies restricted to the sefl, of random variables that satisfy

the Markov conditionuy < y» < x,y1,y3,..., Y, U1, and
Ry > I(y2;u2) — I(ys, u1; u9). Any distortion d,, satisfying
asn grows to infinity. The probability is taken over the source, > ming, ,,em, E [D(x, f5(ys, u1, u2))] is achievable.

Prx,y,z(y) € Txy-|(x,y) € Ty, and(y,z(y)) € 7, .| — 1

distribution and the random selection @©f. Finally, in Step C let Node 3 transmit and Node 6 re-
Lemma 1 is used in Thm. 1 by setting= (x, yp,y~n), ¥y = ceive. This time setyg = (ys,u1,u2), Yo = Y6, YN =
yE, andz = u. In [7] a dither-encoding rule is introduced thatys, yo, y4,...,¥) and u = us. The setIl. consists of

avoids randomization over the selectiond@fby randomizing random variables:; that satisfy the Markov conditions «
the z(y) mapping over codewords jointly typical with y3, Uy, Uz <> X, Y1, Y2, V4, - - ., Y9, and the rate constrairt >
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Fig. 3. Example of a serial network. At stage the rate R;_; :
messagem;_; and the observatioy;, form the encoder’s indirect
source knowledge, whilg; 1, is the decoder side information.

Fig. 4. Example of a parallel network. At stadey; is the encoder
I(ys, uy, us; us) — I(ys; us). Any distortiond,. satisfyingd, > observation, while messages previously decoded by the hub node
miny, yerr, B [D(x, fe(ye, us))] is achievable. serve as decoder side information.

Generally then, when a sensor node encodes a message,

it considers two things. First, its encoding is based bothy g, > 1(y;, u_y;u) — I(yiss; w).
on its observations and all the messages it has receivedy) parallel Networks: A parallel network has a hub-and-
Second, it takes into account its statistical knowledge of tR@oke structure, as is illustrated in Fig. 4. Encoding and
decoder’s observations, and the messages that the decodefyaagding are done successively. In general, by stéye hub

already received, as decoder side information. The strategy,iss gecoded messages from nodethrough! — 1, getting
modular because each stage takes the form of an applicatli,qp_ ..,ui_1. In each step the decoded message is used to
of Thm. 1, and decentralized because each stage requifﬁﬁrove the source estimate.
knowledge sharing only between encoder and decoder. Proposition 2:Let a set of source and observation
It is straightforward to extend this process to any sensgictors (x,yi,ys,...,yz), and a distortion measure
tree. Communication is delayed until theobservations are D(-,-) be given such that (apey,. ..y, (X, ¥1,.-.,¥L) =
made, and then begins at leaf nodes. Each non-leaf non-rPP_ti D IR y“)” and (©) D(x,x) =
node in the tree waits until it has received messages fromk~n 1’5’(’%;{2’:‘1‘).7F6r7 a parallel network consisting of

(2

all incoming branches. It then sends a message toward th&sor andl hub node, a sequence df lengthn block
root. Oncg thg root n_ode has received all incoming messageseoder-decoder pairs can be designed such that i
it makes its final estimate. Whenever multiple branches fegfcqded at rateR;, and messages are decoded in order
into a single common node there is a degree of freedominy 1 then with arbitrarily high probability as grows
message ordering (e.g., in the example, the ordering of Nogigpfinit , after the first messages have been decoded by the

1 and 2’s messages could have been reversed). hub nodex can be recovered to within any average distortion
To further illustrate this strategy, we present the results 9}‘ that satisfies

using it in serial and parallel networks.
1) Serial Networks:A serial network has a data-pipeline, dy > milh E [D(X,fz(ui))] .
or chain structure, as is illustrated in Fig. 3. Encoding starts Jouelt .
with the first node in the chain. Generally, at thie step node The minimization is over all functiong : U; x...xU; — X,
[ is the encoder and nodet 1 is the decoder. The strategyandu; € I, for all [, where the sell; consists of all random
leads to the following result: variablesy; such that
Proposition 1:Let a set of source and observation () u < y, < X7y{_1’yl€L1? ui—l,
vectors (x,yi,...,yz), and a distortion measurd(-,-) (i) R, > I(y;;u) — I(ul™; ).
be given such that (@)pxy,..y.(X,¥1,---,yL) =
g?:%px,yl,...,yLA(mi,yl,ia cee 7yL,_i)! and (b) D(X, )A() - B. Cut-Set Bound
= i1 D(xzs,2;). For a serial network consisting of. : : ) )
nodes, a sequence @ — 1 lengths block encoder-decoder In this sec_tloq we use the fact, discussed in Sec. II_—C,
pairs can be designed such that if at nobethe pair that Thm. 1 is tight for. the_ memoryless scenario to derive
(y,w_1) € T,._, is encoded at rateR, then, with 2 cut-set bound on estimation pgrformance at the root of a
arbitrarily high probability as: grows to infinity, x can be SEnsor tree. Partition the nodes into two grougsand its
recovered at node+ 1 to within any average distortiod,; COMPlementA®, whereA® contains the root node. Each group

that satisfies is allowed to convene and share observations losslessly. Group
. A then transmits a message to gradp at a rate equal to
dip1 > f,fﬂ%mE[D(X’fl“(yl“’ ur))] - the sum of the rates of all links that connect a nodein

_ to one inA°. The observationg”* of the convened nodes in
The minimization is over all functiong; 1 : Y41 x W — X A form a vector of encoder source observations, while the
andy; € II; for all [ where the sell; consists of all random observationgy” of the convened nodes iA° form a vector
variablesu; such that of decoder side information. Since a number of inter-node rate

() w ey u—r o xyi Lyl o2 constraints must be relaxed to allow the convening of nodes
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in any partition, each partition provides a lower-bound on th&hereaf‘yE)yD <d< aflyD. The conditional variancef‘yD is
achievable distortion. Any achievable distortion must satisthe minimum mean-squared estimation error given the decoder
all possible partitions. This gives the following theorem, whichbservationyp, while af‘mm is similarly defined given both
follows directly from Thm. 1, and so is stated without proofobservations. The distortion-rate form is

Theorem 2:Let a set of L nodes make up a tree- ) ) ) _oR
structured sensor network. Lek;; be the link rate from d(R) = Txlymyp T (UXD’D _Ux\yE,yD)2 : (4)
node i to node j. Furthermore, let(x,yi,...,yr) and

) When the source and observations are memoryless, (3)
D(-,-) be given such that (apy, .y, (X,¥1,...,¥L) =

specifies the rate-distortion frontier. Full derivations of this

[limy Py ooye (@i Y15 -5yn), and - (b) D(x,X) = eciit as well as for the binary-Hamming case, can be found
LS D(x;, %;). Then, if a sequence df—1 lengthn block in [40’] [11]. Y J '

encoding and decoding rules can be designed to recoter
within average distortionl at the root node, with arbitrarily
high probability asn grows to infinity, d must satisfy the B. Serial Networks

following inequality The distortion-rate performance of the successive coding
d > max min E D(X7f(yflc’u))}. @) strategy m_serlal ngtworks has a simple iterative form in
A fuell the quadratic-Gaussian case. In this example, the memoryless

The maximization is over all partitions of the nodes into thaussian source is observed at each node in independent
two setsA and.A<. such thatd® forms a subtree of the networkadditive white Gaussian noise. Specifically, nddebserves
that contains the root nodeThe minimization is over all ¥ = X+ vi wherex ~ N(0,03T) andv, ~ N(0, NiI) are
functions f : Y4° x U — X, and the seflI consists of all independent. It sends a message at fgtéo nodel + 1. In
random variabless such that App. B we show that the following distortion-rate trade-off

i) uoy? o x, yA° can be achieved by our approach:

W) Yienjeas Bij > Iy*u) = I(y* s ). N, d ( - LEI)
While fairly loose in general, this bound can, in certain dy= L=y 52 Tx J 9g=2Ri-1 (5)
settings, identify when a scheme is good. The bound is tightest Ny +di—1 xlyi (1 N d;\;l)
1

when there is a particular cut-set that serves as a choke point.
For example, consider a serial network with constant-rai¢hered; = Uf\yl' As all link rates become arbitrarily large,
links, and let the first node in the network observe the sourtlee second term of (5) converges to zero, and the first term
directly, y; = x. A distortion-minimizing solution is to apply generates the infinite-rate boumf‘yh_m. Generally, the
regular Wyner-Ziv coding to this problem, where intermediatiniteness ofR;_; slows the decrease df with I.

nodes simply forward the first node’'s message to the lastwhile in this paper we concentrate on developing estimation
node. The cut-set bound confirms this by grouping togethstrategies for situations where the network is prescribed, if one
all nodes except the last. However, note that this performartead the flexibility to design the structure of the network, and
is attained at the cost of violating our architectural principlesilocate link rates, then we can use the results of this section
since all intermediate nodes must coordinate to forward tke make observations on what are better and worse choices.

initial message unchanged. For example, we can ask how the link rates must grow if one
is to obtain the full benefit of the observations, and avoid the
IV. QUADRATIC-GAUSSIAN CASES type of saturation effects illustrated in Fig. 2. In particular, we

In this section we discuss quadratic-Gaussian problerﬁéstermi”e the rate allocation needed to stay within a constant
1+A) > 1 of the lower-boundr?, | in the case

which give useful insight into practical scenarios. In Sec. Iv-AUltiple ( | sy _
we specify an achievable rate-distortion trade-off for the ongf constantSNR = o3/N; for all 12 The rate allocation can
step problem of Thm. 1. In Sections IV-B and IV-C we discus?e found by settingl, = (1+ A)oy,, . and using (5) to

the multi-step serial and parallel networks, respectively. ~ solve for the ratef?; such thatd;; = (1+A)og, -

R — Ly, [+ 1)SNR + 1JISNR — A]
A. One-step problem L= 5 SNR(1 + SNR)A(1 + A)
The rate-distortion trade-off for the one-step problem has 1 SNR I
a particularly simple form when the source and observations < 5 log L T SNR] + log {A} +o(1).

are jointly Gaussian and the distortion measure is quadratic o
(mean-squared error). In App. A we specify a test channEhis reveals that rate must increase logarithmically.
for this problem that results in the following rate-distortion To help quantify the rate savings of side-information-

trade-off: awareness, we calculate the extra rate required by estimate-
1 02— g2 and-quantize to achieve the same target distortion levels. If
R(d) = ; log [XdyDQX'yEVD} : (3) Rnq, is the rate required by estimate-and-quaritizeachieve
— 0
x|yE,yp

2Due to lack of space, we do not include derivation of estimate-and-quantize
1The subtree condition ensures there is no communication cycle betwegemformance. The derivation which, on the whole, is similar to the derivation
node groups — a more complex topology than Wyner-Ziv coding allows foof App. B can be found in [11].
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d; = (1+ Ao}, . then the rate-savings is 0 < X < 1 givesd, as a function ofSNR = 02/N, Rum,
and A. Minimizing with respect to\ gives
1 (1+ A)SNR
R — R =-1 1————F—— | (14 SNR)|. — 2
BQ.l — R 2og[( (l+1)SNR+1)( + )} o by SNR? 4+ v(1 4+ SNR) ’ @)
2Reum (1 +2SNR)

This difference decreases with increasing since a larger
A means that the target distortion is more easily met.l Aswherey = \/SNR2 + (1 4+ 2SNR)22Esum, Note that\ > 0.5
increases, however, the difference converges to a constantand that\ — 0.5 as R, gets either very small or very large.

) Using the fractional rate allocation (7) gives

1 1
llim [Req: — Ri| = 3 log[1 + SNR] = 3 log [ sz ] :

o
x|y

02 22Rsum

d2 = (v — SNR)?’ ®
This limit equals the rate needed by a standard quantizer tQue can show that (8) is the distortion-rate frontier for the
achieve the quality?,, of the decoder side information whenyy node problem by using a bound that Oohama develops for
that side information is ignored. the CEO problem in [21]. As discussed further in Sec. V-A,
the CEO problem is a parallel network where the number of
nodes increases to infinity. However, Oohama'’s bound is also
applicable to systems with finite numbers of nodes. Using it

The performance of the successive coding strategy whgith two nodes gives the distortion achieved in (8).
applied to parallel networks also has a particularly tractableThe optimization of this section can be generalized to
form in the quadratic-Gaussian case. Let the sowcnd nodes with differingSNRs. The resulting expressions are
observationy; be defined as in Sec. IV-B. Denote by the more complex and one node may receive the full sum-
distortion in the hub node’s estimate after it has received thgte and the other zero rate. We conjecture that, given an
first | messages, wher& = o7. If the hub node has its own appropriate rate allocation, our coding strategy can achieve the
observation, account for it through an additional observatieate-distortion frontier for larger networks. In correspondence
node without a rate constraint. Then, in App. C, we show thaith Oohama [24] we have learned that he is also further
the following trade-off is attained: investigating estimation problems for parallel networks with
o a finite number of nodes, and different SNRs. He claims to
_ Nidiy dr_y 9—2R;_ (6) have found the rate-distortion frontier by using an inherently

Ni+di1 Nit+dia different (joint) decoding structure [22], [23]. Our results
gnfirm one another for the two node case.

C. Parallel Networks

d;

Just as in serial networks, we can determine the rdt
allocation needed to stay within the constant multifile- A)
3|y1:~-~7)’l' In contrast to the serial network, the needed V. APPLICATIONS TO OTHERNETWORK INFORMATION
R; now decreases with. This is because as the hub node THEORY PROBLEMS

accumulates messages, its side information improves, and latgf, this section we show that the successive coding strategies
nodes can communicate more efficiently. of Sec. Il lead to novel solutions for a number of previously
One way to choose a message ordering is to use (6) to s&¢plored problems. In Sec. V-A we show how to achieve
the nodes via a sequence of pair-wise decisions. Expresst{fg rate-distortion frontier for the quadratic-Gaussian CEO
compactly asd; = g(di—1, Ni, R;). Then, given two nodes problem. In Sec. V-B we show how to achieve the best known
with noise levelsN, and N,, and communication rateR, rate-distortion region for multiterminal source coding. Finally,
and R,, the estimation error each ordering achieves startifg Sec. V-C we show how to apply the strategies to relay
from distortiond are channel communications. While Sections V-A and V-B do

not produce new results, they demonstrate alternate, simpler,

dab = glg(d, Na; Ra), No, and therefore potentially more useful approaches to the same
dva = glg(d, No, Rp), Na, Ra] results.

If, e.q., dopy < dp, then it is best for nodex to encode

its message assuming no side information, and for node®p The CEO Problem

to encode its message treatintg message as decoder side In this section we specify a rate-allocation for the successive

information. A sequence of pair-wise orderings extends thisding strategy that achieves the rate-distortion bound of

sorting to more than two nodes. the quadratic-Gaussian CEO problem [34], [21]. The CEO
To further illustrate successive coding performance, weoblem has the same hub-and-spoke topology as the parallel

show that this strategy achieves the previously unknowretwork where the CEO acts as the hub node. There is a sum-

rate-distortion frontier for a two node, sum-rate constraingdte constraint?,,, on all links, and the objective is to find

problem. Let the two nodes have equal-variance independd#re rate-distortion frontier ag, the number of nodes, grows

additive white Gaussian noise observations, and assume thainfinity. Hence, the average per-node r#tg,,,/L goes to

the hub does not have a source observation. Applying (@3ro. As noted in Sec. IV-C, in the two-node problemRagy,

twice, with Ry = ARsum and Ry = (1 — A)R.um Where gets very small, an equal per-node rate allocation is optimal.



8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 6, AUGUST 2004

We show that using our coding strategy with an equal peFhe minimization is over all functiong : U; x...xU, — Y,
node rate allocatio®; = R, /L achieves the rate-distortionand u; € II; for all I where the sell; consists of all random
frontier for the quadratic-Gaussian CEO problem with equalariablesu; such that
SNR observations, a frontier first achieved by Oohama in [21]()) v, < y; — y{—l yho L utt
. .. . . . . yJl+10 H1
Using R; = Rsum/L, defining the distortion-to-noise ratio @iy R, >1I( -1

d 4 working i ) e yisu) = I(uy 5 w).
at nodel asz; = d;/N, and working in nats for CONVIENIENCE, Tha achieved rate region is found by taking the convex hull

/L.27 . . . .
we can rewrite (6) a§— r.,.r = ~ 17, FOr L 1arge, over all rate points resulting from different choices of the
1 — exp(=2Rsuym/L) =~ 2Rsum/L which we use to get p,, (w|y) satisfying (i) and (ii), and transmission orderirigs.

s—wioy o Z2ia por large L, this can be approximated The proof of this theorem is basically identical to that of
Rsum/L 1+.’I?l—1 !

to arbitrary precision [11] by the differential equatigh, = PToP- 2hand SO is Olmiltted'. Tlhef sum-rate used b}Z ekncoders
=22° \wheredR = Ryum/L is the per-node rate increase an&g' ..,k has a particularly simple forny,_,_, R; > I(yy'; uy).
t

14z . - B
dx = x; — z;_1 is the per-node decrease in distortion-to-nois 0 see this, note that '.t IS trqe for= 1 by Thm. 3. We show
e result fork > 1 by induction as follows,

ratio. Solving this differential equation gives

Rou n k k k
Ram= [ an= [ j( ! 1) iz ST R ) — I )] = 3 1wl ™)
0 Z =1 =1 =1

s S22 2 —
N [o2 1. o2 = Iy up|ur™ ) + Iy 0
=52 Y Tals ©) k k-1 k. k-1 k. k
Ix =1y ukluy™ ) + Iy uy ) = I(ypsup). (1)

Equation (9) is the rate-distortion frontier for the problem [211N

. . ere the first line follows from Markov chain, the second
The successive coding framework suggested here may we ; . . . .

) : . rom the induction assumption, and the third because condi-
better fit the architectural constraints of sensor networ S

than approaches based on joint decoding [21]. First, in jOiBEZZSSZZka :kylg_;ni}e?/jndent of all other variables, and
1 1 '

decoding, decoding cannot begin before all messages AT onsider the two-terminal cas,= 2, first investigated by
received. The successive coding technique we propose allcgvs o

. ) . . . rger and Tun . There are tw ible orderings:
incremental increases in estimate quality as each messag esge and Tung [3], [33] ere are two possible orderings

decoded. Secondlv. ioint decoding reauires multiole messa a) the message from terminal 1 is designed to be decoded
' Y: 10l Ing requl utip IFSt, and (b) the message from terminal 2 is designed to be

be decoded simultaneously, which is an exponentially MOLL .o ded first Ordering (a) and Thm. 3 gives:
complex task than a sequence of single-message decoding ' ' '

problems. Finally, while joint decoding requires coordination Ry > I(y1;u1), Ra > I(ya; us|ur), (12)

between all encoders to ensure that the hub can decode, Ri+ Ry > I(y1, yo; uy, o). (13)

successive coding require coordination only between each

encoder and the hub at each step. Ordering (b) giveS the same rates as (12)—(13) with the
subscripts interchanged. From (11) we know the rate pair

B. Multiterminal Source Coding (R1,R2) = (I(y1;u1),1(y2;u2|ur)) lies on the sum-rate

We now show how to use successive coding to reproduce fif#nd given by (13). Allowing time sharing between order-
best known achievable rate region for the multiterminal souré&s (@) and (b), and each choice of valid joint distribution
coding problem [3], [33], [20]. In multiterminal source coding?(¥1, Y2, u1,u2) achieves a rate-distortion region identical to
L sourcesys,...,y;, are observed af. separate encodersthat given in [3], [33].

Wherepyh-u-,YL (y17 s ,YL) = H:':l Pyy,....yr (yl,iv s 7yL,i)'

Encoder! sends a message at rdfe bits per source sample C. “Estimate-and-Detect” for Relay Channels

to a central decoding hub. The hub decodes all messageginally, in a rather different direction from the rest of
and makes estimates of all sources,....y.. This is @ the paper, in this section we consider distributed detection
parallel network, but the problem objective has changed — Weoblems. We design a two part “estimate-and-detect” strategy
now estimate the observations, rather than a single underlyfag the relay channel whereby we first estimate the codeword

signal. using the distributed estimation techniques developed herein,
Theorem 3:Let a L-tuple of source vectors gnd then detect the message based on the estimate. In the case

(y1,¥2,-..,y.), and a set of distortion measuresf g single relay and additional direct path, as discussed in [6],

{Di(+),....Dr(,-)} be given such that (a) the scheme reduces to one presented in [9].

Pyryr V15, ¥2) = Tl Pyiys (Wiis- -, 904),  We focus on a parallel Gaussian two-relay network [29].

and (0) Dy(yi,31) = =371 Di(yu, 9u.q)- Then a sequence The transmitted codeword is constrained to poRemeasured
of L length+ block encoder-decoder pairs can be designgf each relay in additive white Gaussian noise of variahce

such that ify, is encoded at rate?;, and the messagesThe relays send rate-constrained messages to a central decoder
are decoded in ordet,2,..., L, then with arbitrarily high

probability asn grows to infinity, y; can be recovered to °In the theorem we define thd; to be measured after all messages
i ; ; fofi are received. This makes it easier to compare our results to earlier results.
within any average distortiod; that satisfies However, it is also possible to make estimates after each decoding step giving,

. L e.g.,d; i, the distortion in the estimate gf made after the first codewords
dl > i I’IIJ}IEHHI E [Dl (yl7 fl(ul ))} . (10) hag\/e é’gen decoded. o
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3.5

structure of the problem differentiates it from other problems
By ] where tight converses are known. Second, we would like to
develop practical encoders and decoders. Recent progress on
/ | building side information coding systems (see, e.qg., [26], [42])

/ should prove useful. Finally, there is a host of interesting

4 . network-layer issues in deciding how to choose the sensor tree,
’ allocate rates, and how to manage the network to be robust
to the failure of individual nodes. Some recent work in this

y direction has appeared, e.g., in [28].

= N
] N 4]
T T T
>
~
S
~

Communication rate throughput
=

o
3]
T

“““ Cut-set bound 1 APPENDIX

— Estimate—and-detect
- - Broadcast coding

8 10 A. One-step problem

4 6
Sum rate, R,
sum

o _ _ We do not formally extend the finite-alphabet results of
Fig. 5.  Communication rate throughput achieved by estimate-angaorem 1 to continuous alphabets This extension can be
detect with two additive white Gaussian noise observations at the . - . .
relays, both withSNR. — 40. made using tools d_eveloped, e.g., in [37], [ZQ]. Given this
extension, we specify a test channel that gives the rate-

distortion trade-off of (1).

under a sum-rate constraift,..,. A baseline approach is to We consider the case whexe yg, yp, andyy are jointly

use broadcast codes to communicate losslessly to the two@ussian random variables. Define the auxiliary random vari-
lays. Since the noise powers are identical, the maximal reliatslele u = ayg + e wheree ~ N (0, ad”) is independent ok,

sum transmission rate to the relaysigc = 0.5log[1+ SNR]  yr, yn, andyx. For this choice ofu, I(yg;u) — I(yp;u) =
where SNR = P/N. The communication throughput of this% log |1+ %U)%El)’D . The minimum mean-squared estimation
strategy ismin{Rgc, Rsum}. On the other hand, estimate-error for x given ypy and u is

and-detect builds on the results of Sec. IV-C. Codewords

are generated in an i.i.d. Gaussian manner. Based on their a2 T

observations, the relays send bit streams to the decoder which o2 _ @ Txmyn e, (14)
makes an estimate of the codeword using the techniques of this xlyp,u ™ =+ % '

paper. Since the resulting estimate and codeword are jointly el

typical, we can detect the message using standard typicalfytting (14) equal to the target distortian and solving for
decoding. The resulting throughput is :

0'2 - . . . .
, a/d* gives & = 1 — ( P ). substituting this into
yElyD x|y yD
X‘“l»“J the expression fol (yg; u) — I(yp; u) gives (3). In [11] we
= 0.5log [P/ds] = 0.51og | (v — SNR)? 2—23sum} ,  specify the data-fusion functiorf(-,-) and, for the case of
- ) a memoryless source and observations, give a converse that
where u; and v, are the auxiliary random variables of thespgws (3) is the rate-distortion frontier.
two relays,y = \/SNR2 + (14 2SNR)22Fsum, and dy is
the distortion achieved in (8) with? = P.
Figure 5 plots the communication throughput of the twB. Serial Networks
schemes versuRBy,,,,. Broadcast coding does better for small . . . .
; : : .__..Assuming that encoding and decoding are accomplished
Rsum Since estimate-and-detect introduces extra quantlzatl\%mut error up to nodd — 1. then %« and x are iointl
noise. On the other hand, for large enough,, estimate-and- ; P ' X-1 X J y
detect outperforms broadcast coding since it is able to expl . N -
. ; . . tweenx,_; and x as x;_1 = ax + v;_1, wherea =
the diversity of the relay observations. For comparison we pl P ~
1) and v—; ~ N(0,ad;—1). For the purpose of

the minimal cut-set bound: the minimum of the information ! — o2
flow to the relays, andRgum. encoding, define node- 1's source observation to bg_; =

Vi—1

In [30] Schein discusses strategies for this situation whe?l@ﬁ1 =X+ -5
the relays communicate to the decoder over rate-constrained he encoding node’s observatian; can be treated as the

channels. He derives qualitative results similar to those ®urce in additive white Gaussian noisey,_;, of variance
Fig. 5, but the explicit rate evaluation presented herein is neu%fdfi;. The decoding node’s observatignserves as decoder

H H H x A1 . . .
Other recent work in this area includes, e.g., [27], [14], [19§ide information. We can therefore use the distortion-rate

trade-off (4) withyg = z_1, yp = yi, R = R, andd = d;.

Rpstpet = I(x;u1,u2) = 0.5 log[Qweaf] — 0.5log[2mec

IPical. We use an innovations form to rewrite the relationship

VI. FUTURE DIRECTIONS This results in an achieved distortidp = o3, ,  + (02, -
Many aspects of communication-constrained estimation a@‘yhz[il)rml*l. Finally, using the relationaflﬂ)ZH =
gorithms remain to be explored. First, we would like to derive, 1 = Nidii e get (5).

I . . o2 —dj_ N;+d;—
tighter converses, e.g., for the serial problem. The multi-stepzg, ="+~ + 52 e
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C. Parallel Networks [21]

As in App. B, we start by defining,_; in the same way. In 55
the parallel network, however, this side information is known
at the hub node, the decoder. Nodds the encoder and
measuresx + v; wherev; ~ AN(0,V;). Again, we use the 23]
distortion-rate form (4), but withg = y;, yp = 21, R = Ry,
andd = d;_,. Simplification results in (6). [24]
[25]
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