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Abstract

In this thesis, we consider three main resampling problems. The first is the sampling
rate conversion problem in which the input and output grids are both regularly spaced.
It is known that the output signal is obtained by applying a time-varying filter to the
input signal. The existing methods for finding the coefficients of this filter inherently
tradeoff computational and memory requirements. Instead, we present a recursive
scheme for which the computational and memory requirements are both low. In
the second problem which we consider, we are given the instantaneous samples of a
continuous-time (CT) signal taken on an irregular grid from which we wish to obtain
samples on a regular grid. This is referred to as the nonuniform sampling problem.
We present a noniterative algorithm for solving this problem, which, in contrast to
the known iterative algorithms, can easily be implemented in real time. We show that
each output point may be calculated by using only a finite number of input points,
with an error which falls exponentially in the number of points used. Finally we look
at the nonuniform lowpass reconstruction problem. In this case, we are given regular
samples of a CT signal from which we wish to obtain amplitudes for a sequence of
irregularly spaced impulses. These amplitudes are chosen so that the original CT
signal may be recovered by lowpass filtering this sequence of impulses. We present
a general solution which exhibits the same exponential localization obtained for the
nonuniform sampling problem. We also consider a special case in which the irregular
grid is obtained by deleting a single point from an otherwise regular grid. We refer
to this as the missing pixel problem, since it may be used to model cases in which a
single defective element is present in a regularly spaced array such as the pixel arrays
used in flat-panel video displays. We present an optimal solution which minimizes
the energy of the reconstruction error, subject to the constraint that only a given
number of pixels may be adjusted.
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Chapter 1

Introduction

The field of Digital Signal Processing (DSP), relies on the fact that analog signals

may be represented digitally so that they may be processed using a digital computer.

In this thesis we consider two different digital representations, one which satisfies an

instantaneous sampling relationship, and one which satisfies a lowpass reconstruction

relationship. We discuss the problem of resampling, defined as the process of convert-

ing between two digital representations of the same analog signal, which have different

sampling grids. These grids may be regular or irregular. A primary contribution of

the thesis is the development of efficient algorithms which are suitable for real-time

implementation on a DSP device.

As stated, the problem of resampling is quite broad in scope, and encompasses

a variety of practical problems commonly encountered in the field of DSP. Some of

these problems have already been studied in depth in the current literature while

others have received comparatively little attention.

1.1 Framework

In this thesis, we consider continuous-time (CT) signals which can be modeled by

the mathematical set Bγ which represents the space of all finite energy functions

bandlimited to γ < ∞. Formally, Bγ is the space of all functions x(t) which can be
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expressed in the form

x(t) =
1

2π

∫ γ

−γ

X(ω)ejωt dω, (1.1)

where X(ω), the Fourier transform of x(t), is square integrable over [−γ, γ], and is

taken to be zero outside [−γ, γ]. We will assume γ < π for notational convenience.

This assumption does not restrict us since any bandlimited signal can be mapped

into Bγ for γ < π by rescaling the time axis.

The set of all bandlimited functions is quite large and is rich enough to model

many signals of practical engineering interest. This is because most real-world signals

have some effective bandwidth, i.e., above some frequency they contain very little

energy. Also, an analog lowpass filter can sometimes be introduced to approximately

limit the bandwidth of a signal. This bandlimited assumption is often used when

dealing with analog signals, though in recent times some work has been done in the

area of sampling and reconstruction with spline type functions [38] and other non-

bandlimited CT functions which lie in more arbitrary spaces [1, 7]. However, in this

thesis, we only consider bandlimited signals.

In order to represent the CT signal digitally, two steps are required. First, a

discrete sequence of real numbers must be used to represent the signal, and second,

each of the real numbers must be represented by a finite number of bits. For the cases

which we consider, there is no information lost in the first step, i.e., the sequence of

real numbers perfectly represents the CT signal. In the second step there is usually

a loss of information because of the quantization involved. In this thesis, we will

only establish that small errors in the sequence of real numbers, by some appropriate

metric, will correspond to commensurately small errors in the corresponding CT

signal. A discrete representation which has this property is called stable. For a stable

representation the approximation error can in principle be made as small as needed

by choosing an appropriate number of bits in the digital representation. Therefore

we will assume infinite precision for all quantities which we consider.

The idea that a bandlimited CT signal could be perfectly represented by a discrete

12



sequence of numbers was formalized by Shannon [35] in his seminal work on commu-

nication in the presence of noise. For a historical survey as well as a summary of the

extensions and generalizations of this theorem, sometimes called the WKS sampling

theorem1, see [12, 39, 40]. The sampling theorem states that a bandlimited CT signal

x(t) ∈ Bγ is uniquely determined by its values at the set of regularly spaced times

{tn = nT ;n = 0,±1,±2, . . . }, where T = π/γ. Furthermore, the function x(t) can

be expressed as the pointwise convergent series

x(t) =
∞∑

n=−∞
anφ(t− tn), (1.2)

where φ(t) is given as

φ(t) =
sin γt

γt
. (1.3)

The coefficients in the expansion {an;n = 0,±1,±2, . . . } are the required samples of

the signal, given by

an = x(tn), n = 0,±1,±2, . . . (1.4)

Henceforth we simply use the notation {an} to refer to the set {an;n = 0,±1,±2, . . . }.

We will also use the index set I to refer to the integers, so n ∈ I means n =

0,±1,±2, . . .

W = 1/T is the minimum sampling rate needed, referred to by Shannon as the

Nyquist rate in recognition of the work done by Nyquist [24] on telegraph transmission

theory.

Even though the WKS sampling theorem was formalized around the time of Shan-

non, the concept of representing continuous-time signals as a sequence of values pre-

dates Shannon. The concept of nonuniform sampling was even known to Cauchy, as

indicated by the following statement, attributed to Cauchy by Black [3]:

1The theorem is referred to as the WKS sampling theorem after its originators Whittaker, Ko-
tel’nikov and Shannon.
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“If a signal is a magnitude-time function and if time is divided into

equal intervals such that each subdivision comprises an interval T seconds

long where T is less than half the period of the highest significant fre-

quency component of the signal, and if one instantaneous sample is taken

from each subinterval in any manner; then a knowledge of the instanta-

neous magnitude of each sample plus a knowledge of the instant within

each subinterval at which the sample is taken contains all the information

of the original signal.”

Cauchy’s statement has been made more precise in three theorems by Yen [45] and

two by Yao and Thomas [43], the last of which is often referred to as the nonuniform

sampling theorem. In this thesis, as implied in the above quotation, we use DT rep-

resentations which consist of amplitude-time pairs. However, we do not necessarily

require that each amplitude value correspond to the instantaneous magnitude of the

underlying CT signal. The amplitude-time pairs may be related to the underlying CT

signal in some other way. We require a time-instant to be associated with each am-

plitude value because we wish to accommodate representations which use irregularly

spaced samples. In more traditional signal processing terminology, a DT signal is only

required to have an associated sampling rate. Using our terminology, a DT signal

then, consists of a set of amplitudes {an} and a corresponding set of time-instants

{tn}, and may be written as the pairs {an, tn}. We refer to the set of times {tn} as

the grid, which may be regular, as in the WKS sampling theorem, or irregular. In

this thesis, we restrict ourselves to grids which have a uniform density. Specifically,

if a grid {tn} has a uniform density of W = 1/T , then it satisfies

|tn − nT | ≤ L < ∞; n ∈ I, (1.5)

and

|tn − tm| ≥ δ > 0; n �= m, (1.6)

14



an ✲

✻

tn

IG
pδ(t)✲ φ(t) ✲ x(t)

Figure 1-1: The ideal lowpass reconstruction system.

for some positive δ and finite L.

There may be other ways of representing a CT signal as a sequence of numbers

for which no inherent notion of a grid exists, for example, abstract inner-product

sampling described in [7]. However in the thesis, we use discrete representations

which incorporate both a set of amplitudes and a set of time-instants.

The expansion (1.2) can be interpreted in terms of an ideal lowpass filter as de-

picted in figure 1-1. The block labeled IG is the impulse generator, and is defined

by

pδ(t) =
∞∑

n=−∞
anδ(t− tn), (1.7)

where δ(t) is the Dirac delta function, referred to as a CT impulse. The subscript

δ in pδ(t) is used to indicate that this function is composed of a sequence of CT

impulses, and is the convention which we use in this thesis. pδ(t), defined by (1.7),

is the impulse-train associated with the DT signal {an, tn}. It should be noted that

two different DT signals may have the same associated impulse-train, because an

amplitude value of zero contributes nothing to the sum (1.7). pδ(t) is taken as the

input to an ideal lowpass filter with impulse response φ(t) given by (1.3). The output

of the filter is the bandlimited CT signal x(t). If x(t) satisfies the relationship given by

(1.2) and depicted in figure 1-1, then we shall refer to x(t) as the lowpass reconstruction

of the DT signal {an, tn}.

The lowpass reconstruction relationship can be viewed as a generalization of Shan-

non’s reconstruction formula, where the grid is no longer restricted to be regular.

Problems involving lowpass reconstruction with an irregular grid have not received a

great deal of attention in the literature. More commonly, when dealing with irregular
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x(t) ✲

✻

tn

IS ✲ an

Figure 1-2: The instantaneous sampling system.

grids it is assumed that the amplitudes {an} represent actual values of the underlying

CT signal x(t), i.e., (1.4) holds. In this case, the amplitudes {an} are referred to as

the instantaneous samples of x(t). This notion of instantaneous sampling corresponds

to the usual meaning of the word “sampling” as used in the WKS sampling theorem

and the nonuniform sampling theorem. If a DT signal, {an, tn}, is related to a CT

signal, x(t), by instantaneous sampling, then the signals satisfy

an = x(tn), (1.8)

which defines our instantaneous sampler. We use a block labeled IS to denote the

instantaneous sampler, as illustrated in figure 1-2.

If the grid is regular, then a CT signal, x(t), and a DT signal, {an, tn}, which satisfy

the instantaneous sampling relationship will also satisfy the lowpass reconstruction

relationship (once appropriate conditions on the sampling rate, the bandwidth of x(t)

and the cutoff frequency of the lowpass filter are met). This is not the case in general

for an irregular grid.

1.2 Resampling

If the grid associated with a DT signal is irregular, then we may wish to resample

it onto a regular grid, perhaps for easier processing. Even if the original signal has

a regular grid, we may still wish to resample it so that the sampling rate will match

that of another signal which we may wish to combine with the original signal. In the

thesis, resampling is defined as the process of transforming a DT signal {an, tn} which
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Chapter Input Output

2 lowpass reconstruction instantaneous sampling

3 regular grid regular grid

4 instantaneous sampling regular grid

5 regular grid lowpass reconstruction

Table 1.1: Resampling algorithms discussed in each chapter.

represents a CT signal x(t), into a new DT signal {a′n, t′n} which also represents x(t).

The output grid {t′n} will in general be different from the input grid {tn}. For each of

the DT signals {an, tn} and {a′n, t′n}, the grid may be regular or irregular. If the grid is

irregular then the DT signal may be related to x(t) either by instantaneous sampling,

or by lowpass reconstruction. If the grid is regular, then both relationships will be

satisfied. Thus each DT signal is related to the CT signal either by instantaneous

sampling or by lowpass reconstruction, or both (i.e., a regular grid is being used).

Table 1.1 summarizes the various resampling algorithms that are discussed in each

chapter of the thesis.

Using a regular grid is particularly attractive for a number of reasons. For example,

linear time-invariant (LTI) filtering can be applied to the signal by means of a discrete-

time convolution with the amplitude values [25]. Therefore, in most of the motivating

applications which we consider, either the input or output grid is regular.

The main focus of the thesis is to develop efficient DT resampling algorithms which

are suitable for real-time implementation on a DSP device. We deal with three main

categories of resampling algorithms which have obvious engineering applications. The

first category is that in which the input and output grids are both regular but have a

different spacing. This is equivalent to the problem of sampling rate conversion and

is discussed in chapter 3. In the second category, we are given a DT signal obtained

by instantaneous sampling on an irregular grid, and we wish to resample this to a

regular grid. This is referred to as the nonuniform sampling problem and is discussed

in chapter 4. In the third category, the input grid is regular, and we wish to resample

the signal onto an irregular while maintaining the lowpass reconstruction property.
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x(t) ✲ h(t) ✲ y(t)

Figure 1-3: Continuous-time LTI filtering.

This problem is discussed in chapter 5 and is referred to as the nonuniform lowpass

reconstruction problem. In each case, we provide motivation and highlight the current

state of research presented in the literature.

Before we discuss these three categories of resampling algorithms, we will introduce

a system referred to as the elementary resampler, which is discussed in chapter 2. This

elementary resampler plays a key role in each of the resampling algorithms described

in chapters 3 through 5.

1.3 Notation

This section summarizes the notational conventions used in the thesis. We typically

use n or m as the discrete-time independent variable which is always an integer. The

continuous time variable is typically t. CT signals are written with parentheses as

in x(t), and sequences are either written with square brackets as in x[n] or with the

subscript notation an. The set notation {an} is also used, and is a short hand for

{an;n ∈ I}. CT filters are drawn as shown in figure 1-3, with the input and output

signals being a function of the same time variable. The box is labeled with a third

CT signal, which represents the impulse response of the filter. The CT filter block in

figure 1-3 is defined by the convolution integral,

y(t) = x(t) ∗ h(t) =

∫ ∞

−∞
x(τ)h(t− τ) dτ. (1.9)

DT LTI filters are drawn as shown in figure 1-4, with the input and output signals

using the same index, in this case n. The block is labeled with the filters impulse

response, which also uses the same index. The input-output relationship is defined
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an ✲ h[n] ✲ bn

Figure 1-4: Discrete-time LTI filtering.

am ✲ h[n,m] ✲ bn

Figure 1-5: Time-varying discrete-time filtering.

by

bn = an ∗ h[n] =
∞∑

m=−∞
amh[n−m]. (1.10)

We also define a more general time-varying DT filter which is drawn as shown in

figure 1-5, with the input and output signals using different time variables. The block

is labeled with the kernel which is a function of both variables. The input output

relationship is defined by

bn =
∞∑

m=−∞
amh[n,m]. (1.11)

We use lower case letters for time domain signals, and the corresponding capital

letters for the CT or DT Fourier transforms. For example, B(ω) is the DT Fourier

transform of bn, defined by

B(ω) =
∞∑

n=−∞
bne

−jωn, (1.12)

and X(ω) is the CT Fourier transform of x(t), defined by

X(ω) =

∫ ∞

−∞
x(t)e−jωt dt. (1.13)
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We use the dot notation as in ẋ(t) to represent differentiation, so that

ẋ(t) =
d

dt
x(t). (1.14)

The notation δ[n] is used to refer to the unit sample, sometimes called a DT

impulse, and is defined by

δ[n] =


 1, n = 0;

0, otherwise.
(1.15)

We use u[n] to refer to the DT unit step function defined by

u[n] =


 1, n ≥ 0;

0, otherwise.
(1.16)

δ(t) is Dirac delta function which we call a CT impulse. δ(t) is defined by its

behavior under an integral,

∫ ∞

−∞
x(t)δ(t) dt = x(0), (1.17)

for every function x(t) which is finite and continuous at t = 0. Formally, δ(t) is not

a function, but a distribution. The CT unit step function is written as u(t), and is

defined as

u(t) =


 1, t ≥ 0;

0, otherwise.
(1.18)

r(t) is the CT unit height rectangular (square) window, defined by

r(t) = u(t) − u(t− 1), (1.19)
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or

r(t) =


 1, 0 ≤ t < 1;

0, otherwise.
(1.20)

CT signals which are made up of a countable number of CT impulses are called

impulse-train signals and are written with the subscript δ as in pδ(t).
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Chapter 2

The Elementary Resampler

In this chapter we present a system we refer to as the elementary resampler, which

theoretically involves an ideal CT lowpass filter. This resampler is the simplest case

which we discuss, and is used as a subsystem in the more complicated resamplers

discussed in subsequent chapters. In section 2.1, we present the ideal elementary

resampler. We then focus on practical implementations of the resampler, and present

a general algorithm in section 2.2 which is based on known methods. In section 2.4

we evaluate the performance of this algorithm by considering a design example. In

section 2.5 we consider a special case in which at least one of the grids involved in the

resampling process is regular and in section 2.5.3 we present a method for designing

optimal filters for this special case. Finally, in section 2.5.5 we show that there is an

improvement in performance which can be achieved over the more general case.

2.1 Ideal CT System

The ideal elementary resampler is depicted in figure 2-1. If we let h(t) be an ideal

lowpass filter, then the first two blocks, impulse generator (IG) and filter h(t), repre-

sent the lowpass reconstruction system defined in chapter 1. The third block, labeled

IS represents the instantaneous sampler, also defined in chapter 1. In general, the

filter h(t) may be any CT filter. We will assume that the sequences {an}, {tn} and

{t′n} are known and that we are required to find the sequence {a′n}.

22



am ✲

✻

tm

IG
pδ(t)✲ h(t)

x(t)✲

✻

t′n

IS ✲ a′n

Figure 2-1: The elementary resampler.

am ✲ h(t′n − tm) ✲ a′n

Figure 2-2: Elementary resampler as a time-varying DT filter.

From the mathematical relationships which define each block in figure 2-1, it can

be shown that the corresponds to the equation

a′n =
∞∑

m=−∞
amh(t′n − tm). (2.1)

This is equivalent to the time-varying convolution sum where h(t′n − tm) is the con-

volution kernel. This time-varying filter is depicted in figure 2-2 and is equivalent to

the system of figure 2-1.

2.2 DT System

The elementary resampler described by (2.1) has been analyzed in detail by Ramstad

[28] and others [17, 18, 36], though in the context of uniform grids. Here we describe

an algorithm which is based on this work, and which can be implemented in discrete

time.

In order to be able to evaluate (2.1) we will restrict h(t) to be zero outside the

interval [0, V ). Thus we have the finite sum

a′n =
∑

m
0≤(t′n−tm)<V

amh(t′n − tm). (2.2)
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This sum only has a finite number of terms since the grids are uniformly dense, and

thus cannot have infinitely many points in a finite interval. The coefficients in the

sum, {h(t′n − tm)}, are referred to as the filtering coefficients because (2.2) can be

thought of as a time-varying filter.

Ramstad [28] showed that generating the filtering coefficients in (2.2), could eas-

ily dominate the computation. This is especially true if a complicated, closed-form

expression for h(t) must be evaluated. These filtering coefficients depend only on the

grids and the function h(t), and are thus independent of the input and output signals.

If the grids are periodic with a shared period or if there is some other regular struc-

ture to them, then it may be possible to precalculate and store all required filtering

coefficients. However, in general they must be calculated in real-time. Lagadec et al

[18] proposed a system in which a table of finely spaced samples of h(t) was stored.

Then when the value of h(t) was required at some point, it was simply replaced by

the nearest sample from the table. Smith and Gossett [36] considered performing lin-

ear interpolation of adjacent samples and Ramstad [28] additionally considered cubic

spline or some other form of spline interpolation. Ramstad showed that in each of

these cases, the resulting impulse response can be expressed in the form

h(t) =
N−2∑
n=0

g[n]
bk(t/ε− n)

ε
, (2.3)

where g[n] are the samples stored in the table, ε is the spacing of these samples,

and bk(t) is the kth order non-centered B-spline function. Ramstad concluded that

for smaller values of k, less computation was required in order to achieve a given

reconstruction error, but more memory must be used to store the required coefficients.

Thus there is an inherent tradeoff between computational and memory requirements

for the elementary resampler.

bk(t) is defined by

b0(t) =


 1, 0 ≤ t < 1;

0, otherwise,
(2.4)
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Figure 2-3: The first eight non-centered B-splines.

and

bk(t) = b0(t) ∗ bk−1(t), k ≥ 1. (2.5)

Figure 2-3 shows some of these B-splines for different values of k. It can be shown [38]

that these B-splines and h(t) are piecewise polynomial. Under this restriction, h(t)

is an order k polynomial over N regularly spaced intervals, each of length ε. Thus

mε ≤ t < (m + 1)ε defines the mth interval, where m = 0, 1, 2, · · · , N − 1.

In order to calculate h(t) at an arbitrary point in the interval [0, V ), where V = Nε,

we first let

t = mε + τ ; m ∈ {0, 1, . . . , N − 1}, τ ∈ [0, ε). (2.6)
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The unique m and τ which satisfy (2.6) for any given t are given by

m =

⌊
t

ε

⌋
, (2.7)

and

τ = t−
⌊
t

ε

⌋
ε. (2.8)

The notation �ξ� represents the floor of ξ and is defined as the largest integer which

is less than or equal to ξ.

For any m and τ satisfying (2.6), h(t) can be expressed as

h(mε + τ) =
k∑

i=0

c[i,m]τ i; 0 ≤ τ < ε, (2.9)

where the numbers {c[i,m];m = 0, 1, · · · , N − 1; i = 0, 1, · · · , k}, are referred to as

the polynomial coefficients.

An equivalent form for the expression (2.9) is

h(mε + τ) = c[0,m] + τ
(
c[1,m] + τ

(
c[2,m] + · · · τ (c[k − 1,m] + τc[k,m]) · · · )),

(2.10)

which requires fewer multiplications. It can be shown that the polynomial coefficients

in (2.9) are related to g[n] in (2.3) by

c[i,m] = g[m] ∗ dk[i,m]

εi+1
, (2.11)

where the numbers dk[i,m] are the polynomial coefficients associated with the B-

spline. That is

bk(m + ξ) =
k∑

i=0

dk[i,m]ξi; m ∈ {0, 1, . . . , k}, ξ ∈ [0, 1). (2.12)
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k i m dk[i,m]

0 0 0 1

1 0 1 1

1 1 0 1

1 1 1 −1

2 0 1 1/2

2 0 2 1/2

2 1 1 1

2 1 2 −1

2 2 1 −1

2 2 0 1/2

2 2 2 1/2

k i m dk[i,m]

3 0 1 1/6

3 0 2 2/3

3 0 3 1/6

3 1 1 1/2

3 1 3 −1/2

3 2 1 1/2

3 2 2 −1

3 2 3 1/2

3 3 0 1/6

3 3 1 −1/2

3 3 2 1/2

k i m dk[i,m]

3 3 3 −1/6

4 0 1 1/24

4 0 2 11/24

4 0 3 11/24

4 0 4 1/24

4 1 1 1/6

4 1 2 1/2

4 1 3 −1/2

4 1 4 −1/6

4 2 1 1/4

4 2 2 −1/4

k i m dk[i,m]

4 2 3 −1/4

4 2 4 1/4

4 3 1 1/6

4 3 2 −1/2

4 3 3 1/2

4 3 4 −1/6

4 4 0 1/24

4 4 1 −1/6

4 4 2 1/4

4 4 3 −1/6

4 4 4 1/24

Table 2.1: Nonzero polynomial coefficients for the B-splines (k ≤ 4).

The nonzero values of dk[i,m] for k ≤ 4 are listed in table 2.1.

2.3 Filter Specification

In this section, we look at a design example in which the filter h(t) has a frequency

response H(ω) which is required to meet the lowpass specification described by the

following two conditions;

1 − δp ≤ |H(ω)| ≤ 1; for |ω| ≤ ωp, (2.13)

and

|H(ω)| ≤ δs; for |ω| ≥ ωs. (2.14)

Figure 2-4 shows this specification, along with an example of a frequency response

which meets it. We will optionally require that H(ω) have generalized linear phase

(see [26]), which imposes a symmetry constraint on h(t), and typically implies that a

longer filter is required.
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|H(ω)|
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1 − δp

δs

Figure 2-4: The filter specification used in the thesis.

By taking the Fourier transform of (2.3) it can be shown that

H(ω) = Bk(ωε)G(ωε), (2.15)

where Bk(ω) is the Fourier transform of bk(t), given by

Bk(ω) =
(

sinc
ω

2π

)k+1

, (2.16)

and G(ω) is the DT Fourier transform of the sequence g[n].

If the parameter ε is not sufficiently small, then there may not exist a DT filter

g[n] which allows h(t) to meet the given specification. Ramstad showed that for

larger values of k, we may allow ε to be larger. His argument was based on the

requirement that the error which is introduced be small compared to the step size of

the quantization used in the digital representation of the signal involved. Here we

allow for arbitrary precision in the digital representation used and we show that it is

still possible to choose ε so that h(t) is able to meet the specification.

G(ω) is the DT Fourier transform of a real sequence g[n], and must therefore satisfy

certain symmetry and periodicity properties. In fact, if we know |G(ω)| over the

interval [0, π] then we can determine it everywhere. These symmetry and periodicity
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α
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Figure 2-5: Plot of 〈ω〉α versus ω.

conditions are described by the relationship

|G(ω)| =
∣∣G(〈ω〉π)∣∣ , (2.17)

where the operator 〈·〉α is defined by

〈ω〉α =

∣∣∣∣ω − 2α

⌊
ω + α

2α

⌋∣∣∣∣ . (2.18)

A plot of 〈ω〉α as a function of ω is shown in figure 2-5.

By using (2.15), (2.16) and (2.17), it can be shown that

|H(ω)| =

∣∣∣∣〈ω〉π
ε

ω

∣∣∣∣
k+1

|H(〈ω〉π
ε
)|. (2.19)

This equation describes how |H(ω)| at some arbitrary frequency is related to |H(ω)|
over [0, π/ε].

If we choose ε so that

ε =
2πδ

1
k+1
s

ωp

(
1 + δ

1
k+1
s

) , (2.20)

and we impose the additional restriction on |H(ω)| that

|H(ω)| ≤ δs

∣∣∣∣ 2π
ε
− ω

ω

∣∣∣∣
k+1

; ω ∈ (ωp, ωs), (2.21)

29



✲

✻

☛

0 ωp ωs

δs

∣∣∣∣ 2π
ε
− ω

ω

∣∣∣∣
k+1

π
ε

ω

|H(ω)|

1

1 − δp

δs

Figure 2-6: Filter specification with an additional constraint.

ωp 0.9π 2.82734

ωs 1.1π 3.45575

δp 1 dB allowed passband ripple 0.10875

δs 50 dB attenuation in stopband 0.00316

Table 2.2: Filter specification parameters used in our example.

then (2.13) and (2.14) will only need to be satisfied over [0, π/ε]. It is then guaranteed

that it will be satisfied everywhere. This can be shown directly from (2.19). The

specification which includes this third constraint on |H(ω)| is shown in figure 2-6. We

have found that in practice that this additional constraint (2.21) is sometimes not

required, since filters designed to satisfy (2.13) and (2.14) will typically automatically

satisfy (2.21).

2.4 Design Example

We now look at an example in which the parameters describing the specification are

as shown in table 2.2

Standard filter design techniques such as the Parks-McClellan (PM) algorithm

30



0 2 4 6 8 10 12 14 16 18 20
−60

−40

−20

0

0 2 4 6 8 10 12 14 16 18 20

−80

−60

−40

−20

0

0 2 4 6 8 10 12 14 16 18 20

−100

−50

0

Frequency, ω/π

|G
(ω

ε)
|

|B
k
(ω

ε)
|

|H
(ω

)|

Figure 2-7: |H(ω)| and its factors |G(ωε)| and |Bk(ωε)|.

may be used to design g[n]. This is done so that |H(ω)| will meet the given speci-

fication. When determining the target response and error weighting function which

are used by the design algorithm, we must compensate for the effect of Bk(ω) in

(2.15). The PM algorithm is usually used to design filters which have generalized

linear phase. However we may also use the PM algorithm to design filters with an

unrestricted phase response. We may require these filters to be minimum phase with-

out loss of generality, since for any filter with an unconstrained phase response there

exists a minimum phase filter of the same length which has the same magnitude

response. Minimum phase filters are designed by performing spectral factorization

[34] on linear phase filters. In this case, the linear phase filter is designed to have a

magnitude response which satisfies the square of the specification. A minimum phase

filter designed in this way will always be shorter than the equivalent linear phase

filter, and thus will require less computation.

An actual design example for k = 2 is shown in figure 2-7. As we can see from

31



0 10 20 30 40 50 60 70
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12 14 16 18

−0.5

0

0.5

1

1.5

g
[n

]
h

(t
)

t

n

Figure 2-8: The filters g[n] and h(t). (k = 2, linear phase)

the figure, the stopband ripple for |G(ωε)| follows a curve which is exactly reciprocal

to |Bk(ωε)| over the interval indicated by the shaded region. Thus, |H(ω)| will be

equiripple over this interval. The corresponding filters g[n] and h(t) are shown in

figure 2-8. An example in which k = 1 and h(t) is minimum phase is given in figure

2-9.

2.4.1 Performance

Optimal filters were designed for different values of k. Table 2.3 shows the required

length of g[n] in each case. In the table, we have also given the length of the interval

of support for the filter h(t). We have chosen ε so that 1/ε will be an integer. Though

this is not necessary it greatly simplifies the implementation of our algorithm for the

case in which one grid is regular with an assumed spacing of one. We will look at

this special case in the next section. In table 2.3, we have given the filter lengths for

both linear phase and minimum phase designs. The filter lengths for k = 0 are given
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Figure 2-9: The filters g[n] and h(t). (k = 1, minimum phase)

in parentheses because these numbers are only predicted values. We were not able to

design the filters in this case since the particular filter design tool which was being

used was is not able to design optimal filters longer than about 1500 points.

Figure 2-10 plots the performance of our algorithm for the specification given

in table 2.2. Computation is measured in multiplies per output sample (MPOS),

while memory is measured in terms of the number of constants which we need to

store. In this case, the constants are simply the polynomial coefficients used in the

order of polynomials, k 0 1 2 3 4 5 6

1/ε 143 9 4 3 2 2 2

length of g[n] (linear phase) (2542) 160 72 54 36 36 36

length of g[n] (minimum phase) (2161) 136 60 45 30 29 30

length of h(t) (linear phase) (17.8) 17.9 18.5 19.0 20.0 20.5 21.0

length of h(t) (minimum phase) (15.1) 15.2 15.5 16.0 17.0 17.0 18.0

Table 2.3: Filter lengths for the general elementary resampler.
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Figure 2-10: Performance plot for the elementary resampler (linear phase).

representation of h(t). Each times sign (×) indicates the amount of memory and

computation needed by our algorithm and is labeled with the corresponding value of

k. The gray shaded region represents all points in the memory-computation plane

for which there is an algorithm that has strictly better performance. In other words,

there is an algorithm that either uses less memory, or less computation, or less of

both. In figure 2-10 we have only shown the case in which h(t) is restricted to have

linear phase. Notice that the examples for k = 5 and k = 6 have performance which

is strictly worse than the performance for k = 4. In practice k is never usually chosen

to be greater than 3. In figure 2-11 we show a similar plot in which h(t) is minimum

phase. The lighter shaded region from figure 2-10 is superimposed on this plot for

ease of comparison.
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Figure 2-11: Performance plot for the elementary resampler (minimum phase).

am ✲
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IG ✲ h(t) ✲

✻

t′n = n

IS ✲ a′n

Figure 2-12: Elementary resampler with regular output grid.

2.5 System With One Regular Grid

In this section we consider a specialization of the elementary resampler in which at

least one of the grids is regular. This case is particularly interesting because such

a system is needed in chapters 4 and 5 where we discuss certain problems related

to nonuniform sampling and reconstruction. We will assume that the output grid is

regular, while the input grid remains unconstrained, as shown in figure 2-12. (The

results which we derive here are equally applicable for the case in which the input

grid is instead regular.) For notational convenience, we assume for the remainder of
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Figure 2-13: Elementary resampler with a fixed DT filter.

this chapter that the regular grid has an associated spacing of T = 1.

2.5.1 System With a Fixed DT Filter

In the context of sampling rate conversion, Martinez and Parks [20] and Ramstad

[27, 28] have suggested introducing a fixed LTI filter which operates either on the

input signal or the output signal. It has also been shown [28, 32] that if h(t) in figure

2-12 is a proper rational CT filter, then an equivalent system may be derived in which

a fixed (time-invariant) filter is introduced at the input or the output which allows

the CT filter to be FIR. In the context of rational ratio sampling rate conversion

using an IIR filter, fixed filter(s) at the input or output may be introduced in order

to increase efficiency [30]. In almost all the cases considered, the DT filter which is

introduced is an all-pole IIR filter. In this section, we do not restrict the DT filter to

be IIR, and as we show, this still leads to an improvement in performance.

With reference to figure 2-12, we have assumed that the grid associated with the

output signal is regular, and therefore we may introduce an LTI filter at the output

as depicted in figure 2-13. This LTI filter can be implemented directly in discrete

time using the convolution sum, or an appropriate fast convolution algorithm. We

denote the CT filter (which must be FIR) as f(t), and the DT filter as hD[n]. For any

choice of f(t) and hD[n], there is a filter, h(t) such that the systems of figures 2-12

and 2-13 will be equivalent. The reason we introduce this DT filter is to allow the

CT filter to have a shorter interval of support. That way, fewer coefficients will need

to be calculated in real time, and thus we will be able to improve the performance of

the resampler.

We will first focus our attention on minimizing the length of the CT filter f(t).
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By so doing, we may use the computation and memory requirements associated with

implementing f(t) as a lower bound on the overall performance of our algorithm.

2.5.2 An Implicit Constraint on f(t)

The frequency response specification is given in terms of the over all filter h(t), and

implies certain constraints on f(t) and hD[n]. The constraints on one filter can be

expressed in terms of the other filter. In this section we derive an implicit constraint

on the frequency response of f(t) which is independent of the filter hD[n]. Assume

that we are given a lowpass specification as depicted in figure 2-4, with ωp < π.

It can be shown by writing out the convolution sum for hD[n], that the systems

in figures 2-12 and 2-13 are equivalent if

h(t) =
∞∑

n=−∞
hD[n]f(t− n). (2.22)

By taking the Fourier transform, we get that

|H(ω)| = |F (ω)| · |HD(ω)|, (2.23)

where HD(ω) is the DT Fourier transform of the sequence hD[n], and is therefore

periodic in ω. We will use the same angle bracket notation defined by (2.18) to get

|HD(ω)| = |HD(〈ω〉π)|. (2.24)

If the overall magnitude response |H(ω)| satisfies the conditions implied by the given

specification, i.e., (2.13) and (2.14), then it can be shown from (2.14) and (2.23) that

|F (ω)| ≤ δs

|HD(〈ω〉π)| ; for ω ≥ ωs and 〈ω〉π ≤ ωp. (2.25)

Since we wish to obtain a constraint on |F (ω)|, which does not depend on |HD(ω)|,
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we use the fact that

|F (ω)HD(ω)| ≤ 1; 0 ≤ ω ≤ ωp (2.26)

to impose the tighter constraint

|F (ω)| ≤ δs|F (〈ω〉π)|; for ω ≥ ωs and 〈ω〉π ≤ ωp. (2.27)

This allows us to separate the design of f(t) and hD[n], i.e., f(t) may be designed

with out regard for hD[n]. There is no great loss in using (2.27) instead of (2.25),

since δs|F (〈ω〉π)| is quite close to δs/|HD(〈ω〉π)|. In fact, the former is never smaller

than 1 − δp times the latter over the specified range.

2.5.3 Design of f(t)

In this section, we discuss the filter design algorithm which we use to design f(t) so

that it satisfies (2.27). The design algorithm is inspired by algorithms presented by

Martinez and Parks [19, 20], Ramstad [27] and Göckler [9] which are used in designing

optimal filters for rational ratio sampling rate conversion or straightforward lowpass

filtering. These algorithms design equiripple filters which are composed of two DT

filters in cascade, possibly operating at different rates. One of these filters is FIR and

the other is all-pole IIR. These algorithms work by alternating between optimizing

the second filter while the first is fixed, and optimizing the first filter while the second

is fixed. In all cases tested, the algorithms were found to converge, though no proof

of convergence or optimality was given1. Our algorithm is of a similar nature, but is

used to design a single filter which obeys the implicit constraint (2.27).

We start with a filter f1(t) which is designed so that

|F1(ω)| ≤ δ1; for ω ≥ ωs and 〈ω〉π ≤ ωp, (2.28)

1It was however found in all cases tested that if the two filters operate at the same rate and are
of the same order, then the algorithm converges to an elliptic filter, which is known to be optimal.
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Figure 2-14: Frequency response |F1(ω)|, and magnified stopband.

where δ1 is minimized subject to the constraint that |F1(0)| = 1. This results in a

filter which is equiripple over certain portions of the stopband, as shown in figure

2-14. The filter is only equiripple over the bands that are shaded as we can see in the

magnified lower plot. The thick horizontal lines in the upper plot are used to indicate

the shape of the desired stopband ripple (in this case, flat).

Note that we make the same assumptions about the structure of f(t) as we did

for h(t) in section 2.2, and are thus able to use DT filter design algorithms to design

f(t) as described in section 2.3.

The next step is to design a new filter f2(t) so that

|F2(ω)| ≤ δ2|F1(〈ω〉π)|; for ω ≥ ωs and 〈ω〉π ≤ ωp, (2.29)

where δ2 is minimized subject to |F2(0)| = 1. This new filter has more attenuation

where |F1(〈ω〉π)| is smaller and less where it is bigger, as shown in figure 2-15. The
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Figure 2-15: Frequency responses |F2(ω)|, and |F (ω)|.

thick lines indicate the desired shape of the stopband ripple and are obtained from

the passband of |F1(ω)|.
We then repeat the process, with each successive filter fn(t) being designed so

that

|Fn(ω)| ≤ δn|Fn−1(〈ω〉π)|; for ω ≥ ωs and 〈ω〉π ≤ ωp, (2.30)

where δn is minimized subject to |Fn(0)| = 1. For the cases which were tested, the

algorithm required no more than ten iterations in order to converge to within machine

precision. In fact, the time taken to design each filter in the sequence decreases at

each step since the previous filter can be used as an initial guess for our optimization.

Thus the time required for the algorithm to converge is not significantly greater than

the time required to design the first filter f1(t). The frequency response of the filter

f(t) obtained in this example is shown in figure 2-15, and we see that it is almost

identical to the response of f2(t). We have not proven that the resulting filter is

optimal, but the filters which we have obtained using this method were found to have

very good performance.
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2.5.4 Specification and design of hD[n]

After we have found f(t), which must be FIR, we need to design hD[n] so that the

overall specification on the combined filter h(t) is satisfied. We assume at this point

that f(t) is fixed, and thus it can be incorporated into the requirement on hD[n].

The constraint on f(t) given by (2.27) guarantees that if |H(ω)| satisfies the

specification for |ω| ≤ ωp, then it will also satisfy the specification wherever 〈ω〉π ≤
ωp. Thus we will design hD[n] so that the overall response |H(ω)| will satisfy the

specification in two cases. Firstly where |ω| ≤ ωp; and secondly, where 〈ω〉π > ωp.

These two conditions are satisfied respectively by the conditions

1 − δp

|F (ω)| ≤ |HD(ω)| ≤ 1

|F (ω)| ; for |ω| ≤ ωp, (2.31)

and

|HD(ω)| ≤ min
α

〈α〉π=ω,α≥ωs

δs

|F (α)| ; for ωp < ω ≤ π. (2.32)

We will now verify that if |F (ω)| satisfies (2.27) and |HD(ω)| satisfies (2.31) and

(2.32), then |H(ω)| is guaranteed to satisfy (2.13) and (2.14). We can see that |H(ω)|
satisfies (2.13) by substituting (2.31) into (2.23). In order to confirm that (2.14) is

satisfied for any frequency ω0 ≥ ωs, we consider two cases:

1. 〈ω0〉π ≤ ωp. In this case, (2.27) applies. Also we have that

|HD(ω0)| ≤ 1

|F (〈ω0〉π)| ; for 〈ω0〉π ≤ ωp (2.33)

by substituting (2.24) into (2.31). By combining (2.33) with (2.27) and (2.23),

we get that

|H(ω0)| = |F (ω0)| · |HD(ω0)| ≤ |F (ω0)|
|F (〈ω0〉π)| ≤ δs; for 〈ω0〉π ≤ ωp. (2.34)
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2. 〈ω0〉π > ωp. In this case, by (2.32) and (2.24) we get that

|HD(ω0)| ≤ inf
α

〈α〉π=〈ω0〉π,α≥ωs

δs

|F (α)| ; for 〈ω0〉π > ωp. (2.35)

Now, since ω0 = α implies that 〈ω0〉π = 〈α〉π, we have that

|HD(ω0)| ≤ δs

|F (ω0)| ; for 〈ω0〉π > ωp, (2.36)

or

|H(ω0)| ≤ δs; for 〈ω0〉π > ωp. (2.37)

Once f(t) has been found, hD[n] can be designed to meet (2.31) and (2.32) by

using the PM algorithm with an appropriate target response and error weighting

function. For the |F (ω)| shown in figure 2-15, we plot the |HD(ω)| which was found,

and the combined response |H(ω)| in figure 2-16. The corresponding time-domain

signals are shown in figure 2-17, where we have required that the filters have linear

phase, and k = 1. A second example for k = 3 is shown in figure 2-18, where the

minimum phase solution is given.

2.5.5 Performance Plots

f(t) is implemented as a time-varying DT filter, as shown in figure 2-19. As we dis-

cussed in section 2.4, there is an inherent tradeoff between computation and memory

requirements for implementing this time-varying filter. This tradeoff is controlled by

the parameter k, the order of the polynomials used to construct f(t). By varying

k we were able to design several filters for f(t) which meet the specification given

by table 2.2. A plot showing memory versus computation is given in figure 2-20.

We have superimposed the shaded regions from figure 2-11 here for the purposes of

comparison. Here we can see that for a given amount of memory, we can achieve an

algorithm which uses less computation, and for a given amount of computation, we
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am ✲ f(n− tm) ✲ hD[n] ✲ a′n

Figure 2-19: f(t) as a time-varying DT filter.

can achieve an algorithm which requires less memory.

This comparison is somewhat unfair because the performance of the new elemen-

tary resampler using only f(t) is not the same as the performance of the old one

which uses h(t), unless the effect of the extra filter hD[n] is taken into account. hD[n]

is implemented in discrete time, and it is therefore difficult to determine the ex-

act computational and memory requirements, since there are several algorithms for

implementing a DT filter. For example, there is the direct implementation which in-

volves evaluating the convolution sum. There are also the so called fast FIR filtering

algorithms some of which are presented in [22], and there are FFT based filtering

techniques, such as the overlap-add and overlap-save methods (see [26]). There are

even hybrid techniques which use a combination of FFT based methods, and direct
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Figure 2-20: Performance plot for f(t).

filtering. These implementations each have different computational and memory re-

quirements and the best choice of which implementation to use is not always obvious.

Furthermore, hD[n] is no longer required to be FIR, because rational IIR DT filters

can be implemented by means of a recursive finite difference equation. Even in the

IIR case, there are various methods of implementing the filter. If the poles of the

filter are implemented using a difference equation, the zeros may be implemented by

any of the FIR techniques described above. Since any implementation of hD[n] will

require some computation and some memory, the performance plot shown shown in

figure 2-20 essentially gives a lower bound on the actual performance of our algo-

rithm. In figure 2-21 some points have been added to the plot which account for

the computation and memory requirements of hD[n]. These points are marked with

a times sign (×), and labeled with the corresponding value of k. In this example,

hD[n] was designed as the optimal linear-phase FIR filter. It is assumed that hD[n]

was implemented by directly evaluating the convolution sum. As seen from the plot,

there can be a performance savings over the general elementary resampler even in this
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Figure 2-21: Achieved performance when hD[n] is accounted for (linear phase).

case. This does not represent the best performance achievable, since choosing hD[n]

to be IIR or using some more efficient implementation could potentially improve the

performance. However, in each case, we have an example of an achievable point on

the memory-computation plane. In figure 2-22, we have shown a similar plot. The

only difference being that hD[n] is designed to be minimum phase. Table 2.4 gives

the length of the filters which were designed for different values of k.

order of polynomials, k 0 1 2 3 4 5 6

length of g[n] 693 44 20 14 9 9 9

length of f(t) 4.8 5.0 5.5 5.7 6.5 7.0 7.5

length of hD[n] (linear phase) 64 46 37 19 19 19 21

length of hD[n] (minimum phase) 46 36 29 13 14 14 15

Table 2.4: Filter lengths for the elementary resampler with one regular grid.
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Figure 2-22: Achieved performance when hD[n] is accounted for (minimum phase).

am ✲ hD[m] ✲

✻

tm = m

IG ✲ f(t) ✲

✻

t′n

IS ✲ a′n

Figure 2-23: Elementary resampler with regular input grid.

2.5.6 System With a Regular Input Grid

So far when considering the elementary resampler with one regular grid, we have

assumed that it is the output grid is regular. However, if the input grid is instead

assumed to be regular, then it can be shown that the results derived are equally valid.

Assume that the input grid is regular and has a spacing of one second. In this

case, the DT filter hD[n] is introduced at the input, and operates directly on the input

signal in discrete time. Thus we have the system shown in figure 2-23. By writing

out the relationship between the input and the output, it is not difficult to show that

47



the equivalent overall filter h(t) can be expressed as

h(t) =
∞∑

n=−∞
hD[n]f(t− n), (2.38)

or in the frequency domain as

|H(ω)| = |F (ω)| · |HD(ω)|. (2.39)

This means that the filter design techniques presented in sections 2.5.3 and 2.5.4, and

the performance plots given in section 2.5.5 all apply equally well in this case.
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Chapter 3

Sampling Rate Conversion

3.1 Introduction

Digital audio is typically recorded at several different sampling rates. For example,

compact discs (CDs) use a sampling rate of 44.1 kHz and digital audio tapes (DATs)

use a sampling rate of 48 kHz. Sometimes, audio signals in these different formats

may need to be combined and processed jointly. In that case, sampling rate conversion

must be performed. A common method which is used involves a combination of up-

sampling, filtering, and down-sampling [41]. This works well if the ratio of sampling

rates is a rational number. In many cases, however, the sampling rates are not related

by a rational number. This occurs frequently when trying to synchronize data streams

which are arriving on separate digital networks. For example, in audio applications

we may have a DT system which must output data at 44.1 kHz while the input data

stream is arriving at a frequency which is slightly lower or higher because the clocks

are not synchronized. In fact, the input data rate may be slowly varying in which

case the receiving system must accommodate these variations. In some cases, it is

possible to synchronize the processing system to the incoming data rate. In other

applications, there may be multiple data streams at arbitrary sampling rates. In

these cases, the conversion ratio cannot be assumed to be rational.

The problem of performing sampling rate conversion by a rational ratio has been

studied in detail, eg., in [5, 41, 30] (further references are given in [28]). Methods
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Figure 3-1: Generic sampling rate converter.

have also been proposed which allow for conversion by irrational ratios [33, 28]. These

methods are based on the observation made in chapter 2, that a system which includes

a continuous-time (CT) filter is equivalent to a time-varying DT filter. In these papers,

various choices for the CT filter are proposed. In all cases, the authors conclude that

there is a tradeoff between computational and memory requirements for generating

the coefficients of the time-varying DT filter. The tradeoff can be seen in the design

examples given in sections 2.4 and 2.5.5, and is characterized by the performance plots

in figures 2-10, 2-11 and 2-20. In contrast, the algorithm presented in this chapter is

computationally efficient while requiring very little memory. This is possible because

the coefficients of the time-varying DT filter are calculated recursively1.

We denote the input DT signal as {an, tn}, and the output DT signal as {a′n, t′n}.

The input and output grids are both regular and are given by

tn = nT, (3.1)

and

t′n = nT ′ = n. (3.2)

We have chosen T ′ = 1 without loss of generality.

The sample rate conversion system is depicted in figure figure 3-1, and can be

viewed as a specialization of the elementary resampler with both input and output

1This work was done in collaboration with Paul Beckmann at Bose Corporation [32], and its
use may be restricted by United States patent law [31]. The algorithm presented has since been
implemented in real time by Bose Corporation, and is being used on one of their DSP-based audio
products.
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am ✲ h(n−mT ) ✲ a′n

Figure 3-2: Sampling rate converter as a time-varying DT filter.

grids being regular. Thus an and a′n are related by

a′n =
∞∑

m=−∞
amh(n−mT ). (3.3)

This relationship can also be viewed as a time-varying DT filter, depicted in figure 3-

2. The algorithms and filter design techniques described in chapter 2 may be directly

applied to the sampling rate conversion problem.

In this chapter we choose the system function H(s) to be rational. For example an

elliptic, Butterworth, or Chebyshev lowpass filter. Ramstad [28] showed that in this

case, the CT filter in figure 3-1 can be made to have finite support if a fixed recursive

DT filter is introduced which operates at either the input or output sampling rates.

Ramstad then showed that this finite-support filter can be implemented as described

in chapter 2, by storing finely spaced samples of the impulse response. In this chapter,

we show that by choosing the filter to be rational, we no longer need to store a table

of samples of the impulse response. The required samples at any time-step can be

calculated efficiently from the samples at the previous time-step.

If H(s) is rational and proper, then h(t) can be decomposed by means of a partial

fraction expansion so that it can be expressed as the sum of first and second order

filters. Thus we first consider the case in which h(t) is either a first- or second-order

filter (sections 3.2 and 3.3 respectively), and then we use these results to derive the

general algorithm.
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3.2 First-order Filter Approximation

Consider the case where h(t) in figure 3-1 is a first-order filter. The impulse response

is a decaying exponential which can be expressed in the form

h(t) = αtu(t). (3.4)

where u(t) is the CT unit-step function. By exploiting the structure of an exponential,

we can express h(t) as

h(t) =
∞∑

n=0

hD[n]f(t− n), (3.5)

where f(t) is a finite duration function given by

f(t) = αt
[
u(t) − u(t− 1)

]
= αtr(t), (3.6)

and hD[n] is the decaying exponential sequence

hD[n] = αnu[n]. (3.7)

u[n] is the DT unit step function and r(t) is a unit-height rectangular pulse over the

interval [0, 1) and is defined as

r(t) = u(t) − u(t− 1). (3.8)

The decomposition of h(t) according to (3.5) is illustrated in figure 3-3. As we showed

in chapter 2, if h(t) is expressed in this form, then we may represent the resampler

with the block diagram of figure 3-4.

For any value of m, the function f(n−mT ) is non zero for exactly one value of n

since f(t) is nonzero only over the interval [0, 1). The value of n for which f(n−mT )
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Figure 3-3: f(t), hD[n] and the equivalent filter h(t) (first order case).

am ✲ f(n−mT )
w[n]✲ hD[n] ✲ a′n

Figure 3-4: Sampling rate converter with FIR time-varying filter.

nonzero is

n = �mT � , (3.9)

where �mT � is the smallest integer greater than or equal to mT . Thus f(n − mT )

can then be rewritten as

f(n−mT ) = f(�mT � −mT )δ[n− �mT �]. (3.10)
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We can then express w[n] as

w[n] =
∞∑

m=−∞
ame[m]δ [n− �mT �] , (3.11)

or equivalently

w[n] =
∑

m
n=�mT�

ame[m], (3.12)

where the coefficient e[m] is given by

e[m] = f(τ [m]) = ατ [m], (3.13)

and

τ [m] = �mT � −mT. (3.14)

The summation in (3.11) can then be evaluated directly. For each term, we need to

calculate e[m] and perform a single multiplication. Since e[n] is obtained by evaluating

f(t), an exponential function, this can be computationally demanding. However, a

more efficient scheme exists which takes advantage of the specific shape of f(t) and

the fact that the points at which f(t) is evaluated have a regular structure.

In order to show how to calculate e[n] efficiently, we define

∆[m] = τ [m] − τ [m− 1]

=


 �T � − T, τ [m− 1] < T − �T � + 1;

�T � − T − 1, τ [m− 1] ≥ T − �T � + 1.
(3.15)

∆[m] can take on only two possible values. We denote the non-negative value by ∆+,

∆+ = �T � − T (3.16)
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and the negative value by ∆−,

∆− = �T � − T − 1. (3.17)

We use ∆ to denote either ∆+ or ∆−. Since

τ [m] = τ [m− 1] + ∆, (3.18)

at each time-step τ [m] either increases by a known quantity, ∆+, or decreases by a

known quantity, |∆−|. In either case 0 ≤ τ [m] < 1, for all m.

Comparing (3.13) and (3.18) it can be shown that

e[m] = E · e[m− 1], (3.19)

where

E = α∆. (3.20)

Since there are two possible values of ∆, there are two constants, E+ and E− corre-

sponding to ∆ = ∆+ and ∆ = ∆−, which need to be calculated ahead of time and

stored.

The final step in computing the output is to filter w[n] by h[n]. h[n] is given in

(3.7) and can be implemented by the difference equation

a′n = w[n] + αa′n−1. (3.21)

In this section, we have described a very efficient algorithm for performing sam-

pling rate conversion where h(t), in figure 3-1, is a first-order filter. The equivalent

DT system is shown in figure 3-4. The implementation of this system is summarized

by (3.11), (3.19) and (3.21).
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3.3 Second-order Filter Approximation

Assume that h(t) in figure 3-1 is a second-order CT IIR filter. The impulse response

is a decaying sinusoid which can be expressed in the form

h(t) = γt sin(θt + φ)u(t). (3.22)

It can be shown that this is equivalent to

h(t) =
∞∑

n=0

hD[n]f(t− n), (3.23)

where f(t) is a finite duration function given by

f(t) = γt
{

sin(θt + φ)r(t) − sin(θ(t− 2) + φ)r(t− 1)
}
, (3.24)

and hD[n] given by

hD[n] = γn sin(θ(n + 1))

sin θ
u[n] (3.25)

is the impulse response of a second-order DT IIR filter. The decomposition of h(t) in

(3.23) is illustrated in figure 3-5. The derivation of this result is somewhat lengthy

and not particularly interesting, and is thus omitted. With this choice for f(t) and

hD[n], the system shown in figure 3-4 is still valid.

We see that w[n] is related to am by

w[n] =
∞∑

m=−∞
amf(n−mT ). (3.26)

Since f(t) is nonzero only over the interval [0, 2), the function f(n − mT ) is non

zero for exactly two values of n. These are n = �mT � and n = �mT � + 1. We may
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Figure 3-5: f(t), hD[n] and the equivalent filter h(t) (second order case).

therefore express w[n] in a form similar to (3.11), giving

w[n] =
∞∑

m=−∞
am

{
c[m]δ[n− �mT �] + d[m]δ[n− �mT � − 1]

}
, (3.27)

where

c[m] = f(τ [m]) = γτ [m] sin(θτ [m] + φ), (3.28)

and

d[m] = f(τ [m] + 1) = −γ(τ [m]+1) sin(θ(τ [m] − 1) + φ). (3.29)

τ [n] is defined by (3.14).

For the first-order case, we saw that the coefficient at each step could be calculated

efficiently from the coefficient at the previous step by using (3.19). The corresponding
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equations for the second-order case are:

c[n] = A · c[n− 1] + B · d[n− 1]; (3.30)

d[n] = C · c[n− 1] + D · d[n− 1], (3.31)

where

A = γ∆ (cos ∆θ + sin ∆θ cot θ) ; (3.32)

B = γ(∆−1) sin ∆θ

sin θ
; (3.33)

C = −γ(∆+1) sin ∆θ

sin θ
; (3.34)

D = γ∆ (cos ∆θ − sin ∆θ cot θ) , (3.35)

and ∆ is given by (3.15).

Since A, B, C and D can be predetermined and stored, the coefficients at each

step can be calculated from the coefficients at the previous step by performing only

four multiplications. Since there are two possible values for ∆, two different values

for the constants A, B, C and D need to be calculated and stored. These are denoted

A+, A− etc.

It can be shown by using z-transform techniques that if hD[n] is given by (3.25),

then a′n and w[n] are related by the difference equation

a′n = w[n] + (2γ cos θ)a′n−1 − γ2a′n−2. (3.36)

The coefficients in this equation, 2γ cos θ and −γ2 are constants which can be prede-

termined.

As in the first-order case, the second-order case can be implemented very efficiently

by using the system shown in figure 3-4. The time-varying filter block represents our

efficient evaluation of (3.27) which results from using (3.30) and (3.31) to determine

the coefficients c[n] and d[n].
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3.4 Nth-order Filter Approximation

In section 3.2 we saw how to efficiently simulate the system shown in figure 3-1 where

h(t) was chosen to be a first-order filter. In section 3.3, we saw how to do the same

thing, with h(t) chosen to be a second-order filter. In this section, we show that

these two cases are sufficient to implement any filter with a rational, proper system

function, provided all the poles are distinct.

H(s) is assumed to have N distinct poles and up to N − 1 zeros in the finite

s-plane. A partial-fraction expansion can be performed in order to decompose this

Nth-order filter into the sum of several first- or second-order filters. If there are

Nr poles on the real axis, then there are Np complex conjugate pole pairs, where

Nr + 2Np = N . In performing the partial-fraction expansion, we keep the complex

conjugate pole pairs together, so that we end up with Nr first-order terms and Np

second-order terms. Thus we can obtain an impulse response of the form

h(t) =
Nr∑
i=1

βiα
t
iu(t) +

Np∑
i=1

ζiγ
t
i sin(θit + φi)u(t). (3.37)

h(t) is the sum of Nr first-order terms and Np second-order terms for a total of

M = Nr + Np terms. We refer to each of these terms as hk(t) for k = 1, 2, . . . ,M .

Therefore,

h(t) =
M∑

k=1

hk(t). (3.38)

This decomposition is illustrated in figure 3-6 for a sixth-order IIR filter. By express-

ing h(t) in this form, we can implement the filter h(t) in figure 3-1 using the parallel

structure shown in figure 3-7. By distributing the IS and IG blocks, each branch

then has the same overall structure as the original system shown in figure 3-1. Since

each of the filters is now either a first- or second-order filter, each branch can be

implemented using the methods described in the previous two sections. This results

in the final system shown in figure 3-8.
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Figure 3-6: Sixth-order IIR filter and its three second-order components.

3.5 Summary of Algorithm

In this section, we give an overview of the algorithm, summarizing the implementation

steps. With reference to figure 3-1, we assume that T ′ = 1 and that we are given T .

We also assume that a specification on the frequency response of the filter has been

determined.

3.5.1 Design and Preparation

Here we describe the setup stage of the algorithm, which must be performed before

we start processing the input signal. The following is a list of the setup steps.

1. Design the filter. The filter h(t) must be designed so that its frequency

response meets the given specification. The system function H(s) should be

rational with distinct poles, and must be proper. That is, the order of the

numerator must be less than the order of the denominator. Standard elliptic,
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am ✲

✻

tm = mT

IG ✲ h1(t) ✲ ✲

✻

t′n = n

IS ✲ a′n

✲ h2(t) ✲

✲ hM(t)

❄

❄

Figure 3-7: h(t) implemented with a parallel structure.

am ✲ f1(n−mT )
w1[n]✲ h1[n]

x1[n]✲ ✲ a′n

✲ f2(n−mT )
w2[n]✲ h2[n]

x2[n]✲

✲ fM(n−mT )
wM [n]✲ hM [n]

xM [n]

❄

❄

Figure 3-8: Final system for high-quality sampling rate conversion.

Butterworth, or Chebyshev filters will work. If the filter is elliptic or Chebyshev

type II, then the order should be chosen to be odd so that there is a zero at

infinity, forcing the system function to be proper.

2. Decompose the filter. The filter’s impulse response h(t) should be decom-

posed into terms as explained in section 3.4 so that it can be expressed in the

form given by (3.37). For each first-order term, the parameters α and β must

be found. For each second-order term, the parameters γ, θ, φ and ζ must be

found.

3. Determine the constants. From the filter parameters, the values of the

constants can be precomputed and stored. For each first-order term, E+ and

E− must be determined using (3.20). For each second-order term, A+, A−, B+,
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B−, C+, C−, D+ and D− must be determined using (3.32), (3.33), (3.34) and

(3.35). These constants must be stored and will be used when the algorithm

is running. The plus and minus versions are found by using ∆ = ∆+ and

∆ = ∆− respectively, given by (3.16) and (3.17). Finally, the difference equation

coefficients should be determined and stored. There is one coefficient, α, for

each first-order term as seen in (3.21), and two coefficients, 2γ cos θ and −γ2,

for each second-order term as seen in (3.36). Only the constants, A+, A−, etc..,

and the difference equation coefficients need to be stored. The other parameters

may be discarded.

4. Initialize the coefficients. We need to initialize the values of the coefficient

e[n] for each first-order term and the two coefficients c[n] and d[n] for each

second-order term. If n = 0, then τ [n] = τ [0] = 0. Therefore, for each first-

order term, e[0] = β and for each second-order term, c[0] = ζ sinφ and d[0] =

ζ sin(φ − θ). We obtain these values by first letting τ [0] = 0 in (3.13), (3.28)

and (3.29), and then performing the appropriate scaling.

3.5.2 Runtime Execution

We now describe the runtime stage of algorithm, which is performed while we are pro-

cessing the input signal. Note that this part of the algorithm can be executed in real

time. Since the filter has been decomposed into first- and second-order components

we implement our algorithm in a parallel structure as shown in figure 3-8. There are

two sets of tasks which need to be accomplished. The first set of tasks occur at the

input sampling rate. These are performed whenever the next sample of our input,

an, becomes available. The second set of tasks occur at the output sampling rate,

and are performed whenever the next sample of the output, a′n, is required. We now

describe these tasks in detail.
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(i) Input becomes available.

Whenever the next input sample becomes available we perform the following steps for

each of the branches. The steps are described for the ith branch and the kth input

sample.

1. Determine the sign of ∆ We must determine whether ∆[k] = ∆+ or ∆[k] =

∆− will cause τ [k] in (3.14) to satisfy 0 ≤ τ [k] < 1. If ∆[k] = ∆+, then we use

the plus constants A = A+, B = B+, etc. If ∆[k] = ∆−, then we use the minus

constants A = A−, B = B−, etc.

2. Update the coefficients. If the ith branch is first-order, there is only one

coefficient e[k] which is updated using (3.19). If the branch is second-order,

then there are two coefficients c[k] and d[k] which are updated using (3.30) and

(3.31).

3. Multiply by the input. We then multiply the input x[k] by the coefficient(s)

and add the result(s) to the correct location(s) in wi[n]. For the first-order

case, the result is added to wi[�kT �], in accordance with (3.11). For the second-

order case, there are two results which are added to wi[�kT �] and wi[�kT � + 1]

respectively, in accordance with (3.27).

(ii) Output is required.

Whenever it is time to output the next sample of a′n, the following steps are performed.

Assume we need the kth output sample.

1. Apply the difference equation. We generate the next sample of the out-

put for the ith branch, xi[k], from the intermediate variable, wi[k], using the

appropriate difference equation. This must be done for all M branches. If the

branch is first-order, then the difference equation used is (3.21). If the branch

is second-order, then the difference equation used is (3.36).

2. Sum over the branches. We then add all of the outputs from each branch to
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produce the final output. a′k =
∑M

i=1 xi[k], where M is the number of branches.

We then output this final value a′k.

The two sets of tasks which run at two different rates can be implemented on

a digital signal processing (DSP) chip, with each set of tasks programmed as an

interrupt service routine (ISR). The first set of tasks can be performed by the input

ISR, while the second set can be performed by the output ISR.

3.6 Computational Complexity

In this section, we analyze the computational complexity of our algorithm, measured

in MPOS (i.e., the average number of multiplications needed to produce one sample

of a′n).

For simplicity, we assume that h(t) in figure 3-1 is chosen as a Nth-order elliptic,

Butterworth, or Chebyshev lowpass filter, where N is odd. This implies that H(s)

has one real pole and Np = (N − 1)/2 complex conjugate pole pairs. Consequently

our implementation requires Np +1 branches. We also assume that our input consists

of Q channels which use the same time axis, and which all need to be converted.

For example, a stereo audio signal has two channels, the left channel and the right

channel. This allows us to perform the parts of the algorithm which do not need to

be repeated for each channel only once.

With reference to section 3.5.2(i), step 1 requires no multiplications. Step 2 re-

quires one multiplication for the first-order branch and four multiplications for each

second-order branch. All together we have 2N − 1 multiplications for step 2, inde-

pendent of the number of channels. Step 3 requires one multiplication for the first-

order branch and two multiplications for each second-order branch for each chan-

nel. Thus, the total number of MPOS required for this part of the algorithm is

(NQ + 2N − 1)/T MPOS.

With reference to section 3.5.2(ii), step 1 requires one multiplication for the first

order branch and two multiplications for each of the second-order branches per chan-

nel. Since step 2 does not require any multiplications, we require NQ MPOS to
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Poles
−0.10178 ± 2.82183j
−0.40252 ± 2.32412j
−0.79570 ± 0.97295j

Zeros
±3.52955j
±4.46260j

Table 3.1: Pole and zero locations for the sixth-order IIR filter.

implement the steps in section 3.5.2(ii).

Therefore, for an Nth-order filter with one real pole, our algorithm requires NQ+

(NQ + 2N − 1)/T MPOS to convert Q channels of data. Here N is taken to be odd.

Similarly, we can show that if N were even such that H(s) had no poles on the real

axis, the computation required is NQ + N(Q + 2)/T MPOS.

3.7 Design Example

We now look at a specific example in order to compare the performance of our algo-

rithm with conventional methods which were described in chapter 2. We will use the

same lowpass filter specification which we used in the design examples from chapter

2, given by table 2.2.

In order to meet the specification, a sixth-order filter is required. This filter was

designed using the algorithm developed by Martinez and Parks [19], and Göckler

[9]. The impulse response of this filter and the three second-order partial fraction

components were shown in figure 3-6, while the frequency response is shown in figure

3-9. Table 3.1 lists the s-plane locations of the poles and zeros of the system function.

By using the complexity formula given in section 3.6, we find that 12+24/T MPOS

or 1.59 million multiplications per second are required. Here we assume that Q = 2

and that our sampling rate, 1/T , is 44.1 kHz, which corresponds to the CD audio

standard. We also assume that the input sampling rate is approximately the same as

the output sampling rate.

In order to match the same specification using conventional FIR filter techniques,

a time varying impulse response of length 15 is required (18 if the filter is linear
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Figure 3-9: The magnitude response of the sixth-order IIR filter.

phase). So 15 multiplications per channel are needed for each output sample. That

is 1.32 million multiplications per second—which is actually slightly less than the

proposed method. The most significant difference between the two methods is the

amount of memory required.

If the taps of the time varying filter are generated using nearest-neighbor inter-

polation of a stored impulse response, then no computation is needed for generating

them. This is why only 1.32 million multiplications per second are required. The

disadvantage of using this method of interpolation is that a large table of the CT

impulse response must be stored; the table would need to contain about 2,200 points.

This number can be even larger if the transition band is very narrow.

More typically, linear interpolation is used to generate the taps of the time varying

filter. In that case, one multiplication per tap would also need to be performed

in order to do the linear interpolation. This would increase the total amount of

computation required to 1.98 million multiplications per second. This drastically
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reduces the amount of memory needed. Now only about 270 points need to be stored.

The memory requirements for our algorithm are very small. Only about 35 numbers

need to be stored for the sixth-order IIR filter used in this example.

In order to emphasize the computational efficiency of our algorithm, suppose that

five channels need to be converted (Q = 5), eg., in a digital surround-sound audio

system. In this case, our algorithm actually requires slightly less computation than

the nearest-neighbor FIR technique, even though memory requirements are smaller

by almost a factor of 70. When linear interpolation is used, our algorithm only

requires about 80% of the computation and about 12% of the memory required by

the conventional FIR technique.

If we use the method presented by Ramstad [28] for implementing a rational filter,

then the savings are not as dramatic. Assume that we wish to implement the same

sixth-order IIR filter which we have used in this section. Then a time-varying filter

with six taps must be implemented. Let us also assume that the computation allowed

for calculating the coefficients is the same as for the proposed method, with two

multiplications used for updating each coefficient. This corresponds to a quadratic

interpolation of the stored impulse response. Then about 72 points need to be stored

which is about twice that required by the proposed method.

We present a single plot in figure 3-10 which we use to compare the performance of

the proposed algorithm with that of the algorithms presented in chapter 2. Because

our algorithm requires the use of a causal IIR filter which cannot have a linear phase,

we make the comparison with the minimum phase versions of the filters from the

previous chapter. Each plus sign (+) represents our discrete-time implementation of

the system shown in figure 2-1 and each times sign (×) represents our implementation

of the system of figure 2-13. In each case, we have given several points corresponding

to a different values of k. Our algorithm calculates the required filter recursively and

does not require a table of impulse response values to be stored. Consequently, there

is no inherent trade-off between computation and memory. The performance of our

algorithm is therefore represented as a single point, marked with an asterisk (×+). We

have superimposed the gray shaded regions from figure 2-20 for ease of comparison.
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Figure 3-10: Performance plot for the proposed algorithm.

As a final note, we have presented an implementation in which the fixed recur-

sive part of the filter operates at the output sampling rate, while the time-varying

FIR part operates at the input sampling rate. A different implementation can be

derived in which the fixed recursive part operates at the input sampling rate, while

the time-varying FIR part operates at the output sampling rate. In either case, the

coefficients of the time-varying filter can be calculated recursively. Depending on

whether sampling rate is being increased or decreased, one of these implementations

may offer some computational advantage over the other.
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Chapter 4

Nonuniform Sampling

4.1 Introduction

In this chapter, we discus a particular resampling algorithm in which we are given

a DT signal representing the instantaneous samples of a CT signal on an irregular

grid. We then wish to resample this DT signal onto a regular grid, in order to

facilitate subsequent processing, or to allow for a more straightforward reconstruction

procedure.

This resampling problem has motivation in various engineering applications, in-

cluding problems relating to communication, medical and underwater imaging and

analog to digital (A/D) conversion. References for these and other examples can be

found in [1]. In each case, the samples obtained are instantaneous values of some

underlying continuous function and the goal is to reconstruct the original function.

By resampling onto a regular grid, we allow the reconstruction to be accomplished

by lowpass filtering.

The Shannon sampling theorem has been extended by Yen [45], Yao and Thomas

[43] and others (see [1] for a comprehensive review) to allow for sampling times which

are not uniformly spaced. Several slightly different versions of the nonuniform sam-

pling theorem have arisen. The differences lie in the spaces of functions being consid-

ered and the different classes of sampling times which are permitted. The theorem

essentially says that a bandlimited signal x(t) is uniquely determined by knowledge
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of its samples {an = x(tn)} as long as the sampling times {tn} occur at a rate which

is on average higher than the Nyquist rate. Yao and Thomas [43] showed that even

though a signal x(t) is uniquely determined by is samples {x(tn)}, the correspond-

ing sampling expansion may not be stable. In order to be stable, Yao and Thomas

required that small errors in the sample values correspond to commensurately small

errors in the signal. Examples of sets of sampling times which lead to stable and

unstable sampling expansions were given.

The reconstruction formula, taken from [45] and [43], is presented in section 4.2

where we discuss some of the associated implementational difficulties. Because of

these difficulties, many of the reconstruction algorithms for the nonuniform sampling

problem have been based on iterative methods [10, 1, 2, 4, 21, 42] (with the notable

exception of [8]). There are some disadvantages to using theses iterative methods.

For example, the algorithms are proven to converge when ideal filters are used, but

convergence is not guaranteed for approximate filters. Also, these iterative algorithms

are not well suited to real-time implementation on a DSP device. These algorithms

are usually implemented off-line so that at each step of the iteration, the entire signal

may be processed. It may be possible to restructure these iterative algorithms so

that each iteration can be implemented as a real-time system, with a number of these

systems in cascade. In this case, the overall system can be decomposed into several

identical subsystems. We therefore expect that a system which is not constrained

in this way, but which uses the same amount of computation, will be able to give a

smaller reconstruction error.

The main contribution of this chapter is to derive a possible alternate reconstruc-

tion system which is not iterative. This algorithm is based on the reconstruction

formulae given by Yen [45] and Yao and Thomas [43], and preliminary results suggest

that it may be able to outperform traditional iterative methods. Eldar and Oppen-

heim [8] have presented a noniterative reconstruction algorithm based on a filterbank

implementation, which is valid only for sampling grids which are periodic. Further-

more, the structure of their algorithm is significantly different for grids with different

periods. The algorithm presented in this chapter is the same for any periodic grid,
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and is even valid for certain nonperiodic grids.

In section 4.2 we present an ideal CT system which is equivalent to the reconstruc-

tion formula given in [45] and [43]. There are several practical issues which prevent

this ideal system from being implemented directly.

4.2 Ideal CT System

Throughout this chapter, we will consider a particular class of sampling grids which

have a uniform density, as defined by Duffin and Schafer [6]. A grid {tn} has a

uniform density of D if

∣∣∣tn − n

D

∣∣∣ ≤ L < ∞, n = 0,±1,±2, · · · (4.1)

and

|tn − tm| ≥ δ > 0, n �= m. (4.2)

In this chapter, we assume that D = 1, without loss of generality. We will also require

that for any function x(t) ∈ Bγ , γ < π, the summation

x(t) =
∞∑

n=−∞
x(tn)ψn(t), x(t) ∈ Bγ (4.3)

must converge to x(t) for all t and must be stable. The composing functions {ψn(t)}
depend only on the grid {tn}, and are given by

ψn(t) =
g(t)

(t− tn)ġ(tn)
, (4.4)

where

g(t) = (t− t0)
∞∏

n=1

(
1 − t

tn

) (
1 − t

t−n

)
, (4.5)

71



and ġ(tn) is the derivative of g(t) evaluated at t = tn. In order for the expansion

(4.3) to be stable, we require that small errors in the sample values x(tn) must result

in commensurately small errors in the reconstructed signal1. Yao and Thomas [44]

(Theorem 2) imply that the conditions (4.1) and (4.2) guarantee convergence and

stability of (4.3) for all x(t) ∈ Bγ ; γ < π. However this is not the case. It is known [6]

that when (4.1) and (4.2) are satisfied, there exist functions {ψn(t)} for which (4.3)

will give a convergent, stable reconstruction. However these functions are not given

by (4.4). In this thesis we will assume that (4.3) converges and is stable. Here are a

few examples of when this occurs:

1. The grid is periodic with some finite period [45] (Theorem III). That is there

exists some finite integer M for which tm − tn = MD, independent of n.

2. The grid is close to uniform [43] (Theorem 1). Specifically, L in (4.1) is less

than D/4.

3. The grid is obtained by migrating a finite number of points in a uniform grid

[45] (Theorem I). Specifically, only a finite number of points in the grid do not

satisfy tn = nD.

In each of these cases, the condition that γ < π may be relaxed to allow γ = π.

By substituting (4.4) into (4.3) we obtain the reconstruction formula

x(t) =
∞∑

n=−∞

x(tn)g(t)

(t− tn)ġ(tn)
. (4.6)

Assuming that this converges at every t, we let

r(t) =
∞∑

n=−∞

x(tn)

ġ(tn)

1

(t− tn)
, (4.7)

1The l2-norm is used to measure the error in the sampling values, while the L2-norm is used to
measure the error in the reconstructed signal.
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which still converges at every t excluding the points t ∈ {tn}. In this case we have

x(t) = g(t)r(t). (4.8)

r(t) may also be written as

r(t) = qδ(t) ∗ h(t), (4.9)

where qδ(t) is the impulse-train signal given by

qδ(t) =
∞∑

n=−∞

x(tn)

ġ(tn)
δ(t− tn), (4.10)

and h(t) is given by

h(t) =
1

t
. (4.11)

We may also write qδ(t) as

qδ(t) =
pδ(t)

ġ(t)
, (4.12)

where pδ(t) is given by

pδ(t) =
∞∑

n=−∞
x(tn)δ(t− tn). (4.13)

Thus, from (4.8), (4.9) and (4.12), the nonuniform reconstruction formula (4.6)

can be represented by the block diagram2 shown in figure 4-1. To within a scale

factor, h(t), given by (4.11), is the impulse response of an ideal Hilbert transformer.

This ideal CT system is difficult to implement for a number of reasons. Specifically,

from (4.7), r(t) becomes infinite at every {tn}, since h(t) has a singularity at t = 0. In

section 4.3, we show how this singularity may be removed. The second problem with

2We wish to acknowledge the contribution of Yonina Eldar who first pointed out this block
diagram representation of the reconstruction formula.
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pδ(t) ✲

✻

1/ġ(t)

qδ(t)✲ h(t)
r(t)✲

✻

g(t)

✲ x(t)

Figure 4-1: Ideal CT reconstruction system.

implementing this system is that h(t) is difficult to approximate since it decays very

slowly. This slow decay is related to the fact that the frequency response has a sharp

discontinuity. In section 4.4, we show that a transition band may be introduced in

the frequency response, thus allowing h(t) to have a faster rate of decay. Since h(t)

is required to have linear phase, it would be difficult to implement this system using

analog filters. Thus in section 4.5 we present a DT system which implements the

system, and produces uniform samples of x(t). The final difficulty with implementing

this system is that it requires knowledge of the function g(t). In section 4.6 we present

an ideal system for calculating g(t), based on the work of Logan [15, 14].

4.3 System With Nonsingular Filters

A filter with impulse response given by 1/t is referred to as a Hilbert transformer3

[37, 11]. The frequency response this Hilbert transformer is known [37], and is given

by

H(ω) = −jπ sgnω, (4.14)

where

sgnω =




−1, ω < 0,

0, ω = 0,

1, ω > 0.

(4.15)

3This is true to within a scale factor since the ideal Hilbert transformer has an impulse response
1/πt.
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✻
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H(ω)

Figure 4-2: Frequency response H(ω).

✲

✻

ω

−jπ

jπ

α
−α

0

Hl(ω)

Figure 4-3: Frequency response Hl(ω).

H(ω) is shown in figure 4-2.

In order to remove the singularity, we construct a new filter hl(t) whose frequency

response is given by

Hl(ω) = H(ω) − 1

2
H(ω − α) − 1

2
H(ω + α), (4.16)

and is shown in figure 4-3. Hl(ω) is zero outside [−α, α], and thus the impulse response

hl(t) is a lowpass function, which is therefore free of singularities. By the modulation

property of the Fourier transform, hl(t) is given by

hl(t) = h(t)

(
1 − 1

2
e−jαt − 1

2
ejαt

)

=
1 − 1

2
e−jαt − 1

2
ejαt

t
. (4.17)
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Now, if we let

rl(t) = qδ(t) ∗ hl(t), (4.18)

then we have

rl(t) =
∞∑

n=−∞

x(tn)
(
1 − 1

2
e−jα(t−tn) − 1

2
ejα(t−tn)

)
ġ(tn)(t− tn)

. (4.19)

Letting xl(t) = g(t)rl(t) and substituting (4.4) we get

xl(t) =
∞∑

n=−∞
x(tn)ψn(t)

(
1 − 1

2
e−jα(t−tn) − 1

2
ejα(t−tn)

)
. (4.20)

We can rearrange this sum to give

xl(t) =
∞∑

n=−∞
x(tn)ψn(t)

−1

2
e−jαt

∞∑
n=−∞

x(tn)ejαtnψn(t)

−1

2
ejαt

∞∑
n=−∞

x(tn)e−jαtnψn(t). (4.21)

The first sum reduces to x(t) and the second and third sums give functions in Bπ,

which are then modulated by ejαt and e−jαt respectively4. Thus these last two terms

provide no contribution to the spectrum of xl(t) between −ζ and ζ, where

ζ = α− π. (4.22)

Therefore x(t) can be recovered by lowpass filtering xl(t), provided that ζ > γ. That

4The fact that the second and third sums give functions in Bπ results from the assumed stability
of (4.3), and the fact that the sequence {x(tn)} is in l2 [6].
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✲

✻

ω

1

ζ−ζ γ−γ 0

L(ω)

Figure 4-4: Frequency response L(ω).

pδ(t) ✲

✻

1/ġ(t)

qδ(t) ✲ hl(t)
rl(t)✲

✻

g(t)

xl(t)✲ l(t) ✲ x(t)

Figure 4-5: Reconstruction system with nonsingular filters.

is

x(t) = xl ∗ l(t), (4.23)

for any filter l(t) whose frequency response L(ω) satisfies

L(ω) =


 1, |ω| ≤ γ,

0, |ω| ≥ ζ.
(4.24)

L(ω) is drawn in figure 4-4, where the dashed lines represent the transition bands,

i.e., regions in which the response is unconstrained.

The modified system for recovering x(t) is shown in figure 4-5. If the filters l(t)

and hl(t) satisfy (4.24) and (4.16) respectively, then the systems in figures 4-5 and

4-1 will give identical outputs.
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4.4 System With Transition Bands Allowed

Kaiser [16] showed that a finite support lowpass filter could be designed by a win-

dowing method which allows the frequency-domain approximation error to fall ex-

ponentially in the length of the filter. The error goes as e−∆Θ/4, where ∆ is the

width of the transition band and Θ is the length of the filter. Logan [15] consid-

ered FIR Hilbert transformers and achieved the same exponential convergence in the

filter length, and transition band width. Logan’s result was given in terms of the

time-domain approximation error.

The filter l(t), whose frequency response is given in figure 4-4, allows transition

bands of width ∆l = ζ−γ. We may therefore replace l(t) with an FIR approximation

of length Θl and achieve an approximation error which decays exponentially in the

quantity ∆lΘl. Since the length of the FIR filter is directly proportional to the

amount of computation required to implement it, this result is encouraging because

it suggests that we will be able to implement l(t) efficiently.

In this section we will show that the filter hl(t) can also be allowed to have

transition bands and we can then achieve the same exponential convergence in the

length of the approximation filter.

In order to facilitate the discussion, we will make use of terminology introduced

by Logan [13]. In particular, Logan suggested that it is not necessary to define the

Fourier transform of a function f(t) in order to give precise meaning to the statement

that “the Fourier transform of f(t) vanishes on a certain set E.” In particular, we

say that a bounded function f(t) has a Fourier transform which vanishes on E, if

∫ ∞

−∞
f(t)η(−t) dt = 0 (4.25)

for all η(t) in L1 whose Fourier transform is zero outside of E. This definition is

consistent in that if f(t) does have a Fourier transform, then that Fourier transform

will be zero for all frequencies in E. Logan also said that two functions, f1(t) and

f2(t) could be said to “have Fourier transforms which agree on E” if their difference

f1(t)− f2(t) has a Fourier transform which vanishes on E. The mathematical details

78



of this definition are not essential in order to follow the discussion, we only need to

recognize that our intuition regarding finite energy signals can be applied to infinite

energy signals as long as they are bounded.

By Theorem 1 in [13] and the theory of entire functions [29], any function f(t) with

only real zeros which occur with a uniform density of ξ will have a Fourier transform

which vanishes outside [−πξ, πξ]. Thus the function g(t), whose zeros are the points

in the grid {tn}, will have a Fourier transform which vanishes outside [−π, π]. It can

be shown that this fact implies that two functions x(t) and x′(t), where

x(t) = y(t)g(t) (4.26)

and

x′(t) = y′(t)g(t), (4.27)

will have Fourier transforms which agree over [−ζ, ζ] provided that y(t) and y′(t) have

Fourier transforms which agree over [−α, α]. ζ is given by (4.22).

The statement that transition bands may be introduced for the Hilbert trans-

former relies on the fact that the impulse-train signal qδ(t) in figure 4-5 is highpass,

as we will demonstrate in section 4.4.1. Specifically, qδ(t) has a Fourier transform

which vanishes over (−λ, λ), where

λ = π − γ. (4.28)

If qδ(t) has no spectrum over (−λ, λ), the frequency response of hl(t) is irrelevant

in that region, in which case, we can introduce a transition band at ω = 0 of width

2λ. We replace hl(t) with a filter ht(t) whose frequency response Ht(ω) satisfies

Ht(ω) =




jπ, λ ≤ ω ≤ α

−jπ, −λ ≥ ω ≥ −α

0, |ω| ≥ β.

(4.29)
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✲

✻

ω

−jπ

jπ

λ

−λ

β

−β

α
−α

0

Ht(ω)

Figure 4-6: Frequency response Ht(ω).

pδ(t) ✲

✻

1/ġ(t)

qδ(t) ✲ ht(t)
rt(t)✲

✻

g(t)

xt(t)✲ l(t) ✲ x(t)

Figure 4-7: Reconstruction system which allows transition bands.

The frequency response is unspecified over the intervals (−β,−α), (−λ, λ) and (α, β),

and is depicted in figure 4-6. We now have the system shown in figure 4-7. rt(t)

and rl(t) will have Fourier transforms which agree over [−α, α] because the Fourier

transforms of ht(t) and hl(t) agree over that interval except in (−λ, λ), where the

Fourier transforms of rl(t) and rt(t) both vanish.

Since the Fourier transforms of rl(t) and rt(t) agree over [−α, α], Fourier trans-

forms of xt(t) and xl(t) will agree over [−ζ, ζ]; ζ given by (4.22). Now, since the

frequency response of l(t) satisfies (4.24), the output of the system in figure 4-7 will

be identical to the output of the system in figure 4-5.

For convenience, we can let β = α + 2λ so that all three transition bands of ht(t)

are of the same width, ∆h = 2λ. We can then approximate ht(t) with an FIR filter

of length Θh and achieve an approximation error which decays exponentially in the

quantity ∆hΘh.
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4.4.1 Proof that qδ(t) is Highpass

Assume that each point in the grid, {tn}, is an integer multiple of some small time

increment ε, i.e.,

tn = knε, (4.30)

where each kn is an integer5. In this case, we have that

g(t)
∝
=

∞∏
n=−∞

(
1 − t

tn

)
, (4.31)

which converges on the condition that the terms of the product are ordered by increas-

ing |tn| (see [15]). The symbol
∝
= is used to indicate equality to within a multiplicative

constant factor.

The set of times {tn} form a subset of the regular grid {nε}. We construct a

function σ(t) which has a zero at every point in this regular grid, i.e.,

σ(t) = sin(πt/ε). (4.32)

The sine function can be expressed as the infinite product

σ(t)
∝
= t

∞∏
n=−∞

n
=0

(
1 − t

nε

)
, (4.33)

where the terms are ordered increasing |n|. The set of zeros of σ(t) has a uniform

density of 1/ε, while the set of zeros of g(t) has a uniform density of 1. Now consider

constructing a new grid {τn} consisting of all the zeros of σ(t) which are not also

zeros of g(t). This new grid {τn} will have a uniform density of 1/ε− 1. The set {nε}
is the union of the disjoint sets {tn} and {τn}. We define the function ρ(t) to be the

5We also assume that zero is not a member of the grid, {tn}. If zero is a point in the grid {tn},
then we may shift the time origin so that this is not the case.
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product

ρ(t)
∝
= t

∞∏
n=−∞

n
=0

(
1 − t

τn

)
, (4.34)

where we let τ0 = 0 and the terms in the product are ordered by increasing |τn|. It

follows directly from the definitions (4.31), (4.33) and (4.34) that

σ(t)
∝
= g(t)ρ(t). (4.35)

Since ρ(t) becomes zero at every point in {τn}, it follows that

ρ(τn) = 0; n = 0,±1,±2, . . . (4.36)

ρ(t) is also related to the derivative of g(t) by the following equation;

ρ(tn)
∝
=

cos(πtn/ε)

ġ(tn)
, (4.37)

where the relationship only holds on the grid {tn}. To show this, we differentiate

(4.35) to give

σ̇(t)
∝
= ġ(t)ρ(t) + g(t)ρ̇(t). (4.38)

The second term on the right hand side goes to zero when evaluated at any tn since

g(t) has a zero there. By rearranging (4.38), substituting (4.32) and letting t = tn, we

get (4.37). An additional important property of the function ρ(t) is that it is lowpass,

with its Fourier transform vanishing outside [−µ, µ], where

µ = π

(
1

ε
− 1

)
. (4.39)

To see this, note that the set of zeros of ρ(t) has a uniform density of 1/ε− 1.
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Let the impulse-train function, zδ(t), be defined by

zδ(t) = ρ(t)
∞∑

n=−∞

1

cos πn
δ(t− nε). (4.40)

The summation in (4.40) has impulses at the points in {tn} and at the points in

{τn}, i.e., at all integer multiples of ε. The impulses that occur at the points in {τn}
are “zeroed out” when we multiply by ρ(t) because of (4.36). Thus zδ(t) will have

impulses only at the points in the grid {tn}. By substituting for ρ(tn) given by (4.37)

we have that

zδ(t) =
∞∑

n=−∞

δ(t− tn)

ġ(tn)
. (4.41)

The impulse-train function

∞∑
n=−∞

1

cosπn
δ(t− nε) =

∞∑
n=−∞

(−1)nδ(t− nε) (4.42)

from (4.40) is highpass, with its Fourier transform vanishing over (−π/ε, π/ε). Since

ρ(t) has a Fourier transform that vanishes outside [−µ, µ], with µ given by (4.39), by

a result given earlier, zδ(t) will be highpass with its Fourier transform vanishing over

(−π, π).

Recall that we have restricted the grid {tn} so that each point is an integer multiple

of ε, but the result which we have derived does not depend on ε. In other words, for

any value of ε, zδ(t) will have a Fourier transform which vanishes over (−π, π). We

therefore conjecture that this restriction may be relaxed, since any grid satisfying

(4.2) can be approximated arbitrarily closely by letting ε go to zero. Furthermore,

uncertainty in the sampling times may be translated into uncertainty in the sample

amplitudes by bounding the derivative of x(t), and small amplitude errors will lead

to small errors in the reconstructed signal since the reconstruction process is stable.

No formal proof for the more general case will be given in the thesis, and so we will

assume that the grid {tn} satisfies (4.30).
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am ✲

✻

1/ġ(tm)

✲ ht(nT − tm) ✲

✻

g(nT )

✲ lD[n] ✲ a′n = x(nT )

Figure 4-8: Ideal DT resampling system.

With reference to figure 4-7, the signal qδ(t) given by (4.10), can also be expressed

as

qδ(t) = x(t)zδ(t). (4.43)

Now, since zδ(t) is highpass, with a Fourier transform which vanishes over (−π, π),

and x(t) is lowpass with a Fourier transform which vanishes outside of [−γ, γ]; γ < π,

we can conclude that qδ(t) is highpass, with a Fourier transform which vanishes over

(−λ, λ), where λ is given by (4.28). This proves the result.

4.5 DT System

The ideal CT system given in figure 4-7 can be used to derive the ideal DT system

shown in figure 4-8, with T chosen so that

T ≤ 2π

α + β
, (4.44)

and the filters ht(t) and lD[n] satisfying the conditions shown in figures 4-6 and 4-9.

In this case, the samples x(nT ) at the output of the system are exact. We may then

consider replacing the filters with approximate FIR filters where the lengths of the

filters may be chosen so that any desired degree of accuracy for the output samples

may be achieved. Since the output grid is regular, the elementary resampler can be

replaced with two filters f(t) and hD[n] as described in section 2.5, where f(t) is

allowed to be very short. In this case, hD[n] must not only equalize for the passband

of f(t), but must also incorporate the Hilbert transforming property of the filter h(t).
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✲

✻

ω

1

ζT−ζT γT−γT 0

LD(ω)

Figure 4-9: Frequency response LD(ω).

am ✲

✻

1/ġ(tm)

✲ f(nT − tm) ✲ hD[n] ✲

✻

g(nT )

✲ lD[n] ✲ a′n = x(nT )

Figure 4-10: DT system which allows for a short time-varying filter.

This results in the final system shown in figure 4-10.

4.6 Ideal System for Calculating g(t)

So far we have assumed that the function g(t) is known since it depends only on

the grid {tn}. However, in real-time applications, it may be necessary to calculate

the required samples of g(t) on the fly. This can be quite difficult since g(t) is given

as an infinite product (4.5). Logan [15] has investigated the problem of localizing

the infinite product, and presented a system in [14] which may lead to a real-time

algorithm for evaluating g(t). Figure 4-11 shows a slightly modified version of the

ideal system presented by Logan. It remains to be shown that this ideal system can

be implemented in discrete time. In figure 4-11, �{·} takes the real part of its input,

y(t) ✲ a(t) ✲ ej2π(·) ✲ a(t) ✲

✻

e−jπt

✲ �{·} ✲ g(t)

Figure 4-11: Ideal CT system for calculating g(t).
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and the frequency response of filter a(t) is

A(ω) =


 1, 0 ≤ ω ≤ π,

0, otherwise.
(4.45)

The function y(t) depends only on the grid, and is given by

y(t) = t +
∞∑

n=−∞
u(−tn) − u(t− tn). (4.46)

y(t) has a uniform slope of 1, but has discontinuities of magnitude −1 at each point

in the grid {tn}.
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Chapter 5

Nonuniform Reconstruction

5.1 Introduction

In chapter 4 we saw that applications of the nonuniform sampling problem tend to

arise in data acquisition systems or A/D converters. This is because the sampling

process may be corrupted by errors or constrained by the physical or geometrical

limitations of these systems so that the resulting samples are irregularly spaced. In

this chapter, we consider the nonuniform lowpass reconstruction problem, which has

applications that tend to arise in the context of signal generation or D/A conversion.

The nonuniformity is introduced either by a defect in the D/A converter or may be

part of the design.

Consider a form of D/A conversion which can be modeled as follows. First, an

impulse-train signal is generated with impulses whose locations are fixed, but whose

amplitudes are adjustable. This impulse train is then processed with a lowpass filter

to recover the CT signal. The impulses are usually uniformly spaced, but in some

cases may not be. Although the mathematical tools exist, this problem has received

surprisingly little attention in the engineering literature.

A similar problem referred to as click modulation was solved by Logan [14] in

which the amplitudes of the impulses are fixed, and the times are allowed to vary.

In section 5.2, we introduce an ideal solution to the nonuniform lowpass recon-

struction problem, and we present an ideal CT system corresponding to this solution.
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We briefly discuss an equivalent DT system in section 5.3. We then turn our attention

to a special case in which the irregular grid my be obtained by deletion of a single

point from an otherwise regular grid. In section 5.4 we present a solution which is

based on the theoretical results derived earlier. Then in section 5.4.1 we generalize

this solution, and finally in section 5.4.2 we present an optimal FIR approximation.

5.2 Ideal CT System

In this section, we derive a solution to the nonuniform lowpass reconstruction problem

by using the nonuniform sampling reconstruction formula presented in chapter 4.

Let x(t) be a bandlimited signal in Bγ, where γ < π, and let {t′n} be an irregular

grid with a uniform density of one. We wish to find amplitudes {a′n} so that

x(t) =
∞∑

n=−∞
a′nφ(t− t′n), (5.1)

where φ(t) is given as

φ(t) =
sin γt

πt
. (5.2)

Equivalently, we wish to find a impulse-train signal pδ(t) given by

pδ(t) =
∞∑

n=−∞
a′nδ(t− t′n), (5.3)

so that x(t) may be recovered by lowpass filtering pδ(t). That is, x(t) is related to

pδ(t) by

x(t) = pδ(t) ∗ φ(t). (5.4)

Figure 5-1 depicts this lowpass reconstruction relationship, where the block labeled

IG is the impulse generator defined by (5.3). The frequency response of the filter φ(t)
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a′n ✲

✻

t′n

IG
pδ(t)✲ φ(t) ✲ x(t)

Figure 5-1: Lowpass reconstruction system.

is given by

Φ(ω) =


 1, |ω| ≤ γ,

0, otherwise.
(5.5)

In order to derive the solution, we will impose some of the same restrictions on

the grid which we imposed in chapter 4. Specifically, we require that the grid {t′n}
have the following property: for any function f(t) ∈ Bγ , there must exist a stable

expansion of the form

f(t) =
∞∑

n=−∞
f(t′n)ψn(t), (5.6)

where

ψn(t) =
g(t)

(t− t′n)ġ(t′n)
, (5.7)

and

g(t) = (t− t′0)
∞∏

n=1

(
1 − t

t′n

) (
1 − t

t′−n

)
, (5.8)

and ġ(t′n) is the derivative of g(t) evaluated at t = t′n. A few examples of grids

satisfying this condition were given in section 4.2.

Since, x(t) is in Bγ , we know that

x(t) = x(t) ∗ φ(t)

=

∫ ∞

−∞
x(τ)φ(t− τ) dτ,
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assuming φ(t) is even symmetric. Since φ(t − τ), treated as a function of τ with t

fixed, is in Bγ , we can replace φ(t−τ) with an expansion of the form (5.6). This gives

x(t) =

∫ ∞

−∞
x(τ)

[ ∞∑
n=−∞

φ(t− t′n)ψn(τ)

]
dτ

=

∫ ∞

−∞

∞∑
n=−∞

x(τ)ψn(τ)φ(t− t′n) dτ

=
∞∑

n=−∞

[∫ ∞

−∞
x(τ)ψn(τ) dτ

]
φ(t− t′n). (5.9)

Swapping the order of the summation and the integral is justified by Fubini’s theorem

since x(t) ∈ Bγ , and is therefore finite. By comparing (5.9) and (5.1) we see that the

coefficients {a′n} are given by

a′n =

∫ ∞

−∞
x(t)ψn(t) dt, (5.10)

where the functions {ψn(t)} are defined by (5.7). Note that this solution is not

necessarily unique. In other words, for a particular value of γ there may be a class of

sequences {a′n} which satisfy (5.1). However the solution given by (5.10) is valid for

every γ < π.

By substituting (5.7) into (5.10) we get

an =

∫ ∞

−∞
x(t)

g(t)

(t− t′n)ġ(t′n)
dt,

=
−1

ġ(t′n)

∫ ∞

−∞
x(t)g(t)

1

(t′n − t)
dt. (5.11)

By letting

v(t) = x(t)g(t), (5.12)
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x(t) ✲

✻

g(t)

v(t)✲ hi(t)
w(t)✲

✻

−1/ġ(t)

✲

✻

t′n

IS ✲ a′n

Figure 5-2: Ideal CT system.

and

hi(t) =
1

t
, (5.13)

(5.11) becomes

an =
−1

ġ(t′n)

∫ ∞

−∞
v(t)hi(t

′
n − t) dt, (5.14)

or

a′n =
−1

ġ(t′n)
w(t′n), (5.15)

where

w(t) = v(t) ∗ hi(t). (5.16)

By combining (5.15), (5.16) and (5.12), we get the block diagram shown in figure 5-2,

where the block labeled IS is the instantaneous sampler defined in chapter 1.

We may express pδ(t), given by (5.3) as

pδ(t) =
∞∑

n=−∞

−1

ġ(t′n)
w(t′n)δ(t− t′n)

= −w(t)zδ(t), (5.17)

91



✲

✻

ω

−jπ

jπ

λ

−λ

0

Ht(ω)

Figure 5-3: Frequency response Ht(ω).

where zδ(t) is given by

zδ(t) =
∞∑

n=−∞

1

ġ(t′n)
δ(t− t′n). (5.18)

From figure 5-1 we see that x(t) is recovered from pδ(t) by filtering with φ(t), which

we assume to be ideal, with frequency response given by (5.5). Thus, frequency

components of pδ(t) outside the range [−γ, γ] are irrelevant. In other words, any

sequence {a′n} for which pδ(t) satisfies (5.4), is an equally valid solution. We will

use this fact to show that the Hilbert transformer is allowed a transition band over

(−λ, λ), where λ = π − γ. Consider what happens if we replace the ideal Hilbert

transformer hi(t) in figure 5-2 with ht(t), which is allowed a transition band as shown

in figure 5-3. The dashed line in the figure indicates the region for which the frequency

response is unspecified, i.e., the transition band. If we let

wt(t) = v(t) ∗ ht(t), (5.19)

then wt(t) and w(t) will have Fourier transforms which differ only over (−λ, λ). We

now utilize the result derived in section 4.4 that zδ(t) is highpass, having a Fourier

transform which vanishes over (−π, π). If we let

ptδ(t) = −wt(t)zδ(t), (5.20)

then ptδ(t) and pδ(t) will have Fourier transforms which differ only outside [−γ, γ].
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x(nT ) ✲

✻

g(nT )

✲

✻

nT

IG ✲ l(t) ✲ ht(t) ✲

✻

−1/ġ(t)

✲

✻

t′n

IS ✲ a′n

Figure 5-4: System with discrete input and output.

✲

✻

ω

1

ξ−ξ π + γ−π − γ 0

L(ω)

Figure 5-5: Frequency response L(ω).

By allowing a transition band for the Hilbert transformer, we may use an FIR

approximation, which gives an approximate output which approaches the ideal output

exponentially in the length of the filter (see [15]).

5.3 DT System

x(t) and g(t) are both lowpass and therefore v(t) will also be lowpass. In fact, it can

be shown that v(t) has a Fourier transform which vanishes outside [−π − γ, π + γ].

Thus we may represent v(t) by its uniform samples v(nT ), for a sufficiently small T .

This results in the system in figure 5-4, where l(t) is the lowpass reconstruction filter

whose frequency response is shown in figure 5-5. ξ must be chosen so

ξ ≤ 2π

T
− π − γ. (5.21)

If we choose T = 1/2, then we may allow the transition bands to be of width 2λ.

We then combine the lowpass filter, l(t), and the Hilbert transformer, ht(t), into a

single filter h(t) whose frequency response is shown in figure 5-6. Figure 5-7 shows the
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✲

✻

ω

−jπ

jπ

λ

−λ

2π+λ

−2π−λ

2π−λ

−2π+λ

0

H(ω)

Figure 5-6: Frequency response H(ω).

am ✲

✻

g(mT )

✲ h(t′n −mT ) ✲

✻

−1/ġ(t′n)

✲ a′n

Figure 5-7: Ideal DT resampling system.

final version of the ideal DT algorithm. The block labeled h(t′n −mT ) represents an

elementary resampler and is described in chapter 2. For a practical implementation of

this system, we replace the filter h(t) with an FIR approximation. For efficiency, we

use two filters in cascade; hD[m] and f(t) (see section 2.5). We may do this because

the input grid is regular. This results in the system shown in figure 5-8.

So far we have assumed that g(t) is known exactly. Since g(t) depends only on

the irregular grid {t′n}, it may be possible to calculate it ahead of time and store it

in memory. If we need to calculate g(t) in real-time, the system presented in section

4.6 may be used.

am ✲

✻

g(mT )

✲ hD[m] ✲ f(t′n −mT ) ✲

✻

−1/ġ(t′n)

✲ a′n

Figure 5-8: DT system which allows for a short time-varying filter.
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5.4 The Missing Pixel Problem

In this section, we look at a specific example of lowpass reconstruction in which the

irregular grid is obtained by deleting a single point from an otherwise regular grid.

Specifically, consider flat-panel displays such as those used in modern television sets or

in personal computers, which are made by placing thousands of light emitting diodes

(LEDs) on a silicon wafer. Each LED corresponds to one color component of one pixel

of the image. These displays are particularly expensive to manufacture because if one

LED is defective, the entire wafer must be discarded. However, it may be possible to

compensate for a defective LED by adjusting the intensity of neighboring LEDs. In

this case, the non-zero pixel size along with the blurring introduced by the eye acts as

the lowpass filter. The defective LED causes the reconstruction grid to be irregular.

We refer to this as the missing pixel problem1, and we present a solution which could

lead to flat-panel displays which are less expensive to manufacture since the defective

pixels could be corrected for by performing some processing on the signal.

In the previous sections we have developed a solution for the nonuniform lowpass

reconstruction problem with a general irregular grid. However, in our motivating

example the irregular grid has a very specific structure. In particular, it can be

obtained by deleting a single point from a regular grid. In this section, we will

consider this specific irregular grid for which there is a closed-form expression for

g(t). This leads to an algorithm which requires very little computation.

For notational convenience, we define the index set I to be the set of integers;

I = 0,±1,±2,±3, . . . , (5.22)

and the set I ′ to be the set of integers, with zero removed;

I ′ = ±1,±2,±3, . . . . (5.23)

1We wish to acknowledge the contribution of Petros Boufounos in suggesting the missing pixel
problem as an application of nonuniform reconstruction.

95



Let the grid {t′n} be equal to I ′, and let x(t) be a signal in Bγ, where γ < π. We wish

to find coefficients {a′n;n ∈ I ′} which satisfy

x(t) =
∑
n∈I′

a′nφ(t− n), (5.24)

or equivalently,

x(t) =
∞∑

n=−∞
a′nφ(t− n), (5.25)

with

a′0 = 0. (5.26)

By requiring a′0 = 0 we may take the sum over all integers.

In order to use the solution given by (5.10), we now derive closed form expressions

for the functions {ψn(t);n ∈ I ′}. It can be shown that g(t) defined in (5.8) is given

by

g(t) =
sin πt

πt
= sinc t. (5.27)

In order to see this, recall that g(t) is the function2 whose zeros are given by the set

{t′n;n ∈ I ′}, i.e., the integers, with zero removed. We may therefore obtain g(t) by

dividing sinπt (which has a zero at every integer) by πt (which has a single zero at

t = 0). By taking the derivative of (5.27), we get that

ġ(t) =
π(cosπt)πt− π sin πt

(πt)2
. (5.28)

2Since we only deal with real-valued sampling times, g(t) is a real-zero function [29], i.e., it is
the restriction to the real line of an entire function whose zeros all lie on the real axis. We know
that g(t) = sinc t since this class of functions is uniquely determined by its zero crossings (to within
a scale factor).
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If we evaluate this derivative at each time instant {t′n;n ∈ I ′}, we get

ġ(t′n) = ġ(n) =
cosπn

n
=

(−1)n

n
, n ∈ I ′. (5.29)

We do not need to be concerned with the division by zero since zero is not in I ′. From

(5.7) we get that for n ∈ I ′,

ψn(t) =
g(t)

(t− n)ġ(n)

= (−1)n n sin πt

πt(t− n)

= sinc(t− n) − (−1)n sinc t. (5.30)

Now we can compute each of the coefficients {a′n;n ∈ I ′}, by substituting (5.30) into

(5.10), to give

a′n =

∫ ∞

−∞
x(t) [sinc(t− n) − (−1)n sinc t] dt; n ∈ I ′. (5.31)

In order to compute this integral, we observe that x(t) is in Bγ and is therefore also

in Bπ. Thus x(t) satisfies

x(τ) =

∫ ∞

−∞
x(t) sinc(t− τ) dt. (5.32)

By using this fact, we may evaluate (5.31) to give

a′n = x(n) − (−1)nx(0); n ∈ I ′. (5.33)

Thus we have

x(t) =
∑
n∈I′

[x(n) − (−1)nx(0)]φ(t− n). (5.34)

(5.33) gives us the desired values {a′n;n ∈ I ′} in terms of the CT signal x(t).

However, in the context of resampling, we do not have access to x(t), but only to its
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samples {an} on a uniform grid {tn}, where

an = x(tn) = x(n); n ∈ I. (5.35)

The input grid {tn} is just the regular grid defined by {tn = n;n ∈ I}. Thus (5.33)

can be written in terms of our input sequence {an} as

a′n = an − (−1)na0; n ∈ I ′, (5.36)

The resulting resampling algorithm is remarkably simple, with each output point

depending only on two input points. It is also very efficient computationally, requiring

no multiplications, only a single addition and possibly a change of sign for each output

sample. In the context of the LED flat-panel display example which we consider, this

solution is not very attractive since it requires us to adjust every pixel in the image.

We would prefer a solution in which effect of the missing pixel is localized in some

sense.

5.4.1 Generalization of the Solution

The solution given by (5.36) is not unique, in that it is not the only solution which

satisfies (5.24). However, the form of (5.36) suggests a more general solution. We

will consider sequences {a′n} which can be expressed as

a′n = an − bn; n ∈ I. (5.37)

The problem then reduces to finding an appropriate sequence {bn} so that {a′n} will

satisfy (5.25) and (5.26). Clearly we have not excluded any solutions by considering

only those of the form (5.37), because any solution can be expressed in this form by

letting bn = an − a′n. We now determine the precise conditions on {bn} such that

(5.37) is a valid solution.
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From (5.26) and (5.37), we see that

b0 = a0. (5.38)

This is the first condition that {bn} must satisfy. Now we substitute (5.37) into (5.25)

to get

x(t) =
∞∑

n=−∞
(an − bn)φ(t− n)

=
∞∑

n=−∞
anφ(t− n) −

∞∑
n=−∞

bnφ(t− n). (5.39)

Since x(t) ∈ Bγ , it can be expressed as the sum

x(t) =
∞∑

n=−∞
x(n)φ(t− n). (5.40)

Note that this is not the usual sinc interpolation formula because the functions {φ(t−
n)} are shifted by integer amounts, while the zeros these functions do not necessarily

occur at integer locations. However, because x(t) is actually bandlimited to γ, (5.40)

is still valid. By comparing (5.40) and (5.39), we get that

∞∑
n=−∞

bnφ(t− n) = 0, (5.41)

which is the second condition on {bn}. Any sequence {bn} which satisfies (5.38) and

(5.41) will give a valid solution.

It can be shown that (5.41) is equivalent to the condition that B(ω), the DT

Fourier transform of {bn} satisfies

B(ω) = 0; |ω| ≤ γ. (5.42)

In other words, {bn} must be highpass3.

3Note that {bn} is not allowed to have a frequency component of infinite-energy at ω = γ.
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We will now use these two conditions to verify that the solution given by (5.36)

is valid. In this case, the sequence {bn} is given by

bn = (−1)na0, (5.43)

which clearly satisfies (5.38). If we substitute (5.43) into (5.41), the left hand side

becomes

a0

∞∑
n=−∞

(−1)nφ(t− n). (5.44)

We recognize this sum as the DT Fourier transform of φ(t − n) evaluated at ω = π.

Here t is fixed, and n is the time variable. It can be shown that the DT Fourier

transform of the sequence {φ(n− t);n ∈ I} is

Φ(ω) =


 e−jωt, |ω| < γ;

0, γ ≤ |ω| ≤ π,
(5.45)

which is zero at ω = π. Thus condition (5.41) is satisfied and we have verified that

(5.43) is a valid solution.

The two conditions which {bn} must satisfy, (5.38) and (5.41), do not specify a

unique solution. Thus we may attempt to find an optimal solution by choosing an

appropriate optimality criterion. For example in our video display problem , we wish

to localize the effects of the missing pixel. It may therefore be reasonable to minimize

the l2-norm of {bn} (subject to the two constraints mentioned earlier). If we solve

this optimization problem, we obtain

bn = (−1)n sinc

(
π − γ

π
n

)
. (5.46)

This solution is more appealing than the one given by (5.43) because bn now decays

as we move further away from the missing pixel. However it is still infinite in extent.
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5.4.2 Optimal FIR Approximation

In this section, we only allow a finite number of pixels to be adjusted. We derive

a solution which is optimal in that it minimizes the L2-norm of the reconstruction

error. We also allow for an arbitrary reconstruction filter, φ(t), which may not be the

sinc function given by (5.2)

Consider a signal x(t), not necessarily bandlimited, which can be expressed as

x(t) =
∞∑

n=−∞
anφ(t− n), (5.47)

where φ(t) is some arbitrary reconstruction filter. The approximate reconstruction

x′(t) is given by

x′(t) =
∞∑

n=−∞
a′nφ(t− n), (5.48)

where {a′n} is given by (5.37). The sequence {bn}, which must satisfy condition (5.38),

is now assumed to be finite in extent, i.e., it is nonzero only for n ∈ N , where N is

the set of points which may be adjusted, in addition to the point at the origin. If we

only allow only N points to be adjusted, N will contain N + 1 points. Let e(t) be

the difference between the ideal and approximate reconstructed signals;

e(t) = x(t) − x′(t). (5.49)

By substituting (5.47), (5.48) and (5.37), we get

e(t) =
∑
n∈N

bnφ(t− n). (5.50)

Let E be the L2-norm of this reconstruction error e(t), i.e.,

E =

(∫ ∞

−∞
|e(t)|2 dt

) 1
2

. (5.51)
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We wish to minimize E , but since it is positive, we may instead minimize E2. By

substituting (5.50) we get

E2 =

∫ ∞

−∞

(∑
n∈N

bnφ(t− n)

)2

dt. (5.52)

In order to minimize this, we find the partial derivative with respect to bk for some

k; k �= 0; k ∈ N .

∂

∂bk

E2 =

∫ ∞

−∞
2

(∑
n∈N

bnφ(t− n)

)
φ(t− k) dt

= 2
∑
n∈N

bn

∫ ∞

−∞
φ(t− n)φ(t− k) dt

= 2
∑
n∈N

bnθ(k − n), (5.53)

where θ(t) is the deterministic autocorrelation function of φ(t), and is defined as

θ(t) =

∫ ∞

−∞
φ(τ)φ(τ − t) dτ. (5.54)

By setting the derivative to zero and substituting b0 = a0, we get

∑
n∈N
n
=0

bnθ(k − n) = −a0θ(k); k ∈ N , k �= 0. (5.55)

This gives a system of N equations and N unknowns, which can be solved by per-

forming a N ×N matrix inversion.

We have performed the matrix inversion numerically and calculated the solution

for a number of examples in which φ(t) is an ideal lowpass filter given by (5.2), and

a0 = 1. Figure 5-9 shows bn for N = 6 and N = 20 and for γ = 0.7π and γ = 0.9π.

We have assumed that an equal number of points are to be adjusted on either side

of the missing pixel. Figure 5-10 shows how E varies with N for γ = 0.7π, 0.8π, 0.9π

(solid, dashed and dotted lines respectively). From this graph, we see that E falls

exponentially in N as expected.
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Figure 5-9: Examples of optimal sequences {bn}.
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Figure 5-10: E as a function of N for different γ.
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The system of equations given by (5.55) can easily be extended to the higher

dimensional case by allowing k and n to be vectors. Figure 5-11 shows an example

for a two dimensional image. In this example, 0.3% of the pixels have been randomly

chosen as “missing”. The upper plot shows what a video display with broken elements

might look like. The lower plot shows the result when our algorithm has been used to

adjust the values of neighboring pixels. The image should be viewed from a distance

of about five feet. In this example, we have allowed a 5 × 5 region of pixels to be

adjusted, centered on the missing pixel. Thus, for each missing pixel, N = 24 other

pixels are adjusted. Note that the matrix inversion was only be performed once to

obtain the sequence bn, which was then scaled and added to the image at different

locations, corresponding to the missing pixels. Only N multiplies and adds need to be

performed for each missing pixel. In order to obtain bn, we assumed that the spatial

frequency response of the eye is a radially symmetric decaying exponential per [23].

While our solution does not perfectly compensate for the missing pixels, there does

seem to be some improvement in perceived image quality.
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Figure 5-11: Simulated video display with missing pixels; uncorrected (top), and
corrected using proposed algorithm (bottom). A viewing distance of five feet is rec-
ommended.
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