
Introduction 

Recently, statistical  models for  the effects of roundoff 
noise in fixed-point and floating-point  realizations of 
digital filters have been proposed  and verified, and  a  com- 
parison between these  realizations  has been suggested 
[1]-431. In general terms,  the  comparison revolves around 
the  fact that while floating-point  arithmetic  has  a larger 
dynamic  range  than fixed-point, the  latter is more  accurate 
when the full register length  can  be utilized. Because of 
the limited dynamic  range  of fixed-point arithmetic,  for 
high-gain filters, the  input signal must  be  attenuated to  
prevent overflow in the  output.  Thus,  for sufficiently high 
gain, floating-point  arithmetic  leads to lower noise-to- 
signal ratio  than fixed point. On the  other  hand, floating- 
point  arithmetic implies a  more complex hardware  struc- 
ture  than fixed-point arithmetic. 

An  alternative  realization,  block-floating-point, has 
some of the  advantages of both fixed point  and floating 
point.  In  this  paper a  structure for implementing digital 
filters using block-floating-p0in.t arithmetic is proposed 
and  a  statistical analysis of the effects of roundoff noise 
presented.  On  the basis of this analysis, block-floating- 
point is compared to fixed-point and floating-point 
arithmetic with regard  to roundoff  noise effects. 
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Abstract 

Recently, statistical models for the effects of roundoff noise in fixed- 
point  and floating-point realizations of digital filters have been pro- 
posed and  verified,  and a comparison between these realizations pre- 
sented. In this paper a structure for implementing digital filters using 
block-floating-point arithmetic is proposed  and a statistical analysis 
of the effects of roundoff noise is carried out. On the basis of this 
analysis, block-floating-point is compared to fixed-point and floating- 
point arithmetic with regard to roundoff noise effects. 

A Structure for Block-Floating-point  Realization 

In block-floating-point  arithmetic  the  input  and filter 
states (Le., the  outputs of the delay registers) are  jointly 
normalized  before  the  multiplications and  adds  are per- 
formed using fixed-point arithmetic. The scale factor 
obtained  during the normalization  is  then  applied to  the 
final output to produce  a fixed-point result. To illustrate, 
consider a  first-order filter described by the difference 
equation 

Yn = 5,  + a1yn-1. (1)  

For convenience we will treat all numbers as fixed-point 
fractions. To perform the  computation in a block-floating- 
point  manner, we define 

1 A - -~ ~. n -  ( 2 )  
~ ~ [ m a x  { I X, 1 I yn-11 1 I 

where IP[M] is used to  denote  the integer power of two 
such that M<IP(M)_<2M, i.e., with M written as M=2m 
.P with P between + and 1, IP(M) = 2m. For M a  fraction, 
2’, is less than  or equal to unity so that A, is greater  than 
or equal to unity.  Thus A ,  represents the power-of-two 
scaling which will jointly  normalize x, and yn-l. Thus 
with block-floating-point we can  compute y ,  as 
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where the multiplications  and  addition in (3) are  carried 



Because of the recursive nature of the  computation  for 
a  digital filter, it is advantageous to modify (3) as 

9, = Anz, + alAnWln (4) 

with 

w 1 n  = A n - & - I  

Yn jin 
I 

-4 , 
and 

A, = An/An-l. 

The difference between (3) and (4) is meant to imply that 
the  number Any, rather  than y ,  is  stored in the delay 
register of the filter. Because of (2), Any, is always more 
accurate (or as  accurate)  as y ,  since multiplication by A ,  
corresponds  to a left shift of the register. 

A disadvantage  with (4) is that y,-l must  be  available 
to  compute A,, and A, must  then be obtained  from A ,  
and A,-1. An alternative is represented by the set of 
equations 

gn = An& + alAntOln ( 5 4  

with 

gn = An-lzn (5h) 

and 

In this case, we first scale x, by An-l to  form 2,  and then 
determine  the  incremental scaling using (5c). As in (4), 
the scaled value 9% is stored in the delay register and  the 
output value y ,  is determined  from yn. If we consider the 
general case of an Nth order filter of the  form 

yn  = X, + alyn-1 + ~ 2 ~ n - 2  + * * * + u , v ~ J ~ - N ~  

then  the  block-floating-point  realization  corresponding to 
(5) and represented in the  direct  form is depicted in Fig. 1, 
For the general case, 

1 A - ________ _______ ____ n -  (6) 
IP [max { i 2 n i ,  1 ~ 1 ~ 1 ,  j w Z n I ,  * * 1 ,  lw.vn1)] 

and 

1 A n -  (7)  
IP [max j j x n l ,  I Y n - l j ,  j Y n - 2 / ,  ' . . t lYn-Nj 11 

= A,-lA,. 

As  an additional  consideration, we note  that because of 
the block normalization,  there  is the possibility of over- 
flow  in the addition, which cannot  be avoided by an  atten- 
uation of the  input.  This possibility of overflow can  be 
avoided by decreasing the normalization  constant A ,  by 
a fixed amount.  Thus we modify (6) and (7) as 

An-1 Yn-N 

Fig. 1 .  Network  for  block-floating-point  realization of  
an  Nth-order filter. 

1 A -- ~ ________ n- (79 
CY IP [max j 1 & ,  1 Yn-11, 1 Yn-21, ' + * , j Yn--h'l ) I  

where CY is a constant  that may be changed depending on 
the filter to  be implemented. In a  first-order filter, for ex- 
ample, a need never be  greater than two. 

The  Effect of Roundoff Noise in Block- 
Floating-point Filters 

In evaluating the  performance of the  block-floating- 
point realization in the presence of roundoff noise, we will 
restrict  attention  to  the  implementation of (5) and  Fig. 1 
for  the first- and  second-order cases. We will assume that 
no roundoff  occurs in the  computation of 2, from X,  and 
the  subsequent  multiplication by A,. Since An-1 and 
AnWlA, are always  nonnegative  powers of two, that is, 
they always correspond to a positive scaling, the above 
assumption  corresponds to allowing more  bits  in  the 
representation of the intermediate  variable 2,. This  is 
reasonable if we take  the  attitude  that  it is primarily  in the 
variables used in the  arithmetic  computations that  the 
register length is important. 

For the  first-order case, roundoff noise is introduced in 
the  multiplication of wln by  A,, the multiplication by al, 
and  the final multiplication by I/&. The effects of multi- 
plier roundoff will be modeled by representing the  round- 
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off  by additive white noise sources. We consider, for 
convenience, the fixed-point numbers in the registers to 
represent signed fractions, with the register length exclud- 
ing sign denoted by t bits.  Each of the roundoff noise 
generators is assumed to be white, mutually independent 
and  independent of the  input,  and  to have a  variance u,2 
equal to (1/12). 2?. The network  for the first-order filter 
including the noise sources representing roundoff error is 
presented in  Fig. 2(A). In Fig. 2(B) an equivalent repre- 
sentation is shown, where  the  noise  sources are  at  the filter 
input. If we consider the  input  to be  a  stationary random 
signal, then  the noise  source k, will be white stationary 
random noise with variance 

u t  = u,2(1 + a12)122 (8) 

where k2 denotes the expected value of (l/AJ2. Letting 7, 
denote  the noise in the filter output  due  to  the noise tn, 
the  variance of the  output noise qn will be 

This result is derived by observing that in  Fig. 2(B) the 
transmission  from  the noise source 5, to the  output is that 
of a  first-order filter with unit  sample  response h, given 
by A,=@. For the  case of a second-order filter a similar 
procedure  can  be followed. Fig. 3(A) shows a second- 
order filter with the roundoff noise sources included. In 
Fig. 3(B) an  equivalent  representation is shown, where 
equivalent noise sources are introduced at  the filter input. 
Again, considering the  input to be  a  stationary  random 
signal, then 

where we assume that the  mean-square values of (l/An) 
and (l/An-l) are  equal.  Hence  the  variance of the  output 
noise vn is 

uV2 = ue2 + k 2 ~ , 2 G [ 4 r 2  cos2 0 + 2 + 2r4] (11) 

where 

Experimental  Verification 

To verify the validity of (9) and (11) the values of k2 
were measured and  the values of at2 computed  from (9) 
and (1 1) using these measured values. These results were 
taken as the  theoretical  results since they incorporate  the 

d 
€2" 

E" = 4 [.,€in + 4 
*;-1 4" ~~ +; x 

(B) 

Fig. 2. (A) Noise model for first-order filter. 
[B) Equivalent noise  model. 

Fig. 3. (A) Noise model  for second-order  filter. (B) Equivalent 
noise model. 
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TABLE I 

Measured Values of kZ and Theoretical  and  Experimental  Values of 
Output Noise Variance  far  a  First-Order Filter with  White Noise 
Input in the  Range 1 xnl 5 1 /16 

a1 k2 
(1/2) log2[22tu,2](bits) 

Theoretical  Experimental 

0 . 1  0.0137 - 1.7825 - 1.7808 
0 . 3  0.0161 - 1 ,7787 - 1.7737 
0 . 4  0.0175 - 1.7753 - 1  .7740 
0.55  0.0200 - 1.7760 - 1.7640 
0.7  0.0253 - 1.7410 - 1  .7403 
0 .9  0.0612  -1.4613 - 1.4457 
0.95  0.1162  -0.9386  -0.9328 

TABLE II 

Measured Values of k2 and Theoretical  and  Experimental  Values of  Output 
Noise Varionce  for  a  Second-Order Filter with  White Noise  Input in the  Range 

1xnl 1 1 / 1 2 8  

r e k2 (1/2) log, [2%,2](bits) 
Theoretlcal  Experimental 

0 .55 22.5 
0.55 45.0 
0.55 67.5 
0.7 22.5 
0 .7  45.0 
0 .7  67.5 
0.9 22.5 
0 . 9  45.0 
0.9 67.5 
0.95 22.5 
0.95 45.0 
0.95 67.5 
0.99 22.5 
0.99 45.0 
0.99 67.5 

0.00288 
0.00186 
0.00151 
0.00499 
0.00248 
0.00177 
0.01667 
0.00581 
0.00385 
0.03113 
0.0110 
0.00708 
0.15527 
0.04688 
0.03125 

-1.774 
- 1.7861 
- 1,7893 
- 1 .I168 
- 1.7780 
- 1,7872 
- 1.0268 
- 1.6824 
- 1.7576 
- 0.2425 
-1.2369 
- 1 ,6696 

2.0165 
0,1605 

-0.6065 

- 1.7539 
- 1 ,7767 
- 1,7822 
-1.6755 
- 1.7661 
-1.7813 
- 1.0078 
- 1  .6494 
- 1.7242 
-0.2635 
- 1.3760 
- 1.5968 

2,0199 
0.3076 

-0.1395 

assumptions of the model.  The  variance of the roundoff 
noise E n  was  then  measured  experimentally.  This was 
done by simulating  the  block-floating-point filter with a 
signed mantissa of  12 bits  and  comparing the  output 
values  with the  output of an identical  filter  simulated with 
36-bit  fixed-point  arithmetic. In all of these  measurements 
the  input was white  noise  with  a  uniform  amplitude 
distribution. For  the first-order  filter, the value of Q in 
(6’) and (7’) was taken as two. For the second-order filter, 
the  value of a was taken as  four. 

In Table I, measured  values of k2 and  the theoretical 
and experimental  values of the variance of the roundoff 
noise  for the first-order  case are given. The  input is white 
noise in the range 1 x,/ 57%. In a  similar  manner,  theoreti- 
cal and experimental  results for  the second-order  case are 
summarized in Table 11. The  input is white  noise in the 
range I xn 1 I A ~ .  

A Comparison of Block-Floating-Point,  Floating- 
Point, and  Fixed-point  Realizations 

Using the model  presented  in  the  previous  section, the 
block-floating-point  realization of digital  filters  can  be 
compared  with  fixed-point and floating-point  realizations. 
The  comparison to be  presented  here will be on the  basis 
of the  output noise-to-signal ratio when the  input is  a 
random  signal  with  a  flat  spectrum,  using  results  pre- 
sented by Gold  and  Rader [l], Kaneko  and Liu  [2], and 
Weinstein  and  Oppenheim [3]. With u: denoting the 
variance of the  roundoff  noise as  it  appears in the  output, 
we have for  the  first-order filter 

1 1 
fixed point : u: = -. 2-2t - 

12 1 - a12 (13) 

and for  the  second-order  filter 

1 
6 

fixed point ; u: = - 2PtG (15) 

floating point: ~ $ 2  = 0.23  2-2t 

16r4 cos2 O)] ~ y 2  
3r4 + 12r2 cos2 0 - ___- (16) 

1 + r 2  

where t is  the  number of bits in the  mantissa, not including 
sign, uy2 is  the  variance of the  output signal,  and. G is 
given by (12). In the fixed-point  case the  output noise is 
independent of the  output signal  variance, and  in  the 
floating-point  case the  output noise is proportional  to 
the  output signal  variance.  The  expression for block- 
floating-point  noise has  a  term independent of the signal 
and  a  term which depends on the signal through  the 
factor k2. In both  the  fixed-point and block-floating-point 
cases, the dynamic  range for  the  output is  constrained by 
the  register  length.  Consequently, as  the filter  gain  in- 
creases, the  input  must  be scaled down  to prevent the 
output  from overflowing the  register  length. Since the 
output is given by 

m 

then 
m 

I Y n l  _ < m a x ( / z n I )  / h k I  
k=O 

To  insure  that  the  output fits within  a  register  length, 
we require that, with xn and y. interpreted as fractions, 

so that 
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Fig. 4. Comparison of noise-to-signal  ratios for  flrst-order  filter using 
fixed-point, floating-point, and  block-floating-point arithmetic. 

k=O k=O 

With  this  constraint  on  the  input, we can  then  compute 
an  output noise-to-signal ratio  for  fixed-point, floating- 
point,  and block-floating realizations. Specifically, for 
the  first-order case, 

(5) block  f loat ing 

where k2  is the value for k2 when x, is uniformly distrib- 
uted between plus and minus  unity.' 

In  a similar manner,  for  the second-order case, 

(:$) f ixed   po in t  

1 Equations (20) and (23) are expressed in terms of ,@ rather  than 
k2 to facilitate- a  later approximation.  In deriving these equations, 
k2 is given as k 2  times the  square of the maximum  value of the input 
as dictated by (17). Thus,  although expressed in terms of a nor- 
malized value for k2, (20) and (23) are consistent with the constraint 
that xn be sufficiently small so that  the  output is less than unity. 

= (0.23)2-2t 
f l o a t i n g   p o i n t  

. [I. + G (3r4 + 12r2  cos2 0 - 

(:$) block  f loat ing 

+ 3k2(2  + 2r4 + 4r2  cos2 0) 1 
I 

In Fig. 4, (18), (19), and (20) are compared. in  Fig. 5, (21), 
(22), and (23) are  compared.  In these figures the  noise-to- 
signal ratios  are  plotted in bits so that  the difference be- 
tween two of the curves reflects the  number of bits that 
the  mantissas  should differ by to achieve the  same noise- 
to-signal  ratio. In each of the cases, the difference be- 
tween floating-point  and  block-floating-point is approxi- 
mately constant  as  the filter gain (or  the proximity of the 
poles to  the  unit circle) increases. This difference is 
approximately one  bit in the first-order case and  two bits 
in the  second-order case. In  contrast,  the fixed-point 
noise-to-signal ratio increases at a  faster  rate  than floating- 
point  or  block-floating-point,  and  for low gain is better 
and  for high gain is worse than  block-floating-point. 

In evaluating the comparison between fixed-point, 
floating-point,  and block-floating-point filter realizations, 
it is important  to  note  that Figs. 4 and 5 are based only 
on  the mantissa length  and do  not reflect the  additional 
bits needed to represent  the  characteristic in either float- 
ing-point or block-floating-point  arithmetic. 

An additional consideration which is not reflected in 
these curves is that in both fixed-point and block-floating- 
point  the noise-to-signal ratio is computed  on  the  assump- 
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Fig. 5. Comparison of  noire-to-signal  ratios  for second-order fllter using fixed-point,  floating-point,  and  block-floating-point arithmetic. 

tion  that  the  input signal  is as large as possible  consistent 
with the requirement that  the  output fit within the  register 
length. If the  input signal is in fact  smaller than  permitted, 
then the noise-to-signal ratio  for  the fixed-point  case will 
be  proportionately  higher. For block-floating-point, as 
the  input  signal  decreases, k2 decreases, thus reducing  the 
output noise. From (9) and (12) we observe that  as  the 
input  signal  decreases  the output noise  variance  asymp- 
totically  approaches u2. 

For the  case of high-gain filters, (18) through (23) can 
be  approximated by asymptotic  expressions which place 
in evidence the  relationship between them. For the high- 
gain  case, that is, for al close to unity in the first-order 
filter  and r close to unity  and 0 small in the second-order 
filter, we  will assume that I x% j is always smaller than 1 y, j 
so that (1/,4,)=2 Iy.1 for the first-order  filter and 
(l/A,)S4 1y.l for the  second-order  filter.  Then, if  we 
consider y ,  as a  random variable  with  a  symmetric prob- 
ability  density, 

in (20) and 

in (23). 
Representing a as 1 - 6 for  the  first-order  case and r as 

1-6 for the second-order  case,  with 6 small, we can 
approximate (18) through (20) as 

1 
E 0.23 - 

f loa t ing   po in t  6 

For the  second-order  case we  will want  to  bracket  the 
expression 
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This  sum  is  the  sum of the  absolute values of the impulse 
response  and as such  is an upper  bound on  the filter out- 
put with a  maximum  input of unity. Consequently, it 
must  be  greater than  or  equal  to  the response of the 
second-order filter to a sinusoid of unity amplitude at  the 
resonant frequency. This  resonance  response is given by 
1/(1 -r)(l+r2-2r cos 20)1’2 or, with the high-gain ap- 
proximation, 1/(26 sin e). An upper  bound is easily ob- 
tained  on  the sum as 

Furthermore,  for  the high-gain case we approximate G 
as  GE1/46 sin2 8. We can  then write that 

2 

= 0.23 1 + __--- 
[ 3 + 4 cot’ e ]  (28) 

floating  point 46 sin2 6 

We note  that  the behavior of these expressions as  a  func- 
tion of 6 is consistent with the results  plotted in Figs. 4 
and 5. 
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