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Abstract— We study the problem of optimal portfolio con-
struction when the log-prices follow a discrete-time cointegrated
vector autoregressive model. We follow the classical Markowitz
mean-variance optimization approach, and derive expressions
for the optimal portfolio weight vector over a single decision
interval, both for a finite-time horizon and in the limit of an
infinite horizon. It is often stated in the literature that given
assets whose price dynamics exhibit cointegration, the portfolio
weights should be chosen from the space of cointegrating
relations, resulting in what is commonly referred to as the beta

portfolio. However, we show here that the optimal action in the
mean-variance sense for a finite trading interval is to buy the
portfolio with a component both in the beta direction and a
component in the direction of expected change. Furthermore,
we prove that the beta portfolio is optimal only in the limit
of an infinite trading horizon. Additionally, we derive the
conditions under which the optimal portfolio is proportional
to the disequilibrium readjustment forces of the cointegration
model. Our results rely on a careful eigenanalysis of the
underlying state space model, in which we derive a closed
form solution for the optimal Markowitz portfolio, which is
well-behaved despite the nonstationarity of the underlying price
dynamics. We demonstrate our results with evaluations using
both simulated and historical data.

I. INTRODUCTION

Over the last three decades, many authors have shown
that there exist groups of real-world economic time series
that follow a vector autoregressive (VAR) process, and
that these signals may share one or more unit roots, a
property known as cointegration [1], [2]. While each of the
underlying signals of the vector process is nonstationary
due to the random walk component, the corresponding first
difference series are wide-sense stationary. Furthermore,
when a VAR model exhibits cointegration, it is possible
to construct a linear combination of the underlying time
series that is stationary, by choosing coefficients from
within the space of cointegrating vectors. In this paper,
it is assumed that a set of cointegrated financial products
has been identified through some means, such as the
methods described in [3], and we address the question of
how to construct portfolios using only this universe of assets.

The trading of cointegrated assets has been previously
discussed in the literature [4]–[6]. A common theme within
these works is the reliance on statistical arbitrage techniques
for trading the stationary linear combination, such as
the methods described in [4], [7]. One such technique is

a mean-reverting scheme, in which the entire portfolio
is bought when the stationary signal deviates from its
mean by a predetermined threshold, and the position is
closed when the signal mean reverts. Here, we show that
portfolios bought purely in the direction of a cointegrating
vector are not optimal in the traditional Markowitz mean-
variance sense for single-period, finite trading horizons, and
we derive a closed-form expression for the optimal portfolio.

The asset allocation rule derived here maximizes the
expected return on the portfolio given a constraint on the
variance of the return, for a fixed time horizon, under
the assumption that rebalancing at intermediate times
is prohibited. It is commonly believed that constructing
mean-variance optimal portfolios in cointegrated systems
is ill-posed due to the fact that the underlying dynamics
are nonstationary. In particular, the random variable
corresponding to the change in the log-prices has a
covariance matrix that diverges as a function of the trading
horizon. However, we show that there is an additional,
positive expected return to be gained from choosing the
portfolio not only in the direction of finite variance, but
also in the direction of expected change. We show that
only in the limit of an infinite trading horizon, do the
portfolio weights asymptotically approach those in the
cointegrating space. It is also shown that under a slightly
modified set of assumptions, the optimal portfolio weights
are proportional to the disequilibrium readjustment forces
of the cointegration model. Our results are consistent with
the continuous-time solution given in [8].

The organization of this paper is as follows. Section II
contains an overview of cointegrated vector autoregressive
models, their representation in state-space form, and
classical Markowitz portfolio theory. In Section III, a
closed-form expression for the mean-variance optimal
portfolio is derived as a function of the trading horizon and
the solution in the limit of an infinite horizon is presented.
In Section IV, the asset allocation rule for the case where
the variance constraint is replaced by a leverage constraint
is given. The analysis of a synthetic example is discussed
in Section V, and finally the results of a trading simulation
using real, historical data are presented in Section VI.
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II. PROBLEM FORMULATION

Let xi be a p-dimensional random vector representing the
log-prices of a set of assets, that obey the following kth order
vector autoregressive process:

xi = Π1xi−1 + . . . + Πkxi−k + Φdi + εi. (1)

Here the p × p Πj , j ∈ 1 . . . k matrices relate the current
value of each component process to the lagged versions
of the other processes, di is an r-dimensional vector of
deterministic inputs, Φ is a p × r matrix of coefficients
relating the deterministic inputs to the elements of xi,
and εi is a p-dimensional Gaussian random noise vector
with zero mean and variance Ψ. We refer to a model of
this form with k lagged terms as a VAR(k) model. In the
general VAR framework, it is possible to specify constraints
on the matrices Πj so that each component time series
is wide sense stationary. It is also possible to specify
conditions so that the overall system exhibits a special
form of nonstationarity, known as cointegration. This occurs
when the matrix Π !

∑k
j=1 Πj − I is not full rank, due to

the presence of at least one pole on the unit circle, known
as a unit root. Throughout this paper, we assume the unit
roots are located at z = 1. We can express Π as the outer
product of two p × r matrices, α and β, with Π = αβT ,
where r < p denotes the reduced rank of Π. The column
space of β is commonly referred to as the cointegrating
space, and the vectors in the column space of α are referred
to as the disequilibrium adjustment forces. As a result of the
common unit roots, each component of xi is nonstationary,
but it can be shown that for all b in the span of {β}, bT xi

is wide-sense stationary [2].

Equation (1) may equivalently be expressed in state-
space form by augmenting the state vector with all of the
lagged terms of the process. When p = k = 2, we have:

[
x[i]

x[i − 1]

]

︸ ︷︷ ︸
q[i+1]

=

[
Π1 Π2

I2 0

]

︸ ︷︷ ︸
A

[
x[i − 1]
x[i − 2]

]

︸ ︷︷ ︸
q[i]

+

[
I2

0

]

︸ ︷︷ ︸
b

[
Φdi + εi

]
︸ ︷︷ ︸

u[i]

(2)

x[i]
︸︷︷︸
y[i]

=
[

Π1 Π2

]
︸ ︷︷ ︸

cT

[
x[i − 1]
x[i − 2]

]

︸ ︷︷ ︸
q[i]

+
[

I2

]
︸ ︷︷ ︸

d

[
Φdi + εi

]
︸ ︷︷ ︸

u[i]

,

where Ik is the k dimensional identity matrix. Throughout
this paper, we rely extensively on the Jordan canonical form
of the state-space model, where the modes are decoupled as
much as possible. The state transition matrix A is factored
as A = MJM−1, where J is a matrix of Jordan blocks
containing the eigenvalues of the system and M is a matrix
of column vectors containing the generalized eigenvectors,
mi, which are linearly independent, but not necessarily
orthogonal [9]. By construction, the matrix A is n×n, where

n = pk. We assume that each underlying series is nonsta-
tionary, but that the corresponding first difference series are
wide-sense stationary, and thus all of the eigenvalues must
lie either inside the unit circle or at z = 1. Specifically, let
us assume that λ1 = 1 and |λk| < 1 for all k = 2 . . . n.
As a consequence of the special block matrix structure for
A given in Eq. (2), and the additional assumption that the
geometric and algebraic multiplicities for each eigenvalue
coincide, the n eigenvectors have the following block form:

mi =
(
m̃T

i λ−1
i m̃T

i . . . λ
−(k−1)
i m̃T

i

)T

, (3)

where each m̃i is a p × 1 vector, as described in [2].
Subsequently, we shall refer to the m̃i as the base vectors

of the eigenvectors of A.

In order to determine the portfolio weights when the
log-prices for the underlying assets follow a cointegrated
VAR model, we adopt the classical Markowitz portfolio
optimization approach [10]. Let xi be a random vector
representing the current log prices of p assets at time step i,
where the initial log price is given by the vector x0. Also
let ∆x = xN − x0 denote the random variable representing
the change in log price of each asset over a single decision
period, corresponding to a fixed trading horizon of length
N . Since xi follows the Gaussian random process given in
Eq. (1), ∆x is also Gaussian with mean µN and covariance
matrix CN . We maximize the expected portfolio return for
a trading horizon of length N , given an upper bound on
the allowable portfolio risk, using the following quadratic
program, P0:

w∗ = arg max
w

wT µN

subject to wT CNw ≤ σ2
0 ,

}

P0 (4)

where the portfolio weight vector, w, denotes the percentage
of initial wealth to allocate to each asset. A weight with a
positive sign denotes a long position, while a weight with a
negative sign denotes a short position. We allow the overall
portfolio to be leveraged, i.e. the market value of the portfolio
at the entry point may exceed the initial wealth available, and
therefore a constraint of the form 1T w = 1 is not required.
The degree to which the portfolio is leveraged is limited by
the allowable risk parameter, σ0. It is well known that the
solution to problem P0 is given by

w∗ =
σ0√

µT
NC−1

N µN

C−1
N µN . (5)

In the next section, we derive closed-form expressions for
both C−1

N and µN for a cointegrated VAR system, and show
that w∗ = β only in the limit as N approaches infinity.

III. OPTIMAL PORTFOLIO CONSTRUCTION

We consider a universe of p financial assets whose underlying
log-prices follow a cointegrated VAR(k) model, with no
exogeneous stochastic inputs and a constant deterministic
input, so that Φ is a p × 1 vector and di = 1. The constant
terms are included in the model in order to capture the overall
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linear growth trend present in the historical log-prices of
most assets. The mean and variance of the change in log
price of the assets over a period of length N is given by:

E [∆x] = µN = T
[(

AN − I
)
x0

]
+ NΦ (6)

Var [∆x] = CN = T

[
N−1∑

i=0

AiΨ̃
(
Ai

)T

]

TT , (7)

where T =
(
Ip 0p×n−p

)
and Ψ̃ is a pk× pk matrix given

by Ψ̃ = diag (Ψ,0p, ...,0p).

We seek an expression for µN as a function of the
eigenvalues and eigenvectors of the overall system. Equation
(6) can be rewritten as:

µN = TM
(
JN − I

)
M−1x0 + NΦ

= T

n=pk∑

i=1

ci(λ
N
i − 1)mi + NΦ

=
n∑

i=1

ci(λ
N
i − 1)Tmi + NΦ

=
n∑

i=2

ci(λ
N
i − 1)m̃i + NΦ, (8)

where the ci’s are the expansion coefficients of x0 in the
basis defined by {m1, ...,mn} and the last step follows
from Eq. (3) and the fact that λ1 = 1. Thus we see that the
direction of expected change can be expressed as a function
of the base vectors used to describe the block structure of
the eigenvectors of the state transition matrix A from Eq. 2.

We now turn our attention to understanding the behavior
of covariance matrix of ∆x as a function of the trading
horizon, which can be computed using a matrix difference
equation, as:

C̃N = AC̃N−1A
T + Ψ̃ (9)

CN = TC̃NTT .

In order for Eq. (9) to have a steady-state solution, C, it
must satisfy the discrete-time Lyapunov equation, given by:

C − ACAT − Ψ̃ = 0

However, due to fact that A has an eigenvalue at unity, the
difference equation is unstable and C̃N has one eigenvalue
that diverges as N increases. Fortunately, the optimal portfo-
lio weights do not directly depend on CN , but rather on C−1

N ,
which is well behaved. Theorem 3.1 describes the behavior
of the eigenvectors and eigenvalues of both CN and C−1

N as
a function of the trading horizon, N .

Theorem 3.1: When N = 1, the eigenvectors of CN

and C−1
N are aligned with the eigenvectors of Ψ. These

eigenvectors converge to {β,β⊥} as N approaches infinity.
The eigenvalue associated with β converges to a strictly
positive, real-valued scalar, while the eigenvalue associated
with β⊥ diverges in CN and converges to zero in C−1

N .

Proof: Letting Ψ̃ = SST and using Eq. (7), the
covariance matrix for ∆x after N periods is:

CN = T

[
N−1∑

i=0

AiΨ̃
(
Ai

)T

]

TT

= T

[
N−1∑

i=0

MJiM−1SST
(
M−1

)T
JiMT

]

TT

= TM

[
N−1∑

i=0

(
JiM−1S

) (
JiM−1S

)T

]

MT TT

= TM

N−1∑

i=0





ci
1,1q

T
1 q1 . . . ci

1,nqT
1 qn

ci
2,1q

T
2 q1 . . . ci

2,nqT
2 qn

...
...

ci
n,1q

T
nq1 . . . ci

n,nqT
nqn




(TM)T

,

where ci,j = λiλj and qi is the ith column of the matrix
Q = M−1S. Using the fact that λ1 = 1, we can evaluate
the summation as C̃N = MKMT , where:

K =





NqT
1 q1 . . .

1−cN
1,n

1−c1,n
qT

1 qn

1−cN
2,1

1−c2,1
qT

2 q1 . . .
1−cN

2,n

1−c2,n
qT

2 qn

...
...

1−cN
n,1

1−cn,1
qT

nq1 . . .
1−cN

n,n

1−cn,n
qT

nqn




.

Multiplying through we get:

CN =
n∑

i=1

n∑

j=1

Ki,jm̃im̃
T
j .

As N approaches infinity, the first term, NqT
1 q1m̃1m̃

T
1 ,

dominates the summation, causing the covariance matrix
to diverge in the direction of m̃1 = β⊥. Hence C∞ has
one eigenvector in the direction of β⊥ with corresponding
eigenvalue of infinity, and the second eigenvector in the
direction of β with a bounded eigenvalue denoted by γ. The
inverse covariance matrix C−1

∞ has the same eigenvectors as
CN , with eigenvalues of zero and 1

γ
, respectively.

As a result of the zero eigenvalue in the direction of β⊥, the
optimal portfolio in the limit of an infinite trading horizon is
in the direction of β, independent of the direction of µ∞.

IV. LEVERAGE CONSTRAINT

In this section, we address how to construct the portfolio
when the variance constraint is replaced by a leverage
constraint, i.e. a constraint on the length of the portfolio
vector, such as wT w = 1. We find that the optimal action is
to choose the portfolio in the direction of expected change,
which in certain cases may be equal to the α vector.

Theorem 4.1: Given a constraint on the degree of portfolio
leverage, the optimal portfolio weight vector for a trading
horizon of length N is proportional to the direction of
expected change, as:

w∗
N ∝ µN =

n∑

i=2

ci(λ
N
i − 1)m̃i + NΦ,

!H<!



−30 −20 −10 0 10 20 30

−20

−15

−10

−5

0

5

10

15

20

N=6

N=9

β
⊥

β

Fig. 1. Evolution of Covariance Matrix Principal Axes. The lengths of the
axes are proportional to the corresponding eigenvalues.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Log prices - asset 1

L
o
g
 p

ri
ce

s 
- 

a
ss

e
t 

2

*

( 1)

w

N

α=

=

β⊥

*

( )

w

N

β=

= ∞

0x
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the trading horizon (N) increases.

where the m̃i are the base vectors used to construct the block
form of the generalized eigenvectors, as defined in Eq. (3).
In the limit of an infinite trading horizon and when Φ = 0T ,
the optimal weight vector is in the direction of

w∗
∞ ∝ −

n∑

i=2

cim̃i.

Proof: According to the Cauchy-Schwartz inequality,
the inner product wT µN subject to wT w = 1 is maximized
when the vector w is chosen to be proportional to µN . By
Eq. (8) and the fact that |λi| < 1 for i = 2 . . . n and Φ = 0T ,
the limit follows.

As a special case, we consider a two asset system following
a cointegrated VAR(1) model. When Φ = 0T , the direction
of the optimal portfolio is equal to the disequillibrium
readjustment force, α, as stated in Theorem 4.2.

Theorem 4.2: Given a cointegrated VAR system with
k = 1 and p = 2 and Φ = 0T , the optimal leverage-

constrained portfolio is proportional to α for all N .

Proof: Recall that the matrix Π can be factored as:

Π = Π1 − I2 = MJM−1 − I2

=
(
m1 m2

) (
0 0
0 λ − 1

) (
m1 m2

)−1

=
(
m1 m2

) (
0 0
0 λ − 1

) (
n1

n2

)

= (λ − 1)m2n
T
2 ,

where nk is the kth row of M−1. We also know that Π has
rank 1, and it therefore can be written as the outer product of
two 2×1 vectors, as Π = αβT . Equating both factorizations,
we see that m2 must be proportional to α. According to
Theorem 4.1, w∗

N will be proportional to m2 for all N , and
hence proportional to α.

V. SIMULATION RESULTS

Let us now consider a synthetic example for a VAR(1)
system of two assets with input driving covariance given
by Ψ = I, and no deterministic inputs, i.e. Φ = 0T .
The principal axes of CN are initially aligned with the
unit vectors in the plane, and converge to {β,β⊥} as N
increases, as depicted in Figure 1. The eigenvalue associated
with β converges to γ = 1

1−λ2 , while the eigenvalue
associated with β⊥ diverges. The inverse covariance matrix,
C−1

N , has the same eigenvectors as CN , but eigenvalues
that approach 1 − λ2 and zero. The mean-variance optimal
portfolio weights for this example can be computed as a
function of N using Eq. (5). We find that for N = 1 the
weights are proportional to α, and converge to β as the
trading horizon increases, as depicted in Figure 2. The initial

log price pair was chosen to be x0 =
(
0.3 0.5

)T
, which

represents a state of mispricing relative to the long-term
equilibrium vector, β⊥. Only in the limit of an infinite
horizon is the optimal portfolio in the direction of β.

In Figure 3, we explore the mean-variance tradeoff of
various portfolios by utilizing the concept of a leverage
constraint, as discussed in Section IV. We compare the
expected return as a function of trading horizon for the three
portfolios corresponding to w = α, w = β, and w = w∗,
the mean-variance optimal portfolio, with each normalized
so that ||w||2 = 1. Again, the initial log price pair was

chosen to be x0 =
(
0.3 0.5

)T
. The highest expected

return is achieved with the α portfolio, due to the fact that
in a VAR(1) model with two assets µN is proportional to α
independent of trading horizon, however, the variance of this
portfolio grows linearly with increasing N . The β portfolio
has smaller expected return, but the variance converges to a
finite quantity. The optimal portfolio is aligned with α for
small N , but as N increases and the variance grows, the
optimal weight vector w∗ is pulled toward β in order to
satisfy the variance constraint, until it is perfectly aligned
with β in the limit of an infinite trading horizon.

!H<>



5 10 15 20 25
0

0.5

1

1.5

2

2.5

Trading Period Horizon

E
xp

e
ct

e
d
 R

e
tu

rn
 (

%
)

α

β

optimal

Fig. 3. Expected return as a function of trading horizon, with portfolio
standard deviation bars.

Nov99 Dec99 Jan00 Feb00 Mar00 Apr00 Jun00 Jul00 Aug00
5.5

6

6.5

True BP.L

L
o
g
 p

ri
ce

s

Nov99 Dec99 Jan00 Feb00 Mar00 Apr00 Jun00 Jul00 Aug00
5.5

6

6.5

Replicated BP.L (Tracking Index)

L
o
g
 p

ri
ce

s

Training                           Test

Training                           Test

Fig. 4. Daily closing log prices for BP.L and the corresponding synthetic
asset.

VI. EXPERIMENTAL RESULTS

In this section we compare the performance of a portfolio
constructed using the mean-variance optimal weights given
in Eq. (5), with a portfolio whose weights are chosen in
the direction of the cointegrating vector, β, as is commonly
done. The dataset from [6], which was chosen as the basis
for the experiment, consists of the British Oil (symbol
BP.L) stock from the STOXX 50 index from September 14,
1998 to July 3, 2002, and a replicating portfolio, or tracking
index, constructed from the remaining 49 assets, chosen to
be cointegrated with BP.L. This is a standard construction,
done in order to generate a system in which the log-prices
are actually cointegrated [5]. In order for the results given
in this paper to be applicable, the data under consideration
must exhibit the cointegration property with no structural
breaks or regime shifts. The reliability of such models is

not addressed here, but can be found in [11].

Given the BP.L and tracking index datasets, two consecutive
100-day segments were identified in which the parameters
of the VAR model remained relatively constant, denoted
as xtrain and xtest. The closing log prices of the real and
synthetic asset from November 8, 1999 to March 24, 2000
were used to train the cointegrating VAR model, while
the log prices from March 27, 2000 to August 11, 2000
were used to test the trading strategy, as shown in Figure
4. A VAR(1) cointegration model with a constant drift
term, was fit to the training data using the ML estimators
given in [2], and the corresponding residuals were found to
have a correlation coefficient of 0.3625. Using higher order
VAR models, a significant improvement in the correlation
coefficient was not achieved. Figure 6 contains a scatter plot
of the real BP.L and corresponding replicating portfolio, for
both the training and test data, along with the ML estimates
for the β, β⊥, and α subspaces.

A plot of the signal z = βT xtest is shown in Figure 5. The
signal z is often used as a trade entry indicator due to the
fact that it is a measure of how far xtest is from the β⊥ space.
This signal measures the current state of disequilibrium,
and enables the trader to quickly identify mispricing
opportunities. A trade entry threshold of γ = 1.5σz was
chosen, and the set of potential entry points, I, was
constructed according to I = {i ∈ {1, 2, ..., T} : |zi| > γ},
where T is the number of days in the test set. For each
day indexed by I, the actual returns were computed as a
function of trading horizon, for both the optimal and β
portfolios. Figure 7 shows the excess return generated by
the optimal portfolio over the β portfolio, averaged over all
of the days in I. In the top plot, σ0 = 0.05 for all trading
horizons, while in the bottom plot the allowable standard
deviation grows linearly with the length of the investment
period, i.e. σ0 = 0.001N . The allowable standard deviation
controls the degree to which the portfolio is leveraged, so
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Fig. 5. Trading signal given by stationary signal βT
x, using test data.

When the threshold is γ = 1.5σ0, 14 potential entry points were identified.
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that for the variable risk case, the degree of leveraging
increases linearly with N . For example, when N = 1, the
weights indicate that the trader should short sell 1.9 percent
of the tracking index, and go long 2.8 percent in BP.L,
while for N = 50, the trader is instructed to short sell
148 percent of the tracking index and go long 108 percent
with BP.L. With constant risk, the degree of leveraging
remains relatively uniform for all trading horizons. The
largest improvement in return for the constant risk case
is realized for short horizons, and the amount of excess
return decreases as the optimal portfolio approaches the β
portfolio in the limit as N → ∞. With variable risk, the
degree of improvement initially rises as a function of N ,
as the amount of allowable leveraging increases, however,
the excess return gradually disappears as the mean-variance
optimal portfolio converges to the β portfolio.
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