
Functional Composition and Decomposition for

Signal Processing

by

Sefa Demirtas

B.S. Electrical and Electronics Eng., Bogazici University (2007)

S.M. EECS, Massachusetts Institute of Technology (2009)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

© Massachusetts Institute of Technology 2014. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 21, 2014

Certified by. .
Alan V. Oppenheim

Ford Professor of Engineering
Thesis Supervisor

Accepted by .

Leslie A. Kolodziejski
Chair, Department Committee on Graduate Students

2

Functional Composition and Decomposition for Signal

Processing

by

Sefa Demirtas

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Functional composition, the application of one function to the results of another func-
tion, has a long history in the mathematics community, particularly in the context
of polynomials and rational functions. This thesis articulates and explores a general
framework for the use of functional composition in the context of signal processing. Its
many potential applications to signal processing include utilization of the composition
of simpler or lower order subfunctions to exactly or approximately represent a given
function or data sequence. Although functional composition currently appears implic-
itly in a number of established signal processing algorithms, it is shown how the more
general context developed and exploited in this thesis leads to significantly improved
results for several important classes of functions that are ubiquitous in signal pro-
cessing such as polynomials, frequency responses and discrete multivariate functions.
Specifically, the functional composition framework is exploited in analyzing, design-
ing and extending modular filters, separating marginalization computations into more
manageable subcomputations and representing discrete sequences with fewer degrees
of freedom than their length and region of support with implications for sparsity and
efficiency.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Engineering

3

4

Acknowledgments

The last few years that I spent at MIT have been hard but absolutely rewarding and

fun at the same time. Although this is an incomplete list, I would like to thank many

people who had their own share in turning this difficult marathon into an enjoyable

journey for me. I would like to start with my supervisor Al Oppenheim, whose

passionate and excellent guidance made it possible for me to comfortably navigate

the rocky paths to a thesis. His experience and wisdom provided me with a great

perspective and insight into doing research, teaching and thinking. Al, thank you for

sharing my enthusiasm and happiness at times of exciting outcomes and supporting

me at times of desperation and hardship. I am grateful for the amazing research

home that you provided for me, a place that well exceeded my expectations when I

knocked on your door several years ago. It was a pleasure, an invaluable experience

and a privilege to work and teach with you.

I am greatly indebted to my thesis committee, Pablo Parrilo and George Verghese,

who provided me with very useful comments during the development of this thesis.

The great question from Pablo in the first meeting regarding the communities we

were trying to impact helped me clarify the language of the thesis. George kindly

followed up with the conversations that started in committee meetings, which helped

me shape interesting applications and future directions. Their feedback significantly

improved the way this thesis was written. I also had many useful discussions regarding

polynomials with Bjorn Poonen from Mathematics Department at early stages of the

thesis. I would like to thank him for his time and the useful directions he pointed at.

I had the good fortune of having great friends with great minds during my time

at the Digital Signal Processing Group (DSPG) between 2010 and 2014, including

the alumni who never could leave this fun place: Ballard Blair, Charlie Rohrs, Dan

Dudgeon, Dennis Wei, Guolong Su, Jeremy Leow, Joe McMichael, Jon Paul Kitchens,

Martin McCormick, Milutin Pajovic, Pablo Nuevo, Petros Boufounos, Qing Zhuo,

Sally Wolfe, Shay Maymon, Tarek Lahlou, Tom Baran, Xue Feng, Yuantao Gu, Zahi

Karam. The intellectual level of any discussion with them related to research or

5

anything else quickly climbed to a level that is hard to attain anywhere else. We

had very productive brainstorming sessions in group meetings, or intellectual food

fights as Al would like to refer to them, which helped me at almost every stage of my

thesis. The fun group outings we had are already among my unforgettable memories.

I would like to thank each and every one of them for making this place a friendly

environment to do research and to be at. I also would like to thank Eric Strattman,

Kathryn Fischer and Laura von Bosau for their help and support in the smooth

running of DSPG, and providing more smiles than we already had. My colleagues

and the residents of the fifth and sixth floors of RLE contributed significantly to the

great friendly work environment, and I would like to thank them all for their warmth.

I would like to send my special thanks to Guolong, my extremely kind, hardwork-

ing and helpful colleague and officemate for all his support and useful discussions

during my research, all the polynomial decomposition coding and simulations he took

off my shoulders at my busiest times, the long sleepless nights he worked with me to

meet deadlines and last but not least for his great friendship. Guolong, I really ap-

preciate what you did over the last few years, thank you very much. I also would like

thank Dennis, Martin, Milutin, Shay and Tarek for always being available for long,

exciting and helpful discussions when I wanted to borrow their brains spontaneously.

My thesis have greatly benefitted from very interesting questions that arose in my

discussions with several creative and bright people outside of DSPG. I would like to

thank Arthur Redfern, Ben Vigoda, Charles Sestok, Fernando Mujica, Jeff Bernstein,

Joyce Kwong and Theo Weber for the directions that they suggested which eventually

became useful applications that fit within the composition framework explored in my

thesis. Ben, Jeff and Theo, thank you for your suggestion regarding decomposing

factor tables and the many useful follow up discussions that eventually shaped the

chapter and the applications regarding the decomposition of multivariate functions.

Arthur, Charles, Fernando and Joyce, thank you for the great brainstorming sessions

that made it clearer to us the importance and convenience of modular filters.

I feel very fortunate to have my amazing Bostonian or once-Bostonian friends,

the presence of whom was a great support during my time at MIT and provided

6

the much needed distractions from research in forms of live music performances,

potlucks, weekend getaways or just a cup of coffee in an afternoon: Alessio Spantini,

Aylin Kentkur, Banu Erdim, Baris Nakiboglu, Donghyun Jin, Ebru Bekaslan, Eray

Sabancilar, Guner Dincer Celik, Hakan Sonmez, Halil Tekin, Huseyin Erdim, Ilke

Kalcioglu, Jelena Pajovic, Jungwoo Joh, Keren Miller, Murad Abu-Khalaf, Nalan

Senol Cabi, Ozan Candogan, Ozgur Amac, Renin Hazan, Saban Bilek, Serkan Cabi,

Ted Golfinopoulos, Yalcin Cayir, and my little baby friends Yarden Maymon and

Petar Pajovic. Thank you all for being my friends and always being there for me.

I would like to express my deepest gratitude to my friend Baris Nakiboglu. Baris

provided me with the greatest moral as well as technical support during my difficult

times when switching from my previous research discipline into a new one for which

the background building process would be difficult and time consuming. Baris, thank

you for encouraging me to move forward even when many others approached the field

switching idea suspiciously. You should know that you were the one who tipped the

scale to the correct side, and thank you for being that person.

I would like to send my heart-felt thanks to my parents, Seher Demirtas and

Selah Demirtas, my brother Mustafa and my sister Yeliz, who always made me feel

their encouragement and pride, which fueled all my endeavors in my life including

my PhD adventure. Mom, Dad, thank you for raising me to be who I am today

and for your unconditional love and support. I also would like to sincerely thank the

Tokuccu family: Munteha, Sevilay, Senay, Esra, Ibrahim, Emra and Eda, none of my

achievements would be possible without your support, love and acceptance of me as

a member in your family for as long as I have known myself.

Finally, I would like to thank my lovely wife Selda Celen Demirtas for her endless

support during the development of this thesis. Every time I attempt to compare my

life before and after meeting her, I get tongue-tied and fail in finding the right words

to thank her enough for the difference she has made for me. Selda, your presence has

made the world a beautiful place for me in which to live, thrive and achieve myself.

Who you have been to me and what you have done for me made me happier, stronger,

more successful, courageous and optimistic. Thank you for being in my life.

7

8

Contents

1 Introduction 13

1.1 Functional Composition and Decomposition 14

1.2 A Framework for Signal Processing 16

1.2.1 Goals . 16

1.2.2 Main Contributions . 18

1.3 Outline . 19

2 Composition and Decomposition in Signal Processing 21

2.1 Time and Frequency Transformations 22

2.1.1 Time Transformations . 22

2.1.2 Frequency Transformations . 22

2.2 Previous Work . 25

2.2.1 Nonuniform sampling and local bandwidth 25

2.2.2 FFT for Unequal Resolution Spectra 26

2.2.3 Frequency Transformations of Prototype Filters 27

2.2.4 Design of Audio Filters . 29

2.2.5 Parks-McClellan Algorithm 30

2.2.6 Extending Filter Dimensionality 31

2.2.7 Filter Sharpening . 33

2.2.8 Other contexts . 38

2.3 Chapter Conclusions . 39

9

3 Polynomial Composition and Decomposition 41

3.1 Decomposition Scenarios . 42

3.2 Exact Decomposition Algorithms . 44

3.2.1 Barton-Zippel algorithm . 44

3.2.2 Alagar-Thanh algorithm . 45

3.2.3 Kozen-Landau algorithm . 46

3.2.4 Aubry-Valibouze Algorithm 47

3.2.5 Comparison of Exact Decomposition Methods 48

3.3 Current Approximate Decomposition Methods 50

3.3.1 Ruppert Matrices . 51

3.3.2 Iterative Approximate Decomposition 53

3.3.3 Decomposition by Approximate Factorization 54

3.3.4 Decomposition by Riemannian SVD 55

3.4 Approximate Decomposition based on STLN 56

3.4.1 Structured Total Least Norm 56

3.4.2 Algorithm Development . 57

3.4.3 Comparison of Approximate Decomposition Methods 61

3.5 Sensitivity Analysis . 65

3.5.1 Composition Sensitivity . 65

3.5.2 Decomposition Sensitivity . 69

3.5.3 Simulations . 70

3.5.4 Equivalent Decompositions . 73

3.6 Chapter Conclusions . 77

4 Frequency Response Composition and Decomposition 79

4.1 Frequency Response Decomposition 81

4.1.1 Haar Condition and Best Approximations 82

4.1.2 Alternation Theorem and the Remez Exchange Algorithm . . 83

4.1.3 The First Algorithm of Remez 85

4.1.4 The Frequency Response Decomposition Algorithm 89

10

4.1.5 Decomposition on infinite intervals: Continuous time 90

4.2 Frequency Response Decomposition by Magnitude 90

4.2.1 An Alternating Projections Algorithm 92

4.3 Chapter Conclusions . 95

5 Discrete Multivariate Function Composition and Decomposition 97

5.1 Efficient Marginalization . 99

5.2 Decomposable Representations of Discrete Multivariate Functions . . 100

5.2.1 A Basic Decomposable Representation 101

5.2.2 Constraints on the size of RG 103

5.2.3 Other Decomposable Representations 104

5.3 Decomposition as a Generalization of Factorization 106

5.3.1 δ-Decomposition . 106

5.3.2 Representational Efficiency Using δ-Decomposition 107

5.3.3 Computational Efficiency Using δ-Decomposition 108

5.3.4 General Decomposition . 109

5.3.5 Decomposition as a Matrix Factorization 110

5.3.6 Factor Graph Representation of Decomposable Multivariate Func-

tions . 111

5.4 Decomposition Methods . 112

5.4.1 Exact δ-Decomposition Algorithm 113

5.4.2 Approximate δ-Decomposition Algorithms 116

5.4.3 Exact General Decomposition Algorithm 117

5.4.4 Approximate General Decomposition Algorithms 119

5.4.5 Approximate Decomposition of Probability Density Functions 120

5.5 Chapter Conclusions . 120

6 Applications of Composition and Decomposition 123

6.1 Modular Filter Design . 124

6.1.1 Revisiting Filter Sharpening 125

6.1.2 Two-Step Modular FIR Filter Design 129

11

6.1.3 Modular Filters with Complex-Valued Subfilter Responses . . 133

6.1.4 Sensitivity and Stability . 138

6.2 Efficient Marginalization and Representation of Decomposable Functions140

6.2.1 Sum-Product Algorithm . 142

6.2.2 Inference with Decomposable Density Functions 144

6.2.3 Compact Representations of Multivariate Functions 149

6.3 Polynomial Decomposition for Compact Representations and Modularity149

6.3.1 Decomposable Finite Sequences 149

6.3.2 Modular Filter Design by Approximate Polynomial Decompo-

sition . 150

6.4 Chapter Conclusions . 155

7 Conclusions 159

A A Convolution Inequality 167

B First Algorithm of Remez: Convergence and Optimality 169

12

Chapter 1

Introduction

Signal processing is a rich discipline in which functional composition and decomposi-

tion can potentially be utilized in a variety of creative ways. In a broad sense, the aim

of this thesis is to create a systematic framework in which these two operations can be

exploited more fully in signal processing applications. From an analysis point of view,

one can often gain further insight into existing techniques by reinterpreting them in

terms of functional composition and decomposition. From a synthesis point of view,

one can develop new algorithms and techniques which inherit desirable properties of

these two operations. Moreover, computations can be performed more efficiently and

data can be represented more compactly in information systems in the presence of a

compositional structure.

In Section 1.1, functional composition and decomposition operations will be de-

fined. Their different interpretations will be shown to correspond to parallelization,

cascading and recursion, which are among methods that are often used to tackle com-

putationally difficult tasks. In Section 1.2, certain desirable aspects and implications

of composition and decomposition will be introduced as the focus of the framework

to be exploited in signal processing, namely an alternative way for compact represen-

tations of signals, modularity in designs and separability of computations. Section

1.3 will conclude the chapter with an outline of the other chapters.

13

1.1 Functional Composition and Decomposition

Functional composition is the application of one function to the results of another

function. Conversely, functional decomposition is directed toward expressing a given

decomposable function as a composition of other functions, usually of lower order or

complexity. If the function is not decomposable, functional decomposition may be

applied to obtain a decomposable approximation. In this thesis, two notations will

be used interchangeably to denote the composition of two functions A and B, namely

A(B(·)) and A ◦ B(·). Compositions of two operators will be distinguished by using

curly brackets, i.e. A{B{·}}.
Functional composition can be interpreted conceptually as a sequence of operators

applied to an input function or variable. This corresponds to cascading subfunctions

in order to obtain a more complex function, or cascading subsystems in order to

achieve a more sophisticated system to process an input. One simple example is the

application of filtering to an input signal x[n] using a cascade of two lower order

subfilters, which can be associated with operators G{·} and F{·}, respectively. The

result of the filtering operation can be expressed as the composition of these operators

acting on the input, namely F{G{x[n]}}. This composition takes a simple form if

the filters are linear and time invariant (LTI), in which case the z-transform of the

composition can be expressed as the product of individual z-transforms of the filters

with that of the input signal,

F{G{x[n]}} z←→ F (z)G(z)X(z).

Therefore, composition of cascaded subsystems in the case of LTI systems is commu-

tative, a property that is usually lacking in the composition of other more general

functions including nonlinear filters. This observation raises an interesting question

as to what classes of operators accept a rather simple representation in other domains

when they are composed. This question is not the main focus of this thesis but is a

promising future direction.

Another case which can be associated with functional composition is that of di-

14

viding a complex function into subfunctions the results of which are not required

by each other in advance and therefore could be obtained separately and combined

appropriately at a later stage. This corresponds to parallelization of a task in which

each subtask can be performed by an independent subsystem such as multiple pro-

cessors or even different computers in a network. In signal processing, a common

scheme where parallelization is used is the implementation of high order infinite im-

pulse response LTI filters as a combination of several low order subfilters, in which

usually the low order filters are obtained by a partial fraction expansion. For two

such subfilters G1{·} and G2{·}, the output becomes the composition

F{G1{x[n]},G2{x[n]}} = G1{x[n]} + G2{x[n]} z←→ G1(z)X(z) +G2(z)X(z)

where x[n] is the input and F{·, ·} simply corresponds to the summation of its ar-

guments in this example. This is a simple example of composing the multivariate

function F with univariate functions G1(z) and G2(z). In this thesis, composition

of multivariate functions will emerge in a discussion of decreasing the computational

complexity in certain classes of problems requiring marginalization.

A recursive approach to solving computationally difficult problems can also be

associated with a composition of subfunctions, where these subfunctions are similar

to the original function applied to easier subproblems. A very successful application of

this approach in the context of signal processing is the Fast Fourier Transform (FFT)

algorithms to compute the Discrete Fourier Transform (DFT) of a long sequence x[n].

In the decimation-in-time FFT algorithm, denoting the N -point DFT of a length-N

sequence with the operator GN{·} leads to a recursion

GN{x[n]} = F{GN
2
{xe[n]},GN

2
{xo[n]}},

where xe[n] and xo[n] are subsequences of x[n] consisting of its even and odd indexed

terms. The operator F{·, ·} corresponds to combining its two arguments through

simple additions as well as multiplications with different roots of −1, therefore DFT

of a long sequence can be computed more efficiently by combining the DFT of its

15

subsequences recursively.

So far, functional composition and decomposition were conceptually associated

with cascading, parallelization and recursion by representing subcomputations as op-

erators. In these approaches, the composition of operators does not necessarily lead

to the composition of the actual functions representing these operators. For example,

the cascade of two LTI filters was represented as F{G{·}} with an operator rep-

resentation of each filter. However the actual mathematical representation of this

operation is two convolutions involving impulse responses and does not involve com-

position of these impulse responses. In this thesis, composition and decomposition of

actual functions will be explored rather than their operator representations. In other

words, in the context of this thesis, composition will refer to the mathematical op-

eration of embedding functions into others through a direct replacement of variables

with functions.

1.2 A Framework for Signal Processing

1.2.1 Goals

It is the main goal in this thesis to develop a systematic framework in which functional

composition and decomposition can be exploited more fully in signal processing. To-

wards this goal, existing functional composition and decomposition algorithms in the

mathematical literature will be identified, implemented, extended or new algorithms

will be proposed that also accommodate the common optimality and efficiency criteria

of signal processing. A complete discussion regarding composition and decomposition

of all types of functions is neither possible nor meaningful. Therefore, the focus in

this thesis is on certain classes of functions that are ubiquitous in signal process-

ing, namely univariate polynomials, frequency responses and discrete multivariate

functions. Once the tools are developed, some of the existing signal processing ap-

plications in the literature will be revisited and re-interpreted within this framework

illustrating its additional benefits, and also new applications will be formulated.

16

Three common themes will appear as algorithms are developed and applications

are formulated in the following chapters; namely sparsity, modularity and separability.

Each of these themes will have a close relationship with a corresponding interpretation

of composing two functions. The relationship between the themes and the functions

that constitute the focus in this thesis are depicted in Figure 1-1.

Compact Representations and Sparsity

In a parametric representation of two functions F and G, their composition F ◦G can

be interpreted as expanding some or all parameters of F with the parameters of G.

Parameters can be coefficients of a polynomial, variables in a multivariate function

or sample values of bandlimited functions. In most compositions, the number of

parameters in the composition F ◦ G well exceeds the total number of parameters

in F and G. This suggests an opportunity for a more compact representation of a

decomposable function in terms of the parameters of its components rather than its

direct parametric representation. This can be viewed as an alternative way to reduce

the number of required parameters to represent such functions with implications for

sparsity.

Modular Structures

Another interpretation of functional composition is to embed one function G into an-

other function F to obtain F ◦G. If a function is used to represent a signal processing

operation or task, the composition F ◦ G may correspond to repeating the subtask

G at different processing levels encapsulated by the main task F . The implementa-

tion of the subtask G may be accomplished by a standardized and optimized off-line

design, which can then be repeatedly used at each processing level it is needed. This

naturally leads to a modular pattern with the main module being G.

Separation of Computations

A usual approach to simplify difficult computational problems is to divide them into

more manageable parts, for example in the case of factorable functions. The in-

17

Figure 1-1: Functions for which composition and decomposition operations will be
discussed and the implications of these operations for signals and systems that will
arise in the context of examples discussed.

terpretation of functional composition as embedding subtasks in other tasks also

provides an alternative method to separate computations into smaller subcomputa-

tions. Computational efficiency usually follows by carefully framing and scheduling

the subcomputations.

1.2.2 Main Contributions

Functional composition and decomposition have manifested themselves in a variety of

contexts in signal processing. However, they were often not identified explicitly and

not manipulated utilizing the mathematical formalism. In this thesis, formal mathe-

matical representations of composition and decomposition will be adapted whenever

possible, which will make it more convenient to exploit them by borrowing techniques

from the mathematics literature. This also constitutes the basis for a framework to

systematically approach certain signal processing applications.

A chapter of this thesis is devoted to an overview of existing decomposition meth-

ods, their evaluation and development of a new decomposition method for an impor-

tant class of functions for signal processing, namely polynomials. The identification

18

of polynomial decomposition techniques as a potentially useful signal processing tool

presents a new viewpoint to manipulate finite length discrete time signals and LTI

systems. As computational challenges ever evolve and signal processing keeps offering

new and creative solutions for them, composition and decomposition of polynomials

may emerge as a promising set of operations to exploit in applications involving finite

length sequences.

Designing modular filters constitutes an important subset of applications that

are advocated in this thesis, which arises as an application of frequency response

composition and decomposition. Development of a technique to decompose frequency

responses leads to a convenient framework to design and analyze modular filters,

revisit and re-interpret filter sharpening applications as a special case of modularity,

which in turn allows improving and generalizing sharpening methods.

A further accomplishment is that decomposable multivariate functions are shown

to be potentially as useful as their factorable counterparts for an important class

of signal processing and machine learning applications, namely those that require

marginalizations. This is accomplished by identifying a close relationship between

decomposability and factorability of multivariate functions by introducing latent vari-

ables and temporarily increasing the dimensionality of these functions. This allows

exploitation of some well-known and computationally efficient methods in the case of

decomposable multivariate functions which were originally developed for marginaliz-

ing factorable functions. The relationship between decomposability of a lower dimen-

sional function and the factorability of an associated higher dimensional function also

appears in the literature for polynomials, a property which deserves further consid-

eration as to whether it exists more generally than in the case of these two classes of

functions.

1.3 Outline

In Chapter 2, applications from the existing signal processing literature that can be

interpreted as a form of composition and decomposition are discussed. This chap-

19

ter also reviews the basic concepts of time and frequency warping since these are

commonly exploited in this literature.

Chapter 3 explores polynomial composition and decomposition and compares the

implementation of several polynomial decomposition algorithms, including both ex-

act and approximate decompositions. A new method for approximate polynomial

decomposition is introduced. The chapter concludes with the discussion of sensitivity

of polynomial composition and decomposition operations and methods for obtaining

equivalent decompositions with lower sensitivity.

In Chapter 4, the composition and decomposition of frequency responses are de-

fined and methods are developed for their decomposition into a rational function

and a polynomial. The decomposition quality is specified in terms of the Chebyshev

norm of the difference between the given frequency response and its approximation

as a composition. The method is also extended to the cases where the decomposition

quality is specified based on approximating the magnitude of a given frequency re-

sponse with the magnitude of a composition, which, for example, becomes useful in

designing analog modular filters.

Composition and decomposition of discrete multivariate functions are discussed

in Chapter 5. For multivariate functions, their decomposability and factorability

are shown to be related by artificially increasing the dimensionality of the function

through the introduction of latent variables. This relationship allows using well-

established matrix factorization algorithms to decompose discrete multivariate func-

tions.

Several applications of functional composition and decomposition are discussed in

Chapter 6. These applications show that the functional composition viewpoint leads

to efficiency in representations, implementations and computations. These applica-

tions shown here are only a few examples of a possibly much larger set of applications

that can be formulated in the richness of signal processing.

20

Chapter 2

Composition and Decomposition in

Signal Processing

Functional composition and decomposition, although not identified as such explicitly,

have appeared in a variety of signal processing contexts. Phase modulation is one such

example where a carrier sinusoid is composed with the signal to be transmitted and

as a result, the carrier signal experiences a time warping in the form of local changes

in its frequency and phase. A similar effect on signals that can be interpreted as

functional composition is the wow and flutter in musical recordings which stem from

imperfect and variable-speed recording and playback, where the varying speed can

be associated with a warping function. In other examples, functional composition

has been intentionally introduced into signal processing systems and algorithms in

order to exploit the benefits of time and frequency transformations as well as reusing

the same signal processing blocks repeatedly to avoid the expense of designing larger

systems in one step.

In this chapter, several signal processing contexts that can be interpreted from

a composition viewpoint are described to illustrate that composition is not a totally

unconventional concept in signal processing and its benefits have been recognized,

yet it is still far from being fully exploited in a systematical manner. Since time and

frequency transformations are commonly exploited in many of these contexts, as a

first step, these two operations are reviewed and re-interpreted as a form of functional

21

composition.

2.1 Time and Frequency Transformations

2.1.1 Time Transformations

Time transformation of a signal x(t) by another function of time γ(t) can be defined

as the substitution of its time variable t with γ(t), i.e. x(t) → x(γ(t)), and is a

generic example of composition of functions. The resulting signal can be represented

as y(t) = x ◦ γ(t) with the composition notation described in Chapter 1. An example

of time transformation is shown Figure 2-1 with x(t) = 2 sin(5πt+0.34π) and γ(t) =

tanh(3t). The independent variable axis, time axis in this case, gets warped in a

way consistent with γ(t), the time warping function. This can be visually justified

by examining the time plots of x(t) and y(t) = x(γ(t)). The time axis gets locally

compressed when the slope of γ(t) is greater than the slope of the identity warping

function γid(t) = t, i.e. unity, and locally expanded when the slope is less than unity.

For an unambiguous recovery of x(t) from y(t), γ(t) is required to be known and

invertible. In that case

x(t) = y(γ−1(t)), (2.1)

i.e., x(t) can be obtained by the application of the inverse time warping function to

y(t).

2.1.2 Frequency Transformations

Frequency transformations of discrete time signals can be viewed as a special case of

transforming, or composing, the corresponding z-transform since the Fourier trans-

form of a signal is the evaluation of its z-transform on the unit circle. Only the

discrete time case will be explored as the discussion of continuous time signals is sim-

ilar. Since the z-transform F (z) of a causal discrete time signal f [n] of length M +1

22

Figure 2-1: Time transformation γ(t) = tanh(3t) applied to the signal x(t) =
2 sin(5πt+ 0.34π).

is given by

F (z) =

M
∑

k=0

fkz
−k, (2.2)

its composition with the z-transform G(z) of another causal discrete time signal g[n]

can be defined as

H(z) = F (G(z))
∆
=

M
∑

k=0

fkG
k(z), (2.3)

where H(z) is the resulting z-transform. This corresponds to replacing z−1 in the

definition of F (z) with G(z), or equivalently, to composing the polynomial F (·) with
another function of z−1, namely G(z).

The frequency transformation implied by the composition in equation (2.3) can

be interpreted as follows. Before the composition, the DTFT F (ejω) is specified by

computing the z-transform F (z) on the unit circle, which is parametrized as z−1 =

e−jω and is transversed by sweeping ω from 0 to 2π. The composition in equation

(2.3) transforms the sequence f [n] to h[n] by substituting G(z) for z−1. Therefore

23

the DTFT H(ejω) corresponds to computing F (z) on the contour parametrized by

z−1 = G(ejω) in the complex plane. This can be viewed as warping the unit circle as

specified by G(ejω). Figure 2-2 illustrates the warping of the unit circle by

z−1 = G(ejω) = −1 + 0.5e−jω + 0.4z−2jω (2.4)

which are the set of new points on which F (z) is computed to yield H(ejω). The

computation of the z-transform on contours other than the unit circle has proved

useful in different signal processing contexts, for example the chirp z-transform [43].

An important class of mappingsG(z) are all pass functions which satisfy |G(ejω)| =
1. The importance of such mappings stems from the fact that they map the unit cir-

cle onto itself, therefore the Fourier transform before and after a composition are

frequency warped versions of one another. This also implies that compositions of

all-pass mappings with this property results in an all-pass mapping with the same

property as the unit circle is mapped onto itself by each map in the composition

chain. Mappings using all-pass functions have proven to be very important in signal

processing applications and several examples of their use are shown in Section 2.2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

unit circle

new contour

Figure 2-2: The unit circle in the complex plane, parametrized by z−1 = e−jω, and
its image under the transformation z−1 = G(ejω) = −1 + 0.5e−jω + 0.4z−2jω.

24

2.2 Previous Work

2.2.1 Nonuniform sampling and local bandwidth

It is a well-known fact that a bandlimited signal can be represented by and recovered

from its uniform samples taken at a rate at least twice its highest frequency. In cases

where a bandlimited signal experiences a time transformation, this property may be

lost as the transformation renders the signal non-bandlimited in general. However, the

convenience of representing a signal using its finite-rate samples has tempted several

authors [14,55] to investigate other means to sample non-bandlimited signals obtained

by time warping bandlimited signals and reconstruct them from these samples, where

the signal can be sampled at a finite rate consistent with a notion of local bandwidth

corresponding to the time warping function in this context.

Given that a non-bandlimited signal f(t) is in fact obtained by time warping a

signal g(t) bandlimited to ωc, i.e.

f(t) = g(γ(t)), (2.5)

where γ(t) is an invertible warping function with γ−1(t) = α(t), Wei [55] proposes

using the system depicted in Figure 2-3 to sample and reconstruct f(t). Reversal of

the time warping in the first stage can be viewed as a preconditioning of the signal to

avoid aliasing in the subsequent uniform sampling process. The samples taken in the

third step correspond to a non-uniform grid in the original time domain, supporting

the intuitive notion of the local bandwidth as the samples are denser when the γ′(t) is

larger, corresponding to a higher local bandwidth. This method utilizes compositions

with functions of time in order to transform a non-bandlimited signal in an invertible

way to a bandlimited one to exploit the efficient sampling and reconstruction schemes

for the latter.

25

Figure 2-3: A sampling and reconstruction scheme for a non-bandlimited signal f(t)
obtained by time warping a signal g(t) bandlimited to ωc, where f(t) = g(γ(t)).
Figure is adapted from [55].

2.2.2 FFT for Unequal Resolution Spectra

Oppenheim et al. [39] showed that it is possible to use the FFT in order to compute

the DFT efficiently on a nonuniform frequency grid after appropriately warping the

Fourier transform in the frequency variable, which can be recognized as a form of

composition as discussed in Section 2.1.2. In the proposed method, the Fourier trans-

form is effectively composed by a nonlinear function such that a uniform sampling

grid, on which a DTFT can be efficiently sampled using the FFT, corresponds to a

desired nonuniform sampling grid for the original Fourier transform. This is accom-

plished by transforming the original sequence f [n] to a new sequence h[n] satisfying

the desired relationship between their corresponding Fourier transforms.

Figure 2-4 illustrates how a sequence h[n] is obtained from a causal discrete time

sequence f [n]. First, f [n] is time reversed and is provided as the input to a system

consisting of all-pass filters after the first two subsystems and which is tapped after

each block in the chain. Each block in this network and hence the resulting h[n] is

parametrized by the real number a. The discrete time sequence h[n] is specified as

the values recorded at these taps at n = 0, i.e.,

h[n] = h̃n[0]. (2.6)

The relationship between H(ejω) and F (ejω) is given by

H(ejω) = F (ejθα(ω)) (2.7)

26

Figure 2-4: The system to obtain h[n] = h̃n[0] from f [n] with the frequency response
relationship given in equation (2.7) [39].

where

θα(ω) = arctan
(1− α2) sinω

−2α + (1 + α2) cosω
. (2.8)

This is a parametric warping of the frequency axis with the parameter α. The DFT of

h[n] can be efficiently computed using the FFT, which computes the equally spaced

samples of H(ejω), and hence the non-uniformly spaced samples of F (ejθa) as desired.

This method can be interpreted as an indirect utilization of composition in the fre-

quency domain to extend the efficiency of the FFT to computations of the DFT on

non-uniform grids.

2.2.3 Frequency Transformations of Prototype Filters

Frequency selective filters can be designed by applying an algebraic transformation to

a prototype filter, which is usually selected as a low-pass filter. This can be interpreted

as another form of functional composition in the context of signal processing. The

idea is applicable to both continuous and discrete time filters, and is only illustrated

for discrete time in this section.

In Section 2.1.2, frequency transformations were expressed in terms of composing

the z-transform F (z) of a discrete time sequence f [n] by a mapping G(z), and com-

puting the Fourier transform on the resulting system function by setting z−1 = e−jω.

If F (z) is a rational system function of a causal and stable filter, the system func-

tion after the composition is usually required to remain rational and correspond to a

causal and stable system. These requirements place certain constraints on the map-

ping G(z), namely, G(z) must be a rational function of z−1 and the inside of the

unit circle must be mapped to the inside of the unit circle so that the poles are not

27

mapped across the unit circle [40]. Moreover, for the resulting Fourier transform to

take values from the range set of F (ejω), the unit circle must be mapped onto itself,

which requires |G(ejω)| = 1 as discussed in Section 2.1.2.

It was shown in [15] that the most general form of the mappings G(z) satisfying

these conditions is of the form

G(z) = ±
N
∏

k=1

z−1 − αk

1− αkz−1
, (2.9)

i.e., the product of a finite number of all-pass system functions each with a parameter

ak. The simplest mapping that maps a low-pass filter F (z) to another lowpass filter

is

G(z) =
z−1 − α
1− αz−1

. (2.10)

A prototype low-pass filter F (z) with a cut-off frequency θp can be mapped to F (G(z))

using such a mapping to obtain a low-pass filter with cutoff frequency

ωp = arctan
(1− α2) sin θp

2α + (1 + α2) cos θp
. (2.11)

This frequency transformation resembles the nonlinear transformation applied to a

discrete time sequence for the efficient computation of its DTFT on a nonuniform

grid as described in Section 2.2.2. However, in this setting, the purpose of the trans-

formation is to relocate the cut-off frequency. Equations (2.8) and (2.11) describe an

equivalent relationship between the frequency variables ω and θ, and this relationship

is illustrated in Figure 2-5.

Compositions with mappings of the form (2.10), i.e., frequency transformations

can be used to obtain frequency selective filters more general than another low-pass

filter. For example, in order to obtain a band-pass filter with a desired lower cut-off

frequency ωp1 and a desired higher cut-off frequency ωp2, the mapping

G(z) =
z−2 − 2αk

k+1
z−1 + k−1

k+1
k−1
k+1

z−2 − 2αk
k+1

z−1 + 1
(2.12)

28

Figure 2-5: The parametric relationship between the frequency variable of a prototype
low-pass filter θ and the frequency variable ω of a low-pass filter obtained after the
transformation in equation (2.11). Figure is adapted from [40].

is used for composing the prototype low-pass filter with the cut-off frequency θp,

where

k = cot

(

ωp2 − ωp1

2

)

tan

(

θp
2

)

(2.13)

and

α =
cos(

ωp2+ωp1

2
)

cos(
ωp2−ωp1

2
)
. (2.14)

For a complete list of transformations from a low-pass filter to low-pass, high-pass,

band-pass and band-stop filters, the reader is referred to [15] or [40].

2.2.4 Design of Audio Filters

A desirable property of frequency selective filters obtained using frequency trans-

formations as in Section 2.2.3 is the fact that the resulting filter exhibits the same

extremal values in the pass-bands and the stop-bands as that of the prototype filter

since the composition distorts only the frequency axis. This guarantees that, for ex-

ample, the specifications for the maximum allowable ripple size are not violated after

the frequency warping, a fact that is often exploited in designing minimax-optimal

29

Figure 2-6: Composing a filter F (z) to accommodate audio filter specifications with
logarithmic frequency ranges by substituting its delay elements for all pass systems [4].

filters. One example is an audio filter design algorithm introduced in [4].

Due to the natural frequency sensitivity of the human auditory system, frequency

specifications in audio and speech applications are usually given on a logarithmic

scale. Frequency responses of the filters that are used in these applications have most

of the detail at low frequencies. This unbalance in the specifications between low and

high frequency ranges causes difficulties in designing filters such as yielding very high

filter orders or not converging at all. The design procedure proposed in [4] to alleviate

this problem utilizes the idea of warping the frequency scale nonlinearly similar to

the methods in Section 2.2.3. This is accomplished by composing the z-transform of

the filter by the all pass system function as illustrated in Figure 2-6, which leads to

composing the frequency response F (ejω) of the filter with the function in equation

(2.8). The choice of α in the range [−1, 0] corresponds to expanding the frequency

axis at low frequencies and compressing at high frequencies, making the design space

suitable for logarithmic specifications. Low order and high quality audio equalizers

can easily be obtained by composing an FIR filter designed with well-established

techniques such as the Parks-McClellan algorithm [42] using this method.

2.2.5 Parks-McClellan Algorithm

Another example of a signal processing context in which functional composition has

indirectly appeared is the design of linear phase FIR filters. One approach to designing

30

linear phase causal FIR filters is to design a zero phase FIR filter and delay the

sequence in time to the point it becomes causal as in the design of Parks-McClellan

filters [42]. This approach utilizes the symmetry in the coefficients of the filter to

optimize them indirectly by representing the Fourier transform as a composition of a

polynomial and a trigonometric function. For example, a finite length sequence h[n]

that is symmetric around zero has a real-valued Fourier transform of the form

H(ejω) =
L
∑

n=−L

h[n]e−jω =
L
∑

n=0

h[n] cosnω (2.15)

which can be rewritten as

H(ejω) =

L
∑

n=0

bn(cosω)
n (2.16)

where bn, n = 0, 1, . . . , L, the coefficients of the polynomial in cosω, depend on the

values of h[n]. Hence the Fourier transform can be expressed as the composition of a

polynomial

P (w) =
L
∑

n=0

bnw
n (2.17)

with the function f(ω) = cosω. Due to this specific form of the Fourier transform,

Parks and McClellan [42] were able to express the linear phase FIR filter design

problem as a polynomial fitting problem, which is well studied in mathematics, and

devised the celebrated Parks-McClellan FIR filter design algorithm.

2.2.6 Extending Filter Dimensionality

Mersereau et al. [35] extended the idea by Parks and McClellan to 2-D linear phase

FIR filter design. Similar to its one dimensional counterpart in equation (2.15), a 2-D

linear phase FIR filter h[m,n] has a frequency response

H(ejω1, ejω2) =

M1
∑

m=0

M2
∑

n=0

h[m,n] cosmω1 cosnω2. (2.18)

31

Figure 2-7: A 2-D low-pass filter obtained from a 1-D low-pass filter using McClellan
transformation. Figure adapted from [35].

The procedure to obtain 2-D filters from 1-D filters by taking advantage of this

similarity in the forms of Fourier transform is called McClellan transformation and

involves the substitution

cosω ↔
P
∑

p=0

Q
∑

q=0

t[p, q] cos pω1 cos qω2 (2.19)

in the Fourier transform of the 1-D filter given in equation (2.16). In other words,

the univariate polynomial in cosω given in equation (2.16) is composed by a bivariate

function of ω1 and ω2 given in equation (2.19) to yield the Fourier transform of the

2-D filter

H(ejω1, ejω2) =

L
∑

n=0

bn

[

P
∑

p=0

Q
∑

q=0

t[p, q] cos pω1 cos qω2

]n

. (2.20)

The substitution given in equation (2.19) also describes the relationship between

the 1-D filter response and the 2-D filter response implicitly. Each frequency in the

one dimensional ω space corresponds to a contour in the two dimensional frequency

plane indexed by ω1 and ω2. The shape of the contour is determined completely by

the coefficients t(p, q), 0 ≤ p ≤ P, 0 ≤ q ≤ Q. The value of H(ejω) at ω = ω0 will be

identical to the value of H(ejω1, ejω2) on the contour which corresponds to ω0, but the

32

variations from one contour to another will be determined by the coefficients of the

1-D filter h[n]. This approach which uses functional composition for 2-D filter design

separates the problem into two tractable subproblems, namely the design of the 1-D

filter h[n] and the design of the contour parameters t(p, q). This procedure is similar

to the case of designing filters from a prototype using frequency transformations and

the ripple sizes are not affected by the increase in dimensionality. Figure 2-7 illustrates

an example of a two dimensional low-pass filter that is obtained by extending a 1-D

Paks-McClellan filter using McClellan transformation.

2.2.7 Filter Sharpening

In cases where multiple identical linear phase filters with an inadequate frequency

selectivity are available, it is possible to obtain improved overall frequency charac-

teristics that exhibits smaller deviations from zero in the stop-bands and smaller

deviations from unity in the pass-bands. This can be achieved by using replicas of

the given filter through an interconnection of adders and gains. This procedure is

usually referred to as filter sharpening [26]. In this section, several approaches by

different authors to the filter sharpening problem will be reviewed. These approaches

result in polynomial transformations applied on the filter, which is another interesting

and useful example that can be interpreted as a composition in the context of signal

processing, namely the composition of a polynomial and a filter frequency response.

However, all of these methods are ad hoc, some of them require exhaustive searches

and even in that case lead to suboptimal solutions. In Chapter 6, the compositional

structure of sharpened filters will be exploited in order to obtain both superior and

systematic methods for filter sharpening as compared to the current methods.

A straightforward approach to sharpening a filter with a frequency response G(ejω)

is to cascade the filter with itself to obtain a response G2(ejω), but this has an adverse

effect in the passband since squaring will increase the deviation from unity. Tukey [52]

proposed a method called twicing which involves filtering the input with G(ejω) and

adding back to the input the residual between the input and the output before a

33

Figure 2-8: Implementation of twicing as proposed in [52]. Figure is adapted from [26].

second stage of filtering. The effective frequency response in this case becomes

Htw(e
jω) = (1 + (1−G(ejω)))G(ejω)

= 2G(ejω)−G2(ejω)
(2.21)

The implementation of twicing is illustrated in Figure 2-8.

Kaiser and Hamming [26] observed that the effective transformation 2x−x2 that is
being applied to G(ejω) in twicing has a desirable attenuating effect on the passband

deviations from unity but an undesirable magnification effect on stop-band deviations

from zero, the exact opposite effects observed with cascading corresponding to the

transformation x2. They explained the effect of these transformations through the

value of their slope at x = 0 for stop-band and x = 1 for passband; a zero slope

will attenuate the magnitude of deviations and a slope that is greater than unity

will increase the deviations. Therefore, they proposed using transformations A(x),

which they referred to as amplitude change functions, with vanishing derivatives at

both x = 0 and x = 1 in addition to the constraint A(0) = 0 and A(1) = 1. This

latter constraint guarantees mapping the magnitude in the stop-bands to zero and the

magnitude in the pass-bands to unity. For example, the smallest order polynomial

transformation satisfying all of these constraints is 3x2 − 2x3. The comparison of

these amplitude change functions is illustrated in Figure 2-9.

Kaiser and Hamming [26] provided a general formula to yield higher order poly-

nomials with higher order tangencies, i.e. vanishing derivatives, at x = 0 and x = 1

34

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Amplitude change functions

G(ejω)

2G(ejω)−G2(ejω)

G2(ejω)

3G2(ejω)−2G3(ejω)

Figure 2-9: Comparison of three different amplitude change functions [26].

satisfying A(0) = 0 and A(1) = 1. Moreover, the order of tangencies at these two

points are not required to be equal. A polynomial with n-th order tangency at zero

and m-th order tangency at unity is given by

A(x) = xn+1

m
∑

k=0

(n+ k)!

n!k!
(1− x)k. (2.22)

Kaiser and Hamming’s work in [26] on filter sharpening of linear phase filters

inspired other authors [12, 38, 48] to approach this problem in a slightly more struc-

tured way than originally attempted. In this new approach, the overall design after

sharpening was referred to as tapped cascaded interconnection of FIR subfilters.

Nakamura and Mitra [38] advanced the notion of filter sharpening in two direc-

tions. The first one is to find the amplitude change function coefficients that not only

satisfy the desired values and the order of tangencies at x = 0 and x = 1, but also

minimize the mean squared error between the sharpened filter response and the ideal

response. The latter is achieved at the expense of requiring a higher order polyno-

mial than otherwise needed. Their second contribution is to introduce modifier filters

T (ejω) with coefficients of the form
(

1
2

)k
, where k is an integer, such that they can

be implemented using only bit shift operators and no explicit multiplications. The

35

purpose of using these modifier filters was to approximate the behavior of the sub-

filters and reduce their burden to meet the subfilter specifications, and then cascade

them with the modifier filter to meet the specifications more accurately. Coefficients

of a similar form were later explored not only for subfilter modifiers but also for the

amplitude change functions to obtain multiplierless filters by Chen [12].

Saramaki [48] viewed the designs using tapped cascaded interconnection of FIR

subfilters as a form of a frequency transformation where the coefficients of the am-

plitude change function F (z) corresponded to the prototype filter coefficients, or the

tap coefficients, and the subfilter G(z) as the frequency transformation similar to

the discussion in Section 2.2.3. Moreover, he considered the filter approximation

in Chebyshev norm rather than to minimize mean square error unlike in [38], and

discussed the following four approximation problems:

i. Given the number of subfilters, optimize simultaneously the subfilter and the

tap coefficients such that the composite filter satisfies the given specifications

with a minimum subfilter order.

ii. Given the subfilter order, optimize simultaneously the subfilter and the tap

coefficients to meet the given overall specifications with a minimum number of

subfilters.

iii. Given a prescribed subfilter, optimize the tap coefficients to meet the given

overall specification with a minimum number of subfilters.

iv. Given the tap coefficients and the number of subfilters, optimize the subfilter

to meet the given overall specifications with a minimum subfilter order.

In order to understand the unified approach Saramaki proposed for these four

problems, consider the desired overall filter specifications

1− δp ≤ H(ejω) ≤ 1 + δp, ω ∈ Ipass (2.23a)

−δs ≤ H(ejω) ≤ δs, ω ∈ Istop, (2.23b)

36

where δp and δs are the allowed pass-band and stop-band ripple sizes, and Ipass and

Istop are the union of pass-band and stop-band frequency intervals, respectively. The

design of such a filter is divided into two parts, namely the design of the prototype

low-pass filter F (z) such that

1− δp ≤ F (ejΩ) ≤ 1 + δp, 0 ≤ Ω ≤ Ωp (2.24a)

−δs ≤ F (ejΩ) ≤ δs, Ωs ≤ Ω ≤ π, (2.24b)

and

0 ≤ G(ejω) ≤ Ωp, ω ∈ Ipass (2.25a)

Ωs ≤ G(ejω) ≤ π, ω ∈ Istop, (2.25b)

where Ωp and Ωs are the pass-band and the stop-band edge frequencies for the pro-

totype low-pass filter F (z). The specifications for the prototype and the subfilter

guarantee that every frequency in the pass-band, ω ∈ Ipass, is mapped by G(ejω) to

the [0,Ωp] interval in which the prototype filter F (ejΩ) is within the specified range

[1 − δp, 1 + δp] for the pass-band. Similarly, for every frequency in the stop-band,

ω ∈ Istop, is guaranteed to be mapped to [Ωs, π] interval in which the prototype filter

F (ejΩ) is within the specified range [−δs, δs] for the stop-band. Figure 2-10 depicts

the design of a band-pass filter H(ejω) using the porposed mapping from a low-pass

filter F (ejΩ) and the corresponding G(ejω).

Although this frequency transformation point of view presents an intuitive way to

think about tapped cascaded interconnection of identical subfilters, the optimal choice

of Ωp and Ωs for a given order of prototype or subfilter requires an exhaustive search

for each pair (Ωp,Ωs), and a design of Parks-McClellan filter for each pair to see if

the design criteria are met since this is a non-convex problem in general. Suboptimal

designs can be obtained by fixing either one or both of these two parameters. However,

the methodology still requires that both the prototype and the subfilter be designed as

37

Figure 2-10: Design of a band-pass filter using the low-pass prototype and a mapping
as in equations (2.24) and (2.25). Figure is adapted from [48].

a symmetric linear phase filter, which limits the classes of filters that can be sharpened

or used in such a structure.

2.2.8 Other contexts

There are many other contexts in which functional composition appears in signal pro-

cessing implicitly or explicitly. For example nesting all pass filters into systems with

feedback, which corresponds to composing z-transforms, is proposed as an efficient

method for artificial reverberation [49]. In robotics, the location of the effector at

the tip of a robot arm with multiple joints can be expressed as a functional com-

position, where the location of each joint is a function of the previous joint location

and its own parameters, and techniques for multivariate polynomial decompositions

can be exploited to decrease on-line computations during robot operation [23, 37].

In computer-aided geometric design, composition can be used for the polynomial

reparametrization of Bezier simplexes [18], and for modeling and manipulating ob-

38

(a) (b)

Figure 2-11: A computer graphics of a sphere and a plane experiencing deformation
that is modeled by a functional composition. Figure is adapted from [50].

jects in deformable media [50]. Figures 2-11a and 2-11b illustrate objects in a de-

formable medium, where the deformation is modeled as the composition of a function

for object representations with the deformation function.

2.3 Chapter Conclusions

The signal processing contexts from the current literature discussed in this chapter

provide evidence that functional composition has appeared in many contexts directly

and indirectly. In some of these, it was natural to interpret the operations on signals

and systems as a form of composition such as phase modulation or the phenomena

of wow and flutter in musical recordings although the benefit of a functional com-

position point of view is not immediately obvious. However in other applications

which exploit time and frequency transformations, composition and decomposition

were intentionally introduced as they were recognized to be useful for designing and

generalizing filters, extending sampling and reconstruction schemes and computing

spectra efficiently. A third class of applications can be considered to be those in

which reusing a limited class of subsystems are promoted to obtain more sophisti-

cated overall systems such as the filter sharpening methods. Although it is natural

and straightforward to interpret this latter class from a functional composition per-

spective, their current analyses were not performed from this way which could have

39

allowed gaining further insight into these applications and achieving further improve-

ments. Moreover, the utilization of functional composition and decomposition have

been rather limited in scope in all of these applications, focusing mostly on warping

either time or frequency, and failing in exploiting other aspects such as their potential

for more compact representations, modular structures and structured computations

as discussed in Chapter 1. After developing composition and decomposition algo-

rithms in the following chapters, examples representing these additional aspects will

be discussed illustrating the breadth of applications that can possibly be formulated

or revisited within this systematic framework.

40

Chapter 3

Polynomial Composition and

Decomposition

A fundamental tool in signal processing to represent and manipulate discrete se-

quences, namely the z-transform, is a polynomial for the finite length case. Therefore,

univariate polynomials constitute an important class of functions that are ubiquitous

in signal processing. In this chapter, composition and decomposition of univariate

polynomials will be discussed as an important component of a framework in which

these two operations can be potentially exploited in signal processing applications.

In Section 3.1, the polynomial decomposition scenarios will be introduced. Sev-

eral methods exist in the current mathematics literature to decompose polynomials

if they are known to be decomposable. In this case, they will be referred to be ex-

actly decomposable polynomials and the methods to obtain exact decompositions will

be presented in Section 3.2. At the end of this section, their performances will be

compared on a relatively large set of randomly generated polynomials.

If a polynomial is not exactly decomposable, it can be approximated as the compo-

sition of lower order polynomials. This will be referred to as approximate polynomial

decomposition. Decomposing polynomials approximately is a more difficult problem

than the exact decomposition case and is relatively less studied and understood in

the mathematics literature. In addition to presenting the existing approximate de-

composition algorithms in Section 3.3, a new approximate decomposition algorithm

41

will be developed in Section 3.4 in an attempt to obtain better performance and it

will be compared to the existing algorithms.

In Section 3.5, the sensitivity of polynomial composition and decomposition algo-

rithms with respect to perturbations in polynomial coefficients will be investigated.

It will be shown that this sensitivity can be lowered by departing to equivalent de-

compositions obtained with the methods discussed in that section. Section 3.6 will

conclude the chapter.

3.1 Decomposition Scenarios

Consider F (x), the polynomial that represents a length-(M + 1) sequence fn,

F (x) =

M
∑

n=0

fnx
n, (3.1)

which corresponds to the z-transform1 of fn for x = z−1. Composing F (x) with

another polynomial that represents a length-(N + 1) sequence gn yields

H(x) = F (G(x)) =
M
∑

n=0

fnG
n(x). (3.2)

If a polynomial H(x) can be represented as a composition of two polynomials with

orders greater than unity as in equation (3.2), then H(x) is referred to as a decom-

posable polynomial. The sequence represented by H(x)|x=z−1 becomes

hn = f0(g
(0)
n) + f1(g

(1)
n) + f2(g

(2)
n) + f3(g

(3)
n) + · · ·+ fM(g(M)

n) (3.3)

1In different disciplines, the z-transform is defined with x = z. Although this thesis adopts the
common notation in the signal processing contexts with x = z−1, z-transforms will still be referred
to as polynomials representing finite length sequences in the context of this thesis.

42

where g
(i)
n corresponds to i self-convolutions of the sequence gn. This relationship can

be expressed through a matrix equation

Cf = h (3.4)

or, written explicitly,















































g
(0)
n g

(1)
n g

(2)
n · · · g

(M)
n





































































f0

f1

f2
...

fM























=















































h0

h1

h2

h3

h4

h5

h6
...

hMN















































, (3.5)

where the ith column of matrix C is the sequence g
(i−1)
n . The coefficient vectors of

F (x), G(x) and H(x) will be denoted by f , g and h, respectively, in the sequel. The

number of rows in C is MN + 1, i.e. the length of g
(M)
n which is the highest order

self convolution of gn in equation (3.3), and the number of columns is M + 1.

The problem of decomposing polynomials can be divided into three categories.

Given that a polynomial H(x) is decomposable as in equation (3.2) and G(x) is

known, finding F (x) has a straightforward solution due to the linear relationship

between f and h as in equation (3.4). C is a matrix with fewer columns than rows,

therefore the solution for f will be unique if it is full-rank. This is indeed the case

unless the leading coefficient gM is zero, in which case G(x) can be regarded to have

one less order.

The other two decomposition scenarios assume that even though H(x) is known

to be decomposable, G(x) is unknown. In one case, F (x) may be provided, and in

the other case it may be also unspecified. Since the relationship between g and h is

43

non-linear, both of these problems are much harder to solve than the case when G(x)

is known. The specification of F (x) does not facilitate the solution of the nonlinear

problem of determining a candidate for G(x) within the existing decomposition al-

gorithms as will be discussed in Section 3.2. However, its specification is useful to

uniquely determine a decomposition for H(x) since, otherwise, there are infinitely

many equivalent decompositions that can be obtained using compositions with first

order polynomials as will be described later in Section 3.5.4. As discussed in Sec-

tion 3.2, all existing decomposition algorithms have assumed the most general case in

which both F (x) and G(x) are not specified, focused on determining a candidate G(x)

first and then used the linear relationship in equation (3.5) to determine a candidate

F (x).

3.2 Exact Decomposition Algorithms

In this section, four polynomial decomposition algorithms from the mathematics and

computer science literature are introduced, which obtain the components F (x) and

G(x) when the polynomial H(x) is indeed a composition, i.e., H(x) = F (G(x)).

These algorithms focus on obtaining the decomposition factor G(x) first since F (x)

can be obtained relatively easily from the linear relationship given in equation (3.5)

once G(x) is known.

3.2.1 Barton-Zippel algorithm

One of the earliest attempts to find a polynomial decomposition algorithm was pro-

posed by Barton and Zippel [6, 7], motivated by the search for an algorithm that

allows expressing polynomials in terms of compositions of low order polynomials for

efficient root finding and symbolic computations. Following the work in Fried and

MacRae [20], they showed that a polynomial H(x) has another polynomial G(x) as a

decomposition factor if and only if the bivariate polynomial φG(y, z) divides φH(y, z)

with no remainder resulting in another bivariate polynomial in y and z. Here, the

44

bivariate polynomial φA(y, z) for a K-th order polynomial A(x) is defined as

φA(y, z)
∆
=
A(y)− A(z)

y − z =

K
∑

k=1

ak
yk − zk
y − z =

K
∑

k=1

ak

(

k−1
∑

k′=0

yk−k′−1zk
′

)

. (3.6)

These bivariate polynomials have a specific symmetry in their coefficients, namely the

terms that have the same total order p of the variables y and z also have the same

coefficients ap+1.

It is relatively straightforward to show that if H(x) = F (G(x)), then φG(y, z) has

to divide φH(y, z) with no remainder. More specifically,

φH(y, z) =
H(y)−H(z)

y − z =

M
∑

n=1

fn
Gn(y)−Gn(z)

y − z , (3.7)

where φG(y, z) can be factored out from the summation, therefore divisibility is guar-

anteed.

The algorithm that was developed by Barton and Zippel [6] takes as input the poly-

nomial to be decomposed, namely H(x); obtains the bivariate polynomial φH(y, z)

and examines all of its factors to find a factor that has the form of φG(y, z). The

requirement to examine all combinations of the factors to obtain a factor of the form

φG(y, z) makes this algorithm computationally inefficient since the number of combi-

nations to be examined is exponential in the number of factors.

3.2.2 Alagar-Thanh algorithm

This algorithm proposed in [2] uses the fact that the derivative of a decomposable

polynomial H(x) of the form in equation (3.2) has G′(x) as one of its factors. Specif-

ically,

H ′(x) = F ′(G(x))G′(x).

The algorithm focuses only on the factors of the univariate polynomial H ′(x) with

appropriate orders since the order of G′(x) is restricted to be one less than a factor

of the order of H(x). Every factor of H ′(x) is integrated to obtain a candidate for

45

G(x) where the choice for the integration constant does not affect the next step,

namely the computation of φG(y, z). The polynomial G(x) is a valid decomposition

factor if φG(y, z) divides φH(y, z). Since the polynomial factorization is performed on

a univariate polynomial rather than a bivariate one, this is a more efficient method

than the Barton-Zippel algorithm. However,the requirement to examine each possible

factor remains as an undesirable computational burden.

3.2.3 Kozen-Landau algorithm

A more systematic polynomial decomposition algorithm than the previous two algo-

rithms is given by Kozen and Landau [30], which has the complexity O(P 2), where

P is the order of H(x). M and N , the orders of F (x) and G(x) respectively, are

required as part of the input. The algorithm uses the fact that the coefficients of N

highest order terms in H(x) are determined only by fM , namely the coefficient of the

highest order term in F (x), and all the coefficients of G(x). This can be seen from

the matrix equation (3.5) since the last N entries in every column of matrix C except

its last column consist of zeros, and only fM among the coefficients of F (x) multiplies

this last column to yield the N highest order terms in H(x).

As the first step of the decomposition, H(x) is scaled to be monic, i.e. to have

unity as the coefficient of the highest order term, an operation that does not affect

decomposability. Restricting G(x) and F (x) to be also monic, the coefficients of G(x)

is obtained in the order of decreasing powers through solving N equations iteratively

involving the coefficients of G(x), a straightforward and well-outlined procedure de-

scribed in [30]. After the decomposition is obtained for the monic polynomial, the

scaling is undone.

Although this algorithm requires the orders M and N of the decomposition com-

ponents as the input, it is computationally much more efficient than the previous

algorithms. If the information for orders is not available a priori, the algorithm is re-

quired to run more than once, however only for ordersM and N the product of which

equals the order of H(x). This algorithm along with the Aubry-Valibouze algorithm

that will be discussed next are mainly used for later simulations since they are more

46

systematic compared to the other algorithms as well as having lower computational

complexity.

3.2.4 Aubry-Valibouze Algorithm

A different decomposition algorithm proposed by Aubry and Valibouze [5] utilizes

the relationship between the coefficients of a polynomial and the power sum of its

roots known as the Newton identities. More specifically, the coefficients of an N th

order monic polynomial G(x) can be uniquely determined from the kth power sums

sk, k = 1, . . . N , of its roots defined as

sk =

N
∑

i=1

rkg,i, (3.8)

where rg,i i = 1, . . .N , are the roots of G(x). The Newton identities relate the

polynomial coefficients gn and the power sums sk as in [27]

sk + gn−1sk−1 + · · ·+ gn−k+1s1 = −kgn−k for 1 ≤ k ≤ n. (3.9)

In other words, there is a one-to-one linear relationship between the coefficients of the

n highest order coefficients and power sums of roots sk, k = 1, . . . , n for a polynomial.

The Aubry-Valibouze algorithm first normalizes the polynomial H(x) to make it

monic as in Kozen and Landau’s algorithm. Since a polynomial F (x) of order M can

be written in terms of its roots as

F (x) =

M
∏

j=1

(x− rf,j) (3.10)

where rf,j j = 1 . . .M , are the roots of F (x), a decomposable polynomial H(x) =

F (G(x)) can be written as

H(x) =

M
∏

j=1

(G(x)− rf,j) ∆
=

M
∏

j=1

G̃j(x). (3.11)

47

Each polynomial G̃j(x), j = 1 . . .M , has the same coefficients as G(x) except the

constant term. By the one-to-one relationship implied by the Newton identities, all

G̃j(x) have identical power sums of roots for the powers k = 1, . . . , N . Moreover,

the roots of G̃j(x) are also the roots of H(x), therefore the power sums of roots for

any G̃j(x) can be computed by dividing that of H(x) by M . The Newton identities

can be used again to find the coefficient of G(x) except its constant term using these

power sums, and the constant term g0 can be computed from F (x) and H(x). Finally

the normalization to make H(x) monic is undone.

3.2.5 Comparison of Exact Decomposition Methods

Due to their computational complexity and the existence of more systematic methods,

the Barton-Zippel algorithm and the Alagar-Thanh algorithm are not included in the

comparison of exact decomposition algorithms. Both the Kozen-Landau algorithm

[30] and the Aubry-Valibouze’s algorithm [5] are based on using the coefficients of N

highest order terms in H(x). Moreover, both algorithms are accurate and similar in

performance for low order decompositions. For example, consider the composition of

the 4-th order polynomial

F (x) = 0.3603 + 0.5697x− 0.3764x2 − 0.9914x3 + x4 (3.12)

and the 3-rd order polynomial

G(x) = −0.2921 + 0.6488x+ 0.02611x2 + x3, (3.13)

which yields the 12-th order polynomial

H(x) = 0.1937 + 0.2830x+ 0.4341x2 − 0.1198x3 + 1.4098x4 − 2.6497x5 + 1.8790x6

− 4.0765x7 + 2.3622x8 − 1.9564x9 + 2.5995x10 + 0.1044x11 + x12.

(3.14)

48

The Kozen-Landau and Aubry-Valibouze algorithms both recover F (x) and G(x) in

equations (3.12) and (3.12) successfully when H(x) as well as the orders M = 4 and

N = 3 are provided as the input to these algorithms.

Due to representation of polynomial coefficients and their manipulations with fi-

nite precision, the performance of both algorithms deteriorates with increasing poly-

nomial orders. On the other hand, computation of kth power sums in equation (3.8)

can be performed using directly the roots of H(x) when they are provided rather than

computing them from its coefficients in the implementation of the Aubry-Valibouze

algorithm, which leads to significantly enhanced precision for the decomposition fac-

tors G(x) and F (x).

Figure 3-1 shows a comparison of the performance of three algorithms, namely

the Kozen-Landau algorithm and the Aubry-Valibouze algorithm implemented two

different ways: one using coefficients and the other using roots of H(x). The poly-

nomials H(x) were obtained by composing random polynomials F (x) and G(x) with

the coefficients of the highest order fixed to be unity to avoid degenerate cases and

where the respective orders M and N are chosen equal and varied from 5 to 75 with

increments of five. The decomposition is considered successful if the SNR is more

than 80dB, where the error is defined as the energy in the difference between the true

and the obtained decomposition factors. Both algorithms show an almost identical

success rate since they use the same coefficients of H(x) to determine G(x) whereas

the implementation of the Aubry-Valibouze algorithm using the roots ofH(x) directly

outperforms the others significantly. For all of the polynomials of order 1600, G(x)

was successfully determined by this algorithm while this number dropped to 79 out of

100 for polynomials of order 4900. Once G(x) is computed, F (x) is also determined

using the linear relationship in equation (3.4). However, the matrix inversion using

finite precision deteriorates the success rate for F (x) as the order of the polynomials

increase. The Aubry-Valibouze algorithm manages to successfully obtain F (x) up to

higher orders by utilizing the relationship in equation (3.11) to find the roots of F (x)

and construct its coefficients when the roots of H(x) are provided. The improved

performance using the Aubry-Valibouze algorithm with the roots of H(x) suggests

49

that this algorithm may be more useful to use in a signal processing context when

representations of signals and systems with poles and zeros are provided.

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

S
uc

es
s

R
at

e
(F

(x
))

K−L Method
A−V Method (coeff.)
A−V Method (roots)

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

Order of F(x) and G(x)

S
uc

ce
ss

 R
at

e
(G

(x
))

K−L Method
A−V Method (coeff.)
A−V Method (roots)

Figure 3-1: The comparison of number of successful decompositions of H(x) = F ◦
G(x) by the Kozen-Landau algorithm and the Aubry-Valibouze algorithm, where the
latter is implemented using both coefficients and the roots of input polynomials H(x).

3.3 Current Approximate DecompositionMethods

Section 3.2 focused on algorithms for obtaining the decomposition factors when it is

known that a given polynomial is decomposable. Approximating non-decomposable

polynomials by decomposable ones can be also of significant interest, particularly in

applications such as signal representation and compression because of the inherent

reduction in the number of free parameters. This section starts with the introduction

of a mathematical tool, namely the Ruppert matrices, that has been exploited in

some of the existing approximate polynomial decomposition algorithms. Following

that, three approximate decomposition algorithms are introduced from the current

50

literature, which can be viewed as an extension of the exact decomposition algorithms

given in Section 3.2.

3.3.1 Ruppert Matrices

Barton and Zippel’s exact polynomial decomposition algorithm was based on the fact

that a polynomial H(x) has another polynomial G(x) as a decomposition factor if and

only if the bivariate polynomial φG(y, z) divides φH(y, z). This required examining

all factors of φH(y, z) to find one of the form φG(y, z) for potential decomposabil-

ity. This examination was replaced by a stronger statement that required testing

only the factorability of φH(y, z) ([21] Theorem 1, [53] Theorem 1). More specifi-

cally, a given polynomial H(x) with a non-prime order is decomposable if and only if

φH(y, z) is factorable with no restrictions on the form of the factors. This relation-

ship between decomposability of a low dimensional function and the factorability of a

higher dimensional function will also appear in the context of multivariate functions,

suggesting a possibly deeper connection between these two properties of functions.

This more general result for polynomials leads to a decomposability test which in-

volves only checking the rank of a matrix constructed from its coefficients, namely

the Ruppert matrix, which will be discussed in this section. The Ruppert matrix

is a convenient tool that is exploited in the approximate decomposition algorithms

described in Sections 3.3.3 and 3.3.4.

Factorability of φH(y, z) can be determined using a particular test for bivariate

polynomial factorization that was introduced by Ruppert [47]. Specifically, φH(y, z)

is factorable if and only if there exist two bivariate polynomials r(y, z) and s(y, z) that

are not identically zero with deg(y,z)(r) ≤ (P−2, P−1) and deg(y,z)(s) ≤ (P−1, P−3)
such that

∂r

∂z
φH − r

∂φH

∂z
− ∂s

∂y
φH + s

∂φH

∂y
= 0, (3.15)

where P is the order ofH(x). The existence of two such polynomials r(y, z) and s(y, z)

only certifies factorability of φH(y, z); they are not necessarily its factors. Given H(x)

and therefore φH(y, z), the differential equation given in equation (3.15) is linear in

51

the coefficients of r(x, y) and s(x, y). Therefore it can be rewritten as

Ru = 0, (3.16)

where R is a (4P 2 − 10P + 6) × (2P 2 − 3P) matrix the entries of which are linear

functions of the coefficients of H(x) and which is referred to as the Ruppert matrix of

H(x); and the vector u is obtained by concatenating the coefficient vectors of r(y, z)

and s(y, z). Equation (3.16) implies that the existence of r(y, z) and s(y, z) that are

not identically zero is equivalent to the Ruppert matrix R being rank deficient. More

specifically, if R is rank deficient, then φH(y, z) is factorable and H(x) is decompos-

able. The reverse statement is also true since all relationships are both necessary and

sufficient.

The full-rank Ruppert matrix of a non-decomposable polynomial can provide

additional information in addition to its non-decomposability. If H(x) is a non-

decomposable polynomial of order P , and if H̃(x) is a decomposable polynomial with

order at most P and H(0) = H̃(0), then

||H − H̃||2 ≥
σmin,R

P 2
√
2P 2 − P

, (3.17)

i.e., a decomposable polynomial Ĥ(x) has to be at least at a certain distance from a

non-decomposable polynomialH(x), where this distance is determined by the smallest

singular value σmin,R of the Ruppert matrix [24, 28]. This associates a radius of non-

decomposability with every non-decomposable polynomial H(x), meaning that all

polynomials within this distance to H(x) are also non-decomposable.

The linearity of equation (3.15) in the coefficients of φH(y, z) allows rewriting the

Ruppert matrix as the linear combination of a basis for Ruppert matrices [24]. More

specifically, by defining a linear operator RP that takes a univariate polynomial of

order P as an argument and returns its Ruppert matrix, the computation of the

52

Ruppert matrix for H(x) can be performed as

R = RP{H(x)} = RP{
P
∑

i=0

hix
i} =

P
∑

i=1

hiRP{xi} ∆
=

P
∑

i=1

hiRi, (3.18)

where the matrices Ri, i = 1 . . . P are the Ruppert matrices for the monomials xi

computed by treating them as a P -th order polynomial 0xP + xi to yield the same

size as R. Ri, i = 1 . . . P can be considered to be a basis for Ruppert matrices of all

polynomials of order P , where the weight of each basis matrix is the corresponding

polynomial coefficient hi. The Ruppert matrix corresponding to the constant term

in a polynomial consists of only zeros and thus it is not required in the basis. The

formulation of the Ruppert matrix as in equation (3.18) will provide a basis for the

approximate polynomial decomposition technique discussed in Section 3.3.4.

3.3.2 Iterative Approximate Decomposition

Corless et al [16] proposed an approximate decomposition method that starts from an

initial guess for the decomposition factors F (x) and G(x), which are obtained using

Kozen-Landau algorithm in Section 3.2, and iteratively obtain a nearby decomposable

polynomial, where proximity is given in l2 norm. The algorithm determines ∆G(x)

at each iteration to minimize

‖H(x)− Fk(Gk(x) + ∆G(x))‖

≈ ‖H(x)− Fk(Gk(x))− F ′
k(Gk(x))∆G(x)‖,

(3.19)

where the subscript k represents the current iteration step, ‖ · ‖ denotes the l2 norm

of polynomial coefficient vectors and only the first term in the Taylor series is taken

into account since the coefficients of ∆G are assumed to be small at each iteration.

Until the change ∆G(x) is below a certain threshold, Gk+1(x) is obtained by up-

dating Gk(x) with ∆G(x) and Fk+1(x) is evaluated by solving equation (3.5). This

algorithm approximates a nonlinear optimization problem with a simpler one and if it

converges, the convergence rate is linear. They also proposed a second algorithm that

53

attempts to solve the nonlinear problem of minimizing ‖H(x)−F (G(x))‖ directly us-

ing Newton iterations where F (x) and G(x) are perturbed together and convergence

is quadratic at the expense of increased computational complexity. The quality of

the decomposition obtained by these algorithms is highly dependent on the validity

of the assumption that there is a decomposable polynomial close to H(x) since the

initial guess for G(x) is obtained through an exact decomposition algorithm, namely

the Kozen-Landau algorithm. Moreover, the quality of the initial guess is highly sen-

sitive to the perturbation on the N highest order terms in H(x) since Kozen-Landau

algorithm uses these coefficients.

3.3.3 Decomposition by Approximate Factorization

Giesbrecht and May [24] exploited the relationship between the decomposability of a

univariate polynomial H(x) and factorability of the associated bivariate polynomial

φH(y, z) as discussed in Section 3.3.1 in order to extend Barton and Zippel’s exact de-

composition algorithm to the case of approximate decomposition. In the case where

H(x) is not decomposable, φH(y, z) is not factorable and there is no guarantee of

obtaining an approximate factor of the form φG(y, z) to find an approximate decom-

position factor G(x). Therefore an approximate factorization for φH(y, z) is obtained

by the method described in [22] using the Ruppert matrix of H(x). Each approximate

factor of φH(y, z) is examined to determine the one closest to the form of a polynomial

φG(y, z), namely a bivariate polynomial in which the terms with equal total order for

y and z have the same coefficients. This is accomplished by computing the standard

deviation of terms with the same total order, setting the maximum of these as the

distance to a candidate φG(y, z) and choosing the factor with smallest distance. G(x)

and F (x) can be obtained easily as before once φG(y, z) is known. A disadvantage

of this algorithm is that it uses the result of the approximate factorization step and

performs another approximation to find φG(y, z), which complicates the estimation

of the quality of the obtained decomposition.

54

3.3.4 Decomposition by Riemannian SVD

As an alternative method for approximate decomposition of a polynomial H(x), Bot-

ting [11] proposed a solution to the problem of finding a rank deficient Ruppert matrix

the corresponding polynomial of which is close to H(x), where distance is quantified

as the l2 norm of coefficient vector differences. The equivalence of decomposability

of a polynomial and rank deficiency of its Ruppert matrix was established in Sec-

tion 3.3.1. Specifically, the approximate decomposition problem was reduced to the

optimization problem [17] specified as

minimize
h̃i,w

P
∑

i=1

(h̃i − hi)2

subject to R̃w = 0 and wTw = 1

(3.20)

where h̃i, i = 1, . . . , P , are the coefficients of a decomposable polynomial H̃(x) and

R̃ is its Ruppert matrix given by

R̃ =

P
∑

i=1

h̃iRi (3.21)

as defined in equation (3.18). The first constraint corresponds to rank deficiency

of R̃ and the second constraint ensures that w is not identically zero preventing R̃

from having a nontrivial null space. The optimization problem (3.20) is shown to be

equivalent to a nonlinear generalized singular value decomposition referred to as Rie-

mannian SVD in [17]. This corresponds to finding the triplet (u, τ,v) corresponding

to the smallest scalar τ that satisfies

Rv = Dvuτ , uTDvu = 1

RTu = Duvτ , vTDuv = 1
(3.22)

where Du and Dv are matrices with entries quadratic in the vectors u and v; and

also a heuristic iterative solution is provided leading to a polynomial with a rank

deficient Ruppert matrix and coefficients h̃i = hi−uTRivτ . The iterations end when

55

the smallest singular value of R̃ becomes smaller than a given threshold, however no

theoretical guarantee for convergence exists.

3.4 Approximate Decomposition based on STLN

In this section, a new approximate polynomial decomposition algorithm will be for-

mulated. This algorithm will also exploit the Ruppert matrices in order to find a

decomposable approximation to a non-decomposable polynomial by approximating

its full rank Ruppert matrix with a rank-deficient one. The structure of a Ruppert

matrix must be preserved while finding an approximation, hence the Structured Total

Least Norm (STLN) method will be used [45].

In Section 3.4.1, the definition of STLN will be given as an extension to the total

least squares (TLS) formulations. Section 3.4.2 develops the approximate polyno-

mial decomposition based on STLN. This is followed by the comparison of certain

approximate decomposition methods in Section 3.4.3.

3.4.1 Structured Total Least Norm

Given an overdetermined and nonconsistent set of linear equations

Ax ≈ b, (3.23)

the solution that minimizes ‖Ax − b‖22 is given by the well known least squares so-

lution. This solution leads to Ax = b+∆b, i.e. only the entries of b are altered to

satisfy the equation and A remains intact. Total least squares (TLS) is a generaliza-

tion of this problem where the entries of A are also subject to possible change. More

specifically the Frobenius norm of the matrix [∆A|∆b] is minimized such that

(A+∆A)x = b+∆b. (3.24)

56

This is equivalent to finding the closest rank deficient matrix [A +∆A|b +∆b] to

[A|b] since equation (3.24) can be expressed as

[A+∆A|b+∆b]y = 0, (3.25)

where y = [xT ,−1]T . The solution is obtained by suppressing the smallest singular

value of the matrix [A|b], however in general A and [A|b] do not retain any of their

previous structures such as sparsity, the structure of a Hankel or Toeplitz matrix or

the special structure of a Ruppert matrix.

Imposing a structure preserving constraint to equation (3.25) to approximately

solve equation (3.23) is the basis for the collective algorithms referred to as Structured

Total Least Square Norm (STLN) algorithms for a general norm [45], and reduces to

Structured Total Least Squares (STLS) for the choice of l2 norm for which a solution

was proposed in [17]. In fact, the approximate decomposition algorithm proposed by

Botting [11] in Section 3.3.4 is an example of an STLS problem since it formulates

the optimization problem in a way to preserve the Ruppert matrix structure while

minimizing an l2 norm, however it utilizes the specialized Riemann SVD solution

developed in [17]. A more general solution for structure-preserving methods using

the STLN framework was provided in [45], including the l2 norm case, which will be

explored in this section for a new approximate polynomial decomposition algorithm.

3.4.2 Algorithm Development

The exploitation of structure preserving low rank approximation formulations such as

STLN as described in [45] for finding a rank deficient Ruppert matrix has been sug-

gested as a potentially useful method ([29], Remark 6), however no implementations

or results were reported. In this section, the approximate polynomial decomposition

problem of H(x) will be expressed in terms of approximate rank deficiency of its Rup-

pert matrix R, which in turn will be expressed as the problem in equation (3.25) with

A and b obtained from columns of R appropriately. ∆A and ∆b obtained this way

will yield the required perturbation to R to render it rank deficient while preserving

57

its Ruppert matrix structure. This will also yield the perturbations required for the

coefficients of the polynomial H(x) to make it decomposable. The developed algo-

rithm will require solving a simple quadratic optimization problem at each iteration

step. The matrices used in the iterative algorithm given in [45] are also modified here

in order to minimize the perturbation on the polynomial coefficients as opposed to

unnecessarily minimizing the total perturbation on the entries of its Ruppert matrix,

which are not necessarily equivalent.

The rank deficiency of the Ruppert matrix can be imposed by setting one of its

columns as a linear combination of other columns. In order to formulate this problem

as in equation (3.25), the column vector b is chosen as one of the columns of the

Ruppert matrix R; and A is defined to be equal to R excluding the column vector

b. This specific column can be chosen as the one that minimizes the residual when

expressed in terms of other columns, i.e.

b = argmin
b

(

min
x
‖Ax− b‖2

)

, (3.26)

where x represents a column of R. The minimum value inside the parenthesis is

ideally zero, which would correspond to an already rank deficient Ruppert matrix.

Assuming b is chosen to be the kth column in R, one can define the vectors bi as the

kth column vector of the basis Ruppert matrices Ri for i = 1, . . . , P , where the basis

Ruppert matrices Ri were defined in equation (3.18). Similarly the matrices Ai can

be defined to be equal to Ri excluding the column bi. If [∆A|∆b] is constrained to

be of the form
P
∑

i=0

αi[Ai|bi] (3.27)

for real scalars αi, i = 1 . . . P , the resulting matrix

[A+∆A|b+∆b]

in equation (3.25) will retain the same matrix structure as [A|b] due to the linear

relationship given in equation (3.18). The scalars αi correspond to the perturbation in

58

the coefficients hi of the polynomial H(x). The approximate decomposition algorithm

can be formulated as an optimization problem in which the change in the coefficients

of the polynomial to be decomposed are minimized subject to the rank deficiency

constraint in equation (3.25), i.e.

minimize
αi,y

P
∑

i=1

α2
i

subject to [A+∆A|b+∆b]y = 0.

(3.28)

The similarity of the optimization problems given in equations (3.20) and (3.28) is

obvious since we chose to minimize the l2 norm of the coefficient perturbation vector

α = [α1 α2 . . . αP]
T . An explicit constraint for y to be nonzero is not required in

equation (3.28) since it is already restricted to be of the form y = [xT ,−1]T with

this formulation, which cannot be identically zero.

In order to solve the nonlinear and nonconvex optimization problem in equation

(3.28), the following relaxation is considered,

minimize
αi,y

α
T
α+ λ2r̂Tr̂ (3.29)

where

r̂
∆
= [A+∆A|b+∆b]y (3.30)

and λ is the penalty parameter for any nonzero residual r̂ and is required to be chosen

appropriately large for a good approximation to the original problem. An iterative

algorithm for the solution of a nonlinear optimization problem of the form (3.29) is

given in [45]. Setting y = [xT ,−1]T in equation (3.30) yields

r̂ = Ax+∆Ax− b−∆b

= Ax+Xα− b−Qα = Ax+Kα− b

(3.31)

59

where the matrix K = X−Q and the matrix X is defined by

∆Ax =

P
∑

i=1

αiAix =

P
∑

i=1

(Aix)αi
∆
= Xα. (3.32)

More specifically the ith column of X consists of Aix. Similarly, ith column of Q

consists of bi. A heuristic value for the penalty parameter λ that proved to yield

reasonable results was the reciprocal of the minimum singular value of K, namely

1
σK,min

. The steps of the iteration are summarized in Algorithm 1.

ALGORITHM 1

Input: H(x) with coefficients hi, i = 1, . . . , P .

Output: A rank deficient Ruppert matrix R̃ corresponding

to a polynomial H̃(x) with coefficients h̃i close to that of H(x).

Begin

Set k = 1. Specify A,b from R as in (3.26).

Set x[k] = argmin
x
‖Ax− b‖2 and α

[k] = 0.

Obtain Ai,bi from Ri, i = 1, . . . , P .

Set Q = [b1 | . . . | bP].

1. Set X[k] = [A1x
[k] | . . . | APx

[k]], K[k] = X[k] −Q, r̂[k] = Ax[k] +K[k]
α

[k] − b

If k = 1, set λ =
1

σK[k],min

.

2. Solve the following quadratic program:

minimize
∆α,∆x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





λK[k] λA

I 0









∆α

∆x



 +





λr̂[k]

α
[k]





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

3. Set x[k+1] ← x[k] +∆x, α[k+1] ← α
[k] +∆α, k← k+ 1.

4. If R̃[k] = R+
P
∑

i=1

α
[k]
i Ri is rank deficient, then h̃i = hi +α

[k]
i for i = 1, . . . , P , exit.

If not, go to Step 1.

End

60

3.4.3 Comparison of Approximate Decomposition Methods

In this section, the performance of the two most recent approximate decomposition

methods based on the use of Ruppert matrices are compared first, namely the Rie-

mann SVD (RiSVD) formulation summarized in Section 3.3.4 and the Structured

Total Least Norm (STLN) formulation proposed in Section 3.4.2. Afterwards, they

are both compared to the iterative approximate decomposition method discussed in

Section 3.3.2, which will also be referred to as Corless’ method.

One hundred decomposable polynomials H(x) were obtained by composing an

M th-order random polynomial F (x) with an N th-order random polynomial G(x), the

coefficients of both of which were selected from a standard normal distribution except

the highest order terms that are fixed to be unity to avoid degenerate compositions.

The coefficient vector h of each polynomial H(x) is then perturbed by an error vector

e to obtain a nondecomposable polynomial Ĥ(x), where the coefficients of e are also

obtained from a standard normal distribution and scaled so that ‖e‖2 = 10−2‖h‖2,
i.e. the SNR is 40dB.

The iterations in both RiSVD and STLN methods were stopped when the Ruppert

matrix is considered numerically rank deficient, where this is defined as the existence

of a significantly large ratio between any two consecutive singular values among the

smallest twenty singular values of the Ruppert matrix. More specifically, the Ruppert

matrix is considered to be rank deficient when the maximum ratio between consecutive

singular values are greater than one hundred times that of the original Ruppert matrix

or 104, whichever is smaller.

Table 3.1 summarizes the results of the simulations for the STLN and RiSVD

methods tested against non-decomposable polynomials of different orders. The de-

composition success rates are calculated as the ratio of the number of cases where

the ending criterion was met before one hundred iterations to the total number of

polynomials that did not have numerically rank deficient Ruppert matrices at the

initial stage. For the set of polynomials and the stopping criteria chosen, the STLN

method proves to be more successful than the RiSVD method for all orders.

61

Table 3.1: Success Rates for RiSVD and STLN based Approximate Decomposition
Methods (%)

deg(F) deg(G) deg(F ◦G) STLN RiSVD
2 2 4 100.0 73.0
2 3 6 97.0 2.0
3 2 6 96.0 9.0
2 4 8 92.0 5.0
4 2 8 94.8 7.3
3 3 9 86.0 5.0
2 5 10 81.0 1.0
5 2 10 90.0 10.0
2 6 12 79.0 2.0
3 4 12 83.7 12.2
4 3 12 82.2 10.0
6 2 12 95.0 11.3

Consider, for example, adding noise to the coefficients of the decomposable poly-

nomial H(x) in equation (3.14) to obtain a non-decomposable polynomial Ĥ(x) such

that the SNR is 40dB. The application of STLN and RiSVD algorithms to Ĥ(x)

yields the approximations given in the third and fourth columns in Table 3.2. Both

of these polynomials are very close to each other as well as to Ĥ(x) in their coef-

ficients. Figure 3-2 is the plot of the twenty smallest singular values of the three

Ruppert matrices corresponding to the nondecomposable polynomial Ĥ(x) and its

approximations obtained using RiSVD and STLN, where the singular values are de-

picted in the decreasing order for each matrix. Although the coefficient vectors of

all three polynomials are very close with respect to the l2 norm, only the polynomial

that is the output of the STLN leads to a numerically rank deficient matrix in this

example as the ratio between its two smallest singular values is large, more specifically

3.5× 104.

The polynomials obtained by STLN and RiSVD methods that are numerically

deemed as a decomposable approximation to Ĥ(x) may not always lead to a faithful

decomposition when they are used as the input to an exact decomposition algorithm,

such as the Kozen-Landau algorithm, to actually find a decomposition F (G(x)). This

is indeed the case for HSTLN in this example. The fact that the radius of non-

62

Table 3.2: Coefficients of H in (3.14) in increasing order from top to bottom, Ĥ
obtained by perturbing them with 40dB noise, and the resulting coefficients after the
application of RiSVD, STLN and Corless’ methods to Ĥ .

H Ĥ HRiSV D HSTLN HCorless

0.19372869 0.17480287 0.17480287 0.17480287 0.17567301
0.28302078 0.29436839 0.29246959 0.29477573 0.29724135
0.43414745 0.45491202 0.38919792 0.43389074 0.42877466
−0.11975589 −0.10554232 −0.17286798 −0.10524759 −0.09980779
1.40982439 1.39074151 1.39984861 1.40067728 1.38490538
−2.64965555 −2.6362043 −2.64909473 −2.65041201 −2.64146584
1.87902027 1.86431271 1.77910056 1.86102616 1.84951314
−4.07645854 −4.07629235 −4.06771098 −4.06253602 −4.04778661
2.36218459 2.34961771 2.3642983 2.33975812 2.34035946
−1.95636998 −1.9324207 −2.01021235 −1.94051827 −1.93297813
2.59948389 2.55459276 2.61287623 2.56956633 2.56956643
0.10442734 0.10923451 0.1423575 0.10494564 0.10494761
1.00000000 0.99627832 0.99627832 0.98489721 0.98489877

decomposability associated with every non-decomposable polynomial as specified in

equation (3.17) is only a lower bound partially accounts for this observation. Other

possible reasons are that the rank of the Ruppert matrix may itself be very sensitive to

the polynomial coefficients, or the performance of the exact decomposition methods

are extremely sensitive to the exactness of the coefficients of the polynomial to be

decomposed.

The iterative approximate decomposition method introduced by Corless et al [16]

and summarized in Section 3.3.2 suggests a decomposable approximation to a given

polynomial at each step of the iteration. Therefore a decomposable approximation

was obtained for all the examples shown here using Corless’ algorithm. However a

direct performance comparison cannot be made between this method and the STLN

or RiSVD methods since Corless’ method is not based on approximating Ruppert

matrices. The initial guess in this algorithm is obtained using the Kozen-Landau

exact decomposition algorithm that utilizes high order coefficients in Ĥ(x). For the

example in Table 3.2, the last column corresponds to the decomposable approximation

obtained by Corless’ method, for which the approximate decomposition factors are

63

Figure 3-2: The smallest twenty singular values of the Ruppert matrices corresponding
to the perturbed and nondecomposable polynomial Ĥ, its approximation HRiSV D as
the output of the RiSVD algorithm and HSTLN as the output of the STLN algorithm,
all shown in decreasing order. Only the Ruppert matrix of the polynomial obtained
by the STLN method exhibits a large gap between its consecutive singular values,
corresponding to a numerical rank deficiency.

obtained as

F̂ (x) = 0.3456 + 0.5829x− 0.3811x2 − 0.9950x3 + 0.9849x4 (3.33)

and

Ĝ(x) = −0.2902 + 0.6512x+ 0.0266x2 + 1.0000x3. (3.34)

These polynomials constitute a very good approximation to those in equations (3.12)

and (3.13). In all the examples shown in this section, the noise was evenly distributed

on all coefficients of the polynomial and Corless’ method yielded successful approxi-

mate decompositions with high SNR. However, the approximation is likely to be poor

in cases where the highest order terms of the polynomial Ĥ(x) experience relatively

more perturbation as these are used to find an initial guess as the first step of Corless’

algorithm.

Approximate polynomial decomposition has in fact proved to be a very difficult

nonlinear problem in both mathematics and computer science and it has been only

considered for cases in which the coefficients of a given polynomial is known to be

64

close to that of a decomposable one. Even in those cases, it remains to lack a solution

which is consistently satisfactory for high polynomial orders and large or nonuniform

perturbations on the coefficients. In cases where the polynomial is not known to be in

the neighborhood of a decomposable polynomial, these algorithms summarized or de-

veloped in this chapter do not have any guarantees to yield an acceptable approximate

decomposition. This stems from the non-convex nature of the approximate polyno-

mial decomposition problem and the fact that the set of decomposable polynomials

constitutes a relatively small subset of the space of polynomials.

3.5 Sensitivity Analysis

The focus of this section is the sensitivity of the polynomial composition and the de-

composition operations. This is useful in understanding the types of signal processing

applications in which these operations can be used and the extent to which they re-

main reliable. For example, such an analysis can suggest when a decomposable signal

can be faithfully represented in terms of its components in the presence of quantiza-

tion noise. Similarly, this analysis can quantify the performance of a filter designed

as a generalized tapped delay line in the presence of error in the tap coefficients or

the subfilters, where the generalized tapped delay lines will be described in Chapter

6.

3.5.1 Composition Sensitivity

The sensitivity of composition for a given decomposable polynomial H(x) can be

defined as the maximum magnification of an infitesmall perturbation ∆u in its com-

posing polynomials, i.e.

SU→H = max
∆u

E∆h/Eh

E∆u/Eu

(3.35)

where U is either F or G depending on which is being perturbed, Eh = ||h||22 is the

energy of the coefficient vector h, Eu = ||u||22 is the energy of the coefficient vector

u and || · ||22 is the square of the two norm of a vector. The relative magnification in

65

perturbation depends on the direction of the perturbation vector ∆u; and sensitivity

is defined at the direction of maximum magnification.

Formulation of SF→H

Due to the linear relationship given in equation (3.5), a perturbation ∆f in the coef-

ficient vector of F (x) will result in a change in the coefficients of H(x) given by

∆h = C∆f . (3.36)

The sensitivity of composition with respect to F (x) becomes, by equation (3.5), (3.35)

and (3.36)

SF→H = max
∆f

||C∆f ||22
||∆f ||22

||f ||22
||Cf ||22

. (3.37)

For a given decomposition of a polynomial H(x) as F ◦ G(x), the factor
||f ||22
||Cf ||22

is

constant. The maximum value of
||C∆f ||22
||∆f ||22

is equal to σ2
C,max, where σC,max is the

maximum singular value of C. Therefore equation (3.37) becomes

SF→H = σ2
C,max

||f ||22
||Cf ||22

. (3.38)

Furthermore,
||f ||22
||Cf ||22

is bounded above by σ−2
C,min and bounded below by σ−2

C,max for any

f . Hence, regardless of F (x), the sensitivity SF→H satisfies

1 ≤ SF→H ≤
σ2
C,max

σ2
C,min

(3.39)

where
σ2
C,max

σ2
C,min

is the square of the condition number of C.

Formulation of SG→H

A perturbation ∆gk to gk, namely the coefficient of xk in G(x), does not affect the

coefficient of xn in H(x) for k > n. Such a perturbation results in the composition

H̃(x) = F (G(x) + ∆gkx
k) = H(x) + ∆H(x) (3.40)

66

where

∆H(x) ≈ F ′(G(x))∆gkx
k (3.41)

assuming ∆gk is small and only the first term in the Taylor series for equation (3.40)

is considered. For k ≤ n, equation (3.41) implies that the corresponding perturbation

in hn becomes

∆hn = ∆gkdn−k (3.42)

where dn−k is the coefficient of xn−k in the polynomial D(x) defined as

D(x) = F ′(G(x)). (3.43)

Perturbation of all the coefficients gk, k = 0, 1, . . . , N results in the addition of error

terms in equation (3.42), i.e.

∆hn =
∑

0≤k≤min(N,n)

∆gkdn−k. (3.44)

Equivalently,

∆h = D∆g (3.45)

where D is an (MN +1)× (N +1) Toeplitz matrix the first column of which consists

of the coefficients of the polynomial D(x), namely [d0 d1 d2 . . . dMN+1−N]
T , with zero

padding of length N . The sensitivity of composition with respect to G(x) becomes,

by equations (3.35) and (3.45),

SG→H = max
∆g

||D∆g||22
||∆g||22

||g||22
||h||22

. (3.46)

As in the previous section, for a given decomposition of H(x) as F ◦ G(x), ||g||22
||h||22

is

constant. The maximum value of
||D∆g||22
||∆g||22

is σ2
D,max, where σD,max is the maximum

singular value of D. Therefore equation (3.46) becomes

SG→H = σ2
D,max

||g||22
||h||22

. (3.47)

67

An upper bound for SG→H can be obtained by an alternative representation of the

coefficient vector of D(x) given in equation (3.43) in the form of equation (3.5), i.e.

d = Cf̃ = CVf (3.48)

where f̃ is the coefficient vector of F ′(x) and V is the (M + 1) × (M + 1) matrix

with superdiagonal elements 1, 2, . . .M and zeros elsewhere, corresponding to the

derivative operator. Due to the derivative operation, the order of the polynomial

decreases by one, therefore the last element of f̃ as well the last N elements of d are

zero, but these are not discarded for the consistency of the sizes among matrices and

multiplying vectors. For vectors d, ∆h and ∆g, which are related through equation

(3.44), it can be shown that
E∆h

E∆g

≤ (N + 1)Ed, (3.49)

where the proof is given in Appendix A for the convolution of general sequences.

Therefore, from the definition in equation (3.35), SG→H can be bounded as

SG→H ≤ (N + 1)Ed

Eg

Eh

= (N + 1)||g||22
||CVf ||22
||Cf ||22

. (3.50)

Defining

w = Cf , (3.51)

it can be shown f =
(

CTC
)−1

CTw since C is full rank. Therefore equation (3.50)

becomes

SG→H ≤ (N + 1)||g||22
||CV

(

CTC
)−1

CTw||22
||w||22

≤ (N + 1)||g||22 σ2
T,max

(3.52)

where the matrix T = CV
(

CTC
)−1

CT and σT,max is the maximum singular value

of T.

68

3.5.2 Decomposition Sensitivity

Defining the sensitivity of decomposition directly as the relative magnification of per-

turbation in the components F (x) andG(x) whenH(x) is perturbed is not meaningful

since a small perturbation ∆h will render it nondecomposable in general. In other

cases, H(x) may remain decomposable but the new components F̂ (x) and Ĝ(x) may

have different orders than F (x) and G(x), respectively. These cases are excluded

from a discussion regarding their sensitivity here as well since the decomposition

process may be regarded as having failed by not predicting the orders of the com-

ponents correctly. Consequently, the definition for sensitivity of the decomposition

will be restricted to cases in which the perturbation preserves decomposability with

components of the same order.

Perturbations in polynomials F (x) and G(x) may lead to much smaller perturba-

tions in the coefficients of H(x). For the inverse operation, this implies that decompo-

sition under this specific perturbation in H(x) will yield larger relative perturbations

in F (x) and G(x). The sensitivity of decomposition hence can reasonably be defined

as

SH→U = max
∆u

(

E∆h/Eh

E∆u/Eu

)−1

(3.53)

where again U is either F or G. SH→U corresponds to the case where the perturbation

on the components results in the direction of maximum attenuation.

Formulation of SH→F

The sensitivity associated with obtaining F (x) from a decomposable polynomial H(x)

becomes, by equations (3.5), (3.53) and (3.36)

SH→F =

(

min
∆f

||C∆f ||22
||∆f ||22

||f ||22
||Cf ||22

)−1

=

(

σ2
C,min

||f ||22
||Cf ||22

)−1

. (3.54)

Furthermore,
(

||f ||22
||Cf ||22

)−1

is bounded above by σ2
C,max and bounded below by σ2

C,min.

Hence similar to equation (3.39), for any F (x), the sensitivity SH→F is bounded by

69

the square of the condition number of C, which only depends on G(x), i.e.

1 ≤ SH→F ≤
σ2
C,max

σ2
C,min

. (3.55)

Formulation of SH→G

The sensitivity associated with obtaining G(x) from a decomposable polynomial H(x)

becomes, by equations (3.53) and (3.45),

SH→G =

(

min
∆g

||D∆g||22
||∆g||22

||g||22
||h||22

)−1

=

(

σ2
D,min

||g||22
||h||22

)−1

. (3.56)

3.5.3 Simulations

In the following subsections, several simulation results are provided to illustrate the

sensitivity of the polynomial composition and decomposition operations. The coef-

ficient vectors of the polynomials F (x) and G(x) were selected from the standard

normal distribution by the randn function of MATLAB and were normalized to have

unit energy. The effect of normalization and scaling will be discussed in Section 3.5.4.

Simulations for composition sensitivity

Evaluation of SF→H

In Section 3.5.1, SF→H was shown to be bounded by the square of the condition

number of C as given in equation (3.39) regardless of the specific value of F (x).

This bound is in fact attained if f is aligned with the right singular vector of C that

corresponds to its smallest singular value, however for an average case the sensitivity is

orders of magnitude lower than the square of the condition number as the simulations

in this section suggests.

The sensitivity SF→H, as defined in equation (3.38), is shown in Fig. 3-3 as a

function of the degree of F (x). In Fig. 3-3, each point shows the median value of

SF→H obtained from composing one hundred instances of F (x) of the corresponding

order with each one of one hundred instances of G(x) of order seven. The vertical

70

2 4 6 8 10 12 14 16
10

0

10
1

10
2

10
3

10
4

deg(F(x))

S
en

si
tiv

ity
 S

 F
→

H

deg(G(x)) = 7

Figure 3-3: Sensitivity of the coefficients of H(x) with respect to the coefficients of
F (x). The order of G(x) is seven in all compositions. Each point is the median of
SF→H obtained from ten thousand compositions, where the vertical bars indicate the
range from the maximum to the minimum values attained.

bars show the maximum and minimum sensitivities attained in these ten thousand

compositions. For consistency, the same set of G(x) were used for each degree of

F (x). The simulation results are consistent with the lower and upper bounds given

in equation (3.39), namely 1 and the square of the condition number ofC, respectively.

However the upper bound has been omitted from this figure due to very large values

that exceed the display scale by multiple orders.

Evaluation of SG→H

The sensitivity SG→H , as defined in equation (3.47), is shown in Fig. 3-4 as a function

of the degree of G(x). In Fig. 3-4, each point indicates the median value of SG→H

obtained from composing one hundred instances of G(x) of the corresponding order

with each one of one hundred instances of F (x) of order seven. The dashed line

indicates the upper bound given in equation (3.52) where ||g||22 = 1 and σT,max is

evaluated for the G(x) that attains the maximum value of SG→H in the simulations

for each degree.

71

2 4 6 8 10 12 14 16

10
0

10
1

10
2

10
3

deg(G(x))

S
en

si
tiv

ity
 S

 G
→

H
deg(F(x)) = 7

Figure 3-4: Sensitivity of the coefficients of H(x) with respect to the coefficients of
G(x). The order of F (x) is seven in all compositions. Each point is the median of
SG→H obtained from ten thousand compositions, where the vertical bars indicate the
range from the maximum to the minimum values attained. The dashed line indicates
the upper bound given in equation (3.52).

2 4 6 8 10 12 14 16
10

0

10
3

10
6

10
9

10
12

10
15

deg(F(x))

S
en

si
tiv

ity
 S

 H
→

F

deg(G(x)) = 7

Figure 3-5: Sensitivity of the coefficients of F (x) with respect to the coefficients of
H(x). The order of G(x) is seven in all compositions. Each point is the median of
SH→F obtained from ten thousand compositions, where the vertical bars indicate the
range from the maximum to the minimum values attained.

72

2 4 6 8 10 12 14 16
10

−2

10
0

10
2

10
4

10
6

deg(G(x))

S
en

si
tiv

ity
 S

 H
→

G

deg(F(x)) = 7

Figure 3-6: Sensitivity of the coefficients of G(x) with respect to the coefficients of
H(x). The order of F (x) is seven in all compositions. Each point is the median of
SH→G obtained from ten thousand compositions, where the vertical bars indicate the
range from the maximum to the minimum values attained.

Simulations for decomposition sensitivity

Evaluation of SH→F

Fig. 3-5 illustrates the sensitivity of the coefficients of F (x) with respect to the

perturbations in H(x), namely SH→F as described in equation (3.54). The values are

extracted from the experiments illustrated in Figure 3-3.

Evaluation of SH→G

SH→G, as described in equation (3.56) the sensitivity of the coefficients of G(x) with

respect to the perturbations in H(x) is illustrated in Fig. 3-6. The values are ex-

tracted from the experiments performed in Figure 3-4.

3.5.4 Equivalent Decompositions

For a decomposable polynomial H(x) = F (G(x)), there exists infinitely many other

pairs of polynomials that yields the same composition. This provides an opportunity

to choose a decomposition that has a lower sensitivity than a given decomposition.

This section discusses different ways of obtaining equivalent decompositions to be

exploited in order to lower sensitivity in the sequel.

73

One way to obtain equivalent decompositions of a polynomial H(x) is through

compositions with first order polynomials. More specifically, given any first order

polynomial λ(x) = ax+ b with a 6= 0 and with its inverse with respect to composition

λ−1(x) =
1

a
x− b

a
, (3.57)

it is clear that

H(x) = F (G(x)) = (F ◦ λ−1) ◦ (λ ◦G)(x) = F̄ (Ḡ(x)). (3.58)

Coefficients of F̄ and Ḡ will be different in general yielding different sensitivities with

respect to these coefficients.

Another way to obtain equivalent compositions is to exploit commutative polyno-

mials [9], namely polynomial pairs that satisfy F (G(x)) = G(F (x)). One such class is

the monomials, namely the polynomials of the form xn where n is a positive integer.

Another class of commutative polynomials is the Chebyshev polynomials which can

be conveniently defined through trigonometric functions as

Tn(x) = cos(n cos−1(x)). (3.59)

Commutativity of the Chebyshev polynomials follows easily since

Tm ◦ Tn(x) = cos(m cos−1(cos(n cos−1(x))))

= cos(mn cos−1(x))

= cos(n cos−1(cos(m cos−1(x))))

= Tn ◦ Tm(x).

(3.60)

Formalizing the work in [44], an entire set of commutative polynomials is defined in [9]

as a set of polynomials which contains at least one of each positive degree, and in which

any two members commute with each other. Furthermore, it is shown that only two

such sets exist, which are the polynomials of the form λ−1 ◦Pn ◦λ(x) where Pn(x) is a

74

monomial or a Chebyshev polynomial and λ(x) is any first order polynomial. Both of

these classes correspond to a rather restricted form of decomposability, and therefore

they are relatively less useful in exploiting the existence of equivalent decompositions

for lower sensitivity.

Similar to equation (3.5), equation (3.58) corresponds to the matrix equation

h = Cf = (CA)(A−1f) (3.61)

where A is a square, upper triangular and invertible matrix kth column of which

consists of k−1 self convolutions of the sequence {b, a} or equivalently the coefficients

of (ax + b)k−1 in the ascending order. From equation (3.37), the sensitivity SF̄→H

becomes

SF̄→H = max
∆f

||CA∆f ||22
||∆f ||22

||A−1f ||22
||Cf ||22

. (3.62)

Although matrix A can be further factored as a product of two simpler matrices that

depend only on a and b, respectively, it is not obvious how SF̄→H will behave as a

joint function of a and b in general. The effect of pure scaling, which corresponds to

the case a > 0, b = 0 and A is diagonal, can be inferred by examining the extremal

values of a. More specifically, as a tends to infinity, the term max∆f
||CA∆f ||22
||∆f ||22

also

tends to infinity whereas the term
||A−1f ||22
||Cf ||22

tends to a finite constant number if the

constant term of F (x) is nonzero. The roles of these two terms are reversed as a tends

to zero, which suggests the existence of a minimum at a finite value of a > 0.

Fig. 3-7 illustrates the effectiveness of choosing different values for a and b in order

to reduce SF→H. Here, F (x) and G(x) are chosen to be the pair of polynomials that

attained the largest sensitivity of 6.3 × 104 in Fig. 3-3 with F (x) of order fourteen

and G(x) of order seven. The simulation results in Fig. 3-7 were obtained through an

exhaustive search and indicate that SF̄→H gets larger as b tends to infinity in either

direction for this pair of F (x) and G(x). SF̄→H attains its minimum at a∗ = 0.73 and

b∗ = 0.57. Table 3.3 displays the values of all four sensitivities associated with this

composition before and after composition with λ(x) = 0.73x+ 0.57 and its inverse.

The effect of compositions with first order polynomials on SG→H is relatively

75

0.4
0.6

0.8
1

1.2 −0.20 0.2 0.4 0.6 0.8 1

10
0

10
3

10
6

10
9

10
12

ba

S
e
n
s
it
iv
it
y

S
F̄
→
H

Figure 3-7: SF̄→H as a function of a and b. F (x)and G(x) are chosen to be the pair
of polynomials that attained the largest sensitivity in Fig. 3-3 with F (x) of order
fourteen and G(x) of order seven.

more straightforward. The matrix D in the definition of SG→H will be modified for

the definition of SḠ→H. More specifically,

H(x) = F̄ ◦ Ḡ(x), (3.63)

therefore the columns of the modified matrix D̄ will consist of the coefficients of the

polynomial F̄ ′ ◦ Ḡ(x) instead of F ′ ◦G(x). Since

F̄ ′ ◦ Ḡ(x) = (F ◦ λ−1)′ ◦ (λ ◦G(x))

= ((λ−1)′F ′ ◦ λ−1) ◦ λ ◦G(x) = 1

a
D(x),

(3.64)

Table 3.3: Sensitivity before and after composition with a∗x+ b∗

Sensitivity Original at (a∗, b∗)
SF→H 6.3× 104 2.2× 100

SG→H 1.7× 102 1.5× 102

SH→F 1.1× 108 3.5× 101

SH→G 1.5× 104 1.7× 104

76

0.4

0.6

0.8

1

1.2 −0.2
0

0.2
0.4

0.6
0.8

1

10
2

10
3

b
a

S
e
n
s
it
iv
it
y

S
Ḡ
→
H

0.4

0.6

0.8

1

1.2 −0.2
0

0.2
0.4

0.6
0.8

1

10
0

10
3

10
6

10
9

ba

S
e
n
s
it
iv
it
y

S
H
→
F̄

0.4

0.6

0.8

1

1.2 −0.2
0

0.2
0.4

0.6
0.8

1

10
3

10
4

10
5

ba

S
e
n
s
it
iv
it
y

S
H
→
Ḡ

Figure 3-8: The behavior of SḠ→H , SH→F̄ and SH→Ḡ as a function of a and b for same
pair of polynomials F (x) and G(x) as in Fig. 3-7.

the matrix D̄ is simply equal toD scaled with 1
a
. From equation (3.46), the sensitivity

SḠ→H becomes,

SḠ→H = max
∆g

|| 1
a
D∆g||22
||∆g||22

||ag + be||22
||h||22

=
||g + b

a
e||22

||g||22
SG→H (3.65)

where e = [1, 0, . . . , 0]T and it is the same size as g. This implies that if
∣

∣g0 +
b
a

∣

∣ < |g0|
where g0 is the constant term in G(x), SG→H will also be improved. This is indeed

the case for the optimal point in Fig. 3-7 and introducing a linear composition to

improve SF→H has decreased SG→H . Due to its relationship with SG→H , the effect is

reversed on SH→G in such a way that their product remains the same. On the other

hand, the effect on SH→F̄ can be described at extreme values of a and b similarly to

the case of SF̄→H . Fig. 3-8 illustrates the behavior of all of these sensitivities as a

function of a and b for same pair of polynomials F (x) and G(x). Since the optimal

points are not the same for all sensitivities, a∗ and b∗ can be chosen depending on the

application.

3.6 Chapter Conclusions

Polynomial composition and decomposition methods are an important part of a signal

processing framework in which functional composition and decomposition are to be

exploited. Although composing polynomials is a straightforward operation in terms

of algebraic operations, their decomposition is not an easy task. In mathematics and

77

computer science, decomposition methods have been developed to decompose poly-

nomials that are known to have a decomposition, yielding one of the infinitely many

choices for such a decomposition. A much more difficult problem involves approx-

imating nondecomposable polynomials with those that are decomposable. Existing

approximate decomposition methods as well as the new method introduced in this

chapter yield satisfactory results only for low order polynomials that are fairly close

to a decomposable polynomial, therefore approximate polynomial decomposition per-

sists as an interesting and challenging problem.

The sensitivities of composition and decomposition were also discussed in this

chapter, where natrix representation of composition is utilized to obtain closed form

expressions for sensitivity measures. The existence of equivalent decompositions using

first order polynomials and their inverses were also exploited to reduce sensitivity with

respect to perturbations in the polynomial coefficients.

78

Chapter 4

Frequency Response Composition

and Decomposition

Frequency response representations of signals and systems are central to signal pro-

cessing. Therefore, identification and development of techniques for composing and

decomposing frequency responses as well as formulating new and interesting appli-

cations using them are important parts of a framework that will be exploited in the

context of signal processing.

The composition and decomposition of transfer functions that represent discrete

time FIR sequences, i.e. z-transforms, were related to polynomial composition and

decomposition as discussed in Chapter 3. The relationship between the z-transform

and the Fourier transform suggests a straightforward extension of the techniques in

Chapter 3 to the frequency response composition and decomposition. However, this

would restrict its applications to finite sequences and FIR systems. Moreover, approx-

imating the transfer function with a decomposable one with respect to a particular

norm involving coefficients does not always guarantee a satisfactory approximation

to the corresponding frequency response. An independent treatment of frequency

response composition and decomposition from that of the transfer functions will pro-

vide flexibility for specifying more relevant approximation constraints as well as the

ability to extend benefits of the framework to a wider class of signals including IIR

systems and continuous time signals that cannot be represented by polynomials.

79

This chapter develops the mathematical methods that yield a decomposition of

any desired frequency response H(ejω) continuous in ω into two frequency responses

G(ejω) and F (ejω), where F , but not necessarily G, is a polynomial in e−jω, i.e.,

H(ejω) ≈ F (G(ejω)) =
M
∑

k=0

fkG
k(ejω). (4.1)

G(ejω) will be assumed to be continuous and pre-specified, which is the case in certain

signal processing applications that can potentially exploit this procedure. In cases

for which G(ejω) is not specified, it can, for example, be designed to approximate

H(ejω) with a low order rational frequency response before the decomposition so that

the composition itself has a rational form. In the current approach, the coefficients

fk will be chosen to minimize the Chebyshev or l∞ norm of the approximation error,

the commonly preferred norm in several signal processing applications,

minimize
f

∆

subject to ‖H(ejω)−
K
∑

k=0

fkG
k(ejω)‖∞ ≤ ∆.

(4.2)

This problem can be solved easily for any finite set of points. However solving it on a

continuum of frequency points requires specialized techniques. It is currently unclear

how to extend the mathematical tools developed in this chapter to decompositions

where F (ejω) is a more general function than a polynomial. Therefore these cases are

excluded from the current discussion.

In Section 4.1, the composition of a polynomial F (·) and a frequency response

G(ejω) will be treated as a special case of generalized polynomials, which is simply a

linear combination of continuous functions. This point of view will allow borrowing

two techniques from the existing mathematics literature with which optimal weights

for a generalized polynomial can be computed, and therefore can be recast as a

frequency response decomposition algorithm. The frequency response decomposition

algorithm that is developed for the frequency responses of discrete time signals and

systems will be extended to continuous time signals in a straightforward manner

80

implying its generality.

Section 4.2 will present extensions to the decomposition algorithm where the de-

composition quality is improved when the phase of the target response H(ejω) is not

required to be matched and there is an emphasis on its magnitude instead, another

case that often arises in the context of signal processing applications.

4.1 Frequency Response Decomposition

The problem stated in (4.2) is a special case of the semi-infinite optimization problem

minimize
f

∆

subject to ‖D(ω)−
K
∑

k=0

fkUk(ω)‖∞ ≤ ∆
(4.3)

where Uk(ω), k = 0, 1, . . . , K, andD(ω) are general continuous functions of ω. Follow-

ing Cheney [13], a linear combination of continuous functions Uk(ω) will be referred

to as a generalized polynomial in this thesis. The interpretation of the decomposition

of a desired response D(ω) = H(ejω) as an approximation using a generalized polyno-

mial with Uk(ω) = Gk(ejω) will be the central theme when developing and extending

the frequency response decomposition algorithm. More specifically, the techniques

from the mathematical literature that will yield the optimal weights fk in (4.3) will

constitute the basis for the frequency response decomposition algorithm.

Two such mathematical techniques will be discussed in this section. The first one

is an efficient algorithm called the Remez Exchange Algorithm that will be discussed

in Section 4.1.2. However this works only under very restrictive conditions one of

which is called the Haar condition. The other is a less efficient algorithm called the

First Algorithm of Remez, which is not limited by the constraints of the previous

algorithm. This algorithm will be described in Section 4.1.3. Although the Haar

condition is not required for the First Algorithm of Remez, its existence implies

uniqueness of the optimal choice of weights. Since the Haar condition is central to

the discussion of both algorithms, this section starts with its description.

81

4.1.1 Haar Condition and Best Approximations

A set of real or complex valued basis functions, Uk(ω), k = 0, 1, 2, . . . , K, is said to

satisfy the Haar condition on a compact set S if each Uk(ω) is continuous and any

function in their span,
K
∑

k=0

fkUk(ω), (4.4)

has at most K roots in S [34]. This is equivalent to the constraint on the (K + 1)×
(K + 1) matrix

V =























U0(ω0) U1(ω0) U2(ω0) . . . UK(ω0)

U0(ω1) U1(ω1) U2(ω1) . . . UK(ω1)

U0(ω2) U1(ω2) U2(ω2) . . . UK(ω2)
...

U0(ωK) U1(ωK) U2(ωK) . . . UK(ωK)























(4.5)

to be full rank for every set of distinct frequencies {ωk ∈ S, k = 0, 1, 2, . . . , K} [13].

An optimal approximation with respect to the Chebyshev norm to any continuous

function D(ω) as a linear combination of Uk(ω) as in (4.3) exists, i.e. a set of weights

{fk} can be found to achieve the optimal approximation [13]. The existence of the

Haar condition within the basis functions is a necessary and sufficient condition for

the uniqueness of this optimal approximation and the set of coefficients {fk} leading
to it (Theorem 19 in [34], [13]). For example, the optimal approximation to any

continuous function on a compact set S with an ordinary polynomial is unique since

the set of monomials ωk, k = 0, 1, . . . , K, satisfies the Haar condition on any compact

set. This can be verified by the fact that the matrix V is a Vandermonde matrix for

Uk(ω) = ωk, which is guaranteed to be full rank if all ωk are distinct.

82

4.1.2 Alternation Theorem and the Remez Exchange Algo-

rithm

In cases where the basis functions Uk(ω) satisfy the Haar condition and both these

and D(ω) are real valued, the problem stated in (4.3) accepts an efficient solution

using the algorithm called the Remez Exchange Algorithm [13]. This algorithm ex-

ploits a characterization of the unique optimal approximation given by the alternation

theorem [13,34], where uniqueness of the optimal solution follows from the Haar con-

dition:

Theorem 4.1. Alternation theorem: The function

D̃(ω) =

K
∑

k=0

fkUk(ω) (4.6)

is the unique optimal approximation to D(ω) that is in the span of {Uk(ω), k =

0, 1, . . . , K} if and only if the error function

E(ω) = D(ω)−
K
∑

k=0

fkUk(ω) (4.7)

exhibits at least K + 2 alternations, i.e., there are at least K + 2 alternation points

ωi ∈ S such that

ω1 < ω2 < · · · < ωK+1 < ωK+2

and

E(ωi) = −E(ωi+1) = ±max
ω∈S
|E(ω)|

for i = 1, 2, . . . , K + 1. In other words, for the unique optimal approximation D̃(ω),

the absolute value of the error function attains its maximum value at the points ωi

where the sign of the error alternates from one alternation point to the next.

The Remez Exchange Algorithm [13, 42] is an iterative algorithm which exploits

the existence of at least K+2 alternation points and the behavior of the error function

E(ω) at these points to find the unique optimal set of weights fk in (4.3). It starts

83

with an initial guess for the alternation points, and at each iteration the coefficients

fk are updated so that the maximum error on the discrete set of candidate alternation

points is minimized. For the next iteration, the candidate points are exchanged with

another set ofK+2 points including the point of maximum error on S. The iterations
are continued until the change in the maximum error does not improve beyond a pre-

specified threshold. This procedure is guaranteed to converge where the convergence

is quadratic [13]. A given frequency response D(ω) can be decomposed by using the

Remez Exchange Algorithm by setting Uk(ω) = Gk(ejω).

The set of basis functions (cosω)k, k = 0, 1, . . . , L, satisfy the Haar condition and

are real valued. The well-known Parks-McClellan filter design algorithm [42] exploits

the alternation theorem and the Remez Exchange Algorithm to design, for example,

an even symmetric FIR filter for which the frequency response can be represented as

H(ejω) =

L
∑

k=0

fk(cosω)
k. (4.8)

This implies that Parks-McClellan filter design algorithm can be re-interpreted as the

decomposition of an ideal filter response D(ω) as F (G(ejω)) with G(ejω) = cosω. This

also suggests that the frequency response decomposition of the ideal filter response

with more general real-valued functions Gk(ejω) satisfying the Haar condition can be

viewed as a generalization of the Parks-McClellan filter design algorithm.

A positive and continuous weightW (ω) can be imposed on the error function E(ω)

in equation (4.7) in order to regulate the relative approximation quality on subsets

of S. In that case, the alternation theorem and Remez exchange algorithm can be

re-expressed with respect to the weighted error

EW (ω) = W (ω)

[

D(ω)−
K
∑

k=0

fkUk(ω)

]

. (4.9)

The weighted approximation problem becomes equivalent to approximating the tar-

get function W (ω)D(ω) with a generalized polynomial where the basis functions are

{W (ω)Uk(ω), k = 0, 1, . . . , K}. This adjusted set of basis functions also satisfies the

84

Haar condition since the matrix























W (ω0)U0(ω0) W (ω0)U1(ω0) W (ω0)U2(ω0) . . . W (ω0)UK(ω0)

W (ω1)U0(ω1) W (ω1)U1(ω1) W (ω1)U2(ω1) . . . W (ω1)UK(ω1)

W (ω2)U0(ω2) W (ω2)U1(ω2) W (ω2)U2(ω2) . . . W (ω2)UK(ω2)
...

W (ωK)U0(ωK) W (ωK)U1(ωK) W (ωK)U2(ωK) . . . W (ωK)UK(ωK)























(4.10)

is full rank for every set of distinct frequencies {ωk ∈ S, k = 0, 1, 2, . . . , K}. That the
matrix in (4.10) is full rank can be shown by expressing it as the product of two full

rank matrices, namely the diagonal matrix W with diagonal entries W (ωk) and V in

equation (4.5).

Although the Remez exchange algorithm is an efficient algorithm to solve the

frequency response decomposition as described, the requirements on H(ejω) to be

real and on Gk(ejω), k = 0, 1, . . . , K, to be both real and to satisfy the Haar condition

are quite restricting on its applicability. This can be seen from the fact that the

matrix V given in (4.5) is a Vandermonde matrix for this basis, and it is full rank if

and only if G(ejω) attains distinct values for each frequency ω ∈ S, i.e. if G(ejω) is

monotonic. It is desirable to depart to possibly less efficient algorithms that work for

complex valued frequency responses and for basis functions that do not satisfy the

Haar condition such as the First Algorithm of Remez described next.

4.1.3 The First Algorithm of Remez

An algorithm that yields a solution to problem (4.3) and hence the frequency response

decomposition problem is the First Algorithm of Remez [13], which requires only the

function D(ω) and the basis functions Uk(ω) to be continuous on the compact set

S. Therefore, the algorithm is applicable to cases where these functions are complex

valued and where the Haar condition is not satisfied, two scenarios that very often

appear in a signal processing setting. The steps of the First Algorithm of Remez are

given in Algorithm 2.

85

ALGORITHM 2

Input: Uk(ω), k = 0, 1, . . . , K and D(ω),

Output: f∗ = argmin
f
‖D(ω)−

K
∑

k=0

fkUk(ω)‖∞.

Begin (i = 1)

0. Choose S [i] = {ω0, ω1, . . . , ωm} ⊂ S such that

m ≥ K and the matrix [Uk(ωn)]k,n, k = 0, 1, . . . , K;

n = 0, 1, . . . , m has column rank K + 1.

1. Set f [i] = argmin
f

{

max
ω∈S(i)

|D(ω)−
K
∑

k=0

fkUk(ω)|
}

.

2. Find ω[i] = argmax
ω∈S
|D(ω)−

K
∑

k=0

f
(i)
k Uk(ω)|.

3. Set S [i+1] ← S [i] ∪ {ω[i]} and i← i+ 1, go to Step 1.

The First Algorithm of Remez starts with a discrete set of frequencies {ωi, i =

0, 1, . . . , m} in S, where m is at least K. Although the Haar condition is not required

to be satisfied by the basis functions, this initial set of frequency points must be

chosen such that they yield a full-column-rank matrix

Vinit =



































U0(ω0) U1(ω0) U2(ω0) . . . UK(ω0)

U0(ω1) U1(ω1) U2(ω1) . . . UK(ω1)

U0(ω2) U1(ω2) U2(ω2) . . . UK(ω2)
...

U0(ωK) U1(ωK) U2(ωK) . . . UK(ωK)
...

U0(ωm) U1(ωm) U2(ωm) . . . UK(ωm)



































. (4.11)

The lack of such a discrete set of points indicates that the basis is degenerate, i.e., some

of the basis functions Uk(ω) are linearly dependent on others, in which case they are

excluded from the basis. The optimization problem (4.3) is solved only for this discrete

86

0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

ω (xπ)

E
rr

or

Maximum Error Point

Figure 4-1: The First Algorithm of Remez computes the optimal approximation for
a discrete set of points, and locates the maximum error point to include in the next
iteration. In this example, the compact set S on which the approximation is performed
is [0, π].

set of points. The coefficients fk obtained are used to evaluate the approximation on

S and to locate the frequency at which the maximum approximation error occurs

as illustrated in Figure 4-1. This frequency is added to the set of points for which

the optimization problem will be solved in the next iteration, and the procedure is

repeated until the minimax error at each iteration does not deviate by more than a

pre-specified threshold.

Unlike the Remez exchange algorithm, the number of points for which an opti-

mization problem is solved increases by one at each iteration in the First Algorithm

of Remez. However, this does not present a serious computational concern as the

optimization problem (4.3) is linear when the functions involved are real-valued, and

is convex when they are complex-valued for a discrete set of frequencies, both cases

of which can be solved efficiently, and the required number of iterations are quite

few as will be shown in applications in Chapter 6. Moreover, it is shown in [19] that

the exact computation of the location of the maximum error on S at each iteration

is not required, and the algorithm has the same convergence guarantees when ap-

proximation error is computed on a “dense enough” and possibly irregular grid in

S.

87

At each iteration i, the minimax error on S increases as new points are added to

the discrete set of points S(i). The vector of optimal coefficients f (i) obtained at each

iteration is guaranteed to be in a bounded subset of RK+1, therefore the sequence of

vectors f (i) is guaranteed to have at least one clustering point [46]. Moreover, any

of these clustering points will be an optimal choice for the coefficients fk with the

same maximum approximation error as the other cluster points. This implies that

the coefficient vector sequence f (i) does not necessarily converge, but the sequence

of minimax error on S converges. The Haar condition for {Uk(ω)} is not required

for the convergence of minimax error sequence, however its existence guarantees the

uniqueness of the optimal choice for coefficients fk [13]. These facts are proved in

[13] and the proof is included in Appendix B with the notation of this chapter for

convenience.

For the frequency response decomposition problem stated in (4.2), the matrix in

equation (4.5) will take the form of a complex-valued Vandermonde matrix which is

full rank if and only if G(ejω) has distinct values for each ω ∈ S. When the Haar

condition is not satisfied, there are multiple optimal choices including any clustering

point of the coefficient vector sequence f (i) obtained in Algorithm 2. In fact, any

coefficient vector in the convex hull of the identified optimal coefficient vectors can

be shown to be an optimal choice itself. In order to see this, consider two optimal

coefficent vectors a and b that satisfy

‖D(ω)−
K
∑

k=0

akUk(ω)‖∞ = ∆opt (4.12)

and

‖D(ω)−
K
∑

k=0

bkUk(ω)‖∞ = ∆opt (4.13)

where ∆opt is the minimum attainable error among all choices of coefficients. It suffices

88

to show that the coefficient vector in the midpoint a+b
2

is also an optimal choice as in

∣

∣

∣

∣

∣

D(ω)−
K+1
∑

k=0

ak + bk
2

Uk(ω)

∣

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

(

D(ω)−
K+1
∑

k=0

akUk(ω)

)

+

(

D(ω)−
K+1
∑

k=0

bkUk(ω)

)∣

∣

∣

∣

∣

≤ 1

2

(∣

∣

∣

∣

∣

(D(ω)−
K+1
∑

k=0

akUk(ω)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(D(ω)−
K+1
∑

k=0

bkUk(ω)

∣

∣

∣

∣

∣

)

≤ ∆opt

(4.14)

where the triangular inequality was used in the first inequality. However, since no

coefficient set can achieve a smaller error than ∆opt, the inequality becomes an equality

proving the optimality of a+b
2
.

4.1.4 The Frequency Response Decomposition Algorithm

Since the frequency response decomposition of a desired function D(ω) is a special

case of the optimization problem (4.3) with Uk(ω) = Gk(ejω), its solution consists of

one of the two algorithms developed in this section.

Frequency Response Decomposition Algorithm. Given a desired function D(ω), the ba-

sis functions Gk(ejω), k = 0, 1, . . . , K, and the compact set S on which the decomposi-

tion is to be performed, invoke the Remez Exchange Algorithm with Uk(ω) = Gk(ejω))

if D(ω) and G(ejω) are real valued and the functions Gk(ejω), k = 0, 1, . . . , K, sat-

isfy the Haar condition. Otherwise, invoke the First Algorithm of Remez given in

Algorithm 2.

Although the First Algorithm of Remez provides a slightly less efficient algorithm

to solve the optimization problem (4.3) than the Remez Exchange Algorithm due

to an increasing number of frequency points at each iteration for which the error is

optimized, it will be adapted as the main choice to solve this problem in the rest of

this chapter and for the applications in Chapter 6 since it applies to a much wider

class of applications where the functions are complex valued and the Haar condition

is not necessarily satisfied.

89

4.1.5 Decomposition on infinite intervals: Continuous time

The frequency response decomposition algorithm applies to problems defined only on

compact sets. Continuous time signals and filters have frequency response represen-

tations that are defined on the entire real line as opposed to discrete time signals

and systems which need to be specified only on the compact interval [−π, π]. There-
fore, one way to perform the decomposition of such frequency responses defined on

(−∞,∞) is to transform the problem to a compact interval, for example through a

frequency warping, before applying the decomposition algorithm developed in this

section. In this case, such a transformation must also preserve the minimax ap-

proximation error profile in both the original domain and the warped domain. The

bilinear transformation satisfies both of these properties and applications exploiting

this transformation will be shown in Chapter 6.

4.2 Frequency Response Decomposition by Mag-

nitude

Although the First Algorithm of Remez is able to locate the optimal solution by solv-

ing problem (4.3) efficiently even when D(ω) and Uk(ω) are complex valued functions,

a general disadvantage of approximating complex valued functions when compared

to those that are real valued is the additional requirement to match the phase of the

approximating generalized polynomial
∑

k fkUk(ω) to that of D(ω), which are always

matched when both are real regardless of the choice of coefficients fk. The attained

minimax error ∆opt may not be satisfactory in cases where the phases of D(ω) and

the basis functions Uk(ω) are arbitrary due to this additional burden on the approx-

imation algorithm. The approximation quality may improve significantly if only the

magnitude of a complex-valued function is desired to be approximated with that of a

composition in an application. For example, the specification of continuous time LTI

filters are provided as constraints on the magnitude of the frequency response. These

applications can potentially benefit from an extension of the frequency response de-

90

composition algorithm to the case where the approximation quality is specified with

respect to the difference between |H(ejω)| and |F (G(ejω))|.

This section extends the frequency response decomposition algorithm given in

Section 4.1.4 to the case of decomposition by magnitude. Since the functions of

interest are in general complex valued, only the first Algorithm of Remez will be

considered. In this case, the error to be minimized is given in terms of the difference

of magnitudes of the target function H(ejω) and its decomposition
∑

k fkG
k(ejω), and

the problem of decomposition by magnitude,

minimize
f

∆

subject to

∥

∥

∥

∥

∥

∣

∣H(ejω)
∣

∣−
∣

∣

∣

∣

∣

K
∑

k=0

fkG
k(ejω)

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∞

≤ ∆,
(4.15)

becomes a special case of the semi-infinite optimization problem

minimize
f

∆

subject to

∣

∣

∣

∣

∣

M(ω)−
∣

∣

∣

∣

∣

K
∑

k=0

fkUk(ω)

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∞

≤ ∆
(4.16)

with M(ω) = |H(ejω)| and Uk(ω) = Gk(ejω).

The frequency response decomposition algorithm described in Section 4.1.4 ex-

ploited the similarity of problems (4.2) and (4.3), where the latter was efficiently

solved by the First Algorithm of Remez for complex valued functions. However, the

decomposition problem by magnitude in (4.15) cannot directly exploit its similarity

to (4.16) as the First Algorithm of Remez does not apply to problems of the latter

form. Moreover, these problems are not convex with respect to the coefficients fk un-

like in the frequency response decomposition problem. In this section, an equivalent

problem to that of (4.16) will be formulated that allows the utilization of the First

Algorithm of Remez in an iterative algorithm for its solution.

91

4.2.1 An Alternating Projections Algorithm

The optimal solution for the optimization problem (4.16) does not change if its con-

straint is replaced by

∥

∥

∥

∥

∥

∣

∣M(ω)ejΘ(ω)
∣

∣−
∣

∣

∣

∣

∣

K
∑

k=0

fkUk(ω)

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∞

≤ ∆ (4.17)

where Θ(ω) is an arbitrary phase function since ejΘ(ω) has unit magnitude. In (4.17),

specifying Θ(ω) = Θf (ω), the phase of the generalized polynomial
∑

k fkUk(ω) such

that
K
∑

k=0

fkUk(ω) =

∣

∣

∣

∣

∣

K
∑

k=0

fkUk(ω)

∣

∣

∣

∣

∣

ejΘf (ω), (4.18)

renders the absolute value operations redundant since both complex terms have the

same phase. Removing the absolute values yields an equivalent problem to (4.16),

minimize
f

∆

subject to

∥

∥

∥

∥

∥

M(ω)ejΘf (ω) −
K
∑

k=0

fkUk(ω)

∥

∥

∥

∥

∥

∞

≤ ∆.
(4.19)

The subscript f in Θf (ω) represents the dependency of the specified phase on the

coefficients of the generalized polynomial.

The optimization problem (4.19) is not convex and cannot be solved exactly.

Although (4.19) is equivalent to (4.16), its explicit dependence on f in two different

terms in its constraint suggests an iterative algorithm each step of which is much

easier to perform than solving (4.16) directly. In the i-th iteration of this iterative

algorithm, the optimal coefficients f [i] are obtained given the phase Θ[i−1](ω) from

the (i− 1)-st iteration. This phase is updated for the next iteration with the optimal

choice of Θ[i](ω) given f [i]. This procedure is outlined in Algorithm 3.

92

ALGORITHM 3

Input: Uk(ω), k = 0, 1, . . . , K; M(ω); an arbitrary Θ[0](ω)

Output: A local optimum for f∗ = argmin
f
‖M(ω)ejΘf (ω) −

K
∑

k=0

fkUk(ω)‖∞.

Set i = 1.

1. Set f [i] = argmin
f
‖M(ω)ejΘ

[i−1](ω) −
K
∑

k=0

fkUk(ω)‖∞.

2. Set Θ[i](ω) = argmin
Θ(·)
‖M(ω)ejΘ(ω) −

K
∑

k=0

f
[i]
k Uk(ω)‖∞

3. Set i← i+ 1, go to Step 1.

Given the phase Θ[i−1](ω) from the previous iteration, finding the optimal coef-

ficient vector f [i] to minimize the error in Step 1 of Algorithm 3 is an instance of

an approximation problem by a generalized polynomial which can be solved easily

using the First Algorithm of Remez. This step can be viewed as the projection of the

function M(ω)ejΘ
[i−1](ω) onto the space of functions spanned by the basis functions

Uk(ω), k = 0, 1, . . . , K, i.e.,

U = {P (ω) s.t. P (ω) =
K
∑

k=0

akUk(ω) for ak ∈ R}. (4.20)

Choosing the same set of frequency points in the initial step each time the first

algorithm of Remez is invoked guarantees the sequence f [i] to be bounded in magnitude

by the same number not only within one call of the algorithm but also throughout

the iterations in Algorithm 3.

Once f [i] is determined in Step 1, the optimal phase Θ[i](ω) to attach toM(ω) can

be determined by interpreting Step 2 as the projection of the generalized polynomial
∑

k f
[i]
k Uk(ω) onto the set of complex valued functions with magnitude M(ω), i.e.,

M = {R(ω) s.t. R(ω) =M(ω)ejΘ(ω) for arbitrary Θ(ω)}. (4.21)

93

This set does not correspond to a vector space and it is not even convex, however

projections onto this set can be performed in a very straightforward manner. More

specifically, for every ω,

∣

∣

∣

∣

∣

M(ω)ejΘ(ω) −
K
∑

k=0

f
[i]
k Uk(ω)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M(ω)ejΘ(ω) −
∣

∣

∣

∣

∣

K
∑

k=0

f
[i]
k Uk(ω)

∣

∣

∣

∣

∣

ejΘ
[i]
f
(ω)

∣

∣

∣

∣

∣

= |M(ω)|2 +
∣

∣

∣

∣

∣

K
∑

k=0

f
[i]
k Uk(ω)

∣

∣

∣

∣

∣

2

− 2 |M(ω)|
∣

∣

∣

∣

∣

K
∑

k=0

f
[i]
k Uk(ω)

∣

∣

∣

∣

∣

cos(Θ(ω)−Θ
[i]
f (ω))

(4.22)

where the first equality follows from equation (4.18) for the definition of Θ
[i]
f (ω) and

the second equality follows from the cosine theorem. The same optimal choice of

Θ(ω) = Θ
[i]
f (ω) minimizes equation (4.22) for every frequency ω, hence it is the

solution of Step 2 of Algorithm 3.

The two steps of Algorithm 3 correspond to alternating projections of a desired

magnitude function M(ω) between the sets U defined in equation (4.20) and M
defined in equation (4.21) as depicted in Figure 4-2. It is well known that if the

two sets were both convex witn non-empty intersection, the sequence of functions

obtained during this iterative procedure would converge to a function in U ∩ M
yielding ∆ = 0, or, if the intersection is empty, converge to the closest point of U
to M attaining the global minimum of ∆. Although the lack of convexity in M
prevents from establishing such guarantees in the magnitude response decomposition

problem, the maximum error ∆[i] at each iteration can be shown to be a non-increasing

sequence. More specifically, for any i > 0,

∆[i] = ‖M(ω)ejΘ
[i](ω) −

K
∑

k=0

f
[i]
k Uk(ω)‖∞

≥ ‖M(ω)ejΘ
[i](ω) −

K
∑

k=0

f
[i+1]
k Uk(ω)‖∞

≥ ‖M(ω)ejΘ
[i+1](ω) −

K
∑

k=0

f
[i+1]
k Uk(ω)‖∞

= ∆[i+1],

(4.23)

94

Figure 4-2: The illustration of alternating projections of a function between two sets
U defined in equation (4.20) andM defined in equation (4.21).

where the first inequality follows from the minimization at Step 1 and the second

inequality follows from the minimization from Step 2 of Algorithm 3. Since ∆[i] is

bounded below by zero, it is going to converge and possibly to a positive value ∆opt.

4.3 Chapter Conclusions

In this chapter, frequency response decomposition was treated as a special case of

approximations with generalized polynomials in order to develop the decomposition

algorithms in a more general setting and to utilize the mathematical tools available

for generalized polynomials from the literature. The Remez Exchange Algorithm

was shown to be an important tool that can be exploited to decompose real valued

frequency responses when the basis functions Gk(ejω), k = 0, 1, . . . , K are both real-

valued and satisfy the Haar condition on the frequency intervals of interest. Although

computationally efficient, such restrictions of the Remez Exchange algorithm moti-

vated an alternative algorithm again due to Remez, the First Algorithm of Remez,

to be extended for decomposing frequency responses which does not have these re-

strictions. This latter algorithm was extended to cases where only the magnitude

of the composition approximates the magnitude of a desired function. An iterative

algorithm was proposed for the solution of the decomposition problem by magnitude,

where, although the non-convex problem is not solved exactly, the approximation

error was shown to be monotonically non-increasing at each iteration step.

95

96

Chapter 5

Discrete Multivariate Function

Composition and Decomposition

In the previous chapters, the focus has been on the composition and decomposition

of one dimensional functions. In a signal processing framework in which functional

composition and decomposition are to be exploited, it may be potentially useful to

extend the discussion to multivariate functions as well.

Applications that are characterized by their requirement of taking summations,

i.e. marginalizations, over multivariate functions constitute a large class of problems

that can potentially benefit from the composition and the decomposition of multivari-

ate functions. Some well-known examples that require marginalizations are nonlinear

filtering, projections, computing expectations and messages in message passing al-

gorithms in statistical inference problems. This chapter will develop a multivariate

function decomposition algorithm in order to benefit from its potential computa-

tional efficiencies for this large set of problems. The computational benefits for the

case of factorable functions in these applications are well known and several efficient

algorithms have already been developed to exploit factorability. The decomposition

algorithm which will be developed in this chapter will be formulated in a way to

extend the benefits of factorability to decomposability and to exploit the algorithms

previously developed in this new context. This will be accomplished by introducing

latent variables to a given decomposable function and representing it as a product of

97

functions each of which have fewer variables, in which case the efficient algorithms

for the factorable functions can be invoked. This is done at the expense of artifi-

cially increasing the dimensionality of the given function. However a careful choice

of an alphabet size for the latent variable will be shown to ensure this approach re-

mains efficient. Moreover, if a given function is not exactly decomposable, it will

be approximated by a decomposable representation as an alternative to approximate

factorization in order to benefit from the same efficiencies.

In this thesis, attention will be restricted to discrete functions as the methods

developed will exploit mathematical methods that assume discrete and finite alpha-

bet sizes. However this will be sufficient to illustrate the feasibility and benefits of

introducing decomposition in certain signal processing applications and provide a mo-

tivation for exploring decomposition algorithms for multivariate continuous functions

in a future study.

In Section 5.1, the computational difficulties in the context of marginalization

problems will be discussed with an emphasis on why factorability into functions

with fewer variables have been widely considered as desirable. The class of appli-

cations known in the literature as marginalize-a-product-function (MPF) problems

will be introduced [1], and a new class of applications will be defined as marginalize-

a-decomposable-function (MDF) problems for which the computational benefits are

to be extended.

In Section 5.2, multidimensional matrices are introduced as a natural and straight-

forward tool to represent discrete multivariate functions. Moreover, a basic form for

a decomposable multivariate function, adapted from a stream of work in machine

learning for its convenience, will be introduced. It will be shown that once a decom-

position algorithm is developed for this basic form, other forms of decompositions can

also be obtained by repeatedly invoking this algorithm on the subfunctions.

In Section 5.3, methods will be developed to represent decomposable functions as

factorable functions at a higher dimension by introducing latent variables. The con-

ditions under which such an operation will remain efficient will be discussed, and the

decomposable representations will be manipulated to show that a decomposable func-

98

tion can be represented as a product of matrices. Moreover, although factor graphs

can successfully capture the structure of factorable functions and not decomposable

functions, the techniques developed in this section will lead to a factor graph repre-

sentation that can capture the decomposability structure and lend itself to efficient

computations.

The matrix representations of multivariate functions as well as the matrix product

view of decomposition developed in Section 5.3 will constitute the basis of decom-

position algorithms that will be developed in Section 5.4. More specifically, having

reduced the decomposition problem to a matrix factorization problem, techniques

such as singular value decomposition (SVD) and nonnegative matrix factorization

(NMF) algorithms will be borrowed from the literature for developing the machinery

for decomposition.

5.1 Efficient Marginalization

The problems that require marginalizing multivariate functions over some or all of

their variables can be computationally intractable since the dimensionality over which

the summation is performed increases exponentially with the number of variables.

These problems become instances of marginalize-a-product-function (MPF) problems

formally defined in [1, 41], for which well-known efficient algorithms exist, when the

multivariate functions to be marginalized are factorable into local functions that

depend only on subsets of variables. The efficiency of factorability stems from the

possibility of distributing the summation over local functions hence reducing the

dimensionality over which these operations are performed. For example, consider a 5-

th order Volterra kernel of a nonlinear time invariant system which has a factorization

of the form

h[n1, n2, n3, n4, n5] = ψA[n1, n4, n5]ψB[n2, n3, n4], (5.1)

where ψA and ψB are both multivariate functions themselves. In order to compute

the corresponding 5-th Volterra term y5[n] in the series expansion for the output when

the input is x[n], the marginalization can be distributed over the two local functions

99

ψA and ψB instead of performing the marginalization over all possible five-tuples

{n1, . . . , n5} at once,

y5[n] =
∑

n1

∑

n2

∑

n3

∑

n4

∑

n5

ψA[n1, n4, n5]ψB[n2, n3, n4]
5
∏

k=1

x[n− nk]

=
∑

n4

x[n−n4]

(

∑

n1

∑

n5

ψA[n1, n4, n5]x[n−n1]x[n−n5]

)(

∑

n2

∑

n3

ψB[n2, n3, n4]x[n−n2]x[n−n3]

)

(5.2)

where each local sum will be performed on a subset of variables, in which case much

fewer computations will be required. Although the computational savings depend

highly on the form of the actual factorization, the number of variables in the factors

and their alphabet sizes, performing computations by exploiting the factorization will

increase efficiency in general.

Following a naming convention similar to MPF, marginalizations over decompos-

able functions will be referred to as marginalize-a-decomposable-function (MDF) in

this thesis. In order to benefit from the existing algorithms for MPF problems exploit-

ing factorability, decompositions will be formulated as a generalization of factorization

when the function is artificially and temporarily carried to higher dimensions through

the introduction of latent variables. This will allow re-expressing MDF problems as

MPF problems and apply the same efficient algorithms with little overhead due to

the introduction of the latent variables.

5.2 Decomposable Representations of Discrete Mul-

tivariate Functions

A bivariate signal F (·, ·) of two variables {x, y} can be represented either analytically

in terms of x and y or specified for each and every value of the pair (x, y) if the

alphabets of these variables are finite and discrete, i.e., they can only take finitely

many distinct values. In many circumstances, an analytic expression for F (x, y)

is undefined, unknown or not meaningful such as with a natural image consisting

100

of pixel values where the variations between pixel values cannot be modeled by an

analytic function of the pixel coordinates. In such an image, the variables x and y

correspond to coordinates of the pixels and they both take a finite number of discrete

values, consecutive integers in this case. In other cases, there may be an analytic

representation of F (x, y) or the alphabets of the variables may be continuous. In an

application where computations are to be performed or data to be stored, a common

practice is to take the range of interest for the variables and discretize them, in which

case the function values can be recorded as a matrix MF.

The matrix representation of bivariate discrete functions can be extended similarly

to a multidimensional matrix, i.e. tensor, representation for discrete multivariate

functions H(X), where

X = {x1, x2, . . . , xK} (5.3)

is the set of K discrete variables with finite alphabets. The multidimensional matrix

TH has K dimensions. The size of TH along its k-th dimension is Dxk
, namely the

alphabet size of xk, since it is indexed by xk. The total number of entries in TH is

thus

DX =

K
∏

k=1

Dxk
, (5.4)

i.e., it is equal to the joint alphabet size of the K-tuple (x1, . . . , xK). Given an

instantiation of X, namely a set of values for (x1, x2, . . .), the value of a multivariate

function H(X) can be obtained by a look-up procedure from the multidimensional

matrix TH that represents it.

5.2.1 A Basic Decomposable Representation

A basic form that represents a function of a function in the context of multivariate

functions is

F (x(f,1), . . . , x(f,M), G(x(g,1), . . . , x(g,N))) (5.5)

where the variable subindices f and g imply correspondence to F and G, respectively.

In other words, in this basic decomposable form, G is a multivariate function evalu-

101

ating to a single value and F is a function of this value along with other variables.

The variables are all distinct, i.e., the set of variables of F and that of G are disjoint.

This basic form was exploited in the context of machine learning due to its simplicity,

in which intermediate meanings for a subset of variables were developed and referred

to as concepts [57]. In that stream of work, this decomposition was not considered for

its potential computational efficiency but rather to obtain groups of variables related

to each other through a concept. In this thesis, this basic form will be adapted as

the simplest form of decomposability which can be repeated for subfunctions as de-

sired to obtain more sophisticated decompositions for the purposes of computational

and representational efficiencies using multivariate functions in MDF problems. This

requires obtaining decompositions of this form as the first step.

For any disjoint partitioning XA and XB of X satisfying XA ∪ XB = X and

XA∩XB = ∅,H(X) can always be obtained by a two-step tensor look-up procedure by

introducing a latent variable c. The first tensor TG of dimensionality N corresponds

to a sub-function c = G(XB) and the second tensor TF of dimensionality M + 1

corresponds to a function F (XA, c). Here, M and N are the number of elements in

XA and XB, respectively. The result will be a decomposable representation in the

form

H(XA,XB) = F (XA, G(XB)). (5.6)

TG can be obtained by defining any one-to-one function G :
∏

xi∈XB
Xi −→ RG,

where Xi denotes the alphabet of the variable xi and RG denotes the alphabet of c,

i.e. the set of all possible values that G takes over the alphabet of XB. Once G is

chosen freely, F must be specified, for consistency, by

F (XA, G(XB))
∆
= H(X), (5.7)

which constitute the entries of TF. In this representation, G evaluates to a unique

value c for each different instantiation ofXB since it is a one-to-one mapping, and that

unique value along with the rest of the variables in XA unambiguously determines

the value of F , which is by definition set to H(X).

102

5.2.2 Constraints on the size of RG

The decomposable representation of H , or equivalently of TH, as in equation (5.6)

using a one-to-one function for G does not directly lead to a more compact or efficient

representation. This can be seen from the fact that TH has been replaced by a

comparably large tensor TF in addition to TG. The size of TF is the same as that

of TH despite having smaller dimensionality of M + 1 since the dimension of TF

that is indexed by the latent variable c is the same size as the number of different

configurations that XB can have.

For a more efficient and compact representation, G(XB) has to reveal degeneracies

in H(X) with respect to XB, i.e., when H(X) = H(XA,XB) takes the same values

for different instantiations of XB, G(XB) should be specified in a way to reflect this

by taking on the same value for those instantiations rather than being specified as a

one-to-one mapping.

To illustrate this observation, consider the discrete multivariate function example

H(x1, x2, x3) = max(x1,min(x2, x3)) (5.8)

given in [57]. The variables x1, x2 ∈ {lo,med, hi}, and x3 ∈ {lo, hi} index a three

dimensional tensor TH of dimensions 3× 3× 2. For clarity and the sake of numerical

manipulations, the values {lo,med, hi} will be replaced by {−5, 0, 5}, which corre-

sponds to the voltages in a bipolar signaling scheme with hi = 5V . For illustration,

TH has been unfolded into a partition matrix in Table 5.1 where the partition sets

are XA = {x1} and XB = {x2, x3}, i.e., it is shown as a matrix where the rows are

indexed by different values of x1 and the columns are indexed by different values of

the pair {x2, x3}. This representation conveniently reveals the degeneracies in H with

respect to the variables {x2, x3} in that for six different values of the pair, there are

only three distinct columns in this specific tabular representation. This observation

would have suggested defining a sub-function c = G(x2, x3) that only takes three dis-

tinct values for all values of {x2, x3} as shown at the bottom of Table 5.1, for example

to choose RG = {1, 2, 3}. The new representation of H(x1, x2, x3) consists of two

103

Table 5.1: Partition matrix for XA = {x1} and XB = {x2, x3}

x2 -5 -5 0 0 5 5
x1 x3 -5 5 -5 5 -5 5
-5 -5 -5 -5 0 -5 5
0 0 0 0 0 0 5
5 5 5 5 5 5 5

G(x2, x3) 1 1 1 2 1 3

Table 5.2: Decomposed representation for H(x1, x2, x3) in Table 5.1. (a) Values for
G(x2, x3) (b) Values for F (x1, G) = H(x1, x2, x3).

(a) (b)
(x2, x3) -5 5

-5 1 1
0 1 2
5 1 3

(x1, G) 1 2 3
-5 -5 0 5
0 0 0 5
5 5 5 5

smaller tensors TG and TF, in fact matrices since they are two dimensional as they

are shown in Table 5.2.

In the specific example of equation (5.8), the total number of parameters or tensor

entries to represent H has changed from 18 to 15. For larger alphabets and numbers

of variables, the savings can be substantial. The limit on the alphabet size of c may

be different for efficient representations of the multivariate function than the limit

for efficient computations using the function in MDF problems as discussed in later

sections.

5.2.3 Other Decomposable Representations

The basic decomposition of a multivariate function H(X) into functions of a dis-

joint partition {XA,XB} as in equation (5.6) is only one of the possible forms for

a decomposition. Nevertheless, in this section, developing a basic one-step decom-

position algorithm to yield this form will be shown to suffice to obtain many other

more structured decomposition forms when it is applied iteratively. For example, a

decomposition of the form

H(X) = F (XA′, G1(XB′, G2(XC′))), (5.9)

104

where {XA′,XB′,XC′} is a disjoint partition of X, can be obtained by applying the

one-step decomposition algorithm to H(X) with XA = XA′ and XB = XB′ ∪XC′ to

obtain the intermediate decomposition

H(X) = F (XA′, Gint(XB′ ∪XC′)), (5.10)

and re-applying the algorithm to Gint(XB′ ∪XC′) to obtain the final decomposition

in equation (5.9). Similarly, a decomposition of the form

H(X) = F (GA(XA′), GB(XB′),XC′), (5.11)

can be obtained by first applying the one-step decomposition algorithm to H(X) with

XA = XA′ ∪XC′ and XB = XB′ to get an intermediate decomposition

H(X) = Fint(XA′ ∪XC′, GB(XB′)). (5.12)

In the second step, defining a new variable “gB” with an alphabet that is the same

as possible values for GB(XB′) allows the application of the same decomposition

algorithm to Fint with XA = XC′ ∪{gB} and XB = XA′ to obtain the decomposition

in equation (5.11).

Decompositions into functions of non-disjoint partitions {XA,XB} are not going

to be considered in this thesis as they deteriorate the efficiency of operations that will

be performed in an MDF problem. This stems from the fact that non-empty intersec-

tions between variable sets implies dependency of sub-functions in the decomposition

and not a complete separation of the computation into easier local computations as

will be discussed in the next section where decomposability will be formulated as a

generalization of factorability.

105

5.3 Decomposition as a Generalization of Factor-

ization

In this section, decomposable multivariate functions will be artificially carried to a

higher dimension by introducing latent variables, where they can be represented as

the marginalization of a factorable function over the latent variable. This procedure,

which will be referred to as δ-decomposition since it involves the δ-function, will

be shown to lead to representational and computational efficiencies if this function

is to be used in a marginalize-a-decomposable-function (MDF) problem. Moreover,

this decomposition will be extended to involve more general functions than the δ-

function and make it possible to reduce the problem of functional decomposition to

matrix factorization. This will establish a relationship between decomposability of a

multivariate function and the factorability of a higher dimensional related function,

a theme which also appeared in the case of polynomial decomposition, suggesting a

more general relationship between these two operations for possibly larger classes of

functions. Finally, the equivalence between decomposability and factorability at a

higher dimensionality will be exploited to facilitate a factor graph representation of

decomposable functions on which algorithms such as the sum-product algorithm can

be run efficiently.

5.3.1 δ-Decomposition

A multivariate function with a basic decomposable representation of the form in

equation (5.6) over a disjoint partition {XA,XB} can be equivalently expressed as

H(XA,XB) = F (XA, G(XB))

=
∑

c∈RG

F (XA, c) · δ(c, G(XB))
(5.13)

106

where c is a latent variable with the alphabet RG, i.e., it represents all different

possible values that G(XB) can take, and

δ(x, y) =







1 x = y

0 x 6= y
.

Equation (5.13) is a direct application of the sifting property of the δ(·, ·) function

–the summand will be nonzero only when c = G(XB), in which case it will yield

F (XA, c) establishing the desired equality. This representation of H(XA,XB) is in

fact equivalent to the marginalization of a multivariate function Ĥ(XA,XB, c) over

the latent variable c where

Ĥ(XA,XB, c) = F (XA, c) · δ(c, G(XB)), (5.14)

i.e.,

H(XA,XB) =
∑

c∈RG

Ĥ(XA,XB, c). (5.15)

The representation of H(X) using δ(·, ·) function as in equation (5.13) will be referred

to as δ-decomposition in the sequel.

5.3.2 Representational Efficiency Using δ-Decomposition

In order to compare the total tensor sizes required to represent a multivariate function

H(XA,XB) in its original form and using its δ-decomposition as in equation (5.13),

consider the joint alphabet size DX of the variables in X = {xk}Kk=1 as defined in

equation (5.4). DX simply denotes the number of different configurations that a K-

tuple (x1, . . . , xK) can take. A direct representation of H(XA,XB) would require

a tensor of size (DXA
· DXB

), which is equal to the joint alphabet size of all the

variables in X. On the other hand, a tensor of the size DXB
to represent G(XB)

and a tensor of size DXA
· |RG| to represent F (XA, c) will suffice to represent its

δ-decomposition. Therefore, a δ-decomposition with a disjoint partition {XA,XB} is
considered efficient if the total size of these two tensors is smaller than that required

107

for the direct representation, i.e.,

|RG| <
DXA

·DXB
−DXB

DXA

. (5.16)

This comparison emphasizes the importance of having a small alphabet size for c for

an efficient representation, which is consistent with the discussion in Section 5.2.2.

The constraints for efficient representation versus efficient MDF computations are

closely related by not identical as will be shown in Section 5.3.3, however |RG| plays
an important role for both kinds of efficiencies introduced by decomposition.

5.3.3 Computational Efficiency Using δ-Decomposition

Ĥ in equation (5.14) is a multivariate function that is factorable into local multivariate

functions F and δ each depending only on a subset of its variables at the expense

of increasing the dimensionality of H by one through the introduction of the latent

variable c. In MDF problems, using its representation through Ĥ as in equation (5.15)

instead of H directly will lead to more efficient computations due to the factorability

of Ĥ if the alphabet of c is below a certain size, effectively transforming the problem

into an equivalent MPF problem. More specifically, the marginalization of H over all

of its variables cannot be distributed over local summations since it is not directly

factorable
∑

XA

∑

XB

H(XA,XB), (5.17)

whereas the summation over Ĥ can be obtained using the combination of local sum-

mations over smaller sets of variables

∑

XA

∑

XB

(

∑

c

Ĥ(XA,XB, c)

)

=
∑

c

(

∑

XA

F (XA, c)

)(

∑

XB

δ(c, G(XB))

)

.

(5.18)

The marginalization directly performed over H as in equation (5.17) spans an

108

alphabet size of (DXA
· DXB

). On the other hand, factorability of Ĥ allows the

summation to be performed in two smaller sub-summations as in equation (5.18)

repeated as many times as |RG| for each different value of c, resulting in |RG| ·(DXA
+

DXB
) additions. More specifically, computations using Ĥ will be more preferable if

|RG| <
DXA

·DXB

DXA
+DXB

, (5.19)

which is usually a very easy constraint to satisfy as the right hand side of inequality

(5.19) increases exponentially with the number of variables.

The separation of the marginalization into local summations in equation (5.18)

would not be possible if the partition sets XA and XB were non-disjoint since neither

F nor δ could be factored out from the local summations over XA or XB. In such a

case, the summation over the variables in XA∩XB needs to be performed separately,

similar to the summation over c, which therefore causes the number of required com-

putations to multiply by their joint alphabet sizes. In order to avoid this reduction

in efficiency, decompositions over non-disjoint partitions will be avoided.

5.3.4 General Decomposition

The efficiency of the computations using Ĥ in the equivalent MPF problem stems

from its factorability as in equation (5.14). In fact, the computational efficiency is

preserved if δ(c, G(XB)) is replaced by a more general function G̃(c,XB) which can

take values other than {0, 1},

Ĥ(XA,XB, c) = F (XA, c) · G̃(c,XB), (5.20)

since computations similar to equation (5.18) can still be performed over local sum-

mations. This leads to a more general representation of H than in equation (5.13),

H(XA,XB) =
∑

c∈RG

F (XA, c) · G̃(c,XB). (5.21)

109

Therefore, δ-decomposition becomes a special case of the general decomposition with

G̃(c,XB) = δ(c, G(XB)). (5.22)

Although computational efficiency is preserved when δ-decomposition is general-

ized as in equation (5.21), representational efficiency is not preserved as representing

a general function G̃(c,XB) requires a larger tensor than the one required to represent

G(XB) by a factor of |RG|. Therefore, the constraint on the alphabet size of c takes

the same form of equation (5.19) for both efficient representation and computation

using general decomposition.

5.3.5 Decomposition as a Matrix Factorization

The relationship in equations (5.13) and (5.21) can be viewed as matrix equations

involving three matrices MF, MG̃ and MH, the entries of which consist of F , G̃ and

H ;

MH
∆
= MF ·MG̃ (5.23)

where the rows and columns of MF are indexed by different values of XA and c, re-

spectively; and the rows and columns of MG̃ are indexed by different values of c and

XB, respectively. Similarly, rows and columns of MH are indexed by XA and XB. In

δ-decomposition where G̃(c,XB) = δ(c, G(XB)), the entries of MG̃ equal 1 wherever

c = G(XB) and 0 elsewhere, while they can take any real value for the general decom-

position. The constraint that c has a small alphabet size corresponds to MF having

few columns and MG̃ few rows. Since the columns of MH are a linear combination

of the columns of MF, the rank of H is at most c and the representation of equation

(5.23) reveals the degeneracy in MH, the original representation of H(XA,XB). This

observation will be used to obtain general decomposition algorithms in the following

sections.

110

5.3.6 Factor Graph Representation of Decomposable Multi-

variate Functions

Factorable multivariate functions are conveniently expressed using a factor graph, a

bipartite graph with variable nodes and factor nodes in which each factor node is

connected to the variable nodes that it takes as a variable [31]. This representation of

the function leads to a visualization of dependencies of factors on variables and more

importantly suggests an order for computations that is the basis for several efficient

message passing algorithms for MPF problems including the sum-product algorithm.

The messages that are passed from factor nodes to variable nodes are usually the

computational bottleneck as they require marginalization over the joint alphabets of

all but one of their variables. The overall complexity increases exponentially with the

maximum number of variables that are connected to the same factor, therefore it is

important to be able to break factors into those which depend on only few variables.

Although factorability of a multivariate function can be directly represented by

factor graphs, decomposability of a function H(X) cannot be summarized and vi-

sualized using a factor graph in its original form, and the efficient message passing

algorithms cannot be used directly. However, the factorable function Ĥ(X, c) can be

viewed as a factorable representative of H(X) with a higher dimensionality since the

result of any marginalization on Ĥ that includes the marginalization over c will be

indistinguishable from those obtained using H directly. Therefore, the factor graph

representation of Ĥ can be treated as that of H allowing the use of efficient mes-

sage passing algorithms. As an example, Figure 5-1a illustrates the factor graph

representation of a decomposable function

H(x1, . . . , x6) = F (x1, x3, x5, G(x2, x4, x6)) (5.24)

in its original form which fails in reflecting the structure it has, whereas Figure 5-1b

illustrates the representation of this function in terms of its factorable representative

Ĥ(x1, . . . , x6, c) = F (x1, x3, x5, c) · G̃(c, x2, x4, x6). (5.25)

111

x1 x6

x3

x5

x4

Hx2

(a)

Gx1

x2

x3

x4

x5

cF
~

x6

(b)

Figure 5-1: An example of a factor graph (a) before decomposition (b) after decom-
position.

Both δ-decomposition and general decomposition allow increasing the dimension-

ality of a decomposable function by introducing a latent variable c to obtain a fac-

torable representative on which efficient algorithms can be employed for MDF compu-

tations under reasonable constraints on the alphabet size of c. From this perspective,

decomposability can be interpreted as the generalization of factorability and can ex-

ploit the computational efficiencies that factorability offers.

5.4 Decomposition Methods

A concept central to the multivariate function decomposition is a partition matrix,

a convenient tool that was originally described in [57]. For a multivariate function

H(X) and a disjoint partition of its variables {XA,XB}, the partition matrix is a

matrix representation of the function where the rows are indexed by XA and the

columns are indexed by XB. The partition matrix can be viewed as unfolding the

high dimensional tensor TH that represents H(X) into a matrix form. An example

of a partition matrix was given in Table 5.1 for the function in equation (5.8) with

the partition sets XA = {x1} and XB = {x2, x3}.
In [57], partition matrices were used to decompose multi-valued functions in the

context of machine learning. However, decomposition using partition matrices was

not exploited for representational or computational efficiency. Rather, it was used as

a tool for inferring missing observations and for obtaining meaningful intermediate

112

concepts, i.e., functions that can be interpreted as the summary of the state of a

subset of variables. In the sequel, multivariate functions are assumed to be known or

observed for all possible configurations of the variables in X and decomposition meth-

ods will be developed to serve a different and more general purpose, namely to allow

efficient representation and computation using decomposable multivariate functions

in MDF problems. Once a decomposition is obtained, it will be checked whether the

constraint in equation (5.16) or (5.19) is satisfied to declare a decomposition efficient

for representational or computational purposes whereas approximate decomposition

algorithms can impose these constraints if they are not readily met at the expense of

a less accurate representation.

5.4.1 Exact δ-Decomposition Algorithm

Obtaining the Matrices for Sub-Functions F and G

In Section 5.3, an efficient decomposition for a multivariate function H(X) was ar-

gued to be one of the form F (XA, G(XB)) with a disjoint partition {XA,XB} and
a small alphabet size for RG, i.e., the set of possible values for G(XB). Given a dis-

joint partition {XA,XB} and the corresponding partition matrix MH of H(X), the

identical columns in the partition matrix imply that for any of their column indices

XB, the value of F (XA, G(XB)) will be the same for a given XA, therefore G can be

specified in way to yield the same value of c = G(XB) for all these column indices.

In this approach, the number of distinct columns in the partition matrix corresponds

to the alphabet size for RG. In the example given in Table 5.1, all columns except

the ones indexed by XB = {0, 5} and XB = {5, 5} are identical, therefore all of these
column indices XB were assigned the same value under G,

G(−5,−5) = G(−5, 5) = G(0,−5) = G(5,−5) ∆
= 1. (5.26)

The column indices of the other two columns were assigned values of 2 and 3 under

the function G. The exact values that column indices XB are assigned under G, i.e.,

the alphabet values of the latent variable c, are arbitrary as along as they are distinct

113

for distinct columns since c will be marginalized in all computations and these values

will be merely used as the index for the columns of matrix MF and the rows of matrix

MG̃ as discussed in Section 5.3.5.

The first step of the exact δ-Decomposition algorithm given a disjoint partition

{XA,XB} is the construction of the partition matrix and assigning distinct values of

c to G(XB) for the values of XB that index distinct columns. These distinct columns

construct the matrix MF, or equivalently, specify the function F (XA, c). The row

of the matrix MG̃ that corresponds to a particular value of c consists of all zeros

except when c = G(XB), which represents the function δ(c, G(XB)). For the specific

example of the partition matrix given in Table 5.1,

MF =

x1, c 1 2 3

−5 −5 0 5

0 0 0 5

5 5 5 5

(5.27)

and

MG̃ =

x2 −5 −5 0 0 5 5

c, x3 −5 5 −5 5 −5 5

1 1 1 1 0 1 0

2 0 0 0 1 0 0

3 0 0 0 0 0 1

(5.28)

where the indices for the rows and columns are included and highlighted for clarity.

The product of these two matrices as in equation (5.23) yields the partition matrix,

MH, that is given in Table 5.1.

Once a δ-decomposition is obtained, the constraints in equations (5.16) and (5.19)

can be checked to declare whether it is efficient for representing H or performing MDF

computations using it. For the specific example in equation (5.8), the associated al-

phabet sizes are DXA
= 3, DXB

= 6 and RG = 3, therefore the constraint for efficient

representation in equation (5.16) holds whereas the one for computations in (5.19)

does not hold. In cases where the obtained decomposition is declared inefficient for

114

a specific purpose, either another decomposition is explored using different partition

sets or approximate decomposition algorithms are explored with the same partition

sets that can impose a pre-specified alphabet size for the latent variable c.

Determining a Disjoint Partition {XA,XB}

In the construction of the decomposition in Table 5.2, a suitable partition was easily

chosen to illustrate the inherent degeneracy in H as its canonical form in equation

(5.8) is known. However, H may be specified by its corresponding tensor TH and

a canonical form is not always given a priori. In such cases, it may be necessary

to exhaust all possible variable partitions to obtain an efficient decomposition. The

number of such partitions grow exponentially with the number of variables and it

is usually formidable to exhaust all possible partitions for many variables. In [10],

considering partitions where XB consists of only two or three closely related vari-

ables was proposed as it may be possible to associate an intermediate concept, i.e.,

meaning, to G(XB), in which case the number of possible partitions increase as a

polynomial in the number of variables rather than exponentially. In an example

given in [10], housing loan applicants are prioritized into five categories depending on

twelve variables. A supervised decomposition with at most three variable partition

sets yielded sub-functions G(XB) where, for instance, XB includes the number of

children, employment status and earnings, and the sub-function G(XB) can be inter-

preted as financial status. In other applications, a natural partitioning is implied from

the context and this helps eliminate a great portion of irrelevant partitions or even

directly suggests the most efficient partitioning. For example, in Bayesian inference

problems, the joint distribution of unobserved parameters and observed variables can

be decomposed as a function of observed variables and a sub-function of unobserved

parameters.

115

5.4.2 Approximate δ-Decomposition Algorithms

δ-decomposition is efficient when the alphabet size of the latent variable c is small, or

equivalently when there are few distinct columns in the partition matrix, as discussed

in the previous section. However expecting few distinct columns in a partition matrix

is not realistic for most multivariate functions and most variable partitions, especially

when the function H(X) takes values from a large range set such as the set of real

numbers. In other cases, the functionH may have been contaminated by noise causing

identical columns to seem distinct. For example, the function in equation (5.8) may

be observed through a non-ideal system yielding noisy values for H(X),

x2 −5 −5 0 0 5 5

x1 x3 −5 5 −5 5 −5 5

−5 −4.73 −5.00 −5.12 0.11 −5.01 4.86

0 −0.04 0.07 0.13 0.01 0.19 5.02

5 5.20 4.92 5.01 5.01 4.79 5.14

. (5.29)

In such cases, one approach for efficient decomposition is to cluster columns into a few

classes and then replace each member in a class with a single representative column

for that class. This can be viewed as a form of vector quantization. For example,

a simple and straightforward scheme is to group similar columns and replace them

with their vector average within each group. This leads to an approximate functional

decomposition as the function values are modified to expose near-degeneracies.

In approximate δ-decomposition, the number of clusters for column vectors of

the partition matrix and the clustering method can be chosen in the application

context. The number of clusters corresponds to the number of distinct columns after

the decomposition is completed, hence it also corresponds to the alphabet size of

the latent variable c. The constraints in equations (5.16) and (5.19) can be used to

determine an upper bound for the number of clusters for an efficient decomposition.

Using k-means algorithm to cluster the column vectors in the partition table given

in equation (5.29) into three groups minimizing the l2 norm of the clustering error

116

results in the approximate function values

x2 −5 −5 0 0 5 5

x1 x3 −5 5 −5 5 −5 5

−5 −4.97 −4.97 −4.97 0.11 −4.97 4.86

0 0.09 0.09 0.09 0.01 0.09 5.02

5 4.98 4.98 4.98 5.01 4.98 5.14

. (5.30)

The matrix MF, which represents F (XA, c) and includes distinct columns in the

partition matrix becomes

MF =

x1, c 1 2 3

−5 −4.97 0.11 4.86

0 0.09 0.01 5.02

5 4.98 5.01 5.14

(5.31)

and MG̃ that represents δ(c, G(XB)) remains the same as that given in equation

(5.28).

For different applications, other clustering algorithms such as k-medoids or affinity

propagation can be used, which also perform the clustering by minimizing other error

norms or dissimilarity measures. This may be beneficial when l2 norm is not a

suitable choice such as approximating probability density function values, where KL-

divergence may be more appropriate.

5.4.3 Exact General Decomposition Algorithm

In δ-decomposition, the matrix MG̃ consists of only the values {0, 1}, where the row

and column indices of nonzero entries can be interpreted as pointers to which column

in the partition matrixMH is identical to which column in MF since MH = MF ·MG̃.

On the other hand, in general decomposition, the columns of MF can be viewed as

basis vectors the linear combinations of which constitutes the columns of the partition

matrixMH, where the linear combination coefficients are given as the columns ofMG̃.

117

The number of basis vectors that are required is the same as the column rank of the

partition matrix, which also corresponds to the alphabet size of the latent variable

c. A partition matrix where all the columns are distinct will not yield an efficient

δ-decomposition since the alphabet size of c equals the actual number of columns in

the partition matrix MH, whereas general decomposition can exploit the low rank of

the partition matrix and requires only an alphabet size equal to the rank of MH. The

resulting matrix MF for general decomposition will have fewer columns than that for

a δ-decomposition and the matrix MG̃ will consist of more general values other than

{0, 1}.
Given a disjoint partition {XA,XB} for a function H(XA,XB), the exact general

decomposition consists of obtaining the corresponding partition matrix MH, deter-

mining its rank r and expressing it as the product MF ·MG̃, where MF has r columns

and MG̃ has r rows. These matrices represent F (XA, c) and G̃(c,XB), respectively,

and their product corresponds to the representation of H(X) as given in equation

(5.21).

There are many matrix factorization algorithms available in the literature that

will yield the so called rank factorization of the partition matrix MH. Although it is

not the most computationally efficient method, singular value decomposition suggests

a factorization in terms of its singular values and left and right singular vectors. The

singular value decomposition of MH is given by

MH = U · Σ · V T (5.32)

where the columns of U are the left singular vectors, the columns of V are the right

singular vectors and diagonal elements of Σ are the singular values of MH. An

equivalent representation is

MH =
r
∑

i=1

uiσiv
T
i (5.33)

where ui and vi are left and right singular vectors corresponding to the singular value

σi. With this representation of MH, the matrix MF can be chosen to consist of

columns {u1σ1, . . . , urσr} and MG̃ to consist of rows {vT1 ; . . . ; vTr }. This choice of the

118

matrix pair MF and MG̃ suggested by singular value decomposition is by no means

unique as any invertible matrix A of the correct size will yield another valid pair,

MH = (MFA) · (A−1MG̃)
∆
= M′

F ·M′
G̃
. (5.34)

A perturbation of∆MF onMF leads to an error∆MH = ∆MF·MG̃. Similarly, a

perturbation of∆MG̃ onMG̃ leads to an error∆MH = MF ·∆MG̃. For multivariate

functions, the sensitivity analysis for polynomials in Chapter 3 where compositions

were also expressed in terms of matrix equations can be extended from the product

of a matrix and a vector to a product of matrices. Different choices of an invertible

matrix A in equation (5.34) parallels the method of obtaining equivalent polynomial

compositions, which possibly leads to lower sensitivities.

5.4.4 Approximate General Decomposition Algorithms

General decomposition of a multivariate function H(X) relaxes the constraint on the

partition matrix to have few distinct columns and rather requires it to be a low rank

matrix for an efficient decomposition. In certain cases, the partition matrix may not

be rank deficient or its rank r may not be low enough to yield a desirable alphabet

size for c that will meet the efficiency requirement given in equation (5.19). In an

approximate general decomposition scheme, an alphabet size for c, or equivalently a

rank for the partition matrix, r̂ < r can be imposed by modifying the function values

in the partition matrix. Similar to the development of the exact general decomposition

algorithm, singular value decomposition in equation (5.33) suggests an approximate

partition matrix M̂H that is of lower rank and a corresponding approximate general

decomposition where M̂H is an optimal approximation to MH with respect to the

Frobenius norm. More specifically, for a pre-specified rank r̂ < r,

M̂H =

r̂
∑

i=1

uiσiv
T
i (5.35)

119

where σ1, . . . , σr̂ are the largest r̂ singular values. One particular choice for the matrix

MF consists of columns {u1σ1, . . . , ur̂σr̂} and for MG̃ consists of rows {vT1 ; . . . ; vTr̂ }
while other choices can be obtained as in equation (5.34). This is closely related to

the principal component analysis method that treats the columns of MH as data [8].

5.4.5 Approximate Decomposition of Probability Density Func-

tions

A multivariate function H(X) to be decomposed may correspond to a probability

density function involving the variables in X. For an approximate decomposition to

be also used as a probability density, the resulting component function values may be

required to be nonnegative as well since certain inference methods rely explicitly on

their nonnegativity. Therefore, a natural approach to decompose probability densities

is to find an element-wise nonnegative approximation M̂H toMH that has the desired

rank r̂ and use an exact general decomposition algorithm to obtain element-wise

nonnegative MF and MG̃ as in Section 5.4.3. Using singular value decomposition

or principal component analysis approaches as in Section 5.4.4 will in general fail to

meet these nonnegativity constraints.

The procedure to find a nonnegative approximation M̂H to MH with low rank is

not trivial in general as it is not a convex problem. A set of algorithms for the so

called nonnegative matrix factorization (NMF) have been developed to find locally

optimal lower rank approximations [32, 33]. The nonnegativity of M̂H allows to find

an approximation to minimize the KL-divergence from the true distribution, which is

a preferred dissimilarity measure for probability distributions and is not defined for

negative valued functions.

5.5 Chapter Conclusions

In this chapter, exact and approximate discrete multivariate function decomposi-

tion algorithms were developed for efficient representations and computations in the

120

context of marginalize-a-decomposable-function” (MDF) problems. Several signal

processing and machine learning applications require marginalization of multivariate

functions and factorable multivariate functions have previously proved useful to make

these computations efficient by the algorithms developed for marginalize-a-product-

function (MPF) problems. Re-formulating decomposability as a generalization of

factorability at a higher dimension allowed using well-known mathematical tools to

decompose multivariate functions, and reducing MDF problems to MPF problems

which can benefit from the algorithms developed for this latter class as an applica-

tion will be shown in Chapter 6.

121

122

Chapter 6

Applications of Composition and

Decomposition

In the previous chapters, functional composition and decomposition methods were

developed for certain classes of functions as parts of a framework in which these two

operations can be exploited more fully and in a more systematic way than it has been

traditionally done. As discussed in Chapter 1, some of the benefits of incorporating

functional composition and decomposition into signal processing are the possibility

to design and analyze modular systems, separate computations into more manage-

able subcomputations and represent signals more compactly. This chapter illustrates

several applications that constitute examples for each of these cases, and how the

machinery developed in the previous chapters can be exploited in their development

and analysis.

In Section 6.1, modularity in designing filters is explored. As an example for

modular filter design, the section will start with revisiting the filter sharpening and

re-interpreting it as a form of functional composition. This interpretation will be

shown to lead to a more systematic way of sharpening filters as well as improved

results compared to the traditional methods. Moreover, the developed framework will

allow extending the modularity approach from sharpening a limited class of filters,

namely those with a real valued frequency response, to designing modular filters as

generalized tapped delay lines using filters with complex-valued frequency responses

123

or even continuous time filters.

Another application that will be introduced within the decomposition framework

involves marginalizations over multivariate functions which appear in many contexts

in signal processing and machine learning as discussed in Chapter 5. Section 6.2 will

illustrate the computational benefits of decomposing a multivariate function in the

context of a marginalization problem, namely within the sum-product algorithm in

the context of an image denoising example. First, the sum-product algorithm will

be reviewed in the context of a factorable probability density function to illustrate

how the separation of variables lead to a reduced computational burden. Then, a

high dimensional multivariate function that represents a joint probability density of a

group of pixels will be decomposed approximately to separate the variables similar to

a factorable density in order to carry out the sum-product algorithm more efficiently

in a binary text image denoising problem. Approximate decomposition of multivariate

functions obtained this way will also suggest a more compact representation.

In Section 6.3, examples of using polynomial composition and decomposition will

be given in which compact representations for discrete time sequences are obtained,

and modular FIR filters are designed without requiring the pre-specification of a

subfilter unlike in the case of filter sharpening. However, the low performance of

approximate polynomial decomposition algorithms for general polynomials reduces

the practicality of these applications.

6.1 Modular Filter Design

An interesting and useful application for which functional composition and decom-

position provide a convenient framework is the design of modular filter structures.

VLSI designers are increasingly advocating modularity in their designs, for example

by dividing the overall system into either identical or few distinct sub-systems, and

they have reduced the emphasis on the number of multipliers and the number of

delay elements [36]. Modularity has the advantage of requiring a reduced number of

different designs as well as the possibility of independent and efficient verification of

124

sub-systems [36, 54].

A particular example of modular filters are those that are obtained by sharpening

FIR filters with real valued frequency responses [26, 38, 48]. Filter sharpening em-

phasizes a useful aspect of modular filters as it allows obtaining sophisticated filter

responses that can be reconfigured to adapt to changes in the specifications in the

context of an application using a number of relatively simple and coarse subfilters.

These subfilters may be designed offline with great precision and desired complexity.

This approach provides a flexible alternative to designing a high order sharp filter for

every set of specifications, for which each design takes valuable time in the context

of an application.

In this section, the functional composition and decomposition view of filter sharp-

ening will suggest a systematic method for its solution and yield improved results as

compared to traditional ad hoc approaches. Filter sharpening will be extended to

cases for which a subfilter to be sharpened is not prescribed a priori, i.e. when there

is freedom to choose a subfilter to use in a modular structure. In addition, it will be

shown that the composition point of view and the tools developed in that framework

will allow using more general filters than real valued or linear phase FIR filters for

designing modular filters, including the possibility to use continuous time subfilters.

Finally, the sensitivity and stability of modular filters will be investigated.

6.1.1 Revisiting Filter Sharpening

Filter sharpening, as already discussed in Section 2.2.7, is the technique of reducing

deviations from unity in the passband and from zero in the stopband of the frequency

response of a particular filter G(z) with a real frequency response by multiple passes

through this filter. In the same section, a sharpening method proposed by Kaiser and

Hamming [26] was also presented, which performs the weighting and the ordering

of these passes as dictated by an amplitude change function A(x), a polynomial

with vanishing derivatives at x = 0 and x = 1. In this approach, the suppression of

deviations from an ideal filter behavior improves with increasing number of derivatives

vanishing at these two points.

125

The approach in [26] fails in suppressing large ripples since it is developed with

a small deviation assumption from ideal filter response characteristics. Moreover,

although this approach successfully suppresses small deviations, it does not provide

any optimality guarantees with respect to norms such as l2 or l∞. A more systematic

approach to obtaining a better amplitude change function A(x) with the same order

is possible by reinterpreting filter sharpening within the framework developed in this

thesis for which optimality guarantees can be established with respect to the norms

of interest. More specifically, the resulting filter H(z) is the composition of the

amplitude change function A(x) and the filter to be sharpened, namely G(z),

H(z) = A(G(z)) =

K
∑

k=0

akG
k(z), (6.1)

where K is the maximum number of passes allowed through G(z), and ak is the weight

for the result of the k-th pass of an input sequence through it. Formulating the filter

sharpening problem as

minimize
a

∆

subject to

∥

∥

∥

∥

∥

D(ejω)−
K
∑

k=0

akG
k(ejω)

∥

∥

∥

∥

∥

∞

≤ ∆.
(6.2)

and solving for the coefficients of the amplitude change function ak, k = 0, 1, . . . , K

provide an optimality guarantee with respect to the Chebyshev norm, which lacks

in the traditional formulation by Kaiser and Hamming [26]. This is an instance of

a frequency response decomposition problem for which methods were developed in

Chapter 4, i.e. decomposing a desired frequency response

D(ejω) =







1, ω ∈ ΩP

0, ω ∈ ΩS

(6.3)

into a polynomial A(·), corresponding to the amplitude change function in the filter

sharpening context, and the filter to be sharpened G(ejω). ΩP and ΩS correspond

126

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ω (xπ rad/sec)

F
re

qu
en

cy
 r

es
po

ns
e

Sub−filter to be sharpened

Composition approach

Kaiser and Hamming

Figure 6-1: The frequency response of a 10th-order filter G(ejω) before and after
sharpening with two different 7th-order transformation polynomials. The polynomi-
als were obtained using Kaiser and Hamming’s proposed method in [26] and using
frequency response decomposition method developed in Chapter 4.

to passband and stopband frequencies of the desired filter, respectively. The Parks-

McClellan filter design becomes a special case of the filter sharpening problem with

the subfilter G(ejω) = cosω. The solution is much easier for l2 norm and does not

require the methods developed in Chapter 4. However this is usually not a preferred

optimality criterion in approximating filter responses.

Figure 6-1 illustrates the comparison of frequency responses of a 10th order low-

pass filter G(ejω) obtained using the Parks-McClellan filter design algorithm with

ΩP = [0, 0.35π] and ΩS = [0.45π, π], the response of the sharpened filter with a 7th-

order transformation using Kaiser and Hamming’s method [26] and the sharpened

filter with the optimal 7th order polynomial obtained using freqeuncy response de-

composition of the ideal filter response to minimize Chebyshev error. This example

clearly shows that the proposed approach in the decomposition framework to the

filter sharpening problem yields a better frequency response over the entire interval

especially where the sub-filter exhibits large ripples.

In an off-line filtering application where an input signal x[n] has been previously

127

Figure 6-2: The time domain illustration of obtaining the impulse response in a
filter sharpening context after determining the amplitude change function F (·) with
coefficients fk. The filter that was sharpened has the frequency response shown in
Figure 6-1.

recorded, the implementation of filter sharpening can be performed with a single filter

G(z) in a rather straightforward manner if memory for caching a limited amount of

intermediate signals is available. The result y[n] is the weighted summation of the

outputs of multiple passes through G(z), where at each step this output is fed back to

the filter for the next step. The weights in the summation are the coefficients of the

amplitude change function A(z). Since multiple stages of filtering through the filter

G(z) corresponds to an impulse response that is obtained by self convolutions of the

sequence g[n], the equivalent operation can be viewed as that in Figure 6-2, which

illustrates the implementation of sharpening for the example filter given in Figure

6-1.

The method proposed for off-line applications does not apply to on-line applica-

tions where the output needs to be computed as the input arrives. The successive

filtering of the entire input sequence by using a single filter is not desirable in this case

128

Figure 6-3: Tapped cascaded interconnection of identical subfilters G(z) with appro-
priate time shifts after each tap to preserve causality [48].

as this introduces undesirable latency since the output cannot be computed until the

entire input sequence is recorded. Therefore, one dedicated subfilter G(z) is required

to replace each of the K successive filtering operations; and the output of each such

filter should be time delayed by half the order of the subfilter to preserve causality.

For example, the implementation in Figure 6-3 was proposed in [48] to accomplish

this for subfilters G(z) of order 2N , where it was referred to as a tapped cascaded

interconnection of identical subfilters G(z).

6.1.2 Two-Step Modular FIR Filter Design

For a real valued FIR subfilter G(ejω) with an even order, the frequency response can

be shown to be a polynomial G̃(cosω) in cosω. Sharpening it with a polynomial F (·)
leads to a filter with a frequency response

H(ejω) = F (G(ejω)) = F (G̃(cosω)). (6.4)

In cases where a subfilter G(ejω) is not pre-specified, it may still be desirable to design

a high order filter in a modular form, which also requires choosing a suitable subfilter

as a first step. Applying the transformation x = cos(ω) on the interval ω ∈ [−π, π]
to both H(ejω) and the desired filter response D(ejω) given in equation (6.3) yielding

D̃(x), the modular filter can be designed by finding the optimal pair of polynomials

F and G̃ to approximate D̃(x) on the interval x ∈ [−1, 1] as F (G̃(x)). This is a

different polynomial decomposition problem than those discussed in Chapter 3 where

129

the approximation error was defined with respect to the coefficients of polynomials.

In [51], it was shown that an optimal approximation with respect to the Chebsyhev

norm of the form F (G̃(x)) with specified polynomial orders exists on a closed set

x ∈ [a, b]. However such an optimal approximation does not have a characterization

involving counting alternations unlike the alternation theorem for approximating by

ordinary polynomials. Finding an optimal approximation is more formidable when

the desired orders of the composing polynomials are not pre-specified.

A heuristic and greedy two-step approach to obtain such modular filter structures

consists of obtaining a sub-filter G and then an optimal polynomial F to sharpen it

rather than jointly optimizing them. This method starts with splitting the order P

of H(ejω) between these two components, where P can be viewed as the number of

available distinct multipliers or degrees of freedom to design H(ejω). The sub-filter is

designed as the optimal zero-phase FIR filter with its N allocated degrees of freedom,

and the remaining M = P −N degrees of freedom are used to choose the coefficients

of F to improve the frequency response characteristics of G(ejω) by sharpening it.

The best results using this heuristic algorithm seem to be obtained when the degrees

of freedom for F and G(ejω) are chosen close to each other for low-pass and high-pass

linear phase FIR filters.

In Figure 6-4, a 24th-order zero-phase Parks-McClellan low-pass filter with pass-

band [0, 0.30π] and stopband [0.34π, π] is compared to a composition of a 7th or-

der polynomial F and a 10th order sub-filter G(ejω), where G(ejω) is also a Parks-

McClellan filter with the same passband and stopband edge frequencies as the 24th

order filter. Even-order Parks-McClellan filters can be implemented using distinct

coefficients as many as one plus half of their order due to their coefficient symmetry,

therefore both of these designs can be shown to be implemented using the same num-

ber of distinct multipliers. The compositional design yields a considerably superior

frequency response characteristics. In general, the total number of multiplications

per input sample in a compositional design, M(N + 1) + (M + 1), is greater than

a direct form implementation with the same number of distinct multipliers, which

requires M +N +1 multiplications. However, the increase in the number of multipli-

130

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ω (xπ rad/s)

A
m

pl
itu

de
 R

es
po

ns
e

Desired Response

Two−Step Modular Design

Parks−McClellan

Figure 6-4: The comparison of a 24th-order Parks-McClellan filter and a modular
filter obtained using the two-step filter design algorithm with a 7th-order polynomial
and a 10th-order Parks-McClellan filter. Both designs can be shown to have the
same number of distinct multipliers while the modular design has superior frequency
response characteristics although the number of multiplications per input sample is
higher.

cations may be regarded as a negligible side effect compared to the potential benefits

of the modularity it provides, especially if the filters are to be designed using VLSI

technology.

As an example of the convenience of modularity that results from designing filters

using the proposed two-step design procedure, consider the case in which a low order

low pass filter G(ejω) is obtained in the first step. A sharper low pass filter with the

same passband and stopband edges can be obtained by choosing appropriate coeffi-

cients fk, k = 0, 1, . . . ,M that will minimize the maximum deviation from the desired

response. If the need to have sharper characteristics in one of the bands than the

other band arises during an application or equivalently, if an explicit weight function

W (ω) is specified, it will suffice to re-compute the coefficients fk consistent with the

weight function without altering the filter G(ejω). This can be done by modifying the

desired response as W (ω)D(ejω) and the basis functions as W (ω)Gk(ejω) in the fre-

quency decomposition algorithm. If even sharper characteristics are desired in both

131

0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

ω (xπ)

E
rr

or
 A

m
p

(a)

0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

ω (xπ)

E
rr

or
 A

m
p

(b)

0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

ω (xπ)

E
rr

or
 A

m
p

(c)

0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

ω (xπ)

E
rr

or
 A

m
p

(d)

Figure 6-5: The approximation errors to an ideal low pass filter with passband
and stopband edge frequencies 0.40π and 0.45π, respectively. A 10th-order Parks-
McClellan filter G(ejω) with the same passband and stopband edges is used repeti-
tively in tapped line with tap coefficients fk, k = 0, 1, . . . ,M : (a)M = 4 with uniform
weight. (b) M = 4 with relative passband error weight of three. (c) M = 6 with
uniform weight. (b) M = 6 with relative passband error weight of three.

132

bands, then new blocks of G(ejω) and their corresponding coefficients fk can simply

be appended to the structure in Figure 6-3 to increase the overall filter order.

Figure 6-5 illustrates several different error profiles resulting from approximating

an ideal low pass filter with a passband edge 0.40π and a stopband edge of 0.45π. In

Figure 6-5a, the tap coefficients fk, k = 0, . . . , 4 are chosen to minimize the maximum

error using four blocks of G(ejω), where G(ejω) is a 10th order low pass filter with a

passband edge 0.40π and a stopband edge of 0.45π. In the case where the passband

error is assigned to have a weight of three times that of the error in the stopband,

the tap coefficients fk, k = 0, 1 . . . , 4 can be changed to obtain the error profile given

in Figure 6-5b. By allowing the use of two more blocks of G(ejω), the coefficients

fk, k = 0, 1, . . . , 6 can be chosen to obtain smaller errors with similar weight func-

tions as illustrated in Figure 6-5c and 6-5d. Although in these examples the weighted

errors have equi-oscillatory behavior, this is not necessarily the case for general fre-

quency responses since, as already discussed, optimal approximation by polynomial

composition is not in general characterizable by equi-oscillations [51].

6.1.3 Modular Filters with Complex-Valued Subfilter Re-

sponses

In the discussion of modular filters as an extension of filter sharpening in Sections 6.1.1

and 6.1.2, the subfilters were either specified or designed to have real valued frequency

responses. Since FIR filters with real valued frequency responses are non-causal, they

were shifted appropriately in time for real time applications by using multiple delays

as illustrated in Figure 6-3. The restriction to real-valued responses was due to the

original sharpening problem definition and solution by Kaiser and Hamming [26] since

the proposed method relied on the subfilter having a real-valued frequency response.

Authors who extended this work [12, 38, 48] also used the same assumption, and in

fact some restricted the coefficient sequence of the amplitude change function to be

even-symmetric around an integer [12,48] so that it corresponds to a “prototype filter”

with a real valued frequency response. However, the frequency response decomposi-

133

tion methods developed in Chapter 4 are not restricted by such constraints, therefore

it allows modular filter design using subfilters G(z) with complex valued responses

and a straightforward performance analysis within the functional composition frame-

work. More specifically, the frequency decomposition algorithms can be applied to

the problem (6.2) for any continuous real or complex valued desired function D(ejω)

and subfilter frequency response G(ejω). FIR filter design becomes a special case of

this approach with the subfilter G(ejω) = e−jω.

For obtaining modular filters, an alternative view that is more general than filter

sharpening is to compose two filters, i.e, to replace every delay element in the im-

plementation of F (z) with G(z) as depicted in Figure 6-6. The resulting structure

is similar to that in Figure 6-3 with the exception of not requiring extra delays after

each tap to preserve linear phase or causality as all the filters will be assumed to be

causal, and having real valued or linear phase FIR subfilters is not required for the

analysis in this generalized case. Figure 6-6a depicts the direct form implementation

of an FIR filter F (z) achieved by cascading delay units z−1 and tapping the output

of each delay using a branch gain, where the gains correspond to the coefficients of

the filter. This structure has traditionally been referred to as a tapped delay line.

Substituting a subfilter G(z) for the delay units in such structures leads to topologies

as in Figure 6-6b, in which case the structure can be referred to as a generalized

tapped delay line.

One caveat with using subfilters with complex valued frequency responses, as was

also mentioned in Section 4.1.5, is the additional requirement of matching the phase

of the desired filter D(ejω) in addition to its magnitude, which was not a problem

when both D(ejω) and G(ejω) are real valued functions. This is illustrated in Figure

6-7, which depicts the complex numbers D(ejω0) and Gk(ejω0), k = 0, 1, . . . , K at a

particular frequency ω = ω0 as vectors in the complex plane. In Figure 6-7a, the vector

that corresponds to the desired real function to be matched is always aligned with

those of the basis functions for every frequency as they are all real, a property that

facilitates the approximation of D(ejω) as a linear combination of the basis functions.

On the other hand, in Figure 6-7b, the vectors for the basis functions have phases

134

z-1

f0

f1

f2

fM

z-1

z-1

(a)

f1

f2

fM

G(z)

G(z)

G(z)

f0

(b)

Figure 6-6: (a) The direct form implementation of an FIR filter F (z) using a tapped
delay line. (b) A generalized tapped delay line where the delays are replaced by
another filter G(z).

(a)

(b)

Figure 6-7: (a) Vectors corresponding to real values of the desired frequency response
and the basis functions are always aligned (b) Vectors corresponding to complex
values of the desired response and basis functions are not necessarily aligned, and
for the case of integer powers of G(ejω), the phases are integer multiples of the same
angle at a given frequency. The figure illustrates an example alignment of vectors
corresponding to real and complex numbers at a specific frequency ω0.

135

that are different integer multiples of the same angle and even this angle changes for

different frequency values. In cases where approximating a frequency response with

complex valued basis functions is difficult and where it suffices to only approximate

the magnitude instead, techniques developed in Section 4.2 can be used.

Continuous Time Modular Filters

Both the development of frequency response decomposition algorithms and its ap-

plication to designing modular filters have so far been carried out in the context of

discrete time filters. The same discussion and methods apply to designing continuous

time filters by mapping the frequency response defined on (−∞,∞) to the compact

interval [−π, π] as described in Section 4.1.5. This allows designing continuous time

modular filters using low order filters similar to designing discrete time modular filters.

Common types of continuous time filters are Butterworth, Chebyshev and elliptic

filters all of which have infinite impulse responses and complex valued frequency

responses. Moreover, filter specifications for continuous filters are usually given as

constraints on the magnitude response rather than on the frequency response as the

phase is uniquely determined in these minimum phase filters. Although there is no

guarantee that a modular continuous time filter obtained using a generalized tapped

delay line with a continuous time subfilter G(s) will remain minimum phase, it may

be still desirable to approximate the desired filter response in magnitude only due to

the additional phase matching requirement illustrated in Figure 6-7. An additional

benefit that the functional composition framework introduces is that both passband

and stopband edge frequencies can be specified for continuous time modular filters

whereas traditionally only one of them is provided depending on the type of the filter

as their design methods cannot accommodate constraints on the other band edges.

Figure 6-8 illustrates the comparison of a 4-th order elliptic bandpass filter G(s)

designed to approximate in magnitude the desired function

D(Ω) =







1, 2π × 6 · 103 ≤ Ω ≤ 2π × 1 · 104

0, 0 ≤ Ω ≤ 2π × 5 · 103 and 1.1 · 104 ≤ Ω
(6.5)

136

0 5000 10000 15000

0

0.2

0.4

0.6

0.8

1

1.2

Ω (x2π rad/sec)

M
ag

ni
tu

de

G(s)

G10(s)
F(G(s))

Figure 6-8: A 4-th order elliptic bandpass filter magnitude response, the magnitude
response of its sharpened version obtained by simply cascading ten blocks and the
magnitude response of the same order modular filter obtained within the decomposi-
tion framework.

More specifically, the maximum passband ripples were constrained to be 1dB and

the minimum attenuation in the stopband was constrained to be 40dB. The same

figure also illustrates the response of a filter obtained by cascading ten identical

blocks of G(s) to improve its response as well as its composition with a 10-th order

polynomial F (s), where F (s) is obtained by decomposing D(Ω) using the magnitude

decomposition algorithm developed in Chapter 4. It is clear that the magnitude

response decomposition of D(Ω) yields a much better response than simple cascading.

Figure 6-9 illustrates the errors at each iteration during the computation of the

optimal coefficients for fk for the magnitude decomposition of D(Ω). Starting at

two different initial guess points for the coefficient vector f , both curves have a non-

increasing trend consistent with the discussion in Section 4.2.1. This figure also shows

that different initial guess points lead to different initial errors as well as final error

levels. Therefore, in such problems, different initial guesses may be tried until a sat-

isfactory error level is achieved with increasing number of iterations. The coefficients

for F in Figure 6-8 were chosen as those corresponding to the smaller error curve in

137

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Iterations

A
pp

ro
xi

m
at

io
n

E
rr

or

First initial guess

Second initial guess

Figure 6-9: The resulting error values in the magnitude decomposition performed to
obtain the modular filter in Figure 6-8 as they evolve with the number of iterations
for two different initial guesses for F (s).

Figure 6-9.

6.1.4 Sensitivity and Stability

The sensitivity of modular filters with respect to perturbations in the coefficients f

of the polynomial F (·) can be seen to be quite low. Hence it is robust with respect

to imperfections in the tap coefficients within the generalized tapped delay line. An

error ∆f in these coefficients result in a change in the modular filter response by

∆H(ejω) which satisfies

∣

∣∆H(ejω)
∣

∣ =

∣

∣

∣

∣

∣

K
∑

k=0

∆fkG
k(ejω)

∣

∣

∣

∣

∣

≤
K
∑

k=0

|fk|
∣

∣Gk(ejω)
∣

∣

≤MG

K
∑

k=0

|fk|

=MG‖∆f‖1,

(6.6)

138

where MG is the maximum absolute value that the basis functions Gk(ejω) can take.

The magnification of the l1 norm of the perturbation ∆f is therefore bounded byMG,

SF→H =
|∆H(ejω|)
‖∆f‖1

≤MG (6.7)

which in turn is rather low because |G(ejω)| takes values close to unity in the pass-

bands and zero in the stopbands.

The sensitivity with respect to imperfections in G(ejω) is slightly more compli-

cated and the upper bound on the magnification is larger than that with respect to

coefficients of F (·). A perturbation ∆G(ejω) results in |∆H(ejω)| bounded as

∣

∣∆H(ejω)
∣

∣ =

∣

∣

∣

∣

∣

K
∑

k=0

fk
[

(G(ejω) + ∆G(ejω))k −Gk(ejω)
]

∣

∣

∣

∣

∣

≈
∣

∣

∣

∣

∣

K
∑

k=1

fkkG
k−1(ejω)∆G(ejω)

∣

∣

∣

∣

∣

≤ |∆G(ejω)|MG

K
∑

k=1

|fk|k

≤ |∆G(ejω)|MGK‖f‖1,

(6.8)

which leads to an upper bound on the magnification of ∆G(ejω) by

SG→H =
|∆H(ejω|)
|∆G(ejω)| ≤MGK‖f‖1. (6.9)

For low order F with small coefficients, this sensitivity will also be small, however

this analysis implies the worst case sensitivities can be much higher with respect to

the perturbations in the subfilter. This issue can be circumvented by designing the

subfilters with greater precision as they are usually simple structures and can be

designed off-line due to the flexibility of modular designs.

Another notable benefit of designing modular filters as generalized tapped delay

lines is the fact that they do not compromise stability as the overall order of filter

increases unlike the traditional designs of recursive filters which may become unsta-

ble with even the smallest perturbations in the coefficients, coefficient quantization

139

errors or component imperfection in continuous time filters. For example, this can be

analytically illustrated in a context of continuous time filters by first expressing the

polynomial F (s) using its roots sk

F (s) =
K
∏

k=1

(s− sk), (6.10)

and then expressing its composition with G(s) = N(s)
Q(s)

as

F (G(s)) =
K
∏

k=1

(G(s)− sk) =
K
∏

k=1

(

N(s)− skQ(s)
Q(s)

)

, (6.11)

which implies that no additional poles are introduced by the composition. In other

words, since G(s) is already stable, the resulting modular filter will be stable regard-

less of the order of the polynomial F (s) as no poles at new locations are introduced

and simply the multiplicities of the existing ones are increased to K. Cascading the

subfilter K times results in making the multiplicity of all the poles and zeros to be K

whereas composition places the new zeros in a way to attain minimax optimality in-

stead of just increasing their multiplicity. Figure 6-10 depicts the pole-zero diagrams

of the filters G(s), G10(s) and F (G(s)) the magnitude responses of which were given

in Figure 6-8. Designing a higher order filter with sharper characteristics without

using the modular structure may lead to poles that are close to the imaginary axis,

which can compromise stability in case of perturbations.

6.2 Efficient Marginalization and Representation

of Decomposable Functions

The sum-product algorithm used in inference problems is already known to be im-

plemented efficiently if the corresponding joint probability density is factorable. This

section starts with a brief review of the sum-product algorithm in the context of fac-

torable functions, i.e., in the original context it was formulated. The computational

140

−2 0 2
x 10

4

−5

0

5

x 10
4

Im
ag

in
ar

y
P

ar
t

−2 0 2
x 10

4

−5

0

5

x 10
4

10

10

10

10

10

10

Real Part
−2 0 2

x 10
4

−5

0

5

x 10
4

10

10

10

10

(b)(a) (c)

Figure 6-10: The pole-zero diagrams of the filters (a) G(s), (b) G10(s) and (c)
F (G(s)), the magnitude responses of which were given in Figure 6-8, respectively.
The scale of the plots are relatively large, therefore zeros with relatively smaller mag-
nitudes are not visible. The multiplicities of poles are zeros are marked by an integer
next to them if it is greater than one.

141

efficiency obtained when the joint probability density function is factorable stems

from the separation of its variables, which is visually captured by a factor graph,

leading to local and more manageable computations.

The sum-product algorithm on factor graphs that represent a decomposable mul-

tivariate function cannot directly be carried out efficiently. However, the techniques

developed in Chapter 5 will be used to approximately decompose a joint probability

density function in Section 6.2.2 such that the corresponding factor graph lends itself

to an efficient implementation of the sum-product algorithm due to the separation of

the variables similar to the case of factorable functions.

6.2.1 Sum-Product Algorithm

As discussed in Section 5.3.6, factor graphs provide a visually convenient represen-

tation of multivariate functions that are product of functions of a smaller subset of

variables where these are referred to as local functions [31]. In addition, when com-

puting the marginal for a subset of variables, they also facilitate the interpretation of

the results of intermediate summations as messages passed between nodes. Such an

interpretation as well as an efficient way for bookkeeping the intermediate results are

offered by the sum product algorithm. In this section, the sum-product algorithm will

be defined and briefly reviewed following the notation in [31] in the context of a sim-

ple example to highlight its key aspects that will allow exploiting the decomposable

functions similarly in Section 6.2.2.

The sum product algorithm provides a systematic and efficient framework for

the computation of marginal functions on a factor graph by defining and computing

messages to and from each node. More specifically, the marginal for a variable is the

product of the incoming message to and the outgoing message from this variable on

any of the edges that is incident on it in the factor graph. In order to illustrate how

this algorithm works, consider the factor graph in Figure 6-11, which represents the

joint probability distribution function of five random variables and given by

P (x1, x2, x3, x4, x5) = PA(x1, x3, x5)PB(x2, x3, x4). (6.12)

142

PA x3

x2

x1
x4

x5

PB

Figure 6-11: The factor graph representation of the joint distribution of five random
variables as given in equation (6.12).

The marginal for x2, for example, is given by the product

M(x2) = µPB→x2µx2→PB
, (6.13)

where µPB→x2 is the message function that is sent from the factor node PB to the

variable node x2, and µx2→PB
is the message function in the opposite direction. Both

of these messages are functions of x2 since, within this algorithm, each message is

only a function of the variable connected to the edge on which it is computed.

The computation of each message is as follows. Each variable node computes the

message that it will send to a factor simply by taking the product of all the incoming

messages except the one from its destination node. For example,

µx3→PB
= µPA→x3 (6.14)

since this is the only incoming message from other nodes, whereas

µx2→PB
= 1 (6.15)

since there are no incoming messages other than from the destination PB. The compu-

tation of messages from a factor node to a variable node is slightly more complicated

and requires a marginalization. More specifically, all the incoming messages to the

factor node as well as the factor itself are multiplied and then this product is summed

or marginalized over all the variables except the destination variable, giving the sum-

product algorithm its name. For example, the message going from PB to x2 is given

143

by

µPB→x2 =
∑

x3

∑

x4

PB(x2, x3, x4)µx3→PB
µx4→PB

. (6.16)

These marginalizations always lead to a function of a single variable, namely the

destination variable, consistent with the fact that messages can only be the function

of the variable connected to the corresponding edge. Computing all the messages

starting from leaves of the factor graph allows to evaluate the marginal function for

each variable. Equations (6.13), (6.15) and (6.16) yield the marginal for x2 as

M(x2) =
∑

x3

∑

x4

(

PB(x2, x3, x4)

(

∑

x1

∑

x5

PA(x1, x3, x5)

))

=
∑

{x1,x3,x4,x5}

P (x1, x2, x3, x4, x5)

(6.17)

as expected.

6.2.2 Inference with Decomposable Density Functions

The benefits of the sum-product formulation are the systematic manner in which lo-

cal and thus simpler computations are combined as well as its ability to render the

marginals for all the variables once the messages are computed and cached. The sim-

plicity of the local computations stems from the fact that the local marginalizations

are computed over a smaller subset of variables when the joint probability distribu-

tion is factorable. It also implies that the efficiency will be greater if the maximum

number of variables connected to each factor is small. This observation underlies

the benefit of decomposability as discussed in Chapter 5, where decomposition was

related to factorization and consequently to the separation of variable nodes between

local functions at the expense of increasing the dimensionality of the multivariate

function.

In order to illustrate the computational efficiency of decomposing joint probability

density functions in the context of an inference problem, the running times of two

instances of the sum-product algorithm will be compared for the same problem in

144

Figure 6-12: Clean binary text image.

Figure 6-13: Noisy text image obtained by adding independent and identically dis-
tributed white Gaussian noise with zero mean and unit variance to the binary text
image in Figure 6-12. The figure is displayed using imagesc function in MATLAB,
which scales the image data to the full range of the colormap.

this section, one using a high dimensional joint probability density function and the

other using its approximation as a decomposition into lower dimensional functions as

described in Chapter 5.

Consider a binary image denoising application in which a text snippet is treated as

a binary image with values +1 for white pixels and −1 for black pixels. An example of

a clean image is given in Figure 6-12 and it consists of 100×100 pixels. This image is

then contaminated by independent and identically distributed white Gaussian noise

with mean µ = 0 and variance σ2 = 1, which is rather high as it is comparable to the

absolute pixel values. The noisy image is given in Figure 6-13.

The noisy image is denoised by determining for each pixel which of the two values,

+1 or −1, is more likely. This is performed by running the sum-product algorithm on

the entire image by treating each pixel as a binary random variable, and providing a

145

Figure 6-14: The factor graph corresponding to the joint probability density function
for a block of 4× 4 pixels in its original form, i,e., before decomposition.

joint probability density H for every 4× 4 pixel block, where

H(x1, x2, . . . , x16) (6.18)

is a 16 dimensional discrete multivariate function and is learned previously from

training on a large set of binary text images. The algorithm also takes as input the

likelihood for each pixel of having a value of +1 given by

P (+1|y) = e(y−1)2/σ2

e(y−1)2/σ2 + e(y−(−1))2/σ2 , (6.19)

where y is the observed pixel value. The factor graph for each 4× 4 block is depicted

in Figure 6-14. In this setup, each pixel will be a part of several neighboring 4 × 4

blocks. Therefore the factor graph corresponding to the entire image will lack the

property of a tree and will have loops, therefore the sum-product algorithm will be an

approximate solution and will need more than one iteration for a satisfactory result.

The result of denoising using H(x1, x2, . . . , x16) in its original form in the sum-product

algorithm with ten iteration yields the denoised image given in Figure 6-15 and the

solution was obtained in 2561 seconds using Dimple, the open source probabilistic

graphical model manipulation tool [25].

For computation time comparison, the joint probability density function H was

decomposed using approximate general decomposition by introducing a latent variable

146

Figure 6-15: The denoised image obtained by running the sum-product algorithm
with the joint density function in its original form H(x1, x2, . . . , x16).

c as discussed in Section 5.4.5 using nonnegative matrix factorization to obtain

H(x1, x2, . . . , x16) =
∑

c

Ĥ(x1, x2, . . . , x16, c)

=
∑

c

F (x1, x2, . . . , x8, c)G̃(c, x9, . . . , x16)
(6.20)

where the alphabet size of c is restricted for efficiency by

Dc <
D{x1,...,x8}D{x9,...,x16}

D{x1,...,x8} +D{x9,...,x16}

=
2828

2 · 28 = 128 (6.21)

as dictated by equation (5.19). More specifically, the alphabet size for c was chosen

as 32 and supplied as a parameter to the nonnegative matrix factorization, where

the Kullback-Leibler divergence was minimized for the approximation, a commonly

preferred metric when working with probability distributions. The corresponding fac-

tor graph for a 4 × 4 pixel block after the decomposition is depicted in Figure 6-16.

The sum-product algorithm with ten iterations on this factor graph yielded the de-

noised image given in Figure 6-17 and the computation was completed in 189 seconds

suggesting an important improvement in the computation time using decomposition

without compromising visual quality significantly.

147

Figure 6-16: The factor graph corresponding to Ĥ given in equation (6.20).

Figure 6-17: The denoised image obtained by running the sum-product algorithm
using the decomposed joint density function Ĥ in equation (6.20).

148

6.2.3 Compact Representations of Multivariate Functions

In addition to reducing the dimensionality over which marginalizations are performed

and leading to a computational efficiency for MDF problems, the decomposition of a

multivariate function H(XA,XB) as in equation (5.21), either exact or approximate,

leads to its representation in terms of the functions F and G̃ in which the total

number of parameters are less than that of H itself. Equivalently, the partition table

MH corresponding to H can be represented with fewer entries as a product of the

matrices MF and MG̃. This can be regarded as a more compact representation of H

as a result of its decomposability.

6.3 Polynomial Decomposition for Compact Rep-

resentations and Modularity

6.3.1 Decomposable Finite Sequences

A discrete sequence or a filter impulse response is typically considered to be sparse if it

has few nonzero samples, i.e. if it can be represented with few parameters. Polynomial

decomposition can also be considered useful in a signal processing context in which

decomposability is exploited to reduce the number of required parameters to represent

a signal. A finite length discrete time signal h[n] the z-Transform H(z) of which can

be represented as the composition of two smaller order polynomials F (z) and G(z),

i.e. H(z) = F (G(z)), has a length greater than the number of parameters required

to represent it. Consider

F (z) = f0 + f1z
−1 + f2z

−2 + · · ·+ fMz
−M

G(z) = g0 + g1z
−1 + g2z

−2 + · · ·+ gNz
−N .

(6.22)

The relationship between the degrees of these polynomials is P = MN where P , M

and N are the degrees of H(z), F (z) and G(z), respectively. This implies that h[n]

can be represented indirectly by F and G using (M +1)+(N +1) coefficients instead

149

of being directly represented by H using MN + 1 coefficients. In this case, h[n] is a

sparse signal, where sparsity corresponds to having a decomposable structure that can

be represented with few parameters rather than having few nonzero coefficients. The

sensitivity analysis in Section 3.5 illustrates how a perturbation on the coefficients of

F and G affect the coefficients of H , and compositions with linear polynomials are

shown as a means to reduce sensitivity with respect to these coefficients.

In the case where H(z) is not an exact composition, approximate decomposition

techniques can be used to decompose the signal h[n]. An example was given in Sec-

tion 3.4.3, where a 12-th order decomposable polynomial was decomposed using the

iterative approximate decomposition method due to Corless [16] and represented as

the approximate composition of a 4-th order polynomial and a 3-rd order polyno-

mial. This reduced the number of parameters required to represent this polynomial

from 13 to 9. The savings increase with increasing polynomial orders. However, as

already mentioned in Section 3.4.3, the approximate decomposition techniques are

successful only for small orders. Moreover, an approximate decomposition that is

satisfactorily close to the original polynomial does not always exist due to the radius

of non-decomposability given in equation (3.17). In other words, there is always a

high dimensional ball centered at a given non-decomposable polynomial with nonzero

radius within which all the polynomials are also non-decomposable. This makes the

problem of finding approximate decompositions difficult and often non-practical.

6.3.2 Modular Filter Design by Approximate Polynomial De-

composition

Modular filter design as a generalization of filter sharpening was discussed in Section

6.1, where a subfilter was either pre-specified or pre-selected at the first step of a two

step modular filter design algorithm to approximate the overall filter specifications.

An alternative to the latter approach is to use polynomial decomposition techniques

to approximate the impulse response of FIR filters as the composition of two smaller

order sequences without the requirement of a pre-specified subfilter. For example the

150

z-transform of an FIR filter H(z) can be decomposed as F (G(z)) and the resulting

filter structure can be implemented as a generalized tapped delay line given in Figure

6-6 leading to a modular design.

Consider a 30-th order Parks-McClellan low-pass filter with the passband and

stopband edges of 0.20π and 0.24π, respectively. Figure 6-18a shows the impulse

responses of the original filter and its approximate decomposition F (G(z)) obtained

by Corless’ method where

F (z) = −0.0526+0.0649z−1−0.0359z−2−0.0021z−3+0.1160z−4−0.0226z−5+0.0049z−6

(6.23)

and

G(z) = −0.1037+0.1759z−1+0.2667z−2+0.3432z−3+0.4321z−4+0.7834z−5. (6.24)

Figure 6-18b depicts the corresponding magnitude responses. Although the approx-

imate polynomial decomposition method optimizes the approximation with respect

to the l2 norm and the impulse responses differ significantly, the magnitude response

of the approximation still exhibits the general characteristics of the original low-pass

filter magnitude response. However, due to the difficulty of finding nearby decom-

posable polynomials in general, this similarity does not always hold. Moreover, the

approximation does not have the symmetry in the coefficients losing the desirable

linear phase property.

One approach to approximate FIR filters that are symmetric around an integer

point consists of first expressing the original frequency response as a polynomial in

cosω and then decompose this polynomial rather than decomposing the z-transform

directly. More specifically, as given in equation 2.15, the Fourier transform of an

even symmetric filter H(ejω) with order 2L and symmetric around n = L can be

represented as

Hshifted(e
jω) =

L
∑

n=−L

h[n]e−jω =

L
∑

n=0

h[n] cos nω (6.25)

after a time shift of L samples, where the time shift can be reversed once the fil-

151

0 5 10 15 20 25 30
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Im
pu

ls
e

R
es

po
ns

e

Appoximation
Original

(a)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω (rad/s)

M
ag

ni
tu

de
 R

es
po

ns
e

Appoximation
Original

(b)

Figure 6-18: The comparison of a 30-th order low-pass Parks-McClellan filter H(z)
with the passband and stopband edges of 0.20π and 0.24π, respectively, with its
approximate decomposition F (G(z)): (a) the impulse responses (b) the magnitude
responses.

152

ter is designed. Expanding each term using the Chebyshev polynomials leads to a

polynomial in cosω as in equation (2.16), and provided here for convenience,

Hshifted(e
jω) =

L
∑

n=0

bn(cosω)
n. (6.26)

In other words, the frequency response of the time shifted filter becomes B(cosω),

where B is a polynomial of order L. An approximate decomposition given by

B(x) ≈ B̂(x) = F (G(x)) (6.27)

suggests a modular representation of the FIR filters as a generalized tapped delay line

where coefficients of F are the tap coefficients and G(cosω) corresponds to an even

symmetric subfilter. The frequency responses B(cosω) and B̂(cosω) were significantly

different in simulations even in cases where the coefficients of B̂(x) were a good

approximation to those of B(x). This is expected since, in general, the proximity of

the coefficients of two polynomials with respect to the l2 norm has implications only

for their values on the unit circle due to Parseval’s theorem, and not necessarily on

the interval [−1, 1] from which cosω assumes values.

In cases where the symmetry of a given filter is required to be preserved by the

approximation, a third approach to perform the decomposition that also yields an

acceptable approximation to the frequency response can be to split the impulse re-

sponse before the decomposition into two subsequences which are related to each

other through time reversal. More specifically, the z-transform of the time shifted

filter can be expressed as

Hshifted(z) = C(z) + C(z−1), (6.28)

where coefficients of C(z) are those of hshifted[n] for n ≥ 0 with the exception that

its constant term is
hshifted[0]

2
. An approximate decomposition of C(z) as in

C(z) ≈ F (G(z)) (6.29)

153

Figure 6-19: The implementation of an even symmetric FIR filter using the approxi-
mate decomposition given in equation 6.30.

yields

Hshifted(z) ≈ F (G(z)) + F (G(z−1)) (6.30)

the coefficients of which are guaranteed to be symmetric. The implementation of

this decomposable approximation leads to the modular structure given in Figure

6-19. Although this implementation requires two different subfilters, namely G(z)

and G(z−1), they are related through a time reversal which does not require the

design of an additional subfilter. For on-line applications, this design can be used by

introducing a buffer stage at the input to reinstate causality.

The method of symmetric decomposition in equation (6.30) was applied to the

Parks-McClellan filter given in Figure 6-18. The polynomial C(z) corresponding to

154

this polynomial is given by

C(z) = 0.1105 + 0.2039z−1 + 0.1572z−2 + 0.0939z−3 + 0.0307z−4 − 0.0173z−5

− 0.0412z−6 − 0.0402z−7 − 0.0215z−8 + 0.0042z−9 + 0.0260z−10

+ 0.0370z−11 + 0.0364z−12 + 0.0281z−13 + 0.0192z−14 − 0.0597z−15,

(6.31)

which was approximated as the composition of

F (z) = 0.1862+ 0.2261z−1 + 0.0020z−2− 0.0068z−3− 0.0132z−5 + 0.0097z−6 (6.32)

and

G(z) = −0.3359 + 0.8847z−1 + 0.7099z−2 + 0.4192z−3. (6.33)

Figure 6-20a illustrates the original response and its approximation obtained using

this approach. The symmetry around n = 15 was preserved as desired. As seen

in Figure 6-20b which depicts the corresponding magnitude responses, the low-pass

characteristics of the original filter were also preserved in this example with a slight

widening of the transition region.

6.4 Chapter Conclusions

In this chapter, examples illustrating the benefits of the functional composition and

decomposition framework were discussed. Composition of frequency responses was

shown to suggest modular design topologies that are desirable for filters as well as

provide a systematic framework for an existing signal processing application, namely

filter sharpening, in which improved results can be obtained as compared to the

traditional ad hoc approaches. Moreover, this was shown to be easily extended to

complex valued frequency responses such as causal IIR filters or continuous time

filters, which was not possible using the previous methods.

Decomposability of multivariate functions proved to lead to efficient marginaliza-

155

0 5 10 15 20 25 30
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Im
pu

ls
e

R
es

po
ns

e

Approximation

Original

(a)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

ω (rad/s)

M
ag

ni
tu

de
 R

es
po

ns
e

Appoximation
Original

(b)

Figure 6-20: The comparison of the 30-th order low-pass Parks-McClellan filter H(z)
with the passband and stopband edges of 0.20π and 0.24π, respectively, with its
approximate decomposition F (G(z)) + F (G(z−1)): (a) the impulse responses (b) the
magnitude responses.

156

tions and an example was given in the context of the sum-product algorithm that

was used to denoise a binary text image. Decomposable representations of multivari-

ate functions and polynomials suggested an alternative way to represent multivariate

signals and finite sequences with fewer parameters either exactly or approximately.

Approximate polynomial decomposition was also shown to be possibly used as a

means of designing discrete time modular FIR filters.

157

158

Chapter 7

Conclusions

In this thesis, the potential benefits of approaching signal processing applications from

a functional composition and decomposition viewpoint were explored. The composi-

tion and decomposition methods for functions that are common in signal processing

were identified from the current literature, implemented and compared. For certain

classes of functions, new decomposition methods were proposed. Several signal pro-

cessing contexts were revisited, re-interpreted and generalized in a systematic way

within this framework equipped with these decomposition techniques. Moreover, new

and interesting signal processing applications and approaches were developed.

The signal processing applications in the current literature that can be re-interpreted

as a form of functional composition and decomposition as reviewed in Chapter 2 pro-

vides evidence that embedding signals and systems to form compositions has been

recognized as to have benefits in different contexts. However, the breadth of these

applications and the extent to which these operations were utilized were seen to

be rather limited with an emphasis on time and frequency transformations. Other

applications such as filter sharpening and filter design as a tapped cascaded inter-

connection of identical subfilters can be viewed as to have the potential to extend

these benefits by reusing subfilters to build better filters. However, the general ap-

proach in these applications was rather ad hoc and their formulation was also confined

within the frequency transformation viewpoint. These motivated the development of

a more systematic and unified composition framework for signal processing within

159

which further benefits can be recognized and exploited more conveniently. Such ad-

ditional benefits that were explored in this thesis can be summarized as modularity,

compactness and separability.

As one aspect of such a composition framework, certain composition and decom-

position methods were reviewed from the current math literature and extended for an

important class of functions for signal processing, namely polynomials, since polyno-

mials often appear in the form of z-transforms when manipulating discrete time FIR

signals and systems. The exact decomposition methods for the case in which a poly-

nomial is known to be decomposable were overviewed and compared, which revealed

that the results remain very accurate for low orders and deteriorate for higher orders,

usually due to numerical issues. Approximate polynomial decomposition methods,

including the one developed in this thesis based on Structured Total Least Norm

(STLN) method, seemed to suffer from both this limitation as well as the difficult

nature of the approximate polynomial decomposition problem. More specifically,

the set of decomposable polynomials constitute only a small subset of the space of

polynomials which makes the problem of finding a satisfactorily close decomposable

approximation difficult even in cases where numerical problems were not an issue.

Nevertheless, for the low orders that the methods remained viable, the examples of

exact and approximate decompositions were shown to suggest more compact repre-

sentations of discrete time FIR sequences and an opportunity to design modular filter

structures without the requirement of specifying subfilters unlike in the case for filter

sharpening. The sensitivity of polynomial composition and decomposition operations

were also investigated and a method to decrease sensitivity using compositions with

first order polynomials was introduced.

Modular filter design constituted an important class of applications that were

identified to benefit from a functional composition and decomposition viewpoint.

Development of a functional decomposition algorithm for frequency responses into

a polynomial and a rational pre-specified frequency response allowed revisiting fil-

ter sharpening within the composition framework and extending its applicability to

subfilters with complex valued frequency responses as special cases of modular filters.

160

This algorithm utilized the fact that the composition of a polynomial and a frequency

response is a special case of approximating a target function using a linear combina-

tion of continuous subfunctions on a compact set, which accepts solutions from the

mathematics literature such as the First Algorithm of Remez. The frequency response

decomposition algorithm was further modified to accommodate approximation speci-

fications given only for the magnitude of the frequency responses. The modular filters

obtained this way were shown to have the same poles as the subfilter with increased

multiplicities, which guaranteed stability even in the presence of perturbations in the

coefficients of the composing polynomial.

The decomposition of multivariate discrete functions was explored in the context

of applications that require marginalization over all or a subset of the variables of a

multivariate function. These applications often arise in signal processing and machine

learning, where factorability of the involved multivariate functions is already known

to lead to efficient marginalizations. Decomposability was shown to be equivalent

to factorability at a higher dimension. This was accomplished by introducing latent

variables to the multivariate functions. An upper limit on the alphabet size of these

latent variables were given to ensure decomposition indeed led to efficient computa-

tions. In cases where the alphabet size of the latent variables were large, approximate

decompositions were obtained by enforcing this limit in the decomposition process.

Mathematical methods such as nonnegative matrix factorization (NMF) and singular

value decomposition (SVD) were utilized in the decomposition process as the decom-

position problem was reduced to a form that is equivalent to a matrix factorization.

More specifically, the multivariate function to be decomposed was unfolded into a

matrix representation for which a rank deficient factorable approximation was found,

sometimes referred to as rank factorization in the literature. The same approach also

suggested a more compact representation for a given multivariate function, when it

was either exactly or approximately decomposable.

The applications either formulated or revisited in this thesis are by no means a

complete list as many others can possibly be formulated within the richness of sig-

nal processing. For example, one possible further application is a generalization of

161

modular filter design, which in turn was shown to be a generalization of filter sharp-

ening in Section 6.1.1. In that section, the subfilters used in the modular filters were

assumed to be identical and the tap coefficients in the generalized tapped delay line

were optimized by decomposing an ideal filter response using the frequency response

decomposition algorithm developed in Chapter 4. Since this decomposition algorithm

utilized the First Algorithm of Remez, which optimally solves the problem of approx-

imation to a continuous function with a generalized polynomial, the method can be

extended in a straightforward way to cases for which subfilters are non-identical. For

example, consider non-identical subfilters A1(e
jω), . . . , AK(e

jω). One way to design a

filter the characteristics of which is sharper than any of these subfilters is to use them

in a configuration as in Figure 7-1 and optimize the branch gains fk, k = 1, . . . , K to

approximate the ideal filter response D(ω) in the optimization problem

minimize
f

∆

subject to

∥

∥

∥

∥

∥

D(ω)−
K
∑

k=1

fkAk(e
jω)

∥

∥

∥

∥

∥

∞

≤ ∆
(7.1)

The resulting filter will have either identical to or smaller minimax errors than that

of each one of these subfilters since, otherwise, the optimal branch gain could be

chosen to be unity for a filter that has a smaller approximation error and zero for

others. Another approach to obtain such a modular filter using multiple non-identical

subfilters Ak(e
jω) is to use them in a generalized tapped delay line as in Figure 7-

2, in which case the basis functions to approximate the ideal filter response are the

products of the subfilter responses along the tapped line. The order of the subfilters

were chosen consistent with their indices in Figure 7-2 leading to the optimization

problem

minimize
f

∆

subject to

∥

∥

∥

∥

∥

D(ω)−
K
∑

k=0

fk

(

k
∏

k′=1

Ak′(e
jω)

)∥

∥

∥

∥

∥

∞

≤ ∆
(7.2)

The quality of the approximation is likely to be different for distinct orderings of the

subfilters along the tapped line. This imposes a difficulty on the decision as to which

162

Figure 7-1: A modular filter structure formed with non-identical subfilters, where the
branch gains fk are optimized as in (7.1).

ordering yields a better approximation after the tap coefficients are optimized since

there are K! possible orderings. However, this also implies there are many other op-

tions to order them if a particular ordering did not yield a satisfactory approximation,

a flexibility which was lacking in the case of identical subfilters.

The decomposition techniques that were developed or extended in this thesis were

also limited to a few classes of functions that are ubiquitous in signal processing

constituting only a part of a complete framework. For example, the decomposition of

rational functions was excluded, which has already been explored in the mathematics

literature to a certain extent [3, 56], and can be an important future addition to

this framework. The exploration of rational function composition and decomposition

may allow building modular filters that are not limited to embedding subfilters into

FIR filters. More specifically, modular structures can be obtained by replacing delay

elements in recursive filters by other subfilters. However, such an implementation

requires extra care to avoid delay free loops. Another possible advantage of having

rational function decomposition algorithms would be the ability to generalize the

operations of decimation and expansion of discrete sequences by integers, which in

turn may lead to the generalization of the polyphase representations. For example,

the expansion of a discrete sequence f [n] by an integer M , i.e. inserting M − 1

163

Figure 7-2: A modular filter structure formed with non-identical subfilters, where the
branch gains fk are optimized as in (7.2).

zeros after every sample of this sequence, corresponds to changing its z-Transform

F (z) to F (zM). This can be viewed as the composition of F (z) with the M-th order

polynomial G(z) = z−M in z−1. The composition of a rational z-transform F (z)

of a discrete time sequence with another rational z-transform G(z) can be viewed

as a generalization of an expander. Conversely, the decimation of a sequence can

be associated with the decomposition of its z-transform with more general rational

functions G(z) than the polynomial z−M . However, the generalization in this latter

case is less straightforward since not every sequence has a decomposable z-transform,

which requires the definition of an approximate generalized decimation.

In Chapter 4, the approximation of frequency responses as a composition of func-

tions more general than a polynomial and a rational function was not explored as it

was currently unclear how to extend the methods developed in that chapter. The de-

velopment of more general frequency response decomposition techniques is a promis-

ing future direction to explore as it suggests an alternative way to design recursive

modular structures where the approximation specifications can be imposed directly on

the frequency responses rather than discrete time samples. Similarly to the current

frequency response decomposition algorithm, that can be extended to cases where

specifications are given based on the magnitude responses.

164

The computational and representational efficiencies of multivariate discrete func-

tions arise the question as to whether developing decomposition techniques for con-

tinuous multivariate functions leads to efficiency as well. Indeed, this would provide

an extension of the computational efficiency in computing marginalizations of multi-

variate continuous functions, which motivates investigating such decomposition tech-

niques as a future direction. Moreover, decomposability can potentially be utilized

in a similar way to factorability for efficiently sampling both continuous and discrete

joint probability density functions in the context of computationally intractable in-

ference problems, for example when taking samples of high dimensional probability

densities to compute approximate expectations.

165

166

Appendix A

A Convolution Inequality

Lemma: Denote s3[n] as the convolution of the finite length signals s1[n] which is

non-zero only for 0 ≤ n ≤ L1 and s2[n] which is non-zero only for 0 ≤ n ≤ L2.

Assume L1 ≥ L2, then the energy of these signals satisfy

Es3 ≤ (L2 + 1)Es1Es2 ,

where the energy is given by Esi =
∑∞

n=−∞ s2i [n], i = 1, 2, 3.

Proof: For 0 ≤ n ≤ L1 + L2, Cauchy-Schwarz inequality implies

s23[n] =





min(L1,n)
∑

m=max(0,n−L2)

s1[m]s2[n−m]





2

≤





min(L1,n)
∑

m=max(0,n−L2)

s21[m]









min(L1,n)
∑

m=max(0,n−L2)

s22[n−m]





≤





min(L1,n)
∑

m=max(0,n−L2)

s21[m]



Es2.

167

Summing for n = 0, 1, . . . , (L1 + L2) yields

Es3 ≤
L1+L2
∑

n=0





min(L1,n)
∑

m=max(0,n−L2)

s21[m]



Es2

=

L1
∑

m=0

(

m+L2
∑

n=m

s21[m]

)

Es2 = (L2 + 1)Es1Es2 ,

where the first equality is obtained through re-parametrization of the double summa-

tion bounds.

168

Appendix B

First Algorithm of Remez:

Convergence and Optimality

In the first algorithm of Remez outlined in Algorithm 2, certain guarantees exist

for the clustering points of the coefficients vectors and their optimality as well as

the monotonicity of the the minimax approximation error on S at each iteration.

Their proof by Cheney [13] is restated here with the notation of Chapter 4. Several

definitions are given here for the formal statement of the theorem and its proof.

For a given coefficient vector f = [f0, f1, . . . , fK]
T , the approximation error on S

is given by

E(f , ω) = D(ω)−
K
∑

k=0

fkUk(ω), (B.1)

and the maximum approximation error is denoted by ∆(f),

∆(f) = ‖E(f , ω)‖∞ = max
ω∈S

∣

∣

∣

∣

∣

D(ω)−
K
∑

k=0

fkUk(ω)

∣

∣

∣

∣

∣

. (B.2)

The minimax error ∆opt is defined as the minimum value of ∆(f) over all possible

choices of f ,

∆opt = inf
f∈RK+1

∆(f). (B.3)

The discrete set of frequencies on which the optimization problem (4.3) will be solved

169

at the i-th iteration is denoted as S [i]. For any f , the maximum error on this set can

be defined as

∆[i](f) = max
ω∈S [i]

|E(f , ω)| (B.4)

which is minimized by f [i], i.e.,

f [i] = arg min
f∈RK+1

∆[i](f). (B.5)

Since this is the minimizer for ∆[i](f), it satisfies

∆[i](f [i]) ≤ ∆[i](f) (B.6)

for every f ∈ RK+1, where ∆[i](f [i] can be viewed as the minimax error at the i-th

iteration. Once f [i] is computed at the first step of Algorithm 2, the frequency ω[i]

at which the maximum approximation error on S occurs is determined at the second

step as

ω[i] = argmax
ω∈S

E(f [i], ω). (B.7)

From the definition of ∆(f) in equation (B.2),

∆(f [i]) = |E(f [i], ω[i])| = ∆[i](f [i]). (B.8)

Finally, ω[i] is added to the set of points for which problem (4.3) will be solved at the

next iteration,

S [i+1] = S [i] ∪ {ω[i]}. (B.9)

Theorem B.1. [13]. The minimax error at the i-th iteration, ∆[i](f [i]), approaches

∆opt as the iterations continue, i.e.,

lim
i→∞

∆[i](f [i]) = ∆opt. (B.10)

Moreover, the sequence f [i] is bounded and its cluster points all minimize the error.

Proof. First, the sequence f [i] is shown to be bounded. Since the initial set of points

170

S [1] are chosen such that the matrix Vinit in equation (4.11) has full column rank,

the number θ defined as

γ = min
‖f‖1=1

max
ω∈S [1]

∣

∣

∣

∣

∣

K
∑

k=0

fkUk(ω)

∣

∣

∣

∣

∣

(B.11)

is strictly positive, where ‖ · ‖1 denotes l1 norm of a vector. Therefore,

∆[1](f) = max
ω∈S [1]

∣

∣

∣

∣

∣

K
∑

k=0

fkUk(ω)−D(ω)

∣

∣

∣

∣

∣

≥ max
ω∈S [1]

∣

∣

∣

∣

∣

K
∑

k=0

fkUk(ω)

∣

∣

∣

∣

∣

− max
ω∈S [1]

|D(ω)|

≥ max
ω∈S [1]

∣

∣

∣

∣

∣

K
∑

k=0

fkUk(ω)

∣

∣

∣

∣

∣

− ‖D(ω)‖∞

≥ ‖f‖1
(

max
ω∈S [1]

∣

∣

∣

∣

∣

K
∑

k=0

fk
‖f‖1

Uk(ω)

∣

∣

∣

∣

∣

)

− ‖D(ω)‖∞

≥ γ‖f‖1 − ‖D(ω)‖∞,

where the first inequality is due to the triangular inequality for norms and the last

inequality follows from the definition of γ. For any coefficient vector f with ‖f‖1 >
2‖D(ω)‖∞

γ
and for any i > 1,

∆[i](f) ≥ ∆[1](f) > ‖D(ω)‖∞ ≥ ∆[i](0),

therefore such a vector f cannot be the minimizer of ∆[i](f), i.e., coefficient vectors

with l1 norms greater than 2‖D(ω)‖∞
γ

are never considered and the sequence f [i] ∈ RK+1

is bounded, which implies it has least one clustering point [46].

Second, it is shown that the minimax error ∆[i](f [i]) approaches ∆opt as iterations

continue and the clustering points attain ∆opt. Since for any i the inclusion S [i] ⊂
S [i+1] ⊂ S holds, the maximum errors on these sets for a given f satisfy

∆[i](f) ≤ ∆[i+1](f) ≤ ∆(f).

171

Minimizing each error term with respect to f yields

∆[i](f [i]) ≤ ∆[i+1](f [i+1]) ≤ ∆opt (B.12)

since f [i] is the minimizer of ∆[i](f) as defined in equation (B.5). This implies that

∆[i](f [i]) is a monotonically non-decreasing sequence that is bounded above by ∆opt,

i.e.,

lim
i→∞

∆[i](f [i]) = ∆opt − ǫ (B.13)

for some nonnegative ǫ. It can be shown that ǫ = 0 as follows. For any two coefficient

vectors a and b,

|E(a, ω)− E(b, ω)| =
∣

∣

∣

∣

∣

K
∑

k=0

(ak − bk)Uk(ω)

∣

∣

∣

∣

∣

≤
K
∑

k=0

|(ak − bk)| · |Uk(ω)|

≤M

K
∑

k=0

|(ak − bk)|

=M‖a− b‖1,

(B.14)

where M is maximum value attained by any of the basis functions Uk(ω) and is finite

since the basis functions are all continous on the compact set S [46]. Triangular

inequality can be applied to equation (B.14) to obtain

|E(a, ω)| ≤ |E(b, ω)|+M‖a − b‖1. (B.15)

Furthermore, maximization of both sides of this inequality over ω yields

∆(a) ≤ ∆(b) +M‖a − b‖1. (B.16)

In order to show ǫ > 0 leads to a contradiction, let c denote any clustering point of

the sequence f [i]. For any δ > 0, there exists an index i such that ‖c− f [i]‖1 < δ and

172

another index j > i such that ‖c− f [j]‖1 < δ. Therefore

‖f [j] − f [i]‖1 ≤ 2δ (B.17)

and

∆opt ≤ ∆(c)

≤ ∆(f [i]) +Mδ

= |E(f [i], ω[i])|+Mδ

≤ |E(f [j], ω[i])|+ 3Mδ

≤ |E(f [j], ω[j])|+ 3Mδ

= ∆[j](f [j]) + 3Mδ

≤ ∆opt − ǫ+ 3Mδ

(B.18)

where the first inequality follows from the definition of ∆opt in equation (B.3), the

second inequality follows from equation (B.16) for c and f [i], the first equality follows

from the definition of ∆(f [i]) in equation (B.8), the third inequality follows from

equation (B.15), the fourth inequality follows from the definition of ω[i] in equation

(B.7), the second equality follows from equation (B.8) and the last inequality follows

from the monotonic convergence of ∆[i](f [i]) to ∆opt as implied by equations (B.12)

and (B.13).

Since the relationships in (B.18) hold for any choice of δ, it leads to a contradiction

if δ < ǫ
3M

. Therefore, the initial hypothesis ǫ > 0 is not true, i.e. ǫ = 0. Moreover,

the same relationships imply the clustering point c attains ∆opt, i.e, ∆c = ∆opt.

Theorem B.1 does not imply the coefficient vector sequence f [i] converges. It only

states the minimax error sequence will converge and the clustering points of f [i] will

attain the minimax error.

Theorem B.2. [13].If the basis functions Uk(ω) also satisfy the Haar condition, the

coefficient vector sequence f [i] will also converge to the unique optimum.

173

Proof. The Haar condition implies there is a unique optimum fopt suuch that ∆(fopt) =

∆opt. The sequence f [i] must have at least one clustering point since it is bounded

in RK+1, and it cannot have more than one since that would imply the existence of

more than one optimum. Since it is the only clustering point, f [i] converges to this

point.

174

Bibliography

[1] S.M. Aji and R.J. McEliece. The generalized distributive law. Information

Theory, IEEE Transactions on, 46(2):325–343, Mar 2000.

[2] V. Alagar and M. Thanh. Fast polynomial decomposition algorithms. In Bob

Caviness, editor, EUROCAL ’85, volume 204 of Lecture Notes in Computer Sci-

ence, pages 150–153. Springer Berlin / Heidelberg, 1985.

[3] Gutierrez J. Alonso C. and Recio T. A rational function decomposition algorithm

by near-separated polynomials. Journal of Symbolic Computation, 19(6):527 –

544, 1995.

[4] C. Asavathiratham, P.E. Beckmann, and A.V. Oppenheim. Frequency warping in

the design and implementation of fixed-point audio equalizers. In Applications

of Signal Processing to Audio and Acoustics, 1999 IEEE Workshop on, pages

55–58, 1999.

[5] Philippe Aubry and Annick Valibouze. Algebraic computation of resolvents with-

out extraneous powers. European Journal of Combinatorics, 33(7):1369 – 1385,

2012.

[6] D. R. Barton and R. E. Zippel. A polynomial decomposition algorithm. In Pro-

ceedings of the third ACM Symposium on Symbolic and Algebraic Computation,

SYMSAC ’76, pages 356–358, New York, NY, USA, 1976. ACM.

[7] David R. Barton and Richard Zippel. Polynomial decomposition algorithms.

Journal of Symbolic Computation, 1(2):159–168, June 1985.

175

[8] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2006.

[9] H.D. Block and H.P. Thielman. Commutative polynomials. The Quarterly Jour-

nal of Mathematics, 2(1):241–243, 1951.

[10] Marko Bohanec and Blaz Zupan. A function-decomposition method for develop-

ment of hierarchical multi-attribute decision models. Decision Support Systems,

36(3):215 – 233, 2004.

[11] Brad Botting, Mark Giesbrecht, and John May. Using Riemannian SVD for

problems in approximate algebra. In Proceedings of the International Workshop

of Symbolic-Numeric Computation, pages 209–219, 2005.

[12] Charng-Kann and Chen. A method for synthesizing multiplierless FIR digital

filters with narrow transition widths. Signal Processing, 62(3):351 – 360, 1997.

[13] E.W. Cheney. Introduction to approximation theory. McGraw-Hill, 1966.

[14] J.J. Clark, M. Palmer, and P. Lawrence. A transformation method for the

reconstruction of functions from nonuniformly spaced samples. Acoustics, Speech

and Signal Processing, IEEE Transactions on, 33(5):1151–1165, 1985.

[15] A.G. Constantinides. Spectral transformations for digital filters. Electrical En-

gineers, Proceedings of the Institution of, 117(8):1585 –1590, August 1970.

[16] R. M. Corless, M. W. Giesbrecht, D. J. Jeffrey, and S. M. Watt. Approximate

polynomial decomposition. In Proceedings of ISSAC ’99, pages 213–219, 1999.

[17] B. De Moor. Total least squares for affinely structured matrices and the noisy

realization problem. Signal Processing, IEEE Transactions on, 42(11):3104 –

3113, nov 1994.

[18] Tony D. DeRose. Composing bezier simplexes. ACM Trans. Graph., 7(3):198–

221, July 1988.

176

[19] Charles B Dunham. The weakened first algorithm of remez. Journal of Approx-

imation Theory, 31(1):97 – 98, 1981.

[20] M. D. Fried and R. E. MacRae. On curves with separated variables. Mathema-

tische Annalen, 180:220–226, 1969.

[21] Michael Fried. On a conjecture of Schur. Michigan Mathematical Journal, 17:41–

55, 1970.

[22] Shuhong Gao, Erich Kaltofen, John May, Zhengfeng Yang, and Lihong Zhi.

Approximate factorization of multivariate polynomials via differential equations.

In Proceedings of the 2004 international symposium on Symbolic and algebraic

computation, ISSAC ’04, pages 167–174, New York, NY, USA, 2004.

[23] Joachim von zur Gathen and J. Weiss. Homogeneous bivariate decompositions.

Journal of Symbolic Computation, 19(5):409 – 434, 1995.

[24] M. Giesbrecht and J. May. New algorithms for exact and approximate polynomial

decomposition. In Proceedings of the SNC Workshop, July 2005.

[25] Shawn Hershey, Jeffrey Bernstein, Bill Bradley, Andrew Schweitzer, Noah Stein,

Theophane Weber, and Benjamin Vigoda. Accelerating inference: towards a full

language, compiler and hardware stack. CoRR, abs/1212.2991, 2012.

[26] J. Kaiser and R. Hamming. Sharpening the response of a symmetric nonrecursive

filter by multiple use of the same filter. Acoustics, Speech and Signal Processing,

IEEE Transactions on, 25(5):415 – 422, Oct 1977.

[27] Dan Kalman. A matrix proof of newton’s identities. Mathematics Magazine,

73(4):313, 2000.

[28] E. Kaltofen and J. May. On approximate irreducibility of polynomials in several

variables. In Proceedings of the 2003 international Symposium on Symbolic and

Algebraic Computation, ISSAC ’03, pages 161–168, New York, NY, USA, 2003.

ACM.

177

[29] Erich Kaltofen, John P. May, Zhengfeng Yang, and Lihong Zhi. Approximate fac-

torization of multivariate polynomials using singular value decomposition. Jour-

nal of Symbolic Computation, 43(5):359 – 376, 2008.

[30] D. Kozen and S. Landau. Polynomial decomposition algorithms. Journal of

Symbolic Computation, 7:445–456, May 1989.

[31] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the sum-

product algorithm. Information Theory, IEEE Transactions on, 47(2):498 –519,

Feb 2001.

[32] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-

negative matrix factorization. Nature, 401(6755):788–791, 1999.

[33] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix

factorization. In In NIPS, pages 556–562. MIT Press, 2000.

[34] G. Meinardus. Approximation of functions: theory and numerical methods. Hei-

delberg, 1967.

[35] R. Mersereau, W. Mecklenbrauker, and Jr. Quatieri, T. Mcclellan transforma-

tions for two-dimensional digital filtering-Part I: Design. Circuits and Systems,

IEEE Transactions on, 23(7):405 – 414, Jul 1976.

[36] Vassilis G. Mertzios and AnastasiosN. Venetsanopoulos. Block decomposition

structures for the fast modular implementation of two-dimensional digital filters.

Circuits, Systems and Signal Processing, 8(2):163–185, 1989.

[37] M. Minimair. Resultants of Composed Polynomials. PhD Thesis. North Carolina

State University, Raleigh, NC, USA, 2000.

[38] S. Nakamura and S. K. Mitra. Design of FIR digital filters using tapped cascaded

FIR subfilters. Circuits, Systems, and Signal Processing, 1:43–56, 1982.

178

[39] A. Oppenheim, D. Johnson, and K. Steiglitz. Computation of spectra with

unequal resolution using the Fast Fourier Transform. Proceedings of the IEEE,

59(2):299 – 301, Feb. 1971.

[40] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice

Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

[41] P. Pakzad and V. Anantharam. A new look at the generalized distributive law.

Information Theory, IEEE Transactions on, 50(6):1132–1155, June 2004.

[42] T. Parks and J. McClellan. Chebyshev approximation for nonrecursive digital

filters with linear phase. Circuit Theory, IEEE Transactions on, 19(2):189 – 194,

Mar 1972.

[43] Lawrence R. Rabiner, Ronald W. Schafer, and Charles M. Rader. The chirp

z-transform algorithm and its application. Bell System Technical Journal,

48(5):1249–1292, 1969.

[44] J. F. Ritt. Prime and composite polynomials. Transactions of the American

Mathematical Society, 23(1):51–66, 1922.

[45] J. Rosen, H. Park, and J. Glick. Total least norm formulation and solution

for structured problems. SIAM Journal on Matrix Analysis and Applications,

17(1):110–126, 1996.

[46] W. Rudin. Principles of Mathematical Analysis. International Series in Pure and

Applied Mathematics. McGraw-Hill International, 1976.

[47] W.M. Ruppert. Reducibility of polynomials f(x, y) modulo p. Journal of Number

Theory, 77(1):62–70, July 1999.

[48] T. Saramaki. Design of FIR filters as a tapped cascaded interconnection of

identical subfilters. Circuits and Systems, IEEE Transactions on, 34(9):1011 –

1029, Sep 1987.

179

[49] M. R. Schroeder. Natural Sounding Artificial Reverberation. J. Aud. Eng. Soc.,

10(3):219–223, 1962.

[50] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geo-

metric models. SIGGRAPH Comput. Graph., 20(4):151–160, August 1986.

[51] Joseph Anthony Spuria. Best Approximation by Polynomial Composition. PhD

thesis, Boston University, 1970.

[52] J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[53] Gerhard Turnwald. On schur’s conjecture. Journal of the Australian Mathemat-

ical Society (Series A), 58(03):312–357, 1995.

[54] M.M. Vai. VLSI Design. VLSI Circuits Series. CRC Press, 2001.

[55] D. Wei and A.V. Oppenheim. Sampling based on local bandwidth. In Signals,

Systems and Computers, 2007. ACSSC 2007. Conference Record of the Forty-

First Asilomar Conference on, pages 1103–1107, 2007.

[56] R. Zippel. Rational function decomposition. In Proceedings of the 1991 inter-

national Symposium on Symbolic and Algebraic Computation, ISSAC ’91, pages

1–6, New York, NY, USA, 1991. ACM.

[57] Blaz Zupan, Ivan Bratko, Marko Bohanec, and Janez Demsar. Function decom-

position in machine learning. In Georgios Paliouras, Vangelis Karkaletsis, and

Constantine Spyropoulos, editors, Machine Learning and Its Applications, vol-

ume 2049 of Lecture Notes in Computer Science, pages 71–101. Springer Berlin

/ Heidelberg, 2001.

180

Epilogue

An ever increasing part of the research being performed in the Digital Signal Process-

ing Group (DSPG) is initiated by the question “What can this inspire about signal

processing?”, which usually inquires about other fields, tools and concepts such as

biology, circuits, quantum physics, conservation, solitons, fractals and chaos theory

among many others. Asking this question as a first step is an early sign that the

research and the thesis will probably not be traditional as in identifying a problem,

searching for tools to solve it and conclude the job done at the end. Rather, it is an

exciting warning to prepare yourself for and be open-minded about the inspirations

that follow as you almost meditate into this question. These ideas and inspirations,

as they arise, may and in most cases do present alternative and creative approaches

for different signal processing applications. This approach aligns well with Al Op-

penheim’s semi-formal research group mission statement: having fun, chasing ideas,

to find solutions in search of problems. I think my research has been a very typical

example of this atypical approach and it investigated the inspirations from functional

composition and decomposition operations for signal processing applications. With

this inverse research approach, the development of tools and ideas emerged seemingly

independent of each other. However, at later stages of the thesis development and

especially in the writing phase, these pieces came together very nicely as parts of a

bigger pattern. This unifying theme almost gives the impression that the whole en-

counter was planned as the thesis started, but in fact it evolved into what it is. This

exciting process and the final product that unified the little pieces of research into

one consistent story was described accurately and concisely by Al as being similar

to making a “patchwork quilt”. In this epilogue, I am hoping to tell the story of

181

my patchwork quilt, i.e. the actual order of ideas and how they emerged, how they

seemed to be independent or unrelated and how the whole unifying picture came

together towards the end.

One great thing that made me click with DSPG after my master’s degree in a

totally unrelated area, the reliability of Gallium Nitride transistors, was that I had no

idea about what would make a good thesis in signal processing. This was surprisingly

a good thing in this group: you have freedom and actually are encouraged to explore

things until you find something that is interesting as opposed to bringing along an

ordinary problem to solve under the roof of DSPG. A few weeks after joining the group

in the spring of 2010, I found myself in the group library going through old DSPG

theses to see “which thesis I would have liked to be my own”, per Al’s suggestion,

as the first stage of the exploration phase. Until the end of Spring 2011 semester, I

read and thought about many small projects including zeros of random polynomials,

Volterra series expansion, time-frequency analysis and Fractional Fourier Transform.

One thesis that particularly intrigued me was the SM thesis by Dennis Wei. He

explored the idea of local bandwidth and efficient sampling of signals that were ob-

tained by time-warping another bandlimited signal. I found the idea of time-warping

interesting in itself, and wanted to understand whether the original bandlimited sig-

nal and the warping function are unique up to a linear scaling for a given signal,

and how to recover them in such a case. Among the many keywords I used to locate

previous work on this approach was functional decomposition, since time warping is

the composition of a signal with another function of time. This is when I realized

functional decomposition is a difficult but very interesting problem in mathematics.

The ignition for my thesis topic was one of the regular research discussions with Al

probably in early Fall 2011 during which he said the idea of functional composition

was rather unheard of in signal processing contexts, and it would be interesting to

see “what we can learn from functional composition and decomposition for signal

processing”.

I was not sure how to approach this question and even which classes of functions

to consider. As a first cut, I decided to start looking into polynomials. The reason

182

was two fold. First, there is an abundance of literature on their decomposition start-

ing from early 1900s that I was aware of. Second, polynomials arise in many contexts

in signal processing in the form of z-transforms. My first attempt was to understand

which applications could exploit decomposable polynomials, which in turn required

investigating the decomposition techniques for them. I was convinced that there is at

least one possible application whether decomposition has a straightforward or difficult

solution. It can be used to encrypt sequences and data if it is a hard problem. If an

easy solution existed, it would provide opportunities for representing sequences with

fewer degrees of freedom corresponding to sparsity from the perspective of paramet-

ric representations. I also explored the current literature to see which of the existing

applications in signal processing can be viewed as a form of functional composition,

whether or not they involved polynomials. I found quite a few examples, which con-

stituted Chapter 2 of this thesis, and realized that they were usually in the context of

time and frequency warping. These observations, the literature search and own efforts

to understand opportunities presented by functional composition and decomposition

constituted the promising pieces of my PhD thesis proposal at the end of Fall 2011.

I had plenty of material which was getting a handful, so I took Al’s advice in Spring

2012 to target a conference paper on polynomial composition and decomposition to

organize some of the thinking. I was still trying to understand the extent to which

composition and decomposition remain reliable. Therefore, I started developing an-

alytic expressions for the sensitivities of polynomial composition and decomposition

operations. This turned into a conference paper with the simulations that we did

with my great tireless officemate and colleague Guolong Su, which also eventually

became the last part of Chapter 3 of my thesis. In the mean time, I found polyno-

mial decomposition techniques from the mathematics and computer science literature,

which became a part of Chapter 3 along with comparisons that we performed with

Guolong. By the end of Spring 2012 and after the extensive literature search, devel-

opment of own techniques, very useful discussions with Prof. Bjorn Poonen from the

MIT Mathematics Department, several research meetings with Al and Guolong and

Prof. Pablo Parrilo’s semidefinite programming class including an intense discussion

183

on polynomials, I could more or less frame the opportunities and the limitations of

polynomial decomposition techniques. As this was already promising, I also started

pondering on how to model nondecomposable polynomials as decomposable to extend

the possible applications to these cases as well.

Just as I was thinking that I was spending way too much time on polynomials and

was wondering decomposition of what other functions could be exploited, I received

a very interesting question by Ben Vigoda in Summer 2012 during my internship

interview talk at Analog Devices Lyric Labs. I was talking about how polynomial

decomposition led to more compact and efficient representations for discrete sequences

when he asked whether this could be applied to functions that are given as a look-

up table for several different variables. Obviously, this would have helped them do

certain operations efficiently in inference problems. It took me almost half a summer

internship and several useful discussions with my colleague Theo Weber at Lyric to

decrypt this question into a mathematical representation besides a few other small

projects. I was convinced that I found a new class of functions that I could play with,

namely multivariate functions consisting of discrete variables as they also appeared

in many contexts in signal processing and machine learning. Theo proposed the idea

to use the δ-functions to connect variables of subfunctions in factor graphs if the

multivariate function is decomposable, which we later extended to functions more

general than δ(). The idea was neat and simple, yet I was not sure how to place this

piece of insight into the composition framework and generalize to other applications

not necessarily using factor graphs. Totally independent from this stream of work,

starting from early stages of my PhD, Al and I occasionally discussed how raising

problems to a higher dimensionality and solving it there could be easier or more

useful. Although this seemed counter-intuitive, he gave the example where a one

dimensional signal is raised to a higher dimensionality by taking an outer product

by itself before multiplying a Volterra kernel and being projected back to its original

dimension through integration. It was not until Fall 2013 that I realized introducing

δ-functions with latent variables into decomposable multivariate functions was a great

example of what we have been discussing with Al: raising the dimensionality of the

184

function to make it factorable, a property known for its efficiencies in representations

and computations. This manipulation allowed me to borrow matrix factorization

algorithms from the literature to decompose multivariate functions, which turned into

Chapter 5 of this thesis. Using an image denoising algorithm which was previously

explored at Lyric, I was able to show the approach actually led to computational

efficiency as discussed in Chapter 6.

In Fall 2012, I worked to finish what I started before the summer, namely the

approximate decomposition of polynomials. I came across a very interesting set of

papers which established a one-to-one relationship between the decomposability of

a univariate polynomial and the factorability of an associated bivariate polynomial.

The connection between decomposability of a lower dimensional function and the fac-

torability of a higher dimensional associated function surprisingly manifested itself in

the context of polynomials as well as the multivariate functions. Although I had been

working on them for about one year, this parallel behavior between two very different

functional forms did not become so clear until I was trying to build my “patchwork

quilt” at the late stages of my thesis writing and defense preparation. Certain ap-

proximate polynomial decomposition methods based on this relationship that I found

intriguing were formulated in terms of Ruppert matrices, which involved coefficients of

the polynomial under question. I formulated a new approximate polynomial decom-

position algorithm following other examples in the literature which utilized Ruppert

matrices but using a different algorithm based on Structured Total Least Norm al-

gorithm. This method as well as the review of the existing exact and approximate

polynomial decomposition methods turned into a conference paper and the rest of

Chapter 3.

In one of the conferences where I presented a poster, a professor was intrigued

by the idea of obtaining equivalent compositions with lower sensitivities that were

discussed in Chapter 3. He asked whether compositions with polynomials of order

more than unity can be used to obtain equivalent compositions. As I tried to explain

that only first order polynomials are invertible, he insisted that inversions over finite

intervals can be considered. Although his suggestion eventually did not fit into our

185

analyses and purposes, this gave me a new perspective to consider decomposability.

More specifically, I started thinking for ways to exploit approximate decompositions

of continuous functions only on intervals of interest rather than requiring the approx-

imate decomposition to be close on the entire range of definition or with respect to

their parameters such as coefficients in polynomials. After all, approximating func-

tions on finite intervals had already proved useful in signal processing in the context

of Parks-McClellan filters. I started inquiring whether the Remez Exchange Algo-

rithm can be extended to approximations with compositions on intervals. In Spring

2013, my search led me to a 1970 PhD thesis from Boston University Mathematics

Department, which I ended up printing using a microfilm viewer in the basement of

MIT Hayden Library. This was a nice experience in itself, but also helpful in that this

thesis saved me valuable research time. It had counterexamples that implied minimax

approximations using polynomial compositions lacked a characterization in terms of

alternations for which the Remez Exchange Algorithm would not apply. However, I

found another algorithm due to Remez in Cheney’s book on approximation theory

that would allow me decompose a continuous function as a composition of a poly-

nomial and any other pre-specified continuous function. I was able to, for example,

specify a target frequency response and approximate it as the weighted sum of powers

of another frequency response. This evolved into what I called as the decomposition

of frequency responses discussed in Chapter 4. I had a solution, which was now

“searching a problem”. It turned out that filter sharpening, an application which I

encountered two years before exploring this, was a perfect example that could exploit

this approach, and extend itself to more general modular structures. This was one of

the main applications in Chapter 6.

The seemingly independent pieces of this research had proved to bear signs of

a story in the background such as the relationship between decomposability and

factorability. However I had to zoom out and take a 30000-feet look to frame my

work as an answer to the original question that got us into this path. What had

we learned from functional composition and decomposition for signal processing? As

an eye-candy for several posters and a simple visual to help introduce functional

186

composition and decomposition to different audiences, we used Russian dolls. The

idea of nesting dolls was similar to what we meant by functional composition, namely

nesting functions. As I was starting to write my thesis, I stopped staring at the

pile of work I had done so far and tried to answer for myself the implications of

nesting signals and systems virtually as Russian dolls. Three implications came to

me almost as a flash: compactness, separability and modularity. The Russian dolls

took much less space when they were nested, implying a more compact form just like

how decomposable polynomials required much fewer parameters to be represented.

Moreover, separating or de-nesting dolls would make it easier to work on each of

them individually, for example to dye them in a different color, which is similar

to computations on functions becoming more manageable when they are separated.

Finally, the dolls resembled each other and looked nicer when displayed side by side

similar to better and more sophisticated structures obtained by reusing identical

simpler modules as in modular filter design. I remembered my confusion when the

research question was first raised, with no clue that it would lead here although it

seems in this thesis that the goals were set on day one to exploit these three themes.

It was both inspiring, exciting and rewarding to see how the little pieces naturally

found their correct place on the patchwork quilt while I was busy with the details

and technicalities.

Al suggested that every graduate of DSPG have a short story describing their

thesis and research experience consisting of only six words, similar to what is com-

monly referred to as a “six-word novel”. I feel like my six words should reflect the

nature of the process in which my thesis topic emerged and evolved into a quilt in this

rather unanticipated manner while I was investigating different directions. Therefore,

I chose them as “Search for it, it finds you”.

187

