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Abstract— In this paper we study the problem of optimal
portfolio construction when the trading horizon consists of two
consecutive decision intervals and rebalancing is permitted. It
is assumed that the log-prices of the underlying assets are non-
stationary, and specifically follow a discrete-time cointegrated
vector autoregressive model. We extend the classical Markowitz
mean-variance optimization approach to a multi-period setting,
in which the new objective is to maximize the total expected
return, subject to a constraint on the total allowable risk. In
contrast to traditional approaches, we adopt a definition for
risk which takes into account the non-zero correlations between
the inter-stage returns. This portfolio optimization problem
amounts to not only determining the relative proportions of
the assets to hold during each stage, but also requires one
to determine the degree of portfolio leverage to assume. Due
to a fixed constraint on the standard deviation of the total
return, the leverage decision is equivalent to deciding how to
optimally partition the allowed variance, and thus variance
can be viewed as a shared resource between the stages. We
derive the optimal portfolio weights and variance scheduling
scheme for a trading strategy based on a dynamic programming
approach, which is utilized in order to make the problem
computationally tractable. The performance of this method is
compared to other trading strategies using both Monte Carlo
simulations and real data, and promising results are obtained.

I. INTRODUCTION

It is often stated that many groups of real-world macro-
economic variables are cointegrated, meaning they are well
modeled by a vector autoregressive process containing at
least one common stochastic trend [1]. In these systems,
the time series corresponding to the prices of individual
assets are nonstationary, while the series of first differences
are stationary. In addition, it possible to construct a linear
combination of the signals, i.e. a portfolio, that is stationary,
thereby removing the common source of nonstationarity.
Given the popularity of this model both in the literature and
among practitioners, we address the question of optimal
portfolio construction given a universe of cointegrated assets.

The problem of portfolio construction in cointegrated
vector autoregressive systems has been previously studied.
Early work focused on the use of statistical arbitrage
techniques, such as mean-reverting and momentum
strategies, for trading a stationary linear combination of
cointegrated assets [2]–[4]. More recently, it has been shown

in [5] that these techniques are not optimal in the classical
Markowitz mean-variance sense, and that it is possible to
achieve a higher average return for the same level of risk by
constructing a portfolio that has a component not only in
the direction of bounded variance, but also in the direction
of expected change.

The optimal asset allocation rule in [5] is derived for the case
where there is a single decision interval corresponding to a
finite trading horizon with no ability to rebalance; here we
extend this analysis to consider the case where rebalancing
of the asset holdings is permitted. Attention is restricted
to a two-stage scenario, and the Markowitz framework
is extended to this setting. Ideally, we seek the portfolio
for each stage that maximizes the expected total portfolio
return, subject to a fixed constraint on the portfolio risk.
We define risk as the variance of the sum of the per-stage
returns, rather the sum of the per-stage variances, so that
we may account for the non-zero inter-stage correlations of
the returns induced by our cointegration model. However,
we show that it is not possible to compute such portfolios
exactly, and therefore we consider an approximation based
on a dynamic programming (DP) approach.

The organization of this paper is as follows. In Section II,
we present the cointegrated VAR model and two-period
mean-variance optimization framework. The derivation of
the optimal asset allocation rule for each stage using the
dynamic programming approach is given in Section III.
Simulation results using synthetic data that contrasts our
solution to existing methods are analyzed in Section IV,
followed by a discussion of a trading simulation based on
real, historical data in Section V.

II. PROBLEM FORMULATION

Let xk be a 2-dimensional random vector representing the
log-prices of a set of two assets, that follow a first-order
vector autoregressive, VAR(1), process:

xk−1 = Π1xk + Φdk + εk. (1)

Here the 2× 2 Π1 matrix encodes the temporal dependence
among the component processes of xk; dk is a vector of
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deterministic inputs, often containing a constant or linear
function; Φ is the matrix relating the elements of d to
x; and εk is a 2-dimensional Gaussian random vector
with zero mean and variance Ψ that drives the overall
process. Note that the states are numbered in decreasing
order, so that xk denotes the log-prices of the assets at
the kth stage from the end, as depicted in Figure 1 for the
two-stage case. Throughout this paper, we restrict attention
to the first-order VAR case, but extensions to higher-order
VAR systems follow naturally by augmenting the state space.

The model given in Eq. 1 is said to exhibit the cointegration
property when the matrix defined as Π = Π1 − I is not
of full rank. This occurs when the characteristic equation
contains a root at unity, possibly endowing each of the
underlying time series of xk with a random walk component.
The matrix Π1 has one eigenvalue λ1 = 1 and the other
with the property that |λ2| < 1. Since Π is of rank r < 2
and Π #= 0, it must be true that r = 1, and therefore Π can
be expressed as the outer product of two 2 × 1 vectors, as:

Π = αβT . (2)

The data generated from this random process has finite
variance along the direction given by β, and diverging
variance in the orthogonal direction, denoted as β⊥. The
one-dimensional column space of β is commonly referred
to as the cointegrating space, while the column space of
α is referred to as the space of disequilibrium adjustment
forces. It can be shown that for any b in the span of {β},
bT x is a wide-sense stationary random process [6].

We extend the classical Markowitz mean-variance portfolio
optimization approach [7] to a two-period setting, in which
the objective is to maximize the total expected return of the
portfolio summed across both periods, subject to a single
constraint on the variance of the total return at the end,
rather than a set of constraints on the per-stage returns.
Formally, the optimization problem, P0, is given by:

w∗
1,w

∗
2 = arg max

w1,w2

E
[

wT
1 r1 + wT

2 r2

]

s.t. var
[

wT
1 r1 + wT

2 r2

]

= σ2
0 ,

}

P0

where the per-period vector of individual asset returns, rk,
is defined as the change in the log prices, as:

rk = ∆xk = xk−1 − xk.

The expectation and variance operators are taken with
respect to the information available at the starting time,
denoted as t2. The inner product represented by wT

k rk

denotes the return of the portfolio for stage k. The stages,
like the states, are numbered in reverse order, so that wk

denotes the relative asset holdings in the kth stage from
the end. The portfolio weight vector represents the relative
percentage of wealth to allocate to each asset, where a
positive weight indicates a long position and negative
weight denotes a short position. We allow the portfolio
at any stage to be leveraged, i.e. the market value of the
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Fig. 1. State sequence for two-stage portfolio optimization problem,
with rebalancing. The states (log-prices), times, and stages are numbered
in decreasing order, so that the subscript indicates the distance from the
terminal point.

portfolio may exceed the available wealth, and therefore a
budget constraint of the form 1T wk = 1 is not required.
The degree of leverage is limited by the allowable risk
parameter, σ0.

By introducing a Lagrange multiplier, λ, problem P0

can be rewritten as:

w∗
1,w

∗
2,λ

∗ = arg max
w1,w2,λ

E
[

wT
1 r1

]

+ E
[

wT
2 r2

]

−λ

{

var
[

wT
1 r1

]

+ var
[

wT
2 r2

]

+2cov
[

wT
1 r1,w

T
2 r2

]

− σ2
0

}

.











P
′

0

At first glance, it appears that an exact solution to P
′

0 should
be easy to compute. However, the portfolio over the last
stage, w1, is itself a random variable, as it depends on the
observed value of the state at time t1, i.e. w1 = f (x1). As
the nature of this dependence is unknown, it is not possible
to immediately compute the terms in P

′

0 that depend on
w1, whether in closed form or by numerical methods.
Furthermore, the problem does not map directly into a
dynamic programming context [8], as the mean-variance
cost function given in P

′

0 is not additive over time due to
the non-zero correlation of the per-stage portfolio returns.
Additionally, the problem cannot be expressed as the
expected utility of the total return due to the presence of the
variance operator, which introduces a squared expectation
term into the objective function. To address these limitations,
we consider a relaxation of problem P

′

0 based on the concept
of backwards induction from the DP algorithm. First, the
optimal portfolio for the last stage is determined to within a
scale factor. Once this direction is established, it is possible
to solve for both the direction of the second stage from the
end and the optimal variance scheduling scheme, resulting
in a suboptimal, but computable solution.

III. PORTFOLIO CONSTRUCTION

Here we solve the two-stage portfolio selection problem by
applying the dynamic programming backward recursion. We

!"#$%&'''%()(*%(+,-.,*%/012-3*%)0-4%5677*%899: B.BC>D;E

/?A>



first consider the tail subproblem consisting of only the last
stage, denoted as stage 1 in Figure 1. Looking forward from
this time, there is a single decision interval with a holding
period of one time step, and therefore we can apply the
solution presented in [5] for N = 1, yielding:

w
∗
1 = a1Ψ

−1
Πx1 = a1W1x1, (3)

where a1 is a scale factor or degree of leverage to be
determined via enforcement of the total variance constraint.
Note that the portfolio direction is a linear function of the
state, x1, and thus by applying the backwards recursion
we have determined a particular form for the function
w1 = f (x1).

We now seek the optimal portfolio for the second to
last stage, given our expression for the portfolio for the last
stage. For notational simplicity, let:

z =

(

wT
2 (x1 − x2)

xT
1 WT

1 (x0 − x1)

)

, a =

(

1
a1

)

.

The portfolio for the second stage is computed as:

w∗
2 = arg max

w2

aT µ
z
− λ

{

aT Σza − σ2
0

}

,
}

P1

where µ
z

and Σz are the mean vector and covariance matrix
of z, respectively, exact expressions for which are derived in
Appendix A. The solution to problem P1 is given by:

w
∗
2 =

(

1

2λ
Ψ

−1
Π − a1

(

Π
T
W1 + W

T
1 Π

)

Π1

)

x2. (4)

This expression for w2 has many interesting properties.
First, we observe that Eq. 4 is also a linear function of the
current state, and therefore can be rewritten as w2 = W2x2.
Next, we note that the first term is proportional to Ψ−1Πx2,
which has identical structure to Eq. 3. This component
corresponds to a scaled version of the optimal solution for
a single stage problem beginning at time t2, and thus can
be thought of as the “myopic” component. In this light,
the second term can be viewed as a correction factor that
modifies the myopic solution to account for the uncertainty
of the new log-price information, x1, which becomes
available at the rebalance time, t1. This modification
depends both on the direction and scaling of w1, as is
evidenced by the explicit presence of both a1 and W1

factors in Eq. 4. As shown in Appendix A, this correction
factor results from the non-zero covariance between the
components of the random vector z. In Section IV, we show
that this direction modification has the effect of increasing
the negative correlation between the returns for stages 1 and
2, enabling an increase in the amount of leverage realized
for each period, while maintaining a constant level of total
risk.

All that remains is to determine the precise variance
scheduling scheme, or per-stage leverage amounts that must
be exercised in order to meet the total variance constraint.
We seek values for the scale factors a1 and λ that maximize
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Fig. 2. Geometric view of cointegrated vector autoregressive system in xk

space. The three points represent a single path of the random process defined
by Eq. 5, beginning from x2. The data generated according to this model
has infinite variance along the β⊥ direction, and finite variance in the β
direction. The α vector indicates the direction disequilibrium readjustment
forces.

the objective function given in problem P1. As derived in
Appendix A, we find that:

a∗
1 =

(

1

2λ

)

E[z1] − xT
2 ΠT Ψ−1W1,2x2

var [z1] − xT
2
WT

1,2Ψ
−1W1,2x2

1

2λ
=

σ0
√

xT
2
Ax2 + A2

1

(

var [z1] − xT
2
WT

1,2Ψ
−1W1,2x2

)

where A and W1,2 are defined in Equations 6 and 7. While
we have chosen to focus here on the two-stage case for
simplicity and clarity, extending to the N stage case follows
naturally by augmenting the z and a vectors, and continuing
to apply the DP backwards recursion.

IV. SIMULATION RESULTS

In order to better understand the portfolio directions and vari-
ance scheduling scheme derived in Section III, we consider a
representative example using data generated from a synthetic
model. We compare the portfolios computed using the DP
approach to a set of three existing techniques, given by:

• The ‘beta’ portfolio: Here the assets are allocated in the
direction given by the β vector from the cointegrated
VAR model, defined according to Eq. 2, irrespective of
the observed state variables. Rebalancing is prohibited,
and the portfolio is scaled in order to meet the variance
constraint. This scheme is commonly used by practi-
tioners, and is the basis for a wide variety of statistical
arbitrage techniques. For additional details, see [2].

• The ‘Markowitz, without rebalancing’ portfolio: The
asset allocation rule is formed by considering a single
decision interval of length N = 2, and applying the
result from [5] for the optimal mean-variance portfolio
in a cointegrated VAR system.

• A ‘semi-myopic’ portfolio: The result from [5] is in-
dependently applied over two consecutive intervals, in
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order to determine the portfolio directions for each
stage. Next, these vectors are appropriately scaled so
that the total variance constraint is maintained. The
name highlights the fact that the directions are chosen
myopically, while the scale factors are not. Additional
details are provided in Appendix B.

We first contrast the behavior of each trading strategy by
examining the second-order statistics of the per-stage and
total returns, computed via Monte Carlo simulations. This
is followed by a comparison of the four asset allocation
schemes using a single, representative sample path.

Consider the following synthetic VAR(1) model, with
no deterministic inputs:

xk−1 =

(

1.18 −0.14
0.51 0.62

)

xk + εk, (5)

where εk ∼ N (0,Ψ) and Ψ = 0.001I. In this system,

α =
(

−0.28 −0.77
)T

and β =
(

−0.66 0.5
)T

, as
depicted in Figure 2. The initial log-price pair for all of the

simulations was chosen to be x2 =
(

3.9 5.5
)T

, and we
are interested in determining the optimal portfolio weights
in all four trading scenarios for the case where the total
level of the allowed risk is given by σ0 = 0.05, or 5%.

The system in Eq. 5 is simulated M=104 times, and
the resulting per-stage and total return statistics are given in
Table I. The table also displays the correlation coefficient
of the inter-stage returns, and it is here that we begin to
gain some intuition for the DP solution. As compared to the
other approaches, the weights derived via the DP approach
achieve a higher negative correlation between the per-period
returns, which enables the per-stage variances to be greater
in magnitude in contrast to alternative algorithms. In fact,
the per-stage variances are each greater than σ2

0 , while the
negative correlation among per-stage returns enables the
total variance constraint to still be met, resulting in a higher
expected return.

Figure 2 illustrates one sample path generated from
Eq. 5. The resulting portfolio directions are illustrated in
Figure 3, while the exact leverage amounts are presented in
Table II. The table also displays the total return achieved
by each strategy for this particular sample path. We find
that the degree of leverage utilized in the DP approach is
greater than all other strategies, which is the main source of
the increased realized return.

V. EXPERIMENTAL RESULTS

Here we compare the performance of the dynamic
programming trading strategy of Section III with the three
strategies described in Section IV, using historical price
data. The selected dataset from [4] consists of the British
Oil (symbol BP.L) stock from the STOXX 50 index, and
a replicating portfolio, or tracking index, constructed from
the remaining 49 assets, so that the two series exhibit the
cointegration property, with no structural breaks or regime
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Fig. 3. Comparison of portfolio directions in the xk space for all four
trading strategies. Since rebalancing is prohibited in the beta and Markowitz
schemes, only a single arrow is shown.
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Fig. 4. Stationary trading indicator signal, z = βT
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when to enter into test portfolios. Portfolios are bought when |z| > 1.5σz

and are sold two periods later.

shifts [3].

Given the BP.L and tracking index datasets, two consecutive
100-day data segments, denoted as xtrain and xtest, were
identified in which the parameters of the VAR model
remained relatively constant. The closing log prices from
November 8, 1999 to March 24, 2000 were used to train
the cointegrated VAR model, while the log prices from
March 27, 2000 to August 11, 2000 were used to test
the trading strategy. A VAR(1) cointegration model with
a constant drift term was fit to the training data using the
ML estimators described in [6]. A significant decrease in
correlation coefficient of the residuals was not achieved by
considering higher-order VAR models.
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Trading Strategy
Stage 2 Stage 1 Total

Mean Var Mean Var Correlation Mean Var
Beta 0.045 0.0015 0.036 0.0016 -0.19 0.081 0.0025

Markowitz, without rebalancing 0.14 0.0015 0.11 0.0021 -0.31 0.25 0.0025
Semi-Myopic 0.18 0.002 0.06 0.0009 -0.24 0.24 0.0025

DP 0.18 0.0045 0.12 0.0039 -0.70 0.30 0.0025

TABLE I

SECOND ORDER STATISTICS OF RETURNS FROM MONTE CARLO SIMULATIONS.

Trading Strategy
Stage 2 Leverage Stage 1 Leverage

Total Return
Asset 1 Asset 2 Asset 1 Asset 2

Beta 0.99 -0.74 0.99 -0.74 0.10
Markowitz, without rebalancing -0.04 -1.22 -0.04 -1.22 0.29

Semi-Myopic -0.50 -1.41 -0.16 -0.46 0.30
DP 0.91 -1.90 -0.33 -0.93 0.34

TABLE II

ACTUAL PORTFOLIO LEVERAGE (% OF INITIAL WEALTH) VALUES FOR SINGLE SAMPLE PATH, WITH σ0 = 0.05.

Trading Strategy
Stage 2 Stage 1 Total

Mean Var Mean Var Mean Var
Beta 0.0207 0.0009 0.0190 0.0006 0.0397 0.0018

Markowitz, without rebalancing 0.0252 0.0014 0.0208 0.0011 0.0460 0.0030
Semi-Myopic 0.0278 0.0020 0.0346 0.0027 0.0624 0.0056

DP 0.0275 0.0016 0.0357 0.0028 0.0631 0.0054

TABLE III

SECOND ORDER STATISTICS OF RETURNS FROM REAL DATA EXAMPLE.

The trading strategy implemented using this dataset
works as follows. For each data point in the test set, we
compute a test statistic, z = βT

x, as shown in Figure 4.
When |z| > 1.5σz , a decision is made to “enter the market”,
here resulting in 8 entry points. The portfolio weights for
the next two days (stages) are computed according to each
strategy using σ0 = 0.05. The per-stage and total return
statistics are displayed in Table III. We note that the total
variances reported in Table III are not equal to σ2

0 , which
is due not only to the small sample size but also the fact
that we are averaging over initial values of x2. We observe
that all of the approaches achieved an average return in the
second stage from the end between two and three percent.
However, in the last stage from the end, the DP and semi-
myopic strategies beat the two non-rebalancing strategies by
over one percent, due to the fact that they take advantage of
the new log-price information that becomes available at the
rebalance point. As a result of this truly dynamic trading
methodology, these strategies achieve a higher total return
for each initial condition, while maintaining a constant level
of total risk. As we saw in the Monte Carlo simulations of
Section IV, it is the DP strategy that is able to achieve the
highest expected return, due to the increase in the negative
correlation of the inter-stage returns.

APPENDIX A

In this Appendix we derive expressions for µ
z
, Σz, w2, a1,

and λ. We begin with µ
z
, and recall that all expectations are

computed with respect to the information available at the

beginning of the second to last stage, time t2. Let

z =

(

z2

z1

)

=

(

wT
2 (x1 − x2)

xT
1 WT

1 (x0 − x1)

)

,

and we have:

E[z2] = E
[

w
T
2 (x1 − x2)

]

= w
T
2 E [Πx2 + ε2]

= w
T
2 Πx2,

E[z1] = E
[

x
T
1 W

T
1 (x0 − x1)

]

= E
[

x
T
1 W

T
1 Πx1 + x

T
1 W

T
1 ε1

]

= E
[

x
T
1 W

T
1 Πx1

]

= x
T
2 Π

T
1 W

T
1 ΠΠ1x2 + trace

[

W
T
1 ΠΨ

]

,

where W1 = Ψ−1Π. We now compute each of the terms
in Σz. The variance of z2 is easily computed as:

var [z2] = var
[

w
T
2 (x1 − x2)

]

= w
T
2 Ψw2.

In order to compute the variance of z1, we invoke the law
of total variance, as:

var [z1] = var [E [z1|x1]] + E [var [z1|x1]]

= var
[

x
T
1 W

T
1 Πx1

]

+ E
[

x
T
1 W

T
1 ΨW1x1

]

.

We now define the symmetric matrix A as:

A ! W
T
1 Π = Π

T
Ψ

−1
Π = W

T
1 ΨW1, (6)
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Accordingly, we can express the variance of z1 as:

var [z1] = var
[

x
T
1 Ax1

]

+ E
[

x
T
1 Ax1

]

= 4xT
2 Π

T
1 AΨAΠ1x2 + 2trace [AΨAΨ]

+x
T
2 Π

T
1 AΠ1x2 + 2trace [AΨ]

Lastly, the covariance is computed as:

cov [z1, z2] = E [z2z1] − E [z2]E [z1]

= E
[

w
T
2 (Πx2 + ε2) z1

]

− E [z2]E [z1]

= w
T
2 E [ε2z1]

= w
T
2 E

[

ε2x
T
1 W

T
1 (Πx1 + ε1)

]

= w
T
2 E

[

ε2x
T
1 W

T
1 Πx1

]

= w
T
2 E

[

ε2 (Π1x2 + ε2)
T

W
T
1 Π (Π1x2 + ε2)

]

= w
T
2 Ψ

(

Π
T
W1 + W

T
1 Π

)

Π1x2

= w
T
2 W1,2x2. (7)

Now that we have all of the terms in µ
z

and Σz, we
can compute w∗

2 by differentiating the objective function in
Problem P1 with respect to w2, as:

0 = Πx2 − λ2Ψw2 − 2λa1W1,2x2

w
∗
2 =

1

2λ
Ψ

−1 (Πx2 − 2λa1W1,2x2)

=

(

1

2λ
Ψ

−1
Π − a1

(

Π
T
W1 + W

T
1 Π

)

Π1

)

x2.

The scale factor applied to the last stage can be found by
differentiating the objective function in Problem P1 with
respect to a1, as:

0 = E[z1] − 2λa1var [z1] − 2λcov [z1, z2]

= E[z1] − 2λa1var [z1] − 2λw
T
2 W1,2x2

= E[z1] − 2λa1var [z1] − x
T
2 Π

T
Ψ

−1
W1,2x2

+2λa1x
T
2 Π

T
1

(

Π
T
W1 + W

T
1 Π

)

W1,2x2

a∗
1 =

(

1

2λ

)

E[z1] − xT
2 ΠT Ψ−1W1,2x2

var [z1] − xT
2
WT

1,2Ψ
−1W1,2x2

=
1

2λ
A1

Finally, the value of the quantity 1

2λ
is found to be:

σ2
0 = w

T
2 Ψw2 + a2

1var [z1] + 2a1w
T
2 W1,2x2

=

(

1

2λ

)2
[

x
T
2 (Π − A1W1,2)

T
Ψ

−1 (Π − A1W1,2)x2

+A2
1var [z1] + 2A1x

T
2 (Π − A1W1,2)

T
Ψ

−1
W1,2x2

]

1

2λ
=

σ0
√

xT
2
Ax2 + A2

1

(

var [z1] − xT
2
WT

1,2Ψ
−1W1,2x2

)

,

where A is defined according to Eq. 6.

APPENDIX B

Here we present the problem formulation and solution for the
semi-myopic approach. The two stage problem is solved as
two consecutive one stage problems, in which the direction
of the portfolio for each stage is selected to be equal to
the optimal action for a single stage problem, with no
consideration given to past or future stages. Once these
directions are computed, the degree of leverage is determined
so that the total expected return is maximized while ensuring
that the variance constraint is met. Applying the approach in
[5] independently for each period, we have:

w
∗
2 = a2Ψ

−1
Πx2,

w
∗
1 = a1Ψ

−1
Πx1,

where the ak’s are scale factors that determine the degree
of leverage of the portfolio at stage k. These factors are
determined by solving problem P2, as:

a∗
1, a

∗
2 = arg max

a1,a2

a′T µ
z
′ − λ

{

a′T Σz
′a′ = σ2

0

}

,
}

P2

where:

z
′ =

(

xT
2 ΠT Ψ−1 (x1 − x2)

xT
1 ΠT Ψ−1 (x0 − x1)

)

,

a
′ =

(

a2

a1

)

,

and µ
z
′ and Σz

′ refer to the mean vector and covariance
matrix of z′, respectively. The optimal scale factors are:

(

a∗
2

a∗
1

)

=
1

2λ
Σ

−1

z
′ µ

z
′

1

2λ
=

σ0
√

µT
z
′Σ

−1

z
′ µ

z
′

.
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