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In this paper we present and review recent results that we have developed on the reconstruction of multidimensional
signals from zero-crossing or threshold-crossing information. Specifically, we develop theoretical results that state
conditions under which multidimensional band-limited signals are uniquely specified to within a scale factor with
this information. We also present an algorithm for recovering signals from zero-crossing or threshold-crossing
information once it is known that the signals satisfy the appropriate constraints. Examples showing images

recovered from threshold crossings are included.

1. INTRODUCTION

Over a period of years, there has been a significant amount of
interest in the problem of representing signals with zero
crossings. The great majority of research in this area has
been in communication theory and has concentrated on one-
dimensional signals, although recently extensions to two-
dimensional signals have also been reported.!* In this pa-
per we present and review recent results that we have devel-
oped on the reconstruction of multidimensional signals from
zero-crossing information. These results are much less re-
strictive and appear to be more broadly applicable than
results based on two-dimensional extensions of one-dimen-
sional results.

The importance of zero-crossing locations in determining
the nature of both one- and two-dimensional signals has
been recognized for some time. Experiments in speech pro-
cessing have shown that speech with only the zero-crossing
information preserved (hard-clipped speech) retains much
of the intelligibility of the original speech.> Also, a wide
variety of papers in image processing and vision stress the
importance of the information contained in the edges of
objects, and one theory of human vision relies primarily on
edge detection as the mechanism by which humans process
visual information.?

There are also a variety of other types of applications in
which the zero crossings or threshold crossings are available
and it is desired to recover the original signal. One possible
application occurs when an image is clipped or otherwise
distorted in such a way as to preserve zero-crossing or level-
crossing information and it is desired to recover the original
signal from this information. This might happen if an im-
age is recorded on a high-contrast film or, more generally, on
film with an unknown nonlinear monotonic gray-scale dis-
tortion. Ifitis possible to recover the original signal from its
threshold crossings, then it is possible, at least in principle,
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to recover the original signal from its distorted version and
to determine the type of nonlinearity present. In addition,
it is not necessary for the nonlinearity to be monotonic over
its entire range; it is necessary only that the chosen threshold
on the distorted signal correspond to a unique threshold on
the original signal. This could potentially be useful in an
application such as medical archiving, in which intensity
levels of images recorded on film are likely to become dis-
torted over time but threshold-crossing information could
be preserved. In some archiving applications it is unlikely
that any particular image may need to be retrieved, but it is
important to be able to recover the image if necessary even if
the process is expensive or time consuming. Another possi-
ble type of application of results on reconstruction from
zero-crossing information is in a variety of design problems
such as filter design® and antenna design.” In these cases,
one could potentially specify the zero-crossing points or null
points of the filter response or antenna pattern and then use
these points to derive the remainder of the response.

One might also consider the possibility of exploiting the
information in threshold crossings for signal coding and data
compression. However, in representing a two-dimensional
sighal with zero crossings or threshold crossings, it is impor-
tant to recognize that the amplitude information in the origi-
nal signal is embedded in the exact location of the threshold
crossings. Consequently, while the original signal can be
sampled at the Nyquist rate, the threshold-crossing
representation may require a considerably higher, possibly
infinite, sampling rate to preserve the threshold-crossing
locations adequately. Thus the total number of bits or
bandwidth required in the threshold-crossing representa-
tion might well be higher than that required by sampling and
quantizing the original signal. For this reason, we expect
results on signal reconstruction from threshold crossings to
be more useful in applications in which the exact threshold-
crossing points are available. It is possible, however, to view
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the representation of signals with threshold crossings as a
potential trade-off between the bandwidth and the dynamic
range necessary for transmitting a signal. If the available
bandwidth is sufficient to preserve the threshold-crossing
locations accurately, then the dynamic-range requirements
might be greatly reduced if the signal could be recovered
from the threshold-crossing locations.

In Section 2 we review a number of known results that
state conditions under which one- and two-dimensional sig-
nals are uniquely specified with zero crossings. In Section 3
we develop our basic result on the unique representation of
periodic two-dimensional signals with zero crossings and
discuss a number of extensions, including the extension to
crossings of a threshold other than zero, signals with dimen-
sion higher than two, and nonperiodic signals. In Section 4
we present a simple algorithm for recovering signals from
zero crossings or threshold crossings and show some example
images that we have recovered from this information.

2. RELATED RESEARCH

A number of papers in communication theory have dealt
with the question of recovering a one-dimensional signal

from its zero crossings. (A more detailed review of this work.

can be found in Ref. 8.) These results are primarily based
on the fact that a band-limited function is entire and thus is
almost completely specified by its zeros (real and complex).
A band-limited signal is uniquely specified by its (real) zero
crossings only if all its zeros are guaranteed to be real. Thus
a number of previous research efforts concentrated on iden-
tifying conditions under which signals have only real zeros
and on developing methods for modifying a signal so that all
its zeros become real. One result in this area is that a one-
dimensional complex signal with no energy for negative fre-
quencies is uniquely specified by the zero crossings of its real
part if the complex signal has zeros only in the upper half-
plane.®? (A more general form of this result is given in Ref.
10.) One method of modifying signals so that all their zeros
become real is to add a sinusoid of sufficient amplitude at a
frequency corresponding to the band edge!’; another is to
differentiate the signal repeatedly.® Some modulation
schemes have also been shown to produce only signals with
real zeros.!? Fairly recently, in response to experimental
results presented by Voelcker and Requicha,!3 Logan!® de-
veloped a new class of bandpass sighals that are uniquely
specified by their zero crossings. Specifically, Logan
showed that a signal with a bandwidth of less than one
octave is uniquely specified by its zero crossings if it has no
zeros in common with its Hilbert transform other than real
simple zeros. This means that almost all bandpass signals
of bandwidth less than one octave are uniquely specified by
their zero crossings. It is also possible to interpret results on
unique specification of signals with zero crossings as a type
of sampling, in which the samples consist of the set of points
(times) corresponding to zero crossings, as opposed to the
amplitude of the signal at particular fixed instants.? Using
this point of view, sampling might consist of adding a sine
wave at the appropriate frequency and recording those in-
stants when the resulting signal crosses zero or, equivalently,
recording those instants where the original signal crosses a
sinusoid. Interpolation would then consist of generating a
signal with sine-wave crossings at the specified instants.
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Sampling and interpolation systems using this approach
have been designed, implemented, and found to produce
good results. ¢

Despite the number of results on the unique specification
of signals with zero crossings, most one-dimensional band-
limited signals encountered in practice do not satisfy the
constraints associated with any of the above and are not
uniquely specified by their zero crossings unless they satisfy
some additional constraints that effectively guarantee that
they contain a sufficient number of zero crossings. Infact, it
has been shown!? that almost all sample functions of a band-
limited Gaussian random process are not uniquely specified
by zero crossings.

Although a considerable amount of theoretical work has
been devoted to the problem of unique representation of
one-dimensional signals with zero crossings, much less work
has been devoted to the corresponding two-dimensional
problem. Logan’s result has been extended to two dimen-
sions®4 by requiring a one-dimensional signal derived from
the original two-dimensional signal to satisfy the constraints
of Logan’s theorem. In addition, one-dimensional results
on unique specification with sine-wave crossings have been
extended to two-dimensional problems.’® However, the
two-dimensional problem is fundamentally different from
the one-dimensional problem since the zero crossings are
actually zero-crossing contours and not isolated points, as in
the one-dimensional case. This difference allow us to speci-
fy uniquely a two-dimensional signal with zero crossings
under much less severe restrictions than are necessary for
one-dimensional signals. The difference can be easily ap-
preciated by thinking of the representation of signals in
terms of zero crossings as a form of nonuniform sampling,
with each zero-crossing point representing one sample. In
one dimension, each zero-crossing point corresponds to one
sample of the signal, and the zero crossings are sufficient for
unique representation of the signal only if the zero-crossing
rate is high enough.!® Intwo dimensions, each zero-crossing
contour corresponds to an infinite number of samples of the
signal. Thus it is reasonable to suggest that two-dimension-
al signal may be specified with zero crossings under more
general conditions than those required for a one-dimension-
al signal. This is in fact true, and these results will be
presented in Section 3.

3. THEORETICAL RESULTS

In this section we present theoretical results that we have
developed on unique specification of multidimensional sig-
nals with zero crossings. We will begin by discussing our
basic result on the unique specification of band-limited,
periodic, two-dimensional signals with zero crossings. Our
results are simpler to develop for periodic signals than for
arbitrary signals since we can represent these signals as
polynomials in a Fourier-series representation and apply
well-known results on polynomials from algebraic geometry.
We will then discuss a variety of extensions to this result
including the extension to signals of dimension higher than
two and to nonperiodic signals.

A. Two-Dimensional Periodic Signals
To develop our basic result on the unique specification of
two-dimensional, periodic signals with zero crossings, con-
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sider a real, band-limited, continuous-time, periodic signal
f(x, y) with periods T} and T in the x and y directions,
respectively. We can express f(x, y) as a polynomial using
the Fourier series representation:

fOe,9) = D7 Flng, ) Wy W™, (1)

n Ny
where

W, = exp[j(2=x/T))],
W, = exp[j(27x/T,)].

The coefficients F(ny, no) are the Fourier-series coefficients
and represent the spectrum of f(x, y). Since we are assum-
ing f(x, ¥) to be band limited, the sums in Eq. (1) must be
finite. The set of points (ny, ng) outside which F(ny, ng) is
constrained to be zero is referred to as the region of support
of the spectrum. Assume that F(ni, ns) = 0 outside the
region —N; < n; £ Nj, =N < ng < No. Tomodify Eq. (1) to
have the form of a two-dimensional polynomial, we can write

Fx, ) = W,"W,f(x, )

ny=2N; n;=2N,
= > > Fy=Nyny— NyW,"Wy™
=0 n=0

(2)

Although in the discussion that follows we shall refer to the
representation of f(x, ¥) as a Fourier-series polynomial, it
should be kept in mind that, strictly speaking, we are refer-
ring to the representation of the modulated signal f'(x, ¥} in
Eq. (2) as a polynomial.

With the signal represented as a polynomial, we will use a
well-established result on polynomials in two variables to
develop our results on the unique specification of signals
with zero crossings. We will state the basic result on two-
dimensional polynomials here without proof; the detailed
proof is available in Refs. 17 and 18 as well as in a number of
other texts on algebraic geometry.

Theorem 1. If p(x, y) and g(x, ¥) are two-dimensional
polynomials of degrees r and s with no common factors, then
there are at most rs distinct pairs (x, ), where

plx,y) =0
and
g(x,y) =0. (3)

In this theorem, the degree of a polynomial in two vari-
ables is defined as the sum of the degrees in each variable
(for each term), that is, the degree of a two-dimensional
polynomial p(x, y) is equivalent to the degree of the one-
dimensional polynomial p(x, x). The rs distinct pairs (x, y)
‘described in this theorem consist of rs points anywhere in
the complex (x, y¥) plane. Essentially, theorem 1 places an
upper bound on the number of points where two two-dimen-
sional polynomials can both be zero if they do not have a
common factor.

A stronger form of theorem 1 is available that guarantees
that the zero sets of polynomials intersect in exactly rs
points rather than simply stating an upper bound. This
stronger result, referred to as Bezout’s theorem in algebraic
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geometry, requires including the multiplicity of intersec-
tions as well as points that lie at infinity (e.g., two parallel
lines are considered to intersect in one point at infinity).
Bezout’s theorem can be thought of as a generalization of the
fundamental theorem of algebra, which guarantees that a
one-dimensional nth-degree polynomial has exactly n roots,
provided that multiplicity is included.

As we shall discuss in more detail later, theorem 1 implies
that a nonfactorable two-dimensional polynomial of degree
d is uniquely specified to within a scale factor by d2 + 1 zero-
crossing points. Therefore a polynomial of degree N in each
variable (i.e., d = 2N) requires at most 4N? + 1 zero cross-
ings. Since a polynomial of degree N in each variable will
have (N + 1)2 coefficients, one might expect the polynomial
to be uniquely specified to within a scale factor with (N + 1)2
— 1 distinct points where it is zero. A consequence of theo-
rem 1 is that this set is not guaranteed to be sufficient, but
any set of 4N? + 1 distinct points is guaranteed to be suffi-
cient.

1. Basic Result

We use the representation of signals as polynomials and the
result on intersection of zero sets of polynomials to establish
our primary result on the unique specification of periodic
signals with zero crossings. Several extensions to this result
are presented in Subsection 3.A.2.

To see how results on the intersection of curves apply to
the problem of unique specification of two-dimensional sig-
nals with zero crossings, consider a real, band-limited, peri-
odic signal f(x, y) expressed as a polynomial in the Fourier-
series representation in Eq. (2). We assume that there are
some regions where f(x, y) is positive and some regions where
f(x, y) is negative. These regions are separated from each
other by a contour where f(x, y) = 0. If another signal g(x, y)
has the same zero-crossing contours as f(x, v), then there are
an infinite number of points where both f(x, ¥) and g(x, ¥)
are zero. We can then use theorem 1 to show that f(x, v) and
&(x, ¥v) must have a common factor. If, furthermore, we
know that f(x, ¥) and g(x, ¥) are irreducible when expressed
as polynomials, as in Eq. (2), then they must be equal to
within a scale factor. The result can be stated as follows:

Theorem 2. Let f(x,y) and g(x, y) be real, two-dimension-
al, doubly periodic, band-limited functions with sign f(x, ¥)
= sign g(x, y), where f(x, ¥) takes on both positive and
negative values. If f(x, ¥) and g(x, y) are nonfactorable
when expressed as polynomials in the Fourier-series
representation (2), then f(x, ¥) = eg(x, ¥).

Proof. We will prove this result by starting with two
signals f(x, y) and g(x, y¥) that satisfy the constraints of the
theorem and showing that they must be equal to within a
scale factor. Since we know that f(x, ¥) takes on positive
and negative values, there must be some region of the (x, y)
plane where f(x, y) > 0 and another region where f(x, y) <0.
Since f(x, v) is band limited and therefore continuous, the
boundary between these regions is a contour where f(x, y) =
0. Since sign f(x, y) = sign g(x, ¥) for all (x, y), the same
arguments also hold for g(x, ¥). Thus we have contours in
the x, y plane where

flx,y) =glx,y) = 0. (4)

Also, if N; and N are defined as in Eq. (2), we have
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WiMWaNef(x, y) = 0,
WiNiWolag(x, y) = 0 (5)

over these contours. Thus we have an infinite set of points
where two polynomials in the variables W;, W5 are known to
be zero. Thus, by theorem 1, f(x, ¥) and g(x, ¥) must have a
common factor. If, furthermore, we assume that f(x, y) and
g(x, y) are nonfactorable when expressed as polynomials in
Eq. (2), then f(x, y) = cg(x, y).

Note that, in order to satisfy theorem 1, it is not necessary
to know the location of all the zero-crossing contours; it is
necessary only to know the location of a sufficient number of
points along these contours. Thus, in theory, any zero-
crossing contour in the (x, ¥) plane is sufficient to specify the
signal uniquely (since it contains an infinite number of
points) even if the region where f(x, ¥) <0is very small. Itis
also possible to sample the zero-crossing contours, ie., to
specify the signal uniquely with only a finite set of discrete
points from the zero-crossing contours. This possibility will
be explored in more detail in Subsection 3.A.2.

Having established a set of conditions that guarantees
that a signal is uniquely specified by some partial informa-
tion, it is worthwhile to determine whether these conditions
are likely to apply to a typical signal encountered in practice.
First, we note that the irreducibility constraint is satisfied
with probability one, since it has been shown that the set of
reducible m-dimensional polynomials forms a set of measure
zero in the set of all m-dimensional polynomials (for m > 1)19
and that this set is an algebraic set.? The more restrictive
constraint is the constraint requiring the signal to be strictly
band limited. Although signals encountered in practice are
generally not strictly band limited, in many applications
signals are commonly assumed to be band limited, and fur-
thermore it is common to low-pass filter signals when neces-
sary for particular processing techniques. Another conceiv-
able difficulty with this result is that in some applications,
such as image processing, the signals are constrained to be
positive and thus will not contain zero crossings. This prob-
lem will be eliminated in the following subsection when we
extend this result to include crossings of an arbitrary thresh-
old instead of just zero crossings.

2. Extensions

Although theorem 2 states a number of conditions under
which a signal is uniquely specified with its zero crossings, it
is also possible to develop a number of variations or exten-
sions of this result. All the extensions developed in Ref. 2
for the case of reconstructing finite-length signals from Fou-
rier-domain zero crossings also apply directly to this prob-
lem. In this subsection, we will review some of the more
important extensions.

Finite-Length Signals. The fact that knowledge of all the
zero contours in the (x, ¥) plane is not necessary to specify
the signal uniquely allows us to extend this result to signals
that are not periodic but are finite length. This extension is
important since most signals encountered in practice are
finite length. Consider the case in which f(x, ¥) is a finite
segment of a periodic signal satisfying the constraints of
theorem 2. For example, if f(x, y) represents one period of a
band-limited periodic function f(x, y):
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e, =3 fe+mTyy +n,Ty), (6)

nyony

then it is possible to recover f(x, y) from its zero crossings,
provided that f(x, y) satisfies the constraints of theorem 2,
even though f(x, v) itself is not band limited. More general-
ly, it is not necessary for the duration of f(x, ¥) to be equal to
one period of the corresponding periodic function. Thus
f(x,y) can represent a finite segment of a variety of different
periodic functions. In order for f(x, ¥) to be uniquely speci-
fied by its zero crossings, we need only one periodic function
containing f(x, y) to be band limited.

Threshold Crossings. It is possible to generalize the re-
sults presented above to allow the signals to be specified by
crossings of an arbitrary threshold rather than simply zero
crossings. This is important in applications such as image
processing in which signals represent energy or intensity and
thus are constrained to be positive. These signals contain
no zero crossings but may contain points (contours) where
the signal crosses a particular threshold. More generally, it
is possible to allow crossings of any known band-limited
periodic function. The basis for these extensions is relative-
ly straightforward. Specifically, by subtracting the known
band-limited periodic function h(x, y) from the signal f(x, y),
we create a new band-limited signal g(x, y). The zero cross-
ings of g(x, ¥) correspond to the contours where f(x, y)
crosses h(x, v). In the special case in which h(x, y) is a
constant, the zero crossings of g(x, y) are the threshold cross-
ings of f(x, y). While this extension may seem obvious, it is
important to recognize that it is not possible to extend Lo-
gan’s theorem (and many other one-dimensional results) to
permit crossings of an arbitrary threshold. Thus the possi-
bility of such an extension provides an important distinction
between our work and earlier work with one-dimensional
signals.

Discrete Zero-Crossing Points. As mentioned earlier, it
is possible to state theorem 2 in a slightly different way so
that it is possible to specify a signal uniquely with a finite set
of discrete zero-crossing points, essentially allowing us to
sample the zero-crossing contours. This result is important
since any practical algorithm for recovering signals from
zero-crossing information can make use of only a finite num-
ber of zero-crossing points. Let us first emphasize that we
are referring to sampling the zero-crossing locations along a
zero-crossing contour, not to sampling of the sign of the
original signal at each point on a predetermined grid. This
is distinct from the type of sampling used in many signal-
processing problems in which signals are specified with sam-
ples over a particular grid. The difficulty with sampling the
sign information is that the information necessary to apply
our results to specify a signal uniquely is contained in the
exact location of the zero crossings, and this information is
lost when [sign f(x, y)] is sampled. In practical applications,
of course, it may be possible for a signal to be represented to
sufficient accuracy with a finite set of samples of [sign f(x,
Y-

Since theorem 1 specifies the number of points where two
two-dimensional polynomials can both be zero, we can use
this theorem to establish that a particular number of arbi-
trarily chosen zero-crossing points is guaranteed to be suffi-
cient for unique specification. The exact number of zero-
crossing points sufficient for unique specification depends
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on the size and shape of the spectrum of the signal. We will
state our results in terms of rectangular spectra since these
shapes are common in applications and are straightforward
tounderstand. The result could be easily modified for spec-
tra of different shapes or could be applied directly to a
problem involving a different spectrum by simply assuming
a rectangular region large enough to enclose the actual re-
gion. If reference to a region of support R(N) specifies that
the spectrum is zero outside the region —N < nq, ng, < N,
then we can state the following:

Theorem 3. Let f(x,y) and g(x, ¥) be real, two-dimension-
al, doubly periodic, band-limited functions with a spectrum
with region of support R(N). If f(x, y) and g(x, y) are
nonfactorable when expressed as polynomials in the Fouri-
er-series representation [Eq. (2)], and f(x, v) = g(x,y) =0 at
more than 16NV? distinet points in one period, then f(x, y) =
cg(x, y) for some real constant c.

Proof. Recall that the proof of theorem 2 requires stating
that two polynomials WiV WyoNef(x, y) and Wi NiW,yNeg(x, v)
are equal to within a scale factor, given that they are both
zero at an infinite number of points. Substituting N; = N5
= N in the case of theorem 3, we know that W, ¥NW,Nf(x, v) =
Wi¥NWoNg(x, ¥) = 0 at more than 16N? peints in one period,
that is, at more than 16N? distinct values of the variables
(W1, Ws). These polynomials are of degree 4N and thus, by
theorem 1, can have at most 16/ N2 common zeros. Thus
WINWNf(x, y) = e W N W,yNg(x, v) and the theorem follows.

Although we have shown that any 16 N2 + 1 zero-crossing
points are sufficient for unique representation of a signal
under the constraints of the theorem, we have not shown
that all 16N? + 1 zero-crossing points are necessary for
unique representation. In fact, for the particular case of a
spectrum with rectangular region of support, Zakhor and
Izraelevitz?! have shown that a two-dimensional periodic
signal is uniquely represented with any 8N% + 1 zero-cross-
ing points (under the same constraints as theorem 3) by
developing a new result similar to theorem 1 that applies
when the polynomials are considered to have a specified
degree in each variable, as opposed to a specified total de-
gree. In addition, we have found that it is often possible to
represent a signal with a set of (2N + 1) — 1 zero-crossing
points (the same as the number of unknown Fourier coeffi-
cients}, although we have found counterexamples that indi-
cate that this is not true for all sets of (2N + 1)2 — 1 points.
We speculate that, if the (2N + 1)2 — 1 zero-crossing points
are chosen randomly, then, with probability one, these
points will be sufficient to represent the signal uniquely.

B. Arbitrary Multidimensional Signals

Although up to this point we have been concerned primarily
with the representation of two-dimensional periodic signals
with zero crossings, it is also possible to develop similar
results for signals with dimensions higher than two and for
arbitrary nonperiodic signals. The results developed earlier
do not apply to these problems because they require us to
represent the signal as a polynomial in two variables, which
is possible only for periodic two-dimensional signals. Since
the mathematics involved in the proofs of these additional
results is somewhat involved and the basic concepts are
quite similar to those in the two-dimensional periodic case,
we shall briefly state our additional results without proof.
More details of these results can be found in Ref. 22.
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First, consider a multidimensional, periodic signal with
dimension greater than two. This signal can be expressed as
a polynomial in a Fourier-series representation similar to
Eq. (2), using a polynomial of more than two variables. The
zero crossings of a signal with dimension higher then two are
not contours in a two-dimensional space but are surfaces in a
multidimensional space. Theorem 1 cannot be applied di-
rectly since it applies only to polynomials of two variables.
An extension of theorem 1 is available, although the result is
not quite so straightforward as for theorem 1. In general, it
is not possible to state that two polynomials in an arbitrary
number of variables have common zeros at a finite number of
points. However, it is possible to characterize the intersec-
tion of two surfaces, each described by a polynomial equa-
tion, as another surface with a specified dimension and de-
gree. Using this procedure, we have developed a result
similar to theorem 2 for signals with dimensions higher than
two. Our result can be stated as follows:

Theorem 4. Let f(x) and g(x) be real, m-dimensional,
periodic, band-limited functions with sign f(x) = sign g(x),
where f(x) takes on both positive and negative values. If
f(x) and g(x) are nonfactorable when expressed as polynomi-
als in the Fourier-series representation [Eq. (2)], then f(x) =
cg(x).

It is also possible to develop additional results that do not
require the signals to be periodic. The problem is more
difficult mathematically since it is in general not possible to
express an arbitrary signal as a polynomial in a Fourier-
series representation. Nevertheless, since the zeros of an
arbitrary band-limited function constitute an analytic set, it
is possible to find corresponding results characterizing the
intersection of analytic sets. We have applied this theory to
develop results analogous to theorem 2 for arbitrary (non-
periodic) two-dimensional signals. Details of these results
can be found in Ref. 23.

4. RECONSTRUCTION

Having established that particular classes of signals are
uniquely specified by threshold crossing information, it is of
interest to develop algorithms for recovering the original
signal from this information. The method that we shall use
is to express the solution as a set of simultaneous linear
equations. While there are a number of inherent difficulties
with this method and we suspect that additional research
will produce better algorithms, we have successfully recov-
ered example images by using this algorithm, and it does
effectively illustrate problems that occur during the recon-
struction.

Our reconstruction algorithm involves first choosing a set
of p points where the signal is known to be zero (or known to
cross a given threshold) and solving then the following set of
equations;

Z F(ny, n,) explj(2rx,n)/T]exp[j(2ry n,)/Ts = 0,

(rpngle B
(7)

where R denotes the known region of support of the spec-
trum and each equation uses a different pair of points (x1, y;)
for which the equality is known to hold (i.e., points on the
zero-crossing contours). We generally choose p to be great-
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LT i
(b)

er than the number of unknowns and find a least-squares
solution to these equations. There are two reasons for using
more equations than unknowns in these problems. First, as
mentioned earlier, we cannot guarantee a unique solution to
these equations if p is equal to the number of unknown
Fourier coefficients, but we can guarantee a unique solution
if p is chosen to satisfy theorem 3. [These equations have a
unique solution once the scale factor is specified by setting
one point to its known value. We have found it simplest to
set F(0, 0) to the known mean value of the signal]. Another
reason for using more equations than unknowns is to im-
prove the numerical stability of the results, particularly
when solving for a large number of unknowns.
Experimentally, we have found that, when recovering sig-
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Fig. 1. Reconstruction from zero crossings: (a) original image, (b)
threshold crossings of (a), (c) recovered image.

nals with a narrow bandwidth (i.e., a small number of un-
known Fourier coefficients), it is often possible to use the
same number of equations as unknowns. Additional equa-
tions have been necessary only in special cases in which the
original zero-crossing points were carefully chosen to corre-
spond to zero-crossing points of a different image as well as
the desired image. As mentioned earlier, we speculate that,
if the zero-crossing points are chosen randomly, then with
probability one it will be possible to use the same number of
equations as unknowns as long as the problem is small
enough to avoid numerical difficulties.

Examples of two images recovered with this method are
given in Figs. 1 and 2, which show the original image [Figs.
1(a) and 2(a)]; an image consisting of the threshold crossings
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[Figs. 1(b) and 2(b)], i.e., contours showing where the origi-
nal image crosses a particular threshold; and the image re-
constructed by solving the linear equation [Figs. 1(c) and
2(c)]. (Additional examples are given in Refs. 22 and 24.)
In these examples, the original images were obtained by low-
pass filtering similar images and removing some low-ampli-
tude Fourier-transform points so that it would be practical
to solve a set of linear equations for the remaining points.
The exact size and shape of the spectrum of the resulting
image, i.e., the region of support of the Fourier transform,
were then assumed to be known. Precise values of the zero-
crossing points were found by taking the discrete Fourier
transform of the image, using these coefficients to express
the image as a polynomial, as in Eq. (2), and then using a
numerical technique to find the zeros of this polynomial to

G

m(b)
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approximately 16-digit accuracy. (Since the image is as-
sumed to be band limited and sampled at the Nyquist rate or
higher, it is possible to use the samples of the image to
compute the intensity of the image at any desired point
between the given picture elements and thus to determine
the precise zero-crossing locations.) Equation (7) was then
solved by using a QR decomposition?® and double-precision
arithmetic. In the case of Fig. 1, the image contains 228
independent spectral components, a total of 600 equations
in 454 unknowns were used (the spectral components are
complex and contribute two unknowns), and the normalized
rms error (rms error/rms signal) is approximately 0.000065.
In the case of Fig. 2, the image has 178 independent spectral
components, a total of 600 equations in 354 unknowns were
used, and the normalized rms error is approximately 0.027.

(c :

Fig. 2. Reconstruction of x ray: (a) original image, (b) threshold
crossings of (a), (c) recovered image.
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The entire procedure takes approximately 2 h of CPU time
on a VAX 750, although the exact timing depends strongly
on the number of equations and the number of unknowns.
Roughly one third of this time is spent finding the zero-
crossing points, and the remaining two thirds is spent solv-
ing the linear equations.

In experimenting with different images and different pa-
rameters in the reconstruction algorithm, we found that the
success of this method depends on a number of different
factors. The significant factors appear to be the accuracy of
the zero-crossing points and the degree to which the zero-
crossing points are spread out evenly throughout the picture.
The required accuracy, usually a minimum of 12-14 digits in

(d)
Fig. 3. Effect of different thresholds: (a) threshold, 0.27; (b) image recovered from (a); (c) threshold, 0.64; (d) image recovered from (c).

examples similar to Figs. 1 and 2, is likely to be the limiting
factor in a number of potential applications in which the zero
crossings cannot be measured accurately, either because of
physical limitations or because of the presence of noise.
The degree to which zero-crossing points are spread out
evenly depends on the type of image as well as on the partic-
ular threshold used. For example, we note that the recon-
struction of the image in Fig. 1 was more accurate than that
of Fig. 2, despite the fact that the image of Fig. 2 contains
fewer spectral components and the same number of equa-
tions were used, and that Fig. 1 contains more contours
spread out throughout the picture.

To understand the effect of using different thresholds,
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note that as the threshold is increased or decreased away
from the mean, there will be fewer picture elements on one
side of the threshold than the other and, furthermore, these
picture elements will tend to be concentrated in small areas
of the picture. This means that the threshold-crossing con-
tours will be less evenly distributed throughout the picture,
and the reconstruction process will be less stable. In both
Fig. 1 and Fig. 2 the threshold chosen was somewhere near
the mean value of the image. The mean value is not neces-
sarily the best threshold to use, but the best threshold is
likely to be fairly close to the mean in most images. While
theoretically any threshold is adequate as long as it lies

i e

i

(a)
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between the minimum and maximum values of the signal,
Le., as long as we have at least one threshold-crossing con-
tour somewhere in the image, the threshold can significantly
affect the stability of the reconstruction process. For most
images, there is a range of thresholds for which the recon-
struction works well, and outside this range significant er-
rors occur that increase as the threshold varies further from
this range.

Examples of reconstruction showing the effects of differ-
ent thresholds are given in Fig. 3. This figure illustrates
reconstruction using two different thresholds for the eye
picture shown in Fig. 1. The images are on a scale of 0-1,

(c)

(b)

(d)

Fig. 4. Effect of additional equations: (a) threshold crossings, (b) recovered with 600 equations, (c¢) recovered with 750 equations, (d)

recovered with 900 equations.
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with mean values close to 0.5. Figure 3(a) shows the thresh-
old-crossing contours obtained with a rather small threshold
(0.27), such that most of the picture elements are brighter
than this threshold and the threshold-crossing contours are
concentrated in the center of the picture. Figure 3(b) shows
the image recovered from these contours. Notice that there
are significant errors in the corners of the image, areas that
are farthest from any threshold-crossing contours. This
type of error can be easily understood in terms of common
experience with interpolation and extrapolation problems.
Areas that are close to several zero-crossing contours are
essentially found by interpolation, whereas areas far from
zero-crossing contours are essentially found by extrapola-
tion. Thus we would expect areas close to several zero-
crossing contours to be recovered much more accurately
than those far from any zero-crossing contours. Figures 3(c)
and 3(d) show a larger threshold (0.64), where again we see
distortions in areas far from the threshold-crossing contours.
The threshold used for the reconstruction in Fig. 1 was
approximately 0.5. For this image, the reconstruction is
most successful in the range of thresholds between 0.30 and
0.62. The images shown in Fig. 3 illustrate the artifacts that
occur at the edge of the range of acceptable thresholds.
Farther from this range, the image bears little resemblance
to the original.

One possible method of improving the accuracy of the
reconstruction process is to increase the number of equa-
tions used. Anexample illustrating the effect of using addi-
tional equations is shown in Fig. 4. Figure 4(a) shows the
threshold crossings of the eye image used in Fig. 3, with a
threshold of 0.27. When 600 equations (454 unknowns) are
used, the resulting image [Fig. 4(b)] has significant distor-
tion near the corners, which are far from the threshold-
crossing contours. When 750 equations are used, the result-
ing image [Fig. 4(c)] has improved, but the distortion is still
noticeable. When 900 equations are used, the recovered
image [Fig. 4(d)] appears very similar to the original.

5. CONCLUSIONS

In this paper we have presented new results on the unique
specification of multidimensional signals with zero-crossing
or threshold-crossing information. Our primary result es-
tablished that two-dimensional, periodic, band-limited sig-
nals that are irreducible as polynomials are uniquely speci-
fied to within a scale factor by their zero-crossing contours.
We also extended this result to permit finite-length signals
and to permit crossings of an arbitrary threshold instead of
zero crossings. In addition, we discussed extensions to sig-
nals with dimensions higher than two and to nonperiodic
signals. Since previous results on unique specification of
two-dimensional signals with zero crossings have required
that the signal be bandpass or periodic or that a sine wave be
added to the original signal, the results in this paper repre-
sent an important generalization and extension of previous
results. These results suggest practical applications in
multidimensional signal processing, image processing, and
vision as well as the possibility for use as an analytical tool in
areas such as communications and sampling theory.
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