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ABSTRACT

Several algorithms for the reconstruction of multidimensional signals
from their projections are presented. These algorithms can be applied
to the problem of estimating the structure of an unknown three-dimen-
sional object from its x-ray photographs or electron micrographs taken
at different orientations. The reconstruction problem is broken into
two distinct steps; first samples of the Fourier transform of the un-
known signal are computed from a series of digitized projections, then
the unknown is estimated from the samples of its Fourier transform.
Reconstructions are considered from several sets of samples in Fourier
space. A particular set of samples, the concentric squares raster is
developed, the reconstructions from which are superior to those made
from the more traditional polar raster of samples for bandlimited in-
puts which have a rectangular frequency band. Furthermore for an im-
portant class of unknowns exact reconstructions can be performed from
a concentric squares raster from a finite number of projections. In
fact for this class of unknowns a single projection is sufficient. A
detailed treatment of the one-projectiun reconstruction problem is pre-
sented and the difficulties associated with its solution are explored.
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Chapter I

INTRODUCTION

1.1 Introduction

In this thesis we shall be concerned with the problem of ap-
proximating or reconstructing unknown multidimensional signals from
their projections. A projection represents an N - 1 dimensional re-
presentation of an N-dimensional signal, much as a transmission x-ray
photograph is a two-dimensional representation of a three-dimensional
unknown structure. A projection, like an x-ray photograph is formed by
superimposing all structural detail in a particular direction and thus
with each projection we can assoclate an orientation. In general a
single projection will provide an incomplete description of an unknown
signal. 1In this dissertation, therefore, we shall consider techniques
whereby an unknown signal can be determined either exactly or approxi-
mately from a set of projections at different orientations.

Throughout this dissertation this problem shall be considered
as a mathematical, signal processing problem. There are, however, a
number of problems of practical importance which can be interpreted
within the framework of recovering signals from their projections. One
of these is the approximation of visually opaque structures from their

x-ray photographs which was alluded to earlier. From x-ray photographs
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of an unknown taken at different orientations, we can approximate the
optical density function of the object being x-rayed. Also a trans-
mission electron micrograph (as opposed to a scanning electron micro-
graph), can be considered to be a projection of the specimen under ob-
servation. By tilting the stage of the microscope, it is possible to
obtain different projections of the same specimen. It is also frequently
possible to obtain different projections by identifying the orientations
of different structures, such as viruses which are projected on a single
electron micrograph. In the case of some symmetrical structures such

as helical viruses it is also frequently nossible to obtain several pro-
jections from a single view.

Another application which frequently occurs in medicine is the
autoradiograph scan. If for example we wish to observe the blood circul-
ation in a person's brain, perhaps to detect a hemorrhage, we can inject
radioactive tracers into the bloodstream; then at a later time, with a
scintillation counter we can scan along planes in the vicinity of the
brain. These planar scans constitute projections which can then be pro-
cessed to yield the size and location of any hemmorhage. The procedures
for recovering a function (signal) from its projections can also be used
to invert fan-beam radiotelescope scans or to recover the point spread
function of a two-dimensional linear optical system from a series of line
responses.

If a function can be reconstructed exactly or even approximately
from its projections, then those projections must characterize that func-
tion. Thus it has been suggested that projections might be useful for

pattern recognition (5), (6) or for bandwidth compression in communicating



-12-
and storing pictures. In both of these applications it is suggested
that much of the redundancy which is present in storing multidimensional
signals in terms of their samples, might be removed by storing only a
limited number of projections of those signals. The possibility of
using projections for bandwidth compression will be discussed at the
end of Chapter IV.

Correlating all of the information in several projections is
a formidable task, however, the problem is readily amenable to machine
computation. The projections can he sampled and together with their
orientation parameters put into a digital computer which can then com-
pute a reconstruction. There are additional advantages to approaching
the problem digitally. Irregularities in the projections can be com-
pensated for and the N-dimensional image can be processed to enhance
important features, such as perhaps ccntours, or to suppress undesirable
ones. Also computations can be made on the unknown - distances can be
measured, volumes computed, etc. There are also some constraints that
are introduced by treating the problem digitally. The projections must

be expressable in terms of their samples for instance.

1.2 Historical Development of the Problem

The basis for most of the algorithms which perform reconstruc-
tions from projections is a theorem which we shall call the projection
slice theorem. It appears to have been discovered on at least two dif-
ferent occasions independently. Bracewell (3) used it in 1956 to invert
fan~-beam radio telescope scans and DeRosier and Klug (17) in 1968 used

it to perform reconstructions from electronmicrographs of helical viruses.
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Since 1968, a number of workers, particularly biophysicists have been
attracted to the problem and have presented a number of computer algori-
thms for performing reconstructions. In this regard the reader is re-
ferred to the papers of Crowther, DeRosier and Klug (7) - (18), Ramach-
andran (45), (46), (47) and Vainshtein (39), (50}, (51). A unique
statistical algorithm has been suggested by Gordan, Herman et al. (2),
(19), (20), (24), (25), (30), (31). The problem has also been approached
optically and an optical system for generating reconstructions has been
built by Grant, Garrison et al. (21), (26), (27) which superimposes pro-
jections. This is the optical counterpart of an algorithm presented in

section 3.4 of this thesis.

1.3 The Scope of this Thesis

Except for the optical techniques of Grant (21), (26), (27)
and Hart (28), (29) all previous attempts at performing reconstructions
from projections have used a digital computer. This impcses certain
constraints on the class of allowable input functions. First the pro-
jections must be sampled. For the projections to be recoverable from
their samples this normally requires that the unknown be bandlimited.
Furthermore the reconstruction can only be performed at a limited num-
ber of points. Thus the unknown must be determined by its samples which
further requires that the unknown be bandlimited. In this thesis, there-
fore we shall focus our attention on bandlimited functions. In this re-
gard the present work represents a departure from the work of others in

the field who have not explicitly considered bandlimited functions,
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although they have assumed that sampling could be performed and have
thus implied bandlimitedness. Restricting the range of possible input
functions is not a particularly serious constraint since most unknown
signals of interest, if not strictly bandlimited themselves, can be
closely approximated by such functions. On the other hand, restrict-
ing ourselves to bandlimited functions or even to specific classes of
bandlimited functions has its rewards,for many of the properties of
such signals can be exploited in the design of reconstruction algorithms.
This problem can also be considered as a digital signal processing pro-
blem and many of the results of that discipline which are concerned
with sampled data and thus bandlimited functions, can be used in the
design of more powerful and efficient algorithms than could be obtained
without the assumption of bandlimitedness.

Throughout this thesis most results have been phrased in terms
of reconstructing two-dimensional functions (photographs) from their one
dimensional projections. Most of the two-dimensional results can be
straightforwardly extended to three or more dimensions but the two-
dimensional case is simpler to work with. It yields more tractable mathe-
matical expressions, its demands on computation time and storage are re-
duced and the results are easier to display.

This thesis is divided into four parts. Some classical results
from digital signal processing are presented in Chapter 2 as background
information, since they are of central importance in understanding the
algorithms which follow in later chapters. Also in this chapter projec-

tion functions are formally defined and the projection/slice theorem is
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presented upon which all of the algorithms depend. In Chapter III sev-
eral algorithms are presented, some of which were suggested by other
workers. These are presented mainly for comparison with the algorithms

of Chapter IV, where we assume that the class of unknown signals is a
subset of the class of bandlimited functions. By exploiting the proper-~
ties of this class of functions, a series of algorithms are developed
which yleld improved reconstructions over the algorithms of Chapter III.

A particularly interesting property of this class of functions is that

they can be reconstructed in theory from a single projection. In Chapter V

the implications of this property are considered.



-16~

Chapter II

MULTIDIMENSIONAL FOURIER TRANSFORMS AND PROJECTIONS

2.1 Definitions and Background Mathematics

The intent of the first section of this chapter is to stand-
ardize the notation and define the terms that will be used throughout
this thesis. It will summarize some of the background material from the
field of multi-dimensional signal processing upon which the work in this
thesis depends heavily. This material, although not difficult, may be
unfamiliar to some readers. Of particular concern is the operation of
taking the Fourier transform of a multidimensional signal since most of
the reconstruction algorithms are performed in Fourier space rather than
in function space. In the latter part of the chapter, the projection/

slice theorem is presented.

2.1.1 The One-Dimensional Fourier Transform

1f f(x) represents a function in a single variable which is

continuous from the right and if

o

[ fG)|dx < =

-00
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then we can define a function F(wx) which we shall call the Fourier
transform of f(x) by means of (2.1).

(o]

F(w,) = { £(x) exp[-jxw ] dx 2.1)

00

where

j=/T

F(wx) and f(x) are equivalent in that one function can be determined
from the other. In particular f(x) can be computed from F(mx) by means
of (2.2).

[

£G) = o0 [ Flu) explixe,] du (2.2)

-0

The two functions f(x) and F(wx) are often referred to as a Fourier
transform pair. The domain of f is referred to as the time domain or

space domain. We shall prefer the latter term since in this work the

variable x will generally represent a spatial rather than a time variable.
The domain of F(wx) is often referred to as the frequency domain, the

Fourier domain, or by the somewhat confusing term Fourier space. The

Fourier transform then represents a mapping of a function from the space
domain to the Fourier domain. Many operations which are difficult to

perform in one domain become particularly simple when considered in the
other domain. Convolution and projection (for multidimensional signals)

are two such operations.
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Notationally we shall use capital letters to describe functions
defined in the Fourier domain and lower case letters for functions de-
fined in the space domain. Greek letters shall denote Fourier domain
variables and roman letters shall denote space domain ones.

The Fourier transformation and the inverse Fourier transforma-
tion as defined in equations (2.1) and (2.2) respectively are functions
of continuous variables and as a result these equations are not readily
amenable to machine computation unless we impose some additional constraints
upon f(x) (or conversely upon F(wx)). The function f(x) will be said to
be bandlimited if F(wx) = 0 for wa! > W for some number W, which is
referred to as the bandwidth. This definition is illustrated in figure
2.1. Note that we say that f(x) is bandlimited while the constraint is
actually applied to F(wx). F(mx) is bandlimited if f(s) = 0 for lxl > X
for some X. To avoid confusion in the latter case we usually say that
f(x) is spacelimited.

If £(x) is a bandlimited function, then F(wx) is non-zero only
over a limited region of the wx—axis and we can thus expand F(wx) in a

Fourier series. If W. is greater than W

1

_ _: Tn
F(wx) = I a exp[-j W wx] , lmxlli Wl (2.3)

n=- 1

where
W
. 1 .

a = 2W1 _é F(wx) exp[JWl wx] dwx (2.4)

1
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f(x)

-

\_//4*}(

(@ f&)

¢ B rerr(e® b mr(el))

(b) (c)

Real part of the Imaginary part of the

Fourier transform of f(x) Fourier transform.

Figure 2.1

An example of a bandlimited function f(x)
with bandwidth W.
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By comparing equations (2.2) and (2.4) while remembering that F(wx) =0

for wal > W, we see that

=

a_ = £( %"— ) (2.5)

1 1

This enables us to say that for a bandlimited function f(x)

i x nm ™
Flw) ==— ¥ £ expl-im w_]
X wl [ Wl Wl X
(2.6)
f(—mr) -l ‘fl F(w ) exp[j—Trn w ] dw
Wl zwl “w X Wl X X

1

Thus for bandlimited space domain functions f(x), F(wx) can be deter-
mined from samples of f(x). This important result is known as the sam-—

pling theorem. The operation of obtaining the sequence of numbers

{ﬁg- f(%z)} from f(x) will be referred to as periodic sampling with
1 1
sampling rate 2Wl (radians). The minimum sampling rate 2W consistent

with the sampling theorem, will be called the Nyquist rate and the max-

imum distance between adjacent samples % will be referred to as the

Nyquist sampling interval.

Although the expressions of (2.6) are more convenient to use

than those equations (2.1) and (2.2) they are still inadequate for com-

putational purposes for two reasons. First we must know an infinite num-

ber of samples of f(x) and secondly the inverse transform computation

still requires the evaluation of an integral. We can circumvent these



-21-
difficulties by imposing the additional constraint that when f(x) is
sampled at its Nyquist rate only a finite number of its samples are non-
zero. Although this constraint when coupled with the bandlimitedness
constraint is severe, functions of this class are frequently useful as
very good approximations to functions of interest. Let us further stip-
ulate with no loss of generality that the non-zero samples of f(x) are
those for whichn =0, 1, ..., N-1. We shall refer to N as the order of
f(x) and shall refer to f(x) as a function of finite order if it is
bandlimited and if such an N exists. If f(x) is of finite order then
N-1

F(w,) = % ngo f(—) exp[- J—“ w1, ol <w (2.7)

F(wx) is a polynomial of degree N-1 in the variable expl I-cox] and it

. -Jw
is thus determined by any N samples of F(w ). In particular the sequence
f( ) should be determinable from the sequence F(———O for k=0, 1, ...,

N-1. Consider the sum

N-1
% z F(E%E) exp[jg%%E] , r=20,1, ..., N-1 (2.8)
k=0
N-1 N-1
L) 21kn 2Tkx
== L I f(—) exp[-i=—] expl[i=—]
W k=0 n=0 N N
- N-1 N-1
=a z f(—){-— ¥ explj T(r-n)]}
n=0 k=0
- N-1

n=0
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where
§ =1 4f r =n
nn
=0 if r#n
Thus
1 %1 owm omkr, T . ,Tr
R EO F(T) expl]j T] =-ﬁf(7 , r=0,1, ..., N-1

(2.9)

T
We can thus define a transform relation between the sequences f(%?)

defined in the space domain and F(Q%E) defined in the Fourier domain.

N-1

Fczg&) 4 F(k) = I f(n) exp[-j%?-kn], k=0, 1, ..., N-1
n=0
N-1
T L 8m =% 5 F0 expliZ knl,n =0, 1, ..., N-1
W W N k=0 N
(2.10)

F(k) and E(n) are said to form a discrete Fourier transform (DFT) pair.

For bandlimited functions of finite order we can thus say that samples

of the function and samples of its transform form a discrete Fourier
transform pair. The equations in (2.10) are extremely useful computa-
tionally and an extremely efficient algorithm, the fast Fourier transform

algorithm exists for their computation.
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2.1.2 The N-dimenslonal Fourier transform

We can derive results similar to those of section 2.1.1 for
N-dimensional signals (functions of N-variables). Let f(xl, Koy eees xN) =

= ¥
f(x) represent a space domain function of N-dimensions for which

o«

e —
[ 1fx)] dx < = (2.11)
00
We shall use vector notation because of its notational compactness. The
integral in (2.11) is meant to be carried out over the whole domain of X
and thus it represents an integral not over a line but rather over an
N-dimensional volume. If we let F(w) = F(wl,wz, ...,wN) represent the

— —
N-dimensional Fourier transform of f(x) then F(w) and f(;s are related

by
Flw) = };f(“{) expl-j % - 0] dx (2.12)
where
£Go = —Lg | FE) exls ® -1 4@ (2.13)
@nm" -

As before we shall refer to the domain of f as the space domain and the
domain of F as the Fourier domain. The function f(xl,xz,...,xN) will
be said to be bandlimited if there exists an N-tuple of numbers (Wi,Wz,
++sWy) such that F(w,0,,...,00) = 0 for lel > Wy, |w2| > Wy wues
IwNI > WN' A two-dimensional bandlimited function is illustrated in
figure 2.2. The N~tuple of numbers (wl’WZ"'°’Wﬁ—l) will be referred to
as the bandwidth. It costs us little generality to set W = max[Wl’Wz,...,

——
WN] and to refer to W as the bandwidth of f(x). In general this is what
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(b) the magnitude of its Fourier transform

Figure 2.2

A two-dimensional bandlimited function.
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we shall do and if the bandwidth of a multidimensional signal is speci-
fied as a scalar W, we really mean that W = max[Wl,Wz,..,WN].

Since F(wl,wz,...,wN) is non-zero only over a limited region

~eoud
of Fourier space for bandlimited functions, we can expand F{w)

F(wl,wz,...,wN) in an N-dimensional Fourier series. If V > W

max{wl,wz,...,WN} then
F) = & as exp[-] %'r'? o) (2.14)

wherg'3'= (nl,nz,...,nN) is an N-triple of integers, each of which varies
from - to @ in the Nth order summation. The summation is written as a
single (vector) summation for convenience. Since the set of numbers

aH.reptesent Fourier series coefficients, they can be determined by

il

= [ F) explj T ‘)] dv (2.15)
(2v)

\'

Comparing equations (2.13) and (2.15) as we did in the one-dimensional

case, we see that

£( ;;-?r) (2.16)

z f(%_tb exp[-j %—n w1

n=—m

(2.17)

V —
FED = —2— [ Flw) explj %—(‘ﬁ W1 dw
2v) -V
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This is the N-dimensional sampling theorem. The operation of obtaining

the multidimensional array of numbers (%)N fﬁ%?b will be referred to

as periodic Cartesian sampling with sampling rate V. The term Cartesian

implies that the locations of the samples in the space domain form a reg-
ular hypercubic or rectangular lattice. As in the one-dimensional case,
the term Nyquist rate refers to the minimum sampling rate 2W which is
consistent with the sampling theorem. Let us, as before, apply the addi-
tional constraint that only a finite number of the Cartesian samples of
f(xl,xz,...,xN) when sampled at the Nyquist rate are non-zero and that
with no loss of generality those samples aée the ones for which n, = 0,
1, ..., M-1 where 1 = 1, 2, ..., N. The number N shall be called the
order of ff;B. Let us also consider the array of Cartesian samples of

F(w) = F(wlawzs R sz)-

My, . o 2W ., 2W 2w _
{F( M )}-' F(E-kl’ T’[-kZ’ cesy _i-kN), ki-O, l, evaey M_l

T — 20 ==
We shall now show that f(ﬁ'n) can be determined from F(;F k).

Letting
M-1 M-1 M-1 M-1
Z represent L -2z
k=0 k1=0 k2=0 kN=O
consider the sum
M-1
1 20 L 2M A =
—ﬁ_g F(T/[_ k) explj _.T»T(k - )] r, = 0,1, ..., M-1 (2.18)

M k=0
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(a) the location of these samples for a one-dimensional DFT

(b) the location of these samples for a two-dimensional DFT

Figure 2.4

The samples of the Fourier transform of a

function which correspond to the DFT.
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= ‘JN f( w E] w 9 eeosy w ) - VIN f(w—rj (2.19)

Thus for N-dimensional signals of order M, the Cartesian samples of £
are related to the Cartesian samples of F by a discrete Fourier trans-

form (DFT) relation as in equations (2.20) and (2.21).

- A M-1 > _a
P LFE = 1 E@ exply HE D) (2.20)
70 ~
N M-1
i Ta, A2 1 e 27 >
L f@ER) S (@ = 5 I Flo) expli Jr(k - )] (2.21)
v M k=0 =

The fast Fourier transform (FFT) algorithm can be used to
evaluate (2.20) or (2.21) in an efficient manner, for we can write (2.20)
as

M-1 k M-1 k,n

~ n =
Flky ks en el = nz=0 exp[~j 2 IMJL]{nz_0 exp[-j 2 izl{...
1 2~

M-1 .
veol Z—D f(nl,nz,...,nN) exp[-j2ﬂk§:N]}}}
nN—

(2.22)
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The inner summation is simply a one-dimensional DFT calculation which
can be evaluated using the FFT with respect to the variable Ny The
results of this computation then serve as the inputs to another series
of one-dimensional DFT computations, this time with respect to the var-
iable Ny and so on. In all the number of M point DFT computations
that must be performed is NMN_l. Thus evaluating a multidimensional

DFT is a formidable problem for N (the number of dimensions) larger than

2 or 3.

2.2 Projections

In the first chapter we considered a projection operator as a
mapping of an N-dimensional function to an (N-1)-dimensional function
which was obtained by superimposing all information associated with a
particular direction or orientation. We defined a projection as the

(N-1)~-dimensional function which resulted from such an operation. Thus

p(xl) = {m f(xl,xz)dx2 (2.23)
a(x,) = {m £(xy,%,)dx, (2.24)
r(xl,x3) = {m f(xl,xz,x3)dx2 (2.25)

are all examples of projections. Equations (2.23) - (2.25) do not re-
rresent the most general form for projections,however. The function
f(xl,xz,...,xN) is defined on an N-dimensional vector space where the

N-tuple (xl,xz,...,xN) simply represents a point in the domain of f.
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The numbers xl,xz,...,xN simply represent coordinates with respect to
some orthonormal basis. We can perform a change of variables and define
another orthonormal coordinate system with respect to another orthonormal
basis. We can then define projections by integrating with respect to
these new variables. Let A be a matrix which accomplishes a change of
coordinates from the variables xl,xz,...,xN to the variables tl,tz,...,

tN’ i.e.

- N
t

= AX

Since the change of coordinates must be reversible, A must be invertible

so that
=417
thus
— "‘l"k
f(x) = f(A t) (2.26)

The left-hand side of (2.26) expresses the function in terms of the var-
iables XysXyse e e Xy and the right-hand side expresses the same function

in terms of the variables tl’tZ"'°’tN where both sets of variables cor-
respond to Cartesian coordinate systems. We can then define a projection

as

oo
-1 =
p(t ot seenst t ceast ) = | £(A T t) dt (2.27)
1272277 7i-12 7141 TN {m i
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The projection thus defined is N-1 dimensional. The examples in (2.23) -
(2.25) are all seen to correspond to special cases where the matrix A

is the identity matrix of appropriate size.

The issue of exactly what a projection is can be made clearer
by considering the special case N = 2. Let f(xl,xz) represent the func-
tion which we wish to project. We can now define a new coordinate system,
the (ul,uz) coordinate system which is simply a rotation of the (xl,xz)

coordinate system, as illustrated in figure 2.6a. The matrix A is

cos® sin®

A=
~-gind® cos0
cos® -sin®

a7t -
sin® cos®

thus

X, =u cog® - u,sin®

1 2

(2.28)
X, = ulsinO + u, cos®

and

o0
pe(ul) = {w f(ulcose - uzsin@, ulsinG + uzcos@)du2

(2.29)
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The projection is obtained by integrating along lines normal to the

uy - axis. Equation (2.29) represents the general form for a projection
in two-dimensions; the projection is completely specified by the angle O
which represents the orientation of the u; - axis with respect to the
Xy - axis. In general we shall thus refer to the projection of a two-
dimensional function by its angle. Obtaining different projections of

a two-dimensional function corresponds to finding a set of angles {Gi}

and taking the projection according to (2.29) for each angle.

2.2.1 Examples of Projection Functions

We stated in Chapter I that x-ray photographs and electron
micrographs could be described by projections. Let us assume that we
have an unkno;; specimen which is characterized by an optical density
function f(x,y,2z) and that an x-ray photograph is made of the specimen
with the orientation of the x-ray beam parallel to the y-axis. Further-
more let us assume that the beam is uniform with intensity Io, colli-
mated, and that the effects of scattering of the beam by the specimen

can be ignored. Then the observed intensity variation of the x-ray photo-

graph can be described by

o

I(x,y) = I_exp[- [ £(x,y,2) dy] (2.30)

-0

where the location of the image I(x,y) is assumed to lie behind the

specimen. We can then define

2]

p(x,y) = -4n IS%zXl = f f(x,v,z)dy (2.31)

[e) Q0
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and we see that p(x,y) is clearly a projection of the optical density
function. Other projections could easily be obtained by either altering
the orientation of the specimen or changing the direction of the x-ray
heam.

As a second example of a projection function, consider an
i{dealized fan-beam scan as illustrated in figure 2.5. As with any scan-
ning device we measure the total light intensity which passes through
some aperture. The output of the scanner is the total light intensity
as a function of the position of the aperture. With an idealized fan
beam the aperture is very narrow in one direction and wide (infinitely
wide) in the orthogonal direetion. Thus the idealized fan beam scanner
measures the light present along an infinitely long line. The total

light passed by the beam is

Po(yo) f f £(x,y) Uo(y - yo) dx dy

-00 00

o
= [ fxyy) dx (2.32)
Thus by varying y, over the range (-»,©) we obtain a one-dimensional pro-
jection pc(y) of the light intensity of the object being scanned. By
varying the orientation of the beam line we obtain different projections.
As a final example consider the response of a linear shift-
variant two-dimensional system with point spread function (unit impulse

response) h(x,y) to a line input Uo(x).
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Figure 2.5

The aperture corresponding to an idealized fan-beam scan.
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[ h(s,t) Uo(x - s) ds dt

-0

P, (x,¥)

| hix,t) dt

=00

po () (2.33)

Thus the response to a line input is a two-dimensional function of one
variable. Thus in this case the line spread function represents a pro-
jection function in the x-direction for every value of y. By choosing
1ine inputs at different orientations - Uo(ulcos® + ulsin@) we could
generate other projections of the point spread function. Each of these
other line responses will be uniform in the uz-direction and represents

a projection if considered only as a function of the variable uy-

2.2.2 The Projection/Slice Theorem

The projection/slice theorem relates the Fourier tramsforms of
the projections of a function to the Fourier transform of the function
itself. It will serve as a basis for all of the algorithms of this thesis.
We shall assume that we are working with a two-dimensional unknown since
this is the case that we care most about in the examples of this thesis
and since the results are simpler than the general N-dimensional case.
This theorem can, however, be readily extended to three or more dimensions.
We shali let f(x,y) represent the function which is projected and pe(u)
represent its projection at angle O i.e. the u-axis intersects the x-axis

at an angle O. These relationships are illustrated in figure 2.6.
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(a) the definition of a projection in the space domain
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W

(b) the definition of a slice in the Fourier domain

Figure 2.6

The relation between a projection and a slice.
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Because of the importance of this theorem we shall demonstrate
it twice - first in the special case © = 0 where we can understand what

the theorem says and then again in the general cacse.

Case I: © =0

Consider F(wx,wy), the Fourier transform of f(x,y) evaluated

along the mx—axis.

F(wx,wy) = [ [f(x,y) exp[-j (xw + ywy)] dx dy (2.34)
F(wx,O) = f f f(x,y) exp[—jxwx] dx dy (2.35)

[}

= f exp[—jxwx] I f(x,y) dy dx

-C0

o

[ pyGx) expl-ju,] dx (2.36)

F(wx,O)
Thus the function F(wx,wy) evaluated along the line wy = 0 corresponds to
the one-dimensional Fourier transform of the projection at 0 =0. We

shall call such a section of F(wx,wy) a slice of F(wx,wy).

Case II: General Case

A slice of a two-dimensional Fourier tramnsform represents
F(wx,wy) evaluated along a line which passes through the point w, =W =
Each slice then is a function of a single variable which we shall call w

and each slice is characterized by a parameter © which represents the
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angle between the w-axis and the wx—axis as illustrated in figure 2.6.
Equation (2.36) states that the projection at angle O = 0 transforms to
the slice at © = 0. We shall show that each slice is the Fourier trans-
form of a projection. In general the slice at angle © transforms to the
projection at angle ©. TFor this reason we have defined the single angle O
to represent the orientation of both a projection in the space domain and
a slice in the Fourier domain.

Let ® represent a Cartesian coordinate in the Fourier plane
such that the w - © coordinate system is an orthonormal Cartesian coor-
dinate system which is related to the w - wy coordinate system by a

rotation of O. Then referring to figure 2.6 we can write

€
0

w cos® + w sind
X y

£>
]

- _sind® 4+ w_cosO (2.37)
X y
which can be inverted as

w cosB® -~ ® sind

€
1}

w = sin® + 0 cosd (2.38)

Substituting intco the expression for F(wx,wy) we get

%(w,ﬁ) 2 F(wx’wy) = | f f(x,y)exp[-j(chos@+ywsin@—xﬁsin®+yﬁcos@)]dwda

= 0o~ o

(2.39)
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To obtain the slice at angle O we merely evaluate equation (2.39) along

the line & = 0.

«© oo

¥(w,0) = [ [ £(x,y) expl-j(xw cos® + yw sind)] dw d (2.40)

-0 Q0

To recognize this as the Fourier transform of the projection at angle ]

we can make the substitution of variables

e
]

x cos® + y sin®

~-x sin® + y cosO

<
]

Doing this we get

[e e}

%(w,O) = [ expl-juw] [ f(u cos® - v sind, u sind + v cos@) dv du

-C0

(2.41)
By comparing this with equation (2.29) we see that

¥(0,0) = [ exp[-jus] po(u) du (2.42)

-0

which is what we wished to prove: the slice at angle O transforms to

the projection at angle O.

2.3 A General Reconstruction Algorithm

From the projection/slice theorem we see that specification of

a projection of a signal corresponds to the specification of a slice of
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that signal's Fourier transform and thus it represents a partial spec-
ification of the signal itself. In fact if we start with the inverse
Fourier transform integral for a two-dimensional signal

o

1
(2m? {m {m F(wx’wy) exp(j (xw, + me)] du_ duw

f(x,y) =

(2.43)

If we then represent F(wx,wy) in polar coordinates

©
f(x,y) = L 3 [ F(w,0) explj(xw cosd + yw sind)]|w| 40 dw
@m)~ -=o
= 3 / i So(w) explj(xw cos® + yw sin®)] |w| dO dw  (2.44)
(2m)® -= o

where Se(w) represents the slice at angle ©0. Equation (2.44) tells us
how f(x,y) should be reconstructed from its projections (slices). In
general an infinite number of slices are needed. In practice, however,
only a finite number of them will be available; thus in general equation
(2.44) must be approximated from the values of Se(w) at only a finite
number of discrete angles. Notice that from equation (2.44) only pro-
jections for 0 < © < T need to be taken. If T < O < 27 then

co

[ £(u cos® - v sind, u sin® + v cosd)dv

-=00

pe(u)

oo

f f(-u cos(@ - 7) + v sin(®@ - 7), -u sin(@® - 7) - v cos(® - 7W)du

-=00
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- f f(-u co8(® - 1) - w sin(@® - 7), -u sin(® - 1) + w cos(®@ - 7) dw
40

2.45
= po_ (-u) (2.49)
From the properties of the Fourier transform it follows that if P@(“)

where * denotes the complex conjugate. If, for example, eight projections
were taken at evenly spaced angles from 0 to T, F(wx,wy) would only be
specified along those lines shown in figure 2.7.

In addition to requiring an infinite number of slices, equation
(2.44) also requires that each slice be specified for all values of w.
This is in general impossible to do because the Fourier transforms which
must be computed to determine the slices of F(wx,wy), must be computed
digitally. If the projections are all bandlimited (equivalent to re-
quiring that f£(x,y) be bandlimited because of the projection/slice theorem)
and if the projections can be closely approximated by functions of finite
order, then samples of S@(w) can be computed by regular sampling of the
projection pe(u) followed by a DFT calculation. This procedure will give
us F(wx,wy) at only a finite number of points on each slice. If f(x,y)
is not precisely bandlimited, or if the projections are not of finite
order, then these samples of F(wx,wy) will only be known approximately.
Our knowledge of F(wx,wy) will thus be confined to points such as those

shown in figure 2.8. In general errors made by making approximations in
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m/8 (radians)

Figure 2.7

Lines in the two-dimensional Fourier plane
where F(wyg, wy) would be known from 8 pro-
jections with equally spaced angles in the
range [0,m7].

—u,
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Figure 2.8

Points at which a two-dimensional Fourie:x trans-
form will be known from 8 projections with the
Fourier transforms computed digitally.
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the w variable seem to be less critical than those in the © variable.
Also errors made by ingufficient sampling of each slice are relatively
easy to correct by resampling pe(u), whereas it is considerably more
difficult to obtain extra projections.

The essence of the reconstruction problem is to find some method
for approximating the entire Fourier space from its values at the finite
number of points that can be computed from projections. This requires
that we make some assumptions about F(wx,wy) or equivalently about f(x,y).
Suppose for example that we know that f(x,y) is circularly symmetric. All
of the projections of a circularly symmetric function must necessarily
be identical, thus its slices must all be the same independent of their
orientation, which is to say that F(wx,my) must also be circularly sym-
metric. Thus a circularly symmetric function can be reconstructed from
a single projection. Similarly in three-dimensions an unknown which is
known to be spherically symmetric, cylindrically symmetric or helically
symmetric can also be recomstructed from a single two-dimensional pro-
jection. In the latter two cases the projection should be taken normal
to the longitudinal axis of the cylinder or helix.

Another class of functions which can be represented exactly
from a limited number of projections are the bandlimited functions of
finite order. As we recall from section 2.1.2 these functions are com-
pletely determined by their DFT's, wiich correspond to a finite number
of samples of the Fourier transforms of these functions. This finite
set of Fourier samples can obviously be included in a finite number of
slices and this particular set of slices can be determined by a parti-

cular set of projections which has a finite number of members. In
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Chapters IV and V these functions will be considered in detail. In
Chapter III some algorithms are presented which approximate more general
signals. All of the reconstruction algorithms in this thesis, however,
contain four basic steps.

1) Obtain a finite number of projections at known orientations

(angles).
2) Sample and transform these projections.

3) Utilize the sampled slices to approximate the entire

Fourier plane.
4) Inverse transform.

Some of the algorithms perform steps (3) and (4) simultaneously.

2.4 Number of Projections

There are two types of reconstruction algorithms. With the
first type, called the parameter algorithms, a form is assumed for f(x,y)
in terms of a finite number of parameters. These parameters are then
estimated from the projections and the estimates are used to perform a
reconstruction. The algorithms of Chapter V are examples of such algor-
ithms. In general we can make no statement about how many projections
are needed by a parameter algorithm for this depends critically on the
nature of the particular algorithm. For example one of the algorithms in
Chapter V requires only one projection, where a parameter algorithm which
represents f(x,y) in terms of its N2 DFT samples requires on the order of
N2 projections.

The second type of reconstruction algorithm is the class of

approximation algorithms. Here the basic approach is simply to approximate
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equation (2.44) from a finite number of samples of F(wx,my) which are
available from a finite number of projections. For the approximation

algorithms there are two rules of thumb that seem to be useful for pick-

ing projections.

1) If we have an object of dimension A and we wish to recon-
struct detail to a dimension B then,

# of projections n, TA/B (2.47)
2) Choose the projections to be evenly spaced from C to 7.
These rules of thumb (Crowther (12), Tretiak (49), Bracewell (4)) are

based on the sampling theorem and the requirement that the maximum dis-

tance between adjacent Fourier samples be less than the Nyquist interval.

2.5 Equivalence of Reconstruction and Picture Representation

In the four step reconstruction procedure outlined in the pre-
ceeding section, the important and difficult step is that of approximat-
ing the entire Fourier plane from a finite number of its samples. This
problem is equivalent to the problem of representing a multidimensional
signal in terms of a finite number of parameters (exactly or approximately).

If we approximate f(x,y) by

N-1
f(x,y) = L a wn(x,y) (2.48)
n=0
then
N-1
F(wx,wy) = a ?ﬁ(mx,wy) (2.49)

n=0
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where {wn(x,y)} represents a set of basis functions and {Wn(wx,wy)}
represents their two-dimensional Fourier transforms. If now the set

{an} can be determined from a finite number of projections (say N of
them) we will have a technique for reconstructing f(x,y) from N project-
ions. 1In fact, the essence of the parameter reconstruction problem is to
find good representations of the form of (2.48) or (2.49). Nor is this
representation problem confined to performing reconstructions. It is,

in fact, related to many other important disciplines such as picture cod-
ing for bandwidth compression, pattern recognition, and picture classi-
fication. Hopefully this work with reconstructions and projections can

shed some light on these other disciplines.

2.6 Reducing the Three-dimensional Reconstruction Problem to a Series

of Two-dimensional Problems

Another reason for directing the bulk of our discussions to the
two-dimensional reconstruction problem is that the three-dimensional re-
construction can be considered as a series of two-dimensional reconstruc-
tions. In general an N dimensional reconstruction can be performed using a
gseries of N - 1 dimensional reconstructions. Instead of performing a
three-dimensional reconstruction by working in three-dimensional Fourier
space, we can work in a hybrid W, - wy - z space if we impose the constraint
that all of the projections are to be taken normal to the z-axis. If we

define

o

Flu s, 2) = im wa(x,y,Z) exp[3 G, + yu )] dx dy

(2.50)



-49-

then we can modify the projection/slice theorem at ©=0to

@©

F(wx,O,z) - fm po(x,z) exp[-jxwx] dx (2.51)

and the projection/slice thecrem at a general angle O to

=~}

%(m,&,z) = F(w cos®, w sin®, z) = f pe(u,z) exp[-juw] du (2.52)

In this alternate formulation f(x,y,z) can be considered to be a stack

of two-dimensional functions where the variable z indexes the members

of the stack. F(wx,wy,z) then represents a stack of the two-dimensional
Fourier transforms of the members of the space domain stack. Further-
more p@(x,z) is a stack of one-dimensional projection functions and

F(w cosO,w sinO,z)is a stack of one-dimensional slices. We can thus per-
form a three-dimensional reconstruction by performing a two-dimensional
reconstruction for each member of the stack from its one-dimensional
slices and then restack the results. This procedure requires consider-
ably less storage and is simpler computationally than attacking the three-
dimensional problem directly. Furthermore in many cases of interest, only
a few members of the stack (few values of z) are required and in this

case we can save computation time as well. As a result we will concern
ourselves almost exclusively with two-dimensional recomstructions in the

remainder of this work.
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Chapter III

RECONSTRUCTING FROM A POLAR RASTER

3.1 Introduction

In section 2.3 of the previous chapter a generalized form for
a reconstruction algorithm was presented which encompasses all of the
algorithms that will be developed in this dissertation. First, samples
of the Fourier transform of the unknown signal are computed from a set
of projections. Then the unknown is estimated from these samples. The
designer of an algorithm must decide upon the locations of these samples
in the Fourier domain subject to the constraint that they can be computed
from a limited number of projections and he must decide how the estimation
of the unknown function should be made from this limited information. 1In
this chapter attention shall be directed at the second of these problems,
that of estimating f(x,y) from a particular set of samples of its Fourier
transform F(mx, wy). A set of sample locations will be called a raster
and here we will consider a particularly simple raster - the regular polar
raster. A regular polar raster is illustrated in figure 2.8. If F(wx,wy)
is expressed in polar coordinate variables w and O such that F(wx,wy) =
F(w cos®, w sin®), then the locations of the samples of F(wx,wy) are reg-
ularly spaced in w and O. Before we comnsider the problem of reconstruct-
ing from this raster, however, let us briefly address ourselves to the

issues concerned with obtaining these polar samples.
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Ideally we would like the output of any reconstruction scheme
to represent an approximation to the unknown function f(x,y). Digital
computers, however, can only compute numbers and thus our actual output
will be a set of numbers which hopefully correspond to approximate sam-
ples of f(x,y). This represents no problem if there is a rule for ob-
taining %(x,y) (the approximation to f(x,y)) from its samples. This,
however, limits the set of functions {?(x,y)} which can serve as recon-
structions. The simplest such restriction which can be imposed on {g(x,y)}
is to require that they be bandlimited. If g(x,y) is to be bandlimited
and still provide an approximation to f(x,y), then f(x,y) must also be
restricted to be bandlimited or very nearly bandlimited. 1In this dis-
sertation we shall therefore restrict our attention to the recomstruction
of bandlimited (or nearly bandlimited) functions. As we recall from
Chapter II, a function is bandlimited if its Fourier transform is non-
zero only over a finitely bounded region of Fourier space. We shall say
that a function is nearly bandlimited if it has almost all of its signal
energy confined to such a region or if for any 0 < € < 1 there exists a

number WE such that

W W
fe fe |F(w_,w )|2 dw_dw
-We =W Y xy

/

< 1-¢ (3.1}

-]

i IF(wx,wy)|2 dw, dw_

=00

This is not a particularly stringent condition since any function which

has a well-defined Fourier transform is nearly bandlimited for some WE.
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Equation (3.1) can be satisfied if

=} <o

[ [F(mx,wy)lz du duy < (3.2)

but from Schwartz's inequality

[} [} [+] e}

[ |F(wx,wy)|2 dude < [_ojo _ofo IF(wx,wy)|dwxdwy]2 (3.3)

=00 -0

The right-hand side of (3.3) is finite, however, if F(wx,wy) is defined,
which establishes (3.2).
From the sampling theorem we recall that a btandlimited function

f(x,y) can be expressed in terms of its samples by

o ® sine (x—n;-—;r) sin%( --I;Jl)
f(x,y) = L z f(“'ﬁ,-ﬁ" 2
m=-% p=-0 mn nm
— (x - qyﬁ(y - 1;)

(3.4)

where W is the bandwidth of f(x,y) as illustrated in figure 3.1. In the
case that f(x,y) is nearly bandlimited, equation(3.4) must be regarded as
an approximation. In addition if f(x,y) is bandlimited, then each of

its projections is a one-dimensional bandlimited function, since each
projection is the inverse Fourier transform of a slice of F(mx,wy). By
requiring that f(x,y) be bandlimited we therefore can also guarantee that
each projection be specified in terms of its samples if those samples are
sufficiently close together. By appealing to figure 3.1, we see that the

non-zero region of F(wx,wy) is confined to a disc of radius v2 W in the



V2 W

Figure 3.1

The definition of a bandlimited function.
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Fourier plane. If each projection is periodically sampled with an inter-
sample distance less than m/¥2 W (meters) then each projection will be
sampled faster than its Nyquist rate.

Each sampled projection represents a sequence of numbers of
infinite duration. We can obtain M samples of F(wx,wy) along the slice
corresponding to a particular projection by converting that infinitely
long sequence to an M point sequence by aliasing. Thus if {p@(7%ﬁ n)

n=-o° ..., 0,1, ..., =} represents the infinitely long sequence and

we define

Bo(m) = ¥ x(m + n) n=0,1, ..., M-1 (3.5)

m==

then ﬁe(n) is a sequence of length M whose DFT corresponds to evenly
spaced samples of the Fourier transform of ﬁe(x). In practice the sum
in (3.5) must be computed with finite limits. If this procedure is fol-
lowed for each of N projections which are evenly spaced in angle over
the range 0 to m, then we will know the Fourier transform F(wx,wy) on a

regular polar raster such as that in figure 2.8.

3.2 Reconstruction by Interpolation

Reconstruction by linear interpolation represents a straight-
forward approach to performing a reconstruction using the projection/
slice theorem. Assume that the unknown signal can be represented by a
bandlimited function of order N. From Chapter II this means that f(x,y)
is completely specified by N2 Cartesian samples, or that the limits in

the summations of eguation (3.4) extend over the limited range O to N-1.
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Such a function is also specified by N2 Cartesian samples of its Fourier

transform. 1In particular it is specified by the DFT of the array of sam-

o o
W W

ples of f(x,y), {£( )> 0 <m, n<N-1}. Thus an £(x,y) of this
form can be reconstructed exactly from N2 samples of its Fourier transform.

One can, of course, take N2 projections of f(x,y) and evaluate
the Fourier transform of each at a single point. 1In practice this re-
presents too many projections. If for example we wished to reconstruct
a picture which can be specified by a 64 pt. x 64 pt. array, then
(64)2 = 4096 projections would be required. Even if we allow for the
fact that some projections can be used to evaluate more than one Fourier
sample, this is clearly too many projections to be practical. What would
be preferred is an algorithm which can perform an approximate reconstruc-
tion from considerably fewer projectioms.

Suppose instead that we try to estimate the DFT samples of
F(wx,wy) from the samples on a regular polar raster. One way to do this
is to use a simple form of polynomial interpolation. Two interpolation
techniques have been used - zeroth-order interpolation and linear inter-
polation. Each of these approximations is shown in figure 3.2. With
zeroth-order interpolation each Cartesian (DFT) sample is assigned the
value of the nearest polar sample and with linear interpolation it is
assigned a weighted average of the four nearest polar values, the weight-
ing varying inversely with the Cartesian distance between the Cartesian
sample and the polar sample in question. Referring to figure 3.3, if the

Cartesian sample at (wx,wy) can be enclosed in a '"square" whose vertices

correspond to polar samples which arec located at (wxl’wyl)’ (wxz,wyz),
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Figure 3.2

A comparison of the zeroth order and

linear interpolation schemes.
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(wx3,wy3) and (wx4,wy4) and if we define

d1 = [(wx - wxl)2 + (wy - u)yl)z]l/2
2 2
d2 = [(wx - wxz) + (wy - wyz) 11/2
(3.6)
_ 2 2.1/2
d3 = [(mx - wx3) + (wy - wy3) ]

[a %)
]

2
o= 1 -0+ @ - u )]

then we set

1 1 1
d1 F(mxl’myl) + d2 F(wa’wyZ) + d3 F(wx3’wy3) + d4 F(wx4’wy4)
Flw ,w ) =
'y 1,1 .1 .1
d1 d2 d3 d4
3.7)

Thus the entire reconstruction algorithm can be summarized as:
(1) Take the Fourier transform of the sampled projections using a one-
dimensional DFT to obtain a collection of sampled slices of F(wx,wy)
which represent a polar sampling of F(wx,wy)° (2) Use zeroth-order or
linear interpolation to estimate the Cartesian samples of F(wx,wy) which
correspend to a two-dimensional DFT of {f( %F-, 3%-), 0 <m, n<N-1}.
nm

(3) Use a two~dimensional inverse DFT to cbtain an estimate of {f( %?-, TTO’

0<m n 5_N—l} (4) Set

W mm W nm
R N-1 N-1 am o sinF(X - —ﬁo sin;(y - TT)
f(x,y) = £ L f('j; s W ) 5 (3.8)
m=0 n=0 !L{x - EI)( - EE) ’
2 w'Y T

m
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In figures 3.3 and 3.4 are presented some reconstructions ob-
tained by using the above technique with zeroth-order and linear inter-
polation respectively. Each of these reconstructions was made from 64
evenly-spaced-in-angle computer generated projections. The original
pictures from which these projections were calculated are included for
comparison. Discrepancies between the reconstructions and the originals
are due to two factors - errors made in computing the projections and
errors made in performing the reconstruction. Since the same projections
have been used to calculate all of the reconstructions in this chapter,
we can say that the difference in performance of the various algorithms
is due entirely to differences in the algorithms themselves and not to
the projections. By comparing the reconstructions in figures 3.3 and 3.4
with those later in the chapter, we can say that most of the discrepancies
in these reconstructions are due to the shortcomings of the interpolation
algorithms. In computing the projections it was assumed that the origi-
nal photographs represented two-dimensional bandlimited functions of
order N, where the DFT computed in the reconstruction algorithm was N x N.

An examination of figures 3.3 and 3.4 shows that both of these
algorithms have their shortcomings although for these particular photo-
graphs the reconstructions performed using linear interpolation are bet-
ter than the zeroth-order reconstructions. This is apparent in both ex-
amples and is intuitively reasonable since linear interpolation can be
expected to give a better approximation to F(wx,wy) than zeroth-order
interpolation, particularly if F(wx,wy) is continuous and slowly varying.

In the reconstructions by zeroth-order interpolation, the back-

ground and areas of constant gray level are irregular, considerably more
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(a) (b)

N2

7\

(c) (d)

Figure 3.3

Reconstructions by zeroth order interpolation from
64 evenly spaced projections. The above are
256 x 256 sampled pictures. (a) and (c) represent
reconstructions. (b) and (d) are originals.
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Figure 3.3

Reconstructions by zeroth order interpolation from
64 evenly spaced projections. The above are
256 x 256 sampled pictures. (a) and (c) represent
reconstructions. (b) and (d) are originals.



(a) (®)

(c)

Figure 3.4

Reconstruction by linear interpolation from 64 evenly
spaced projections. All of the above represent

256 x 256 sampled pictures. (a) and (c) represent
reconstructions. (b) and (d) are originals.
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Figure 3.4

Reconstruction by linear interpolation from 64 evenly
spaced projections. All of the above represent

256 x 256 sampled pictures. (a) and (c) represent
reconstructions. (b) and (d) are originals.



-61-~

so than in the linear interpolation examples. This is apparent in the
backgrounds of both pictures and on the forehead and hair of the por-
trait. Edges are also not sharp nor are straight edges straight. This
is evident in the mouth, nose, and mustache of the portrait and parti-
cularly in the dark rays of the test pattern. With neither technique

is the center of the large test pattern or the small test patterns in
the corners of that picture resolved. Neilther algorithm resolves some

of the fine details in each picture such as the eyes, mouth, and collar
of the portrait and the details in the corners of the test pattern. Curi-
ously both algorithms reveal an angular bias in that the vertical rays
of the central test pattern are resolved better than the horizontal ones.
This is believed to be due to the interaction between the asymmetries in
the original and the interpolation algorithms.

Remembering that one of the reasons for performing multidimen-
sional reconstructions is to resolve unknown signals, it can be said that
all of these examples seem to give us some information about the unknown
signals that could in many cases be valuable. The reconstructions in

3.3a and 3.4a are both clearly of a man's face, for example.

3.3 Reconstruction by Interpolation in Polar Coordinates

One of the possible explwunations for the errors that were in-
troduced by the algorithms of the previous section is that not enough
projections were taken. Indeed it was noted experimentally that as the
number of projections was increased the quality of the reconstructions
improved. In most practical situations, however, obtaining extra pro-

jections is a major effort; it is sometimes even impossible. Instead of
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physically taking extra projections of the unknown, it might be possible
to compute extra projections from the ones that are s.ready available.
From this extended set of projection/slices linear interpolation could
then be used. If these extra projections were computed from the original
set by linear or zeroth-order interpolation, then our reconstructions
would be identical to those of the previous section, but if we use some
other interpolation scheme different and hopefully improved reconstruc-
tions should be obtained. This is the central idea behind the interpol-
ation in polar coordinates (IPC) algorithm.

Suppose we sample f(x,y) in a generalized fashion so that

txy) = £ 0F £ ¢ Gy (3.9)
m==0 n=-—00

The two dimensional sequence {fmn} corresponds to the '"'samples" of f(x,y)
and the set of basis functions {¢mn(x,y)} determines the nature of the
representation. The class of functions f(x,y) which can be represented
as in 3.9 will depend upon the basis {¢mn(x,y)} as will the technique

for sampling f(x,y). In the special case of periodic sampling we choose

2
= mr nT
fmn T2 £ W w )
W
sinﬂ(x - =20 sin'H(y - 5?5 (3.10)
6 (x,y) = il W kil W
mn "’ nm

x - 5D - 5D
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This particular choice of a basis allows us to compute {fmn} by periodic
sampling but constrains us to represent only bandlimited functions with
bandwidth W or less.
Equation (3.9) is a linear relation and thus we can expand

F(wx,wy), the Fourier transform of f(x,y), according to

© ©
F(wx,wy) = mi—m nE_m fmnémn(wx’wy) (3.11)

where @ (w w ) is the two-dimensional Fourier transform of m (x,y).

If we rewrite (3.11) in terms of polar coordinates then

F(wcos?, wsin®) = Fp(w,@) = I z fmnWmn(m,O) (3.12)

=00 [=~=00

and equation (3.9) becomes

mn mn
==00 n=-00

f(r cosd, r sing) = fp(r,¢) = ¥ $ v (r,d) (3.13)

where

T oo
bun(55®) = =5 [ ¥ (@0 {expliur cos(s - 0)1}w dwd®

(3.14)

We now wish to choose a set of basis functions {wmn(r,¢)} such

that a finite subset of {wmn(r,¢)} will provide a good approximation to
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fp(r,¢) and also so that the coefficients {fmn} can be readily computed

from a finite number of projections. Let us choose {wmn(r,¢)} so that

s _ . ZTT(L‘T!
an(w,O) = exp[j( 5w + no)] pw(w) (3.15)
where
1 n <w<vauy
p, (W) =
0 otherwise

The reasons for this choice are threefold. First these functions are
the Fourier transforms of bandlimited functions and furthermore the non-
zero region of ?&n(w,G) is confined to the disk in the Fourier plane
of radius V2 W. Thus Fp(w,@) or F(wx,wy) must be bandlimited and it
must be confined to the same disk. This will allow us to use sampled
projections to compute the {fmn}. Secondly as will be demonstrated
shortly, this choice for a basis will allow the {fmn} to be computed
straightforwardly from sampled slices of F(wx,wy). Finally these functions
are complete over the set of real bandlimited functions and good approx-
imations to F(wx,my) can often be obtained from only a few members of
the set {d)mn(wx’wy)}'

We can demonstrate the completeness of {wmn(w,@ﬁ- by means of

the following argument. Let

f

oW m
. /z%w 7T F @0 eml-5( 5;?$ + 00 )] dedw (3.16)
-7
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Substituting equation (3.16) into equation (3.12) we get

Y2u m
V2 W . ,2Tma . ,2Tmw
o £ f Fp(a,B) exp[—J(JE » + nB)]exp[J(/E - + n0)]dRdo

-

w0 = ¥ ¥

m=-®° n=-o

(3.17)

where we wish to show that G(w,0) = Fp(m,@). Interchanging the summa-

tions and the integrations, we get

m
F (0,8){ § explj Z2w - 1 ¥  exp[4n(® - 8)]}dBda
m p =00 /fw n=-—o

V2 W
27

G(w,0) =

o~—=§?

/

(3.18)

We can now notice that each of the summations in braces corresponds to

the Fourier series expansion of a train of delta functions. Thus

¥ expli 2B (w-w)] =V F S - a - VIHs) (3.19)
= -=00 ‘/Z-W s:—m

¥ expljn(® - B)] = —21? ¥ 5(0 - B - 2mt) (3.20)
n=-x t=_oo

By substituting (3.19) and (3.20) into (3.18),

Y2W T o o
Gw,0) = [ [ F (0,8 2 8(-a- Y2Ws) I &(0 - B - 2mt)dRdo
(o] -T =00 t==c0

(3.21)
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But the ranges of a, 8, w and O are constrained such that

0<ac< 2w (3.22a)
0<wc< Y2u (3.22b)
-m<B<m (3.22¢)
T <O <7 (3.224)

It thus follows that
G(w,B) = Fp(w,G)

which is what we wished to show. Thus the set {an(wx,wy)} is complete
on the set of bandlimited functions for which F(wx,wy) is confined to a
disk of radius V2W. In addition we see from (3.16) how the {fmn} should
be chosen.

From this demonstration we further see that representing F(wx,wy)
exactly requires an infinite number of basis functions in general. This
in turn requires an infinite number of projections in order that the
{fmn} can be computed. Let us therefore make the approximation

M/2 N/2 2TTmw

F (0,0) % = z £ exp[j(
P m=-M/241 n=-N/241 vz

- + 10 )] p, (W) (3.23)

From the projections (slices), samples of Fp(w,O) are known on a polar

raster, i.e., Fp(w,@) is known at points FP({zﬁﬂ a, %gb ) for

a=0,1, ..., M1 and b =0, 1, ..., N-1. From these values we can set
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up a series of linear equations which can be solved for fmn'

M/2 N/2
P et a, B - L £ oexply( EE2 4 2y (3.04)
P =-M/2+1 n=-N/2+41 " -
a=20,1, , M-1
b=10,1, ..., N-1
If this is done it can be seen that
M-1 N-1
-1 @. 2n .. (ma , mb.
fon =7 I D) Tp( T @ W D) expla2mGy + 5] (3.25)

The validity of (3.25) can be demonstrated by means of the following:

M-1 N-1 ,
L T I F ( —‘%ﬂ a, "—; b) exp[—jZTT(E;;+ %)] (3.26)
a=0 b=0 P ‘
M-1 N-1 M/2 N/2
=L 3 3 : b £, exp[j2ﬂ(s—:-+%-%—%)]
a=0 b=0 s=-M/2+1 t=-N/2+1 )
(3.27)
M/2 N/2 M-1 N-1
= —N‘%‘f z T fst{ b exp[j—z‘a-a—(s -m)IH = exp[j—z—g-b-(t -n)]}
N g=aM/241 t=-N/2+1 a=0 : b=0
(3.28)
1 M/2 N/2
== I z MNS § (3.29)
MY o M/2+1 t=-N/2+1 sm tn

mn
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Remembering that Fp(iggi,-%? b) corresponds to samples of

F(wx,wy) on a polar raster, we see that these numbers are available from
N/2 evenly spaced projections. Furthermore (3.25) is of the form of a

two~dimensional DFT. Thus to obtain the two-dimensional sequence fmn

V2Wa
M

from the sequence {Fp( s 2%’b)} it is sufficient to take the two-
dimensional DFT of the latter sequence as if that sequence consisted of
Cartesian samples rather than polar ones: Once that we have the seqg-
uence fmn we can reconstruct the picture function fp(r,¢) either by means
of (3.13) or (3.12) followed by an inverse Fourier transform. The lat-
ter technique is easier to implement because it does not require the com-
putation of the {wmn(r,¢)} which can be a formidable calculation. Thus
we shall use (3.12) to compute the DFT samples corresponding to an est-
imate of f(x,y) and then evaluate an inverse DFT. This approach is com-

putationally straightforward.

We can evaluate F(wx,wy) = Fp(w,@) at any point because

N M/2 N/2
F (0,0) n, Z z f ¥ (w,9) (3.30)
P =-M/2+1 n=-N/2+1 ™ ™
or
M/2 N/2 M-1 N-1
Fo(,0) & I L —Mif I L F (i-gﬂ a, —2% b)exp[-jZTr(%+ Er?')] x
P =-M/2+1 n=-N/2+1 ' a=0=b=0 !
exp[j (g/%‘,-% n0) Ip, ) (3.31)
M-1 N-1 M/2 N/2
2 -
= T F (')%;E a, '2% b) % z exp[§2m (= - %)] ;13 z eXP[Jn(O-%T?)]pW(w)
a=0 b=0 P m=-M/2+1 V2w =-N/2+1

(3.32)
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M-1 N-1 2w

27 . W a 1 VAL
= aEO bio FP(T a F b) expl[-j (TT(E" - M) + "2-(@ T))]
sinTTM(—E— - 2) sinﬁ(e - .Zﬂ)
VoW M 2 N
Pw(w) (3.33)
w a 1 0 2b
MN sinTT(/i.w - ﬁ) sin—z-( -5 )

Equatior (3.33) is simply an expression for the bandlimited interpolation
of a function Fp(w,@) in terms of two ''Cartesian'" variables w and ©. Note
that it is Fp(w,@) which is to be considered bandlimited in this strange
sense, not fp(r,¢).

Instead of plugging into equation (3.33), however, we can form-
ulate a reconstruction algorithm as illustrated in figure 3.5. First a
set of N/2 evenly spaced (in angle) slices are obtained from projections
in the usual manner and from these, additional slices are computed in
the following fashion. The polar samples are mapped into a Cartesian
coordinate system where w and O are considered as Cartesian variables.
Then using bandlimited interpolation (which can be implemented using a
DFT) additional "Cartesian'" samples are computed between the ones already
available. This dense Cartesian grid of samples is then mapped back to
the Fourier plane. From this dense set of sample values, linear inter-
polation can then be used to obtain an approximation to the DFT of
f(x,y), samples of which are then available by performing an inverse DFT.
Hopefully the errors introduced by linear interpolation from this denser
polar grid will be smaller than those induced by straightforward linear

interpolation so that our reconstructions will be better.
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(a) original set of polar samples (b) point mapped to ''Cartesian"
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(c) extra points computed by (d) final polar raster
bandlimited interpolation

Figure 3.5

The reconstruction algorithm based on

interpolation in polar coordinates.
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In figure 3.6 are some reconstructions made using this algor-
ithm. From the unknown, 64 projections of 256 samples apiece were com-
puted. These projections were thus identical to those used in section 3.2.
From these 192 additional projections of 256 points apiece were computed
and then linear interpolation was used as in the previous section. If
these reconstructions are compared with those of figure 3.4 we see that
the IPC scheme gives little improvement over straightforward linear inter-
polation. The portrait reconstructions in 3.6a and 3.4a are virtually
identical, although differences in performance can be seen for the test
pattern reconstructions. The IPC algorithm reconstructs horizontal rays
in the testcpattern as well as vertical ones, in marked contrast to the
linear interpolation algorithm. Also the pattern in the lower left hand
corner of the test pattern has been partially resolved using IPC but not
using linear interpolation. On the basis of these restricted examples
we might infer that this algorithm might be preferable to linear inter-
polation when f(x,y) is believed to exhibit some circular symmetry. This
is of course equivalent to requiring that equation 3.23 hold. This is
perhaps a valid assumption in the reconstruction of viruses from electron
micrographs, since viruses exhibit much symmetry.

The IPC algorithm is similar in many ways to the Hankel trans-

form algorithms which are presented in section 3.5.

3.4 Reconstruction by Smearing

A standard procedure for estimating the value of an integral
is to approximate the integral by a summation, the terms of which are

proportional to samples of the integrand. This is what we shall do in
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Figure 3.6

Reconstructions by interpolation in polar

coordinates followed by linear interpolation.
(a) and (c) represent reconstructions.
(b) and (d) are originals.
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Figure 3.6

Reconstructions by interpolation in polar

coordinates followed by linear interpolation
(a) and (c) represent reconstructions.
(b) and (d) are originals.
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this reconstruction technique. Mathematically the technique is not ele-
gant, but it yields an algorithm which is straightforward to implement,
the reconstructions from which are of good quality. Unlike the first

two algorithms, this technique does not require that f(x,y) be a function
of finite order, although since it is necessary to sample both f(x,y)

and its projections, we shall assume that f(x,y) is nearly bandlimited.

In section 2.3 of Chapter II it was shown that f(x,y) could be

expressed in terms of its samples by

o]

T
f(x,y) = 1 3 f Sa(m) exp[j(xw cosO® + yw sin®)]|w| dwd®
(21)° -= o
1 57 7
= 5 [ [ s(e,w) explj(xw cosd + yw sinf)]|w| dwdo (3.34)
(2m) - o

where So(w) represents the slice of F(wx,wy) at angle ©. The second
equation of (3.34) simply rewrites SO(m) as S(O,w) to emphasize the fact
that Se(w) is a function of two variables. The w-O coordinate system
is similar to the standard polar coordinate system except that w may take
on values from -® to ® zud the range of © is constrained to 0 to m. This
is so that along a line with a fixed value of O, S{O,w) corresponds to
a slice of F(wx,wy) at angle O.

Assume that N slices are available and that they are at angles
Oo, Ol, cens eN-l’ Further assume that along each slice the values of

S(Oi,w) are known at M values designated by Wag/o41s ttts Wpr Wy cee Wyo

It shall be assumed that M is even although this is not necessary. (If

M is odd then the indices on w should go from - !E; to + E%lo. Furthermore
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since the radial values will be computed from sampled projections using

a DFT, we shall assume that the radial spacing is independent of both M

and the set of slice angles. Thus

Aw -w (3.35)

mil m

]
€

It is not necessary to assume that the slices are regularly spaced and
this shall not be done, although this is presumably the case most fre-
quently encountered in practice. Then we can define the angular spacing

between projections by

r © 0
i+l i-1

5 - T3 ) i=1, 2, ..., N=2

0 S)

= ) L _ N1 _ T =
AOi = < 3 5+ 75 i=0 (3.36)

0 0
0 N-2 , 7 _

(7 "7 *tz» 1=W1
N-1

It can be noted that I AOi = m, and that in the case of evenly spaced

i=0=

projections AOi = m/N.

Now suppose that the Fourier plane is divided into N(M-1) small
areas each of which is centered on one of the polar samples as illustrated
in figure 3.7. For the moment we shall neglect the sample at the origin
and the area of the section at w = mAw, O = Oi shall be denoted by AAmi.

If the spacing between adjacent polar samples is sufficiently small so
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The area AAmi associated with one polar sample.
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that the quantity S(O,w) exp[jw(x cos® + y sinO)] is nearly constant over

each small area, then we can approximate (3.34) by

1 N-1 M/2
flx,y) M - I I S(Gi’ mAw) exp[jmAw(x cosOi +y sinOi)]AA {
47° 1=0 m=-M/2+1 m
(3.37)
where if m # O
S}
My b2 o Bw2
M= == @ + )7 - @b - )
='2—LH-LI'AUJ2AO
ki i
2
_8ln| W
= Mz AGi (3.38)

The integral of a function which is continuous or nearly con-
tinuous (continuous except for a finite number of step discontinuities)
can be closely approximated by a sum in this fashion. However, F(wx,wv)
generally has a deita function at w, = wy = 0 representing the DC level
or mean gray level of the unknown picture. In the operations of pro-
cessing projections - sampling, selecting only a finite number of samples
and using a DFT - this DC level becomes associated with the central

sample of the polar raster. Inasmuch as this sample is common to all

*
slices it can be measured from any of them . We will presumably want the

* In fact, the fact that all projections must have the same DC level is
useful for preprocessing the projections. In the act of physically obtain-
ing the projections e.g. illuminating the specimen, processing negatives,
et., their DC levels might come out to be different. The invariance of the
DC level from projection to projection allows us to normalize the projec-
tions before reconstructing from them.
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DC levels of the original and of the recconstruction to agree. Thus we
can combine equations (3.37) and (3.38) to get

S(OO,O) 2w2 N-1 M/2

£(x,y) % £(x,y) = — + I A0, I | sC0,, miw) x

4 ﬂ3M2 i=0 1 m=-M/2+1

exp [ jmAw{x cosG)i +y sinOi)] (3.39)

Equation (3.39) represents a reconstruction algorithm since
it expresses f(x,y) in terms of {S(Gi, mAw)} , the slice samples. The
direct computation of (3.39) is formidable as that equation is written,
however, we can reinterpret it and use the DFT to make it =2asier to com-
pute. Reinterpreting (3.39) has multiple advantages. It gives us a
straightforward computational procedure for implementing the algorithm,
provides us with some insight into how the algorithm works, and shows
us that this algorithm is equivalent to another algorithm -~ the smearing
algorithm which can be implemented in the space domain. With the smear-
ing algorithm each projection is back projected or smeared in the dir-
ection of the original projection and the smeared projections are then
weighted and summed. Let us define what is meant by smearing. If pei(ui)

represents the projection of f(x,y) at angle Oi where

[+
]

=% cosOi +y sin@i
(3.40)

<
I

-x sin@i +y cos@i
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then the smeared projection at angle @i, Py (ui’ vi) is defined by
i

p@i(uis Vi) = Pei(ui) (3.41)

To express (3.39) in terms of smeared projections we can first

rewrite (3.39) as

N $(0,,0) w2 N1
f(x,y) = 5 + E) L AOigi(x,y) (3.42)
4T ™M i=0
where
M/2
gi(x,y) = I |m| S(Gi, mAw) exp[jmAw(x cos@i +y sin@i)]
=-M/2+1

(3.43)

If we define §i(ui, Vi) = gi(x,y) with a change of coordinates, then

M/2

|m| S(Oi’ mAw) exp[jmuiAw] (3.44)
=-M/2+1

From (3.44) we see that @i(ui, vi) is a function only of uy and that it
is thus a smeared quantity. Furthermore the quantity which is smeared

is a filtered projection. This filtering can be accomplished by taking
the DFT of the projection, multiplying the resulting sequence by lml and
then inverse transforming. According to (3.42), these filtered smeared

projections {gﬂ(xsy)} are then weighted, summed and added to the DC bias

(constant) function. This procedure is illustrated in figure 3.8.
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The smearing algorithm.



-80-

Instead of computing @i(ui) from pei(ui) by taking transforms,
we could confine ourselves totally to the space domain and express
§i(ui) as a (circular) convolution of poi(ui) and the inverse discrete

Fourier transform of ]m[. If we denote the latter function by h(ui),

then
1 M/2
=7 = 1
h(u) = F [|n]] = = lm| explimu,!
m=-M/2+1
E-s.’m('\—{:l u,) 1- cosﬂ u
2 2 1 2 1 M M
= - + = explizu,] (3.44)
u ui 2 21
2 sin?r 4 sin?;

It should be stated, however, that the modification of the projectionmns
is more easily carried out in the frequency domain, than by performing
the convolutions in the space domain.

This algorithm has been used by Vainshtein (51), Ramachandran(46),
Herman (30), Bracewell (3) and perhaps others. There are a number of
nice features to it. First it imposes no requirements on f(x,y) except
that it be nearly bandlimited and that F(wx,wy) be "slowly varying" in
wx and wy so that our original approximation of an integral by a sum is
valid. These are not severe restrictions to impose. Another advantage
of the algorithm is that the entire procedure can be implemented in the
space domain (although as we have seen, it may be more efficient to filter
the projections in the frequency domain). Omitting the modification of
the projections, this system can in fact be implemented optically and
such an optical system has been built by Garrison, Grant et al. (26)(27)
(28). Another nice feature of this algorithm, which is actually the nicest

feature of all, is that it yields very good reconstructions.



-81-

On the other hand there are a couple of problems inherent with
the smearing algorithm. One of the most serious is that the reconstruct~
ions are very semsitive to inaccuracies in the inpuc projections. Any
errors or "noise" in the projections is amplified in the reconstructions
and as a result the final reconstructions appear noisy, that is the re-
constructions have a mottled or speckled appearance to them.

Some recomstructions formed by using this algorithm are shown
in figure 3.9. As before, the reconstructions were made from 64, 256
point projections and the reconstructions are displayed as 256 x 256
pictures. The original pictures from which the projections were com-
puted are included for comparison. It is perhaps instructive to compare
these reconstructions with those in figure 3.4 obtained by linear inter-
polation. More fine details seem to be evident in the smearing recon-
structions. For example the eyes, mouth, and collar area of the portrait
are much more sharply defined with smearing. Also with the reconstruction
of the test pattern the rays of the test pattern are clear with sharp
edges unlike the interpolation reconstructions and the smaller patterns
in the corners of the picture are resolved. On the negative side are
the backgrounds of the smeared reconstructions which are not uniform and
the speckled éppearance of the reconstructions. The graininess can be
removed somewhat at the expense of some of the sharp details in the re-
construction by low pass filtering the reconstructions. This low pass
filter can be incorporated into the high frequency emphasis filter which
operates on the projections prior to smearing them.

In figure 3.10 one of the pictures is reconstructed using 128,

64, 32, and 16 projections so that the degradation in performance can be
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(c) (d)

Figuré 3.9

Reconstructions by smearing from 64 evenly spaced projections.
(a) and (c) represent reconstructions. (b) and (d) are originals.



(a) (b)

(c) (d)

Figure 3.9

Reconstructions by smearing from 64 evenly spaced projections.
(a) and (c) represent reconstructions. (b) and (d) are originals.



Figure 3.9 (cont'd)

Reconstructions of two additional photographs
by the smearing algorithm. (e) and (g) are
reconstructions. (f) and (h) are originals.
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Figure 3.9 (cont'd)

Reconstructions of two additional photographs
by the smearing algorithm. (e) and (g) are
reconstructions. (f) and (h) are originals.



(a) (b)

(c) (d)

Figure 3.10

Reconstructions done by the smearing algorithm for
different numbers of projections. (a) 128 projections
(b) 64 projections (c) 32 projections (d) 16 pro-
jections.
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(a) (b)

(c) (d)

Figure 3.10

Reconstructions done by the smearing algorithm for
different numbers of projections. (a) 128 projections
(b) 64 projections (c) 32 projections (d) 16 pro-
jections.
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seen when the number of projections is reduced. For the latter two re-
constructions the irregularities caused by the smearing operation (evi-
dent as linear streaks) nearly obscure the face. These are caused by
"noise" in the projections andare an important effect with the smearing
algorithm when the number of projections is not large. VWhen more pro-
jections are used this same noise causes the speckled appearance, which
goes down as the number of pfojections is increased still further.

We notice in comparing the results of the four algorithms pre-
sented in this chapter that the smearing a}gorithm reconstructed details
from the projections that the three interpolation algorithms could not
extract. A closer examination of these algorithms reveals a possible
explanation for this difference in performance. In the linear and zeroth-
order interpolation algorithms the value of Cartesian samples.was esti-
mated from neighboring polar samples prior to performing an inverse DFT.
As a result polar samples which are not close to Cartesian samples are
ignored. For large values of w (the radial variable in a polar coordinate
system) this effect is negligible since almost all of these polar samples
are used, but for polar samples close to the origin this effect becomes
significant, especially since for photographs |F(wx,wy)| is largest for
those values of W, and wy near the origin. This effect is illustrated in
figure 3.11. Here we see the center of the Cartesian and polar rasters
for a reconstruction from 16 projections. The filled squares represent
Cartesian samples and the unfilled circles represent polar samples that
are not used by the linear interpolation algorithm. The filled circles
represent polar samples which are used by the linear interpolation al-

gorithm (the zeroth order interpolation scheme uses even fewer polar
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Figure 3.11

An enlarged view of the centers of the polar and
Cartesian rasters illustrating the subset of polar
samples that are considered by the linear and
zeroth-order interpolation algorithms.
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samples). Any information associated with the open circles is completely
lost by linear interpolation. Thus if we have two polar rasters which
have identical values on the filled points they will have identical re-
constructions by linear interpolation no matter how much those rasters
differ on the open samples. On the first ring 75% of the samples are
ignored and when more projections are used the percentage of samples
which are ignored increases. On the other hand the smearing algorithm
uses all of the polar samples since all of the projections are treated
identically. Thus for two rasters to give identical reconstructions
using smearing, those rasters must be identical.

The algorithm which reconstructs by interpolation in polar co-
ordinates in the Fourier plane, like the smearing algorithm uses all of
the polar samples. It assumes, however, that the unknown can be expanded
as

. M/2 N/2

Flw,0) X I g £ expl (QWWE‘! + 10)]
m=-M/2+1 n=-N/241 ™

Tf this approximation is not a good one, then the reconstructions made
according to it will of course not be good.

The noise which is introduced in the smearing reconstructions
is due to the high frequency emphasis filter which is applied to the
projections and it introduces computational errors which are similar to

those introduced by numerical differentiation.
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3.5 Reconstruction Using Hankel Transforms

For completeness we present an algorithm here which is simi-
lar to the interpolation in polar coordinates algorithm. This technique
has not been used by the author but it has been used successfully by
DeRosier and Klug (7) - (18) to reconstruct from electron micrographs.

Let f(r,$) represent the picture function in polar coordinates
and let F(w,0) represent its Fourier transform. Then since f(r,¢) is
necessarily a periodic function in ¢ with period 2m, we can express f(r,¢)

in a Fourier series.

£(r,0) = % fn(r) exp[jnd] (3.45)

n=-oo
where
1 m
£ () = 5= {7, £(r,$) exp[-in¢ldo (3.46)

However, since £(r,$) and F(w,0) are a Fourier transform pair it is true

that:
1 77
f(r,9) = - f f F(w,0) exp[jrw cos(d - 0)]w dO0 dw (3.47)
41" o -m
Thus
T ; T
fn(r) =5 f '——E f f F(w,0) expl[jrw cos(® - ¢)]JwdwdOlexp[~jndldd
-T 41" -7 o

(3.48)



-89~

Interchanging the order of the integrations

|

o T T
fn(r) 1 [ | F(w,0)udwd® | expli(rw cos(¢ - ©) - nd)ldd  (3.49)
)

8ﬂ3 -1 -
1 C - ™+
=3 | | F(®,0) exp[in(® + 3)]wdwd® | exp[jrw sina - nolda
8m o - ~m40
(3.50)
1 2 T L
=5 [ [ Fw0) exp[in(® +3)] J_ (ru)dodw (3.51)
4 o - n

where Jn(x) is the nth order Bessel function of the first kind. Since
F(w,0) is a periodic function in O with period 27 we can express it in

a Fourier series as well.

F(w,0) = & F_(w) exp[-jn(@ +3)1do (3.52)

n=--0

T
2

comparing equations (3.52) and (3.51) we can see that

The factor of — has been included in the exponent of (3.52) so that by

£_(r) Elﬁ F_(w) J_(rw) du (3.53)

o“— 8

and

F_(0) £ £ (r) J_(xw) dr (3.54)
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Equations (3.53) and (3.54) say that fn(r) and Fn(w) form a Fourier-
Bessel or Hankel transform pair.

From this derivation we can formulate a reconstruction al-
gorithm. From the slices we compute the sequences Fn(w). If the slice
angles are evenly spaced, this can be done using a DFT. Then we can
take the nth order Hankel transform of each of the Fn(w) to obtain the
fn(r). Then using another DFT calculation, f(r,¢) can be obtained on
any desired number of radii.

The major difficulties with this technique are computational.
Each of the Hankel transforms which must be taken is different since
each uses a different Bessel function. This makes the amount of com-
putation formidable. For helical structures or structures with some
circular symmetry, only a few of these transforms need to be calculated
and in these cases it represents an efficient technique. DeRosier and
Klug in their original work reconstructed helices for which a reconstruc-
tion could be obtained from only one fn(r). As a result they needed

only a single projection.

3.6 Considerations in Implementing Any Reconstruction Algorithm

There are a number of computational issues that arise in per-

re:ming reconstructions. Some of these are discussed in this section.

3.6.1 Computation of Projections

Most of the examples which are presented in this dissertation

are reconstructions of photographs made from one-dimensional projections.
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These projections were computed from the original photographs which are
included next to the reconstructions. They were computed rather simply.

The picture is first represented as a square array of samples
of N2 points. For all of the examples in this dissertation N = 256.

Each sample of the picture is then mapped to a point on the projection
axis, as illustrated in figure 3.12. The projection axis is divided

into some number M (in our case 256) of evenly spaced bins. 1In general
each sample will map teo a point which is between the centers of two ad-
jacent bins and the value that is associated with that picture cample is
then apportioned between the two bins according to the relative distances
between the centers of the bins and the point on the projection axis to
which that sample was mapped. From the M bin values, we get an M point
sequence which represents a digitized projection. It can then be Fourier
transformed using a DFT to yield samples of a slice. This procedure is
then repeated for all of the projections.

The above procedure, of course, only represents an approximation
to the true projection function, however, the true projection is difficult
to compute. We can derive an expression for the true projection at
angle O, subject to the constraint that f(x,y), the unknown function is
bandlimited within a square in the Fourier plane of half-side W.

From the sampling theorem f(x,y) can be written as:

W mm W nm
s:l.n-TT(x - W) sinF(Y - W)

fx,y) = & ¢ £, 2D
m=~2 n=-0 W wz

TT2

(3.55)

= -5 - 5D
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Contribution from (w_, @ ) to bin #1 = —— F(w_, w_)
x’ Ty d 2 x’ 'y

1
d1
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Figure 3.12

The algorithm used for computing projections.
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from which it is seen that

2
= J_ mT  nT 3 I
(3.56)
where
1 Iw I <W, |lw]<w
X' - y' -
b (Wyr ) =
0 otherwise

Thus the slice at angle O, S@(u)) = F(w cos®, w sinf) is

2
W

T @ ® _mr nn . Tw
So(w) =— 1 z f(—w- , =) exp[-3 v (m cos® + n sin®)] bww(w cos®, w sinB)

T Mm==00 nN=--00

(3.57)
and po(u) (continuous) is simply the inverse Fourier transform of SO(w).

pe(u) = E%F J Se(u)) exp[juw] dw (3.58)

W . ®
__m f@ R % f(ﬂ B%)exp[—jw(%(m cos® + n sin®) - u)ldw

’
20" iy m=- p=-o W

(3.59)

B

o W
z by f(-l!;—;-r~ s —I}ﬁT-T-) fe exp[—jw(%(m cosd® + n sin®) - u)] dw
W m=-c p=-e Vo (3.60)
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where
Wy = W/max{|cos0]|, |sin0]|}
T
- sin[W,.(=(m cos® + n sind) - u)]
o) = ¥ F e@, an __°W (3.61)
2W° m=-® p=-o ﬁ(m cos® + n sin®) - u
1« . S sin[wo(%(m cosO® + n sind) - u)]
pa(u) =55 L r f—, =
9 ZW Mm=—0 =00 ’ w m COS(Z) + n Sine - %’J_ u (3. 62)

Equation (3.62) represents an equation for computing the pro-
jection from samples of the unknown. The actual procedure which was

used to compute projections simply represents an approximation to it.

3.6.2 Aliasing and Transforming

If one wishes to have N evenly spaced samples of the Fourier
transform of a one~dimensional bandlimited function of order M there are
several methods for computing these samples depending on the relative
sizes of M and N. If M = N then we simply perform a discrete Fourier
transform on the sequence of samples of the function taken
at the Nyquist rate. If M < N then we can append N - M samples with
zero value to the sequence, thus making it an N point sequence and then
perform a DFT. If M > N then we want to perform the sum

N-1

F(k) = £ £(n) expl-j
n=0

2ﬂkn]
N

’ k = 0, 1, se ey N-l (3.63)
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L-1 N-1 21k
F(k) = Z I £(iN + n) exp[-j T(iN +n)] ,k=0,1, ..., N-1
=0 n=0
(3.64)

for some integer L. It is assumed that the sequence is padded with suf-
ficient zeros so that M = LN is a multiple of N. Thus
F(k) = I expl-j jg-nk] I £(iN + n) k=0,1, ..., N-1

n=0 i=0

(3.65)
From (3.65) we observe that F(k) corresponds to the N point DFT of the
N point sequence

R L-1
f(n) = I £(IN + n)
1=0

The process of obtaining E(n) from £{n) we refer to as aliasing.

3.6.3 Origin Centering

If we are going to reconstruct a picture f(x,y), we can choose
the origin of our coordinate system to be anywhere - the center of the
picture, one of the corners or some other point. Once chosen, of course,
we must abide by that decision for the choice of origin marks the pivot
point for computing each projection and it also marks the origin of each
projection. Suppose that we have two picture functions f(x,y) and g(x,y) =
f(x - X5 ¥ - yo). Then G(wx,wy) = exp[j(xowx + yowy)] F(wx,wy). The

Fourier transforms of the two shifted sequences are the same except for

a linear phase term. This linear phase term multiplies F(wx,wy) by a
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complex sinusoid and thus for some choices of origin, i.e. some choices
of XpYgs G(mx,wy) can have noticeable ripples in it due to this multi-
plicative sinusoid. These oscillations can affect any algorithms which
assume a slowly varying F(wx,wy) such as linear interpolation or smear-
ing adversely. For these algorithms then we want to choose our origin
so that F(wx,my) is as smooth as possible. Under the assumption that
what we are trying to reconstruct is in the center of the picture and
thus that the center of the picture has a higher gray level than the
background, the origin should be chosen to be at the center of the picture.
In the case where we are reconstructing from real projections, we have
no choice for the origin, we must use the point about which the unknown

was pivoted, but this is often in the center of the unknown picture anyway.

3.6.4 Block Floating Point

All calculations were done in 18 bit block ficating point arith-
metic, representing a compromise between the dynamic range of floating
point and the speed of a fixed point realization.

In this work computation speed has not been a goal and the
author has made no particular effort to minimize it, although some time
saving tricks have been used. Another area to which the author has not
dedicated much effort is the area of displays. The examples presented in
this dissertation are plotted as 64 non-equally spaced gray levels using
a single intensity level on a cathode ray tube with time duration modula-

tion. This was recorded with a time exposure made by a Polaroid camera.
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Chapter IV

RECONSTRUCTION FROM A CONCENTRIC SQUARES RASTER

4.1 Introduction

In the algorithms of Chapter III we implicitly assumed that
the picture functions being reconstructed were bandlimited when we as-
sumed that the projections could be represented by their samples. This
condition is guaranteed if the picture is a two-dimensional bandlimited
function provided that the projections are sampled sufficiently often.

We also implied bandlimitedness when we assumed that it was sufficient

to reconstruct our unknown two-dimensional function at only a finite
number of points from which, by means of the sampling theorem, the whole
unknown could be specified. In this chapter we shall explicitly utilize
a specific bandlimitedness assumption in the design of a number of algor-
ithms, which, although similar to those of Chapter III, and in fact in-
spired by them, will be seen to yield improved reconstructions.

For the purposes of the remainder of this thesis, a function
will be said to be bandlimited if its Fourier transform is non-zero only
over a square of half-side W in the Fourier plane as illustrated in
figure 4.1. For such a function, because of the projection/slice theorem,
each projection is seen to be a bandlimited function whose bandwidth is

a function of the projection angle, ©. Thus, if pe(u) represents the
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projection at angle O, we can recomstruct pa(u) from its samples as in

equation (4.1).

P = £ po@D — (4.1)
n=-x 0 W‘)
0
where
W
Wy 2 max{|cosO|, [sinO[} (4.2)

The quantity on the right-hand side of equation (4.2) represents the
bandwidth of the projection at angle O.

In Chapter III, we chose our sampling rate by setting
Wy = V2 W (4.3)

for all values of O. This choice of Y satisfies the condition of (4.2)
and has the advantage that each projection is treated identically. When
each projection is sampled with the sampling rate implied by (4.3) and
the resulting sequences transformed using the DFT we obtain the familiar
polar raster of samples of F(wx,wy).

Choosing to sample all of the projections at the same rate is
convenient but it is not the only approach that can be followed, nor is
it necessarily the best approach. In fact, the fact that F(wx,wy) is
confined to a square in the Fourier plane suggests that perhaps a sam-

pling scheme that yields Fourier samples on a square grid might be pre-

ferable to a scheme which yields its samples on a polar grid.



-100-

4.2 The Concentric Squares Raster

The right-hand side of equation 4.2 specifies the minimum
sampling rate that can be used to sample the projection of a bandlimited
function at angle ©. If a lower sampling rate is used, information will
be lost through the sampling process. Therefore suppose that the pro-

jection pe(u) is sampled at a rate WG wnere

W, o= L
0  max{|cosO], [sinO[} (4.4)

We see that the sampling rate can vary as a function of the projection
angle. This is in contrast to the strategy of Chapter III where a sin-
gle sampling rate was specified for all of the projections. In general
these sequences of samples will be infinitely long, as they were in Chap-
ter I11. From these long sequences we can compute N samples of the slice

SG(m) by using a DFT to calculate the sum

\ = e E’.T. - -2—11 = - .I_I. .Ii
S@(kAm) = ni_w pO(Wb) exp[-j N nk] , k= 5 +1, ..., 0,1, ..., 5
(4.5)

The difference in the two sampling strategies results in different sets
of slice samples being computed. In fact, we can in general control what
samples of Se(w) are computed by controlling the sampling interval used
for the projection pe(u).

To see where the samples of Se(w) lie in the two-dimensional

Fourier plane, let us suppose that we take a one-~dimensional bandlimited
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function, sample it at its Nyquist rate and compute N values of its Four-
ier transform by an equation similar to 4.5. If we do this those N fre-
quency samples are seen to be evenly spaced along the W - axis and to
extend over the entire non-zero frequency band as illustrated in figure 4.2.
Similarly the samples of So(w) computed by equation 4.5 are evenly spaced
and they extend over the entire band so that

2W. .k 2V k

( N cosO , N 5inQ) (4.6)

SO(kAw) =F

The radial spacing of the samples along each slice is seen to vary as a
function of O, the angle of the slice. In Chapter III when the spacing
of slice samples was not allowed to vary with ©, we obtained a polar ras-
ter of samples; if the spacing of samples varies according to equation

(4.6), we obtain a concentric squares raster of samples. A concentric

squares raster is illustrated in figure 4.3. This name is motivated by

the fact that if we set k = constant in equation (4.6) and then allow ©
2W.k 2w, .k

N cosd, N

to vary continuously from 0 to 2m, the coordinates (; sin®)
trace out a square contour which is concentric with the square region
which defines the non-zero frequency components of F(wx,my).

One advantage of the concentric squares raster over the polar
one is that it provides us with more frequency samples close to the origin
where IF(wx,wy)l takes on its largest values. This is due to the fact
that F(wx,wy) is by assumption bandlimited within a square rather than a
circle. To illustrate this point consider the simplified case illustrated

in figure 4.4. 1In this figure we have superimposed an 8 x 8 polar raster

and an 8 x 8 concentric squares raster. The dashed square represents the
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A concentric squares raster.
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An 8 x 8 polar raster superimposed on an 8 x 8
concentric squares raster for comparing dif-
ferences in resolution.
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bandwidth of the unknown function. Each raster provides us with 57 dis-

tinct samples of F(wx,wy). (Because of the redundancy at the central
sample we do not get 64 distinct samples). It should be noted that more
information is obtainable from the concentric squares samples than from
the polar ones. Ten of the polar samples fall outside of the non-zero
frequency band and thus contribute no information whatscever. For larger
rasters approximately 35% of the polar samples will fall outside this
band. In contrast, none of the concentric squares samples lie outside
the band.

Further relative advantages for the concentric squares raster
can be ascertained in the special case when f(x,y) is a function of finite

order. Such a function can be expressed as

W Juyi] W nm
N-1 N-1 o sin;(x - ~§0 sin;(y --TF)
flx,y) = L I f£G7 ., ) %.7
m=0 n=0 ﬁ m‘n‘) n_'ﬂ")
Trz(x - v! (Y - w
or
2 N-1 N-1
= T mm - nf, T
F(wx,wy) = w2 mzo nio £( 7 W) exp| jw(mwx + nwy)] bww(wx,wy) (4.8)

where bww(wx,wy) is the by now familiar indicator function which is zero
outside the non-zero frequency band and onme within it. We further recall
from Chapter II that bandlimited functions of order N are completely spec-

ified by their N x N point DFT's. The DFT of f(x,y) is

¥k, 1) 2 Fw_,0,) - , 0<k, £<N-1 (4.9)
y w ==k - -
X N
W
wy =X 2
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Thus the DFT corresponds to a set of samples of F(mx,wy) which lie on a
Cartesian raster, i.e. they lie on the intersections of an array of hor-
jzental and vertical lines in the Fourier plane. The concentric squares
samples are also seen to lie along horizontal and vertical lines in the
Fourier plane. In fact the concentric squares samples lie along the same
horizontal and vertical lines as the DFT. Thus if linear interpolation
is used to estimate the DFT samples from the concentric squares samples
we only need to interpola_e along these horizontal and vertical lines

and the interpolation is one-dimensional rather than two-dimensional as
it was in the polar case. As a result we would expect better reconstruc~
tions from concentric squares linear interpolation than from polar linear
interpolation.

As a comment it should be noted that if the projections are made
by a source of collimated radiation such as an x-ray source then concentric
squares samples can be obtained with a hardware scanner which does not
have an adjustable sampling interval. Tﬁis technique is illustrated in
figure 4.5. Assume that the object which we wish to identify is irradiated
by a collimated x-ray beam and that it lies between the beam source and
a recording surface such as a photographic plate. Instead of rotating the
unknown to produce different projections, assume that we rotate the x-ray
source and the photographic plate simultaneously, while keeping the y-dis-
tance from the plate to the center of the unknown constant and maintain-
ing the plate parallel to the x-axis of a hypothesized Cartesian coordinate
system. When the projection angle exceeds 45°, the plate is rotated by
90° so that it now is parallel to the y-axis. Now as the projection

angle is increased still further the plate is maintained at this orientation
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A configuration for recording concentric squares projections,
such that all projections can be sampled without varying the
sampling interval on a hardware scanner.
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and moved around the unknown in such a fashion that the x-distance from
the center of the object to the photographic plate is held constant.
Once the projection angle reaches 135, the plate is again rotated so
that it is oriented parallel to the x-axis. Thus the photographic plate

is moved in such a way that its center traces out a square. In this way

1
the recorded picture is seen to be expanded by a factor of max{[cos0[, [s1n0]}
by the obliqueness of the recording surface. If all projections are now
sampled with the same sampling interval, 7/W, the resulting sequences

correspond to a set of concentric squares sampled projections.

4.3 Bandlimited Functions of Finite Order

There exists a set of N + 1 concentric squares projections from
which a bandlimited function of order N can be reconstructed exactly.
In this section we shall outline a procedure for accomplishing this.

First it has been noted that bandlimited functions of finite
order are conpletely specified by the DFT's of their non-zero samples
(where the sampling is done at the Nyquist rate}. Furthermore we note
from equation (4.8) that the Fourier transforms of these functions are
(over the passband) two-dimensional polynomials of degree N - 1 in each
of the variables exp[—j%-wx] and exp[—j% wy]. Thus along those horizon-
tal and vertical lines in the Fourier plane along which both the DFT
samples and the concentric squares samples are defined, F(wx,wy) varies
as a one-dimensional polynomial of degree N - 1 in either exp[-j%»wx]
or exp[-j%-wx]. From a theorem of linear algebra we know that a one-
dimensional polynomial of degree d is completely spzcified by any d + 1

independent sample values of that polynomial. (If a polynomial is
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completely specified, an analytical expression for that polynomial can
be written). Thus if we know the value of F(wx,wy) at N distinct points
on any horizontal or vertical line in the passband we can find F(wx,wy)
at any other point on that line. In particular if we can ascertain N
different samples along any concentric square side, from the intersec-
tions of N slices, then any DFT samples which either lie on that side or
on its extensions can be computed exactly. From this result we can show
that a bandlimited function of order N can be reconstructed exactly from
a particular set of N + 1 projections.

Assume that we wish to reconstruct an unknown and that we have
the capability of obtaining projections at any angles which we desire.
This being the case, let us require that N projections be taken at N
distinct angles in the range -45° < O < 45° and in addition we require
one additional projection from outside this range. Ultimately we shall
see that there are some restrictions on this last projection, but for the
moment let its angle be anywhere in the range 45° < O < 135°, We shall
designate its angle by Oo. Aill M + 1 of these projections should be sam-
pled and transformed so that the N point DFT's of these sequences lie on
a concentric squares raster as is illustrated in figure 4.6 for the spec-
ial case N = 8. At this point it should be noticed that we have speci-
fied the Fourier transform of f(x,y) at (N + 1)N - N = N2 distinct points
and that our goal is to compute the N2 non-zero picture samples.

Along each vertical side of the concentric squares we thus have
N samples, one from each of the N slices in the range -45° < 0O < 45°,
Since along each of these sides F(wx,my) varies as a complex one-dimen-

sional polynomial of degree N - 1 in the variable exp[-j %’wy], we can
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Set of Fourier plane samples from which an 8 x 8
picture can be reconstructed exactly, under the

assumption that the picture is bandlimited and of
order 8.
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completely specify F(wx,wy) along each of these vertical lines, except
for the wy-axis (since the samples along this line are not distinct).
Thus by means of a divided difference table or by Lagrange interpolat-
ing polynomials we can compute the value of F(wx,wy) at all of those
points that constitute the two~dimensional DFT except for the ones which
lie along the wy—axis.

To £ill in these remaining points we can use the extra projec-
tion at Oo. If Go = 90° then the remaining DFT samples are determined
directly and we are done. If this last projection was taken at some
other angle in the range 45° < O < 135°, then consider the horizontal
sides of the concentric squares raster. Along each of these sides we
have a one-dimensional complex polynomial of degree N - 1 in the variable

Iy ]. However, along each of these horizontal sides we also know

expl-j 7w,

N sample values, since along each line there are N - 1 NFT samples which

have already been determined and one sample which is available from the

last projection. (At this point we can observe that Go must be chosen

so that this last slice does not pass through any of the DFT samples al-

ready computed except for the one at the origin, otherwise we will not

have N distinct sample values along each line. It is sufficient that

the slope of this last slice be irrational). From the N values which we

have along each line we can again use polynomial interpolation to determine

those DFT samples along the my—axis. Now the complete DFT of the picture

is known. We can perform an inverse DFT to recover the N2 non-zero picture

samples and then apply the sampling theorem to obtain the complete picture.
This derivation, although useful for theoretical purposes does

not necessarily lead to a useful reconstruction algorithm because of the
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difficulty of performing the necessary interpolations, particularly

on the inner columns of figure 4.6, where we must extrapolate values

of a fairly high order polynomial from samples which are spaced closely
t?§9pher. This procedure is subject to large computational errors if
the slice samples are not known exactly, which is invariably the case.
An algorithm for performing the interpolation and inverse DFT simultan-
eously is derived in section 5.4, and the unavoidable computational er-

rors which it introduces are estimated in the following section.

4.4 Approximate Reconstructions from a Concentric Squares Raster

Instead of trying to reconstruct f(x,y) exactly as described
in the preceding section because of the attendant computational problems
with this approach let us consider som2 algorithms which will make an
approximate reconstruction from a concentric squares raster. All three
of the algorithms of Chapter III - linear interpolation, high order inter-
polation in polar coordinates, and smearing - can be adapted to perform
reconstructions from concentric squares samples of F(wx,wy). Let us

therefore consider adapting each of these algorithms in turn.

4.4.1 Linear Interpolation

We can use linear interpolation to find the values of the N x N
DFT of f(x,y) from the concentric squares samples of F(wx,wy). As we
noted in section 4.2, this can be accomplished by interpolating in only
one dimension because the DFT samples lie on the same horizontal and ver-

tical lines as the concentric squares. If f(x,y) is bandlimited and of
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an order which is less than or equal to N then it is specified by its DFT.
If it is not so well behaved but can be closeliy approximated by such a
function, then hopefully the reconstruction obtained by this technique
will closely approximate f(x,y).

In figure 4.7 are some reconstructions made using linear in-
terpolation from 64 projections, evenly spaced in angle from 0° to 180°.
Each projection was obtained by a technique similar to the one used in
Chapter III except that the width of the bins used to compute the pro-

jections were expanded by a factor of

1
maxi [cosO|, [sinO[}

where O represents the angle of the projection. In figure 4.8 we have
used the same algorithm with a different set of projection angles, In-
stead of choosing the angles to be evenly spaced we have chosen them so
that the intersections of the slices with the concentric squares are
evenly spaced on each square. This set of projections yields a computa-
tionally simpler algorithm and it results in a higher density of samples

in the "corners" of the non-zero region of F(wx,wy). In figure 4.9 we
have taken the latter set of projection angles and examined reconstructions
made with 16, 32, 64, and 128 projections to see what improvement in re-
construction quality could be gained by adding more projections. 1In
figure 4.10 we compare reconstructions made from 64 polar projection/slices
and 64 concentric squares projection/slices. In all other details the

two algorithms were identical.
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Figure 4.7

Reconstructions obtained by using linear inter-
polation on a concentric squares raster with 64
evenly spaced projections. Parts (a) and (c)
correspond to reconstructions and parts (b) and
(d) correspond to originals.
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Figure 4.7

Reconstructions obtained by using linear inter-
polation on a concentric squares raster with 64
evenly spaced projections. Parts (a) and (c)
correspond to reconstructions and parts (b) and
(d) correspond to originals.
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Figure 4.8

Reconstruccions obtained using linear inter-
polation oa a concentric squares raster from

64 projections which have evenly spaced inter-
sections with the sides of the concentric
squares. (a) and (c) correspond to reconstruc-
tions. (b) and (d) are originals.
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(a) (b)

(c) ‘d)

Figure 4.8

Reconstructions obtained using linear inter-
polation oa a concentric squares raster from
64 projections which have evenly spaced inter-
sections with the sides of the concentric
squares. (a) and (c) correspond to reconstruc-
tions. (b) and (d) are originals.
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(a) (b)

(c) (d)

Figure 4.9

Reconstructions by linear interpolation from a
concentric squares raster. (a) 16 projections
(b) 32 projections (c) 64 projections (d) 128
projections.
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Figure 4.9

Reconstructioi:s by linear interpolation from a
concentric squares raster. (a) 16 projections
(b) 32 projections (c) 64 projections (d) 128
projections.
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Figure 4.10

Comparison of the linear interpolation algor-
ithm for polar samples and concentric squares
samples. (a) original (b) reconstruction from
64 polar projections (c) reconstruction from
64 concentric squares projections.
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(c)

Figure 4.10

Comparison of the linear interpolation algor-
ithm for polar samples and concentric squares
samples. (a) original (b) reconstruction from
64 polar projections (c) reconstruction from
64 concentric squares projections.



-118-

Let us examine each of these figures in turn. 1In figure 4.6
in the portrait we see that many features are reconstructed clearly. Some
of the fine structure in the eyes and mouth is noticeable and the collar
area is rather well resolved. Comparison with the original, however,
shows us that the edges in the collar are not as sharp as they might be
and that the hair, mustache, and eyes are not as detailed as in the ori-
ginal. The backgrounds in both the test pattern and the portrait are
regular. In the test pattern the corner patterns are not resolved and
the rays of the center pattern although resolved do not have sharp edges.
There is also a slight directional bias in that the vertical rays are
resolved better than the horizontal ones. This seme observation was made
concerning linear interpolation reconstructions made from a polar raster.

In comparing figures 4.7 and 4.8 we see that there are virtually
no differences between the reconstructions made from the two different
concentric squares rasters, at least for these examples. This is not en-
tirely unexpected since the two rasters are quite similar.

In figure 4.9 we see the effect of varying the number of pro-
jections. Reconstruction quality improves with the number of projections
as we would expect, but even the reconstruction made from 128 projections
has its deficiencies. The details in the hair and mustache are not re-
solved and the whole reconstruction appears somewhat blurred. One pos-
sible explanation for these shortcomings is that this algorithm, like its
polar counterpart ignores many of the polar samples near the center of
the concentric squares raster, where lF(mx,wy)l is large.

In figure 4.10 we compare the concentric squares and polar lin-

ear interpolation algorithms. For this example, at least, the concentric
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squares reconstruction is better. In fact this same result is true for
all other examples that have been tried as well. The background which
should be regular is regular on the concentric squares reconstruction,
but not the polar one. Also the hair, eyes, nose, mouth and collar are
clearer in the squares reconstruction than in the polar one. This is
probably due to the fact that the interpolation from the concentric
squares raster is one-dimensional whereas it is two-dimensional from the

polar one.

4,4.2 Reconstruction by High Order Interpolation along the Squares

One difficulty with straightforward linear interpolation is
that it does not utilize all of the information that is available from
the projections, because it does not use all of the slice samples pre-
sent in the concentric squares raster. We can modify the interpolation
in polar coordinates algorithm to give a reconstruction technique which
deos use all of the slice samples. Instead of interpolating in polar co-
ordinates, however, we wish to interpolate in "ccncentric squares co-
ordinates" i.e. along the slices and along the squares. Any interpolation
along slices is unnecessary since all of the concentric squares samples
already lie on the squares which contain all of the DFT samples — such is
the big advantage of concentric squares coordinates. Thus our algorithm
reduces to the fairly simple task of ﬁaking a high order polynomial inter-
polation along the sides of a series of concentric squares, a task which

can be accomplished using a DFT.
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Suppose for example that NV slices intersect the vertical sides
of an array of concentric squares where NV < N. (1f NV > N, then by
the arguments of section 4.3, exact reconstruction can be performed).
We can approximate F(wx,wy) along each vertical side by a polynomial of
degree NV - 1 in the variable exp[-j %-wy]. Similarly if each horizon-
tal side is intersected by NH slices (NH < N), we can approximate F(wx,wy)
along these lines by a polynomial of degree NH - 1 in the variable
explj %-wx]. We know, however, that f(x,y) is of finite order ¢ and that in
fact F(wx,wy) varies as a polynomial of degree N - 1 in the appropriate
variable along all of these lines. Thus to the extent that the higher
order polynomial can be closely approximated by the lower ones, we can
expect an accurate reconstruction.

In figure 4.11 are two reconstructions performed by this tech-
nique. They are virtually identical to the reconstructions in figure 4.7
which were performed by linear interpolation. A similar result was ob-
served in Chapter III when we compared the related polar algorithms. One
possible explanation for the shortcomings of this algorithm is that in

fact polynomials of degree NH -~ 1 and N

v 1 are not good approximations

to polynomials of degree N - 1. (In these reconstructions NH =N

v - 32,

N = 64). It is known from results of numerical analysis that such is
frequently the case. The approximation can be particularly bad near the
extrema of the high order polynomial. It is also known that frequently
an N - lst degree polynomial is better approximated by a series of lower
order polynomial sections (or splines), such as linear or parabolic sec-
tions, than by higher order ones. It is possible that by using sections
of intermediate order better reconstructions might be obtained than by

either linear or maximum degree interpolation.
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Figure 4.11

Reconstructions from 64 projections by approximating
F(w , w ) along each side of the concentric squares
by a poiynomial of 32nd degree. (a) and {c) are re-
constructions. (b) and (d) are originals.
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Figure 4.11

Reconstructions from 64 projections by approximating
F(w , w ) along each side of the concentric squares
by 3 poiynomial of 32nd degree. (a) and (c) are re-
constructions. (b) and (d) are originals.



-122-

4.4.3 Concentric Squares Smearing

As a final step in our development of parallel polar and con-
centric squares reconstruction algorithms, it remains to implement the
smearing algorithm in concentric squares fashion. This is straightfor-
wardly done.

First we express F(wx,wv) in concentric squares cocrdinates
where the variable w designates the square and O designates the angular
position on the square. TNoing this we get

1

W
f(x,y) = — /
4 o

wF (w,0) . expl-i

xw cos® + yw sin® 1d0dw
i [max(cosze, sin"0)] )

max(|cosO], |sinO]|

| ~—3

(4.10)

Let us now replace the integration in equation (4.10) by a sum where each
summand represents the contribution to (4.10) from a small area in the
(w,9) plane as illustratea in figure 4.12. Our expressions and in fact
the whole algorithm will be considerabhly simplified if the slices are
assumed to intersect the concentric squares at evenly spaced points. 1In
this special case the weighting factors which multiply the samples of
g(w,@) exp [.] depend only on w, not on O, which allows all projections
to be treated identically. If we assume that N projections are taken
and that M concentric squares are formed, then (4.10) can be approximated
by: |

2

) F(0,0) 1 M/2 N — i(x cos0 + y sin@)]zﬂ .
v max{ [cosO|, |[sin®|} "M

+ z I F(& 1, 0))expl]
4 N2 i=-M/24+1 k=0 " k

f(x,y

(4.11)
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Figure 4.12

The area AA; associated with one concentric
squares sample when there are N projections
with angles chosen so that the concentric
squares samples are evenly spaced around the
squares. In this special case AAi is a func-
tion only of w.
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which can be rewritten in terms of the slices {SO (wy, 0<k E_N—l}
k

as

Sg (0)
© M/2 N .
£(x,y) N 0 + 20 5 5 iF(gE i, Ok)exp[jZWi(x ?osek+y sin@k).]

2 2 M
Mmax [ cos@k . sin@k)]

4 Ndr®  i=-M/2+1 k=0

(4.12)

Equation (4.12) can be shown to have an interpretation in terms of smear-
ing exactly as in the polar case. Each projection is taken, sampled,

and transformed to give concentric squares samples of F(wx,wy). They

are then multiplied by the weighting function ]wl, inverse transformed
and back projected as before. As in the polar case, the mean gray levels
of the original and of the reconstruction are constrained to be equal.

In figure 4.13 are presented some reconstructions generated by
concentric squares smearing. It should be first noted that the quality
of the reconstructions is very good. In the portrait all of the fine
structure of the eyes is apparent, the edges around the collar are sharp
and the background is fairly regular. The most obvious differences bet-
ween the original and the reconstruction are in the hair, and mouth areas.
With the test pattern all 4 of the corner patterns are resolved and the
rays of the central pattern have fairly well defined edges. Here the
major differences between original and reconstruction are in the center
of the central test pattern and in the background. These reconstructions
are alsolsuperior to the polar smearing reconstruction in figure 3.9.

The good quality of the concentric squares reconstructions is

somewhat surprising. In the case of linear interpolation it could be
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(a) (b)

(c) (d)

Figure 4.13

Some reconstructions made by smearing 64
concentric squares projections. (a) and
(c) correspond to reconstructions. (b)
and (d) are originals.



(c) (d)

Figure 4.13

Some reconstructions made by smearing 64
concentric squares projections. (a) and
(c) correspond to reconstructions. (b)
and (d) are originals.
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argued that improvement was due to the fact that one-dimensional inter-
polation could be performed instead of two-dimensional interpolation,

but no such computations were carried out in the case of smearing. The
noticeable difference in performance was probably due to the fact that
concentric squares sampling gives more samples in the passband of F(wx,wv)

than does polar sampling.

4.4,4 Reconstructions from Real Data

In an effort to see how well one of these algorithms would per-
form on real data, a series of x-rays of an excised human femur were
obtained.* The complete series consisted of 36 x-rays which were taken
normal to the long axis of the bone at 5° intervals. Since the algori-
thms were all designed to perform two-dimensional reconstructions from
one-dimensional projections, each of the x-rays was sampled logarithmi-
cally along a single line normal to the long axis and a single cross
section of the bone was reconstructed. Each projection was sampled at 256
by 256 points and the sampling interval was the same for each projection.
These samples were used to compute both polar slice samples and concentric
squares slice samples. The concentric squares linear interpolation re-
construction is presented in figure 4.14b and one of the x-rays from
which it was produced is in 4.l4a. The hollow tubular structure of the
bone is evident from this reconstruction. In addition material of lighter
density is seen inside the bone. The reconstruction from a polar grid was

virtually identical. The other algorithms were not tried.

* The x-rays were provided by Dr. Oleh Tretiak
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(b)

Figure 4.14

Reconstruction of a section of a leg bone from 36 evenly spaced preject-
ions by using linear interpolation from a concentric squares raster. (a)

bone section at 30° angle (positive) (b) reconstruction of section at
level of solid line in (a) (negative).
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(a)

(b)

Figure 4.14

Reconstruction of a section of a leg bone from 36 evenly spaced project-
ions by using linear interpolation from a concentric squares raster. (a)

bone section at 30° angle (positive) (b) reconstruction of section at
level of solid line in (a) (negative).
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4.5 The Use of Projections to Characterize Pictures

It has been suggested that since pictures and other multidiien-
sional signals can be approximated in terms of their projections then
projections must characterize those pictures. Thus instead of storing an
entire digitized picture which requires a large number of bits, perhaps
just a limited number of projections can be stored, and when needed the
picture can be reconstructed. This is a worthwhile procedure only if
the total storage required is less than that required for the actual dig-
itized picture, if a satisfactory image can be reconstructed, and if the
process of reconstruction is computationally straightforward. In this
section we shall consider the first of these three conditions without
discussing the latter two, which should not imply that they are not de-
finite issues.

Straightforward Cartesian sampling of pictures is often highly
inefficient in that the total number of bits required to represent a pic-
ture in this fashion is considerably higher than can be achieved using
other techniques. Straightforward sampling requires 5-6 bits per sample
whereas it is believed to be possible to code a photograph exactly using
only about 2 bits per sample. One can, of course, approximate a photo-
graph with fewer bits. State of the art techniques for picture coding
provide very good approximations to pictures using 1/2 to 1 bit per sample.

We shall consider coding pictures by simply coding the projec—
tions. From the projections we can later apprcximate the picture. Ve
shall assume that the projections are coded by sampling, although perhaps
if more sophisticated techniques were used, the total number of bits em-

ployed could be reduced still further. The total number of bits/sample
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needed to specify a picture can then be expressed as:

B = LMb/N (4.13)

where

B = total number of bits/sample

L = number of projections

M = number of samples/projection
b = number of bits/sample
N2 = number of samples in reconstructed picture

In this section we shall vary the parameters L, M and b and see what
effect these have on reconstruction quality. This study is not meant to
be exhaustive but it will give us some feel for the relative importance
of each of these parameters. This is perhaps the most important result
of this section. We shall perform a number of reconstructions using the
portrait photograph, and the concentric squares emearing algorithm. Some
of these results are included in figure 4.15. Let us consider the effect

of each of these parameters in turn.

Number of Projections (L)

Controlling the number of projections is the most obvious way
to affect reconstruction quality. This is true for all of the reconstruc-
tion algorithms which have been tried. As a preliminary comment it should

be noted that in many applications the number of projections is not control-
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(a) (b)

(c)

Figure 4.15

A comparison of different values of L, M, and b in the
smearing algorithm. (a) L=64, M=256, b=17, (4 1/4 b/s)
(b) L=64, M=32, b=8 (1/4 b/s)

(c) L=64, M=64, b=8,
(1/2 b/s) (d) L=64, M=128, b=8 (1 b/s)
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Figure 4.15

A comparison of different values of L, M, and b in the
smearing algorithm. (a) L=64, M=256, b=17, (4 1/4 b/s)
(b) L=64, M=32, b=8 (1/4 b/s) (c) L=64, M=64, h=8,
(1/2 b/s) (d) L=64, M=128, b=8 (1 h/s)



(e) (f)

Figure 4.15 (cont'd)

(e) L=64, M=256, b=8 (2 b/s) (f) L=32, M=64, b=8
(1/4 v/8) (g) L=128, M=64, b=8 (1 b/s) (h) L=128,
M=128, b=8 (2 b/s).
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Figure 4.15 (cont'd)

(e) L=64, M=256, b=8 (2 b/s) (f) L=32, M=64, b=8.
(1/4 v/s) (g) L=128, M=64, b=8 (1 b/s) (h) L=128,
M=128, b=8 (2 b/s).
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(1)

Figure 4.15 (cont'd)

(1) L=64, M=64, b=5 (5/16 b/s) (j) L=64, M=128,
b=5(5/8 b/s) (k) L=64, M=256, b=5 (1 1/4 b/s)
(1) L=128, M=128, b=5 (1 1/4 b/s).



Figure 4.15 (cont'd)

(1) L=64, M=64, b=5 (5/16 b/s) (j) L=64, M=128,
b=5(5/8 b/s) (k) L=64, M=256, b=5 (1 1/4 b/s)
(1) L=128, M=128, b=5 (1 1/4 b/s).
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lable. In these cases one must of course use all of the projections that
are available. In figures 4.15(c), (f) and (g) the same reconstruction
was performed from 64, 32, and 128 projections respectively. It is per-
haps also instructive to consider figures 3.10 and 4.9 where this effect
was also considered for the polar coordinates smearing algorithm and con-
centric squares linear interpolation algorithm.

We first note that as the number of projections is increased
the reconstructions become better. This is certainly not surprising.
From a subjective evaluation of the portrait reconstructions it also ap-
pears that the incremental improvement in going from 32 to 64 projections
is greater than that for going from 64 to 128, Although this may not be
true for all pictures we have nonetheless used this fact so that most of
the reconstructions in this dissertation are made frqm 64 projections.

Another item which must be mentioned whenever we address our-
selves to the question of how many projections are necessary is - what re-
solution is required for the reconstruction being performed? At all times
the relative cost of taking more projections must be balanced against the
relative value of improved resolution. Furthermore the resolution of the

reconstruction is limited by the resolution of each projection.

Number of Bits per Sample (b)

We can examine the effect of quantizing projections by comparing
part (a) of figure 4.i2 which was made using 17 bits with part (e) which
was made with 8 bits and by comparing parts (c), (d), (e) and (h) which
are made from 8 bit projections with (i), (j), (k), and (1) respectively

which are made with 5 bit projections. The 17 bit reconstruction and the
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8 bit reconstruction are virtually identical, but the 5 bit reconstructions
are definitely degraded. Furthermore this degradation takes a specific
form; the over-quantized projections yield reconstructions that have a
mottled or snowy appearance as if an additive noise were added to them.
Increasing the number of samples per projection atlers this noise but
does not make it go away and increasing the number of projections will
not remove it either.

Although any reconstruction algorithm can be expected to give
degraded performance if the quantization is sufficiently severe, one should
not infer that these results based on the smearing algorithm can be dir-
ectly extended. This is due to the high frequency emphasis filter that
is employed in the smearing algorithm. Since it represents essentially
a numerical differentiater we expect it to magnify the quantization errors,
present in the input projections. As a result, one might expect (although
this fact has not been tested) that the parameter b has a greater effect
on the smearing algorithm than on other algorithms.

Thus to yield good reconstructions more than 5 bits/sample are
needed and 8 bits/sample seem to be sufficient. These results, however,

are subjective and are based on a single example.

Number of Samples per Projection (M)

Here we can compare parts (b), (c), (d), and (e) of figure 4.12.
The conclusion is obvious - recomstruction quality improves as the num-
ber of samples/projection increases, although for this example the improve-
ment in going from 128 samples to 256 samples is small. Thus a reasonable

strategy seems to be sample the projections as often as is feasible. Sam-
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pling faster than the resolution implied by the projections does not

bring much improvement in reconstruction quality but the costs of doing
this are generally not great either, unless of course we put a large
cost on the total number of bits required for storage of a picture.
Doubling the number of projections to perform a recomstruction roughly
doubles the effort required to obtain the projections, doubles the mach-
ine storage required to store them, and doubles the computation time

for a reconstruction. Doubling the number of samples per projection,
however, still doubles the storage requirement, but has only a small ef-
fect on the labor involved in obtaining projections and only a small ef-
fect on the total computation time. Thus increasing L is expensive while
increasing M is fairly inexpensive. Thus projections should be sampled
as often as machine storage will permit.

This result is in conflict with some earlier suggestions by
other workers who expressed the belief that the radial frequency resolu-
tion should be constrained to be the same as the angular frequency re-
solution. This implies L & M. A comparison of the reconstructions in
(c) and (e), however, shows that this constraint limits reconstruction
quality.

The final measure of how many bits are required to store a pic-
ture in projection form depends to a large extent on how accurate we re-
quire the reconstructed picture to be, although it appears that good ap-

proximations can be obtained using less than 1 bit/sample.
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Chapter V

EXACT RECONSTRUCTION FROM A SINGLE PROJECTION

5.1 Introduction

How many projections are needed to reconstruct a function
exactly? In Chapter IV we saw that a bandlimited function of order N
could be reconstructed exactly from M + 1 projections. If we impose
no constraints whatsoever on the functions to be reconstructed then an
infinite number of projections are required since each projection con-
strains F(wx,wy) along only a single slice while it takes an infinite
number of slices to span the whole Fourier plane. If we impose suffi-
cient constraints on the unknown function then only a single projection
might be necessary. For example, if we require that f(x,y) be circul-
arly symmetric, i.e. that f(x,v) = g(/;j_:f;zb then only one projection
is necessary. For these functions all of the projections are identical
and therefore only one of them need actually be measured. This class
of functions, unfortunately, is not particularly interesting because it
is too restricted to represent most unknowns cof interest. There is
another class of functions, however, that can provide a good approxi-
mation to many frequently encountered unknowns and functions of this
class can also be reconstructed from one projection. These are the
bandlimited functions of finite order whose recomstruction from more

than one projection was considered in Chapter IV. Unfortunately there are
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difficulties associated with reconstructing these functions from a sin-

gle projection and these will be discussed later in the chapter.

5.2 The One-Projection Theorem

The one-projection theorem which is presented below shows that
bandlimited functions of finite order can be reconstructed from a single
projection. It represents a specific case of a more general theorem
which appears later in the section. It is perhaps instructive, however,
to consider the special case first, for it is thus easier to understand

the general theorem and the motivation for it.

Theorem (one-projection theorem): A bandlimited function f(x,y) of

order N can be reconstructed exactly from the single projection at angle

® = tan 1 1/N.
o

Proof: We can write f(x,y) in terms of its Myquist samples as

2 N-1 N-1 sinmi(x - 0y sint(y - 20
£(x,7) =T 5 3 f@EE oty " W m W (5.1)
24 2 wow T nm
W m=0 n=0 x - —ﬁO(y - —ﬁ9

From (5.1) we see that it is sufficient to specify {f %; , %g), 0 <m,
n < N - 1} in order to completely specify f(x,v). Evaluating the Fourier

transform of f(x,y) along a line at angle O we obtain the slice at angle 0.

2 N-1 N-1
Se(w) = F(w cosO, w sind) = EE r Z fé%} , EE) exp[-j%?(m cosO + n sin®)]
W

m=0 n=0 v

x bww(w cos®, w sind) (5.2)
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where as before W represents the bandwidth and

1 lw | <w, u| <w
x' — y' -
bww(mx,wy) = (5.3)
0 otherwise

Setting O = Oo = tan-l 1/N it is strzightforwardly seen that

cos(tan-lllN) = N
/ﬁZ +1
sin(tan—lllN) = 1
N 41
2 N-1 N-1
so =T T T £@ I eppyTminlg | < TATET
o W m=0 n=0 ’ wRZ + 1

(5.4)

From (5.4) we see that So (w) is a one-dimensional polynomial of degree

° W

exp[-j————=
WANZ + 1

that polynomial which are the function samples can be determined from

NZ - 1 in the variable ] and thus the coefficients of

any N2 samples of SG (w) taken in the range - %Jﬁzii'f_w 5_%#52:_ .
o

Since these N2 samples all lie on a single slice, they can be obtained
from a single projection. This completes the proof.

In order to generalize the one projection theorem we might ask
&hether or not there are other slices which by themselves can reconstruct

f(x,y) (or its Nz samples). We shall call such a slice a critical slice.
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In general the set of angles which correspond to critical slices will
be dependent on N, the order of f(x,y).

From the one projection theorem we might wish to examine other
slices which correspond to polynomials in one-variable to see if they
too can be critical slices and if the coefficients of these polynomials
can be related to picture samples. The following lemma tells us which

slices represent polynomials.

Lemma: 1If A and B are positive integers, the Fourier transform of a
vandlimited function of order N evaluated along the slice whose angle
is O = tem'-1 A/B corresponds to a polynomial over the range ‘wx| < W,

‘wy| < W, where W represents the bandwidth.

Proof: Using equation (5.2) to express F(mx,wy) along this slice, we

see that
cor)s(tan'_l A/B) = B
V/AZ + BZ
sin(tan-l A/B) = Y —
VAZ + BZ
2 N-1 N-1
wB WA T
Sa(w) = F( )=—5 L I mT o, W ‘
© VAL + B4 ,/AZ + B4 wz n=0 n=0 f( W W)eXP[“j ———(Bm+An)]bw(w)

W/A<+B

(5.6)
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where

1 !w! < WAZ + BZ
’ — max[|A] , |B]]

0 s ctherwise

From (5.6) it can be seen that S(_)(w) corresponds to a polynomial in the

variable exp[—j——lrﬂ——] of degree (A + B)(W - 1), for
: WYAZ + Bz
—WVA2 + B2 WAZ + B2

max([Al, 1817 =“< ‘max[[A], [B]] QED.

The conditions of this lemma are more restrictive than neces-
sary. It is actually not necessary that A and B be positive. If A and

B are both positive then the slice represents a polynomial of the form

P(Z) =aZQ+a ZQ-1+ ... +a where Q = (A + B)(N-1) and
Q Q-1 )
W
Z = exp[-j——— ]. If we do not restrict the signs of A and B the
W A2 + B? 0 -1
slice will correspond to a polynomial of the form P(2) = aQZ -+ ao_lz +

W
W A2 + B2

and P = min(Bm + An),0 < my, n < N-1. P can and in general will be neg-

ces + aPZP where Z = exp{-j ] , Q = max(Bm + An),0 < m, n < N-1,

ative. Both polynomials are completely specified by (lal +|BH(-1) +1

1

samples. Therefore we shall say that the slice at angle O = tan ~ A/B

where A and B are (positive or negative) integers corresponds to a poly-

W
nomial in exp[-j————] where the degree of that polynomial is de-

W/AZ + BZ
fined by:

degree of Se(w) max(Bm + An) - nin(Bm + An)
0<m, n <N-1 0<my, n<N-1
(5.7)

(lal + |3 - 1)
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From this lemma then, we see that slices with rational slopes
satisfy our first requirement - they are polynomials. Furthermore as
we can see from equation (5.6) the coefficients of these polynomials are
either picture samples or sums of picture samples. In order that all of
the picture samples be determinable from a single projection we must
therefore impose the additional requirement that the coefficients of the
slice polynomial each correspond to at most one picture sample. If a
coefficient corresponded to a sum of picture samples, we would be able
to determine the sum, but would have no means for determining the indiv-
idual samples from the sum. We might at this point mention as an aside
that perhaps if we allow ourselves to look at two or three projections
we could relax this requirement. This we shall do in section 5.7 when
we generalize these ideas to performing reconstructions from more than
one projection. This additional requirement implies that the degree of
the slice polynomial along a critical slice must be at least N2 - 1, since

there are N2 different coefficients. Therefore we must require

(al + B -1 > ¥ -1 (5.8)
or
|al + |B| >N +1
This condition is necessary but not sufficient. In the next theorem we

establish a necessary and sufficient condition on A and B for the slice

at angle O = tan‘-1 A/B to be a critical slice.
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Theorem: If m, m', n and n' are integers in the range 0 < m, m', n,
n' <N- 1, if A and B have no common integer factor, and if the only

solution to the equation

Bm + An = Bm' + An' (5.9)

1

is the trivial solution m = m', n = n' then the slice at O = tan ~ A/B

is a critical slice.

Proof: At this point the proof is nearly obvious. Since this slice has
WAZ + BZ

a rational slope we know that Se(w) is a polynomial for lw] f-max[lAI, BT

Furthermore if the conditions of this theorem are met then no two exponents
in equation (5.6) can be equal. Thus no coefficients of the polynomial
along this slice can correspond to the sum of two or more picture samples.
Thus the polynomial corresponding to this slice must have at least N2
distinct coefficients. Since every picture sample contributes to only

one coefficient and since each coefficient depends on at most one sample,
the picture samples can be determined from the coefficients. If the slice
is completely specified (say by N2 distinct samples) then since it is a
polynomial its coefficients can be determined. Thus all Nz picture sam-

ples can be determined from a single slice, which completes the proof.

Corollary: If N is the order of f(x,y), then if P and N are relatively

prime (P # 0), the slice at O = tan-l P/N is a critical slice.
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Proof: Adapting equation (5.9) for this situation we see that the equa-

tion to test is

Nm + Pn = Nm' + Pn’ (5.10)

We wish to show that the only solution to (5.10) is the trivial one. Re-

arranging terms

N(m - m') = P(n' - n) (5.11)

Here we see that since N(m - m') is an integer and since N and P have
no common factor, P(n' - n) must be a multiple of both P and N. Thus

for some integer i
P(n' - n) = iMP
or
n' -n=1iN , since P # 0 (5.12)
However, due to constraints on the ranges of n and n' we know that
In’ - n| <N-1, which implies i = C in (5.12), which implies n' - n = 0.

Substituting into (5.11) we also conclude that m - m' = 0. Therefore

n=n',m=mn'. OED

Our original one projection theorem can be seen to follow dir-

ectly from this corollary for the special case P = 1. In addition we



=144~

notice that in the special case where N is a power of two that the slices

with slopes of 1/N, 3/W, 5/N, ..., N-1/N are all critical slices.

Corollary: 1If O = tan“1 A/B is the angle of a critical slice, then

e, = t:an-1 B/A, O, = tan-1 - A/B, and 63 = tan—l - B/A are also the

1 2

angles of critical slices.

(1) Proof for Ol

Ve must test the equation

Am + Bn = Am' +Bn' , 0<m, n, m', n' <N-1 (5.13)

Since the range of all four variables is seen to be the same, we see

that the solutions of (5,13) are the same as the solutions of

Bm + An = Bm' +An" , 0<n,m n', m' <N-1 (5.14)
with the variables m and n interchanged and m' and n' interchanged. Since
tan-l A/B is a critical slice, however, the only solution to (5.14) is the

trivial solution, hence this is the orly solution to (5.13).

(ii1) Proof for @2

Here we wish to test the equation

Bn - An = Bm' - An' , 0<m n,m', n' <N-1 (5.15)



Substituting r=N-1-n, r

Bn - AN + A + Ar = Bm' - AN + A + Ar'

or

Bm + Ar = Bm' + Ar' (5.16)

However, we know that the only solution to (5.16) ism=m', r =r

which together imply, n = n'.

(iii) Proof for 93

This can be shown by repeated application of the proofs for Ol and 02.

QED

At this point several comments should be made. First all of
the results derived in this chapter have assumed that the unknown signal
could be represented by a square raster of samples N points on a side.

We could, of course, have assumed with more generality that we had a
rectangular raster of M samples in one dimension and N samples in the
orthogonal dimension. None of our results would be substantially changed
although the introduction of an additional parameter would have made the
expressions slightly more complex. Seeing no particular reason (theoret-
ical or practical) for introducing this extra parameter, we have chosen

not to do so.
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In addition we should comment on the degrees of the polynomials
corresponding to the different critical slices. The preceeding theorem
has shown that there are an infinite number of critical slices. Each
corresponds to a polynomial of degree at least N2 - 1, since there are
N2 picture samples and thus N2 different coefficients that each poly-
nomial must contain. There is no maximum degree for these polynomials,
however. For example consider the slice at O = tan—l 1/2N. From our
theorems this is seen to be a critical slice and it corresponds to a
polynomial of degree 2N2 - N -1, Of the 2N2 - N coefficients that it
contains, however, only Nz are non-zero (assuming that all of the picture
samples are non-zero); Nz - N of the coefficients are identically zero.
The slice at O = tan—'1 1/N can be seen to represent an optimum in the
sense that of all the slices, this one is of minimum degree. As will be
seen shortly, the ease of recovery of the picture samples. from samples
of a critical slice depends critically on the degree of the slice poly-
nomial. The lower the degree of that polynomial, the easier it is to as-
certain its coefficients. For this reason we shall consider the special
case of the slice at O = tan_l 1/N in the bulk of our discussions.

At this point we have also said nothing about how the projection
corresponding to a critical slice should be sampled, or for that matter
whether it should be sampled at all. Our sole requirement has been that
a critical slice should be completely specified, presumably by a suffi-
cient number of samples taken along the slice. In the special case

1 1/N, N2 samples are needed. These samples can be obtained by

© = tan
0
any method. If we wish to compute them digitally from a sampled projec-

tion, it is only necessary that the critical projection be sampled at a
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rate higher than its Nyquist rate. Thus samples of the projection which
correspond to concentric squares sampling, polar sampling, or some other
sampling scheme could all be used. Each scheme when used with a DFT al-
gorithm will produce its own set of slice samples. In practice some slice
samples will prove more suitable than others for computing the coefficients
but in theory the location of these samples along a critical slice is

not important. As might be expected, the concentric squares type of sam-
pling, since it corresponds to sampling at the Nyquist rate, an extremal
value, yields the most tractable expressions for inversion, although

there are severe difficulties with trying to invert from even these sam-

ples. Henceforth we shall assume this form of sampling in our discussions.

5.3 An Algorithm for Recovering the Picture Samples from One Projection

The problem at hand then is to estimate the samples {fc%? s %;),
0<mn f_N-l} of a bandlimited function of order N from samples of the
slice at O = t:an_l 1/N. Since this slice corresponds to a polynomial of
degree N2 - 1, we want to have Nz samples along this slice. If they are
obtained by sampling the projection at O = t:an-1 1/N at its Nyquist rate

and then performing a DFT computation, the frequency samples will be

equally spaced along the slice and they will extend along the whole non-

zero frequency band. Since the width of this band is—gﬂ—jilt—l the
frequency spacing between adjacent samples is
A NTFT
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Thus substituting into equation (5.4), the values of the Nz concentric

squares slice samples are:

2 N-1 N-1

s Gw) = 1 L fCE, B expl-1EE(m + )] (5.18)
Q] 2 W W 3
o W m=0 n=0 N
2 2
N N
k=_ 2'_+]., es oy O, 1, ‘..’_2

m
For notational simplicity let us define g(mN + n) = f@%; , %;). This
mapping of a two-dimensional sequence to a one-dimensional sequence is
unambiguous due to the limited ranges of m and n. Then setting p = Nm + n

it is seen that

2
2 N°-1 2 2
s (hw) == T () exp(-§ 22y Lk =-T 41, L 59
0 P 3 ) 7
o W p=0 N

Thus we have mapped the two-dimensional problem into a one-dimensional
problem.

Before we discuss the problem of inverting equation (5.19) let
us consider it for a moment. It says that to determine the slice samples
{Se (kAw)} from the N2 picture samples, one should do the following:
firzt take the array of picture samples and form an N2 point, one-dimen-
sional sequence from it by arranging the samples of the array column by
column, then from this N2 point sequence, an N3 point sequence is formed
by adding N3 - N2 samples of value zero, then an N3 point DFT is taken
of the whole sequence, from the resulting N3 point sequence, the first

N2 2

?T-+ 1 and the last %? - 1 samples are saved and the rest are discarded.
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These NZ samples correspond to N2 samples of the slice of the Fourier
transform of the original array to within a multiplicative constant.
Some further insight can perhaps be gained into the relation-
ships between bandlimited functions of finite order and their critical
slices, by considering Se(kAw) over an extended range of k. The Fourier

o
transform F(mx,wy) can be determined from samples of f(x,y) by means of

2 N-1 N-1
= T mT  nm s \
F(wx,my) = Wz mzo nio f( T w)exp[ jw(mwx + nwy)]bww(mx,wy) (5.20)

If we ignore the box function we can define a periodically extended

version of F(wx,wy).

2 N-1 N-1
A"
F,u) =5 I I @&, X expl-jitmn + nw )] (5.21)
y W" m=0 n=0 ) y

%(wx,wy) is periodic in both W, and wy with period 2m in each. If we
now consider the sequence SG (kAw) as defined by equation (5.19) over
the extended range of k, - g k < =, we see that S@ (kAw) is a periodic
sequence with period N3. If this slice is examinedoin the periodically
extended Fourier plane we see that there are indeed N3 samples of S (kAw)
between the origins of two periods of %(wx’wy)' We note the additiogal
fact that a necessary and sufficient condition for the sequence S@ (kAw)
to be periodic is that the angle @o have a rational tangent. Alsoowe
see that from the periodicity of %(wx’wy) all N3 samples of SO (kAw)

o

computed in accordance with (5.19) correspond to samples of F(wx,wy) and

that these samples lie on a series of parallel iines in the Fourier plane.
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Thus if we know F(wx,wy) we can generate the sequence Seo(kAw) for all
k by sampling F(wx,wy). This says, for example, that if we know only N2
samples of S@ (kAw), it is in general difficult to extrapolate to compute
the full N3 leues which constitute one period of Se (kAw) and that sim-
ply assuming for example that these samples are all 2ero, will, in gen-
eral, give poor results if this is tried as a means of estimating
& 5D .

These comments are intended to suggest that the inversion of
(5.19) is not a simple operation. In the next section, however, we will
present a technique for inverting it. Instead of inverting (5.19), how-
ever, we shall solve a slightly more general problem. This will be uceful

1 1/N. The algorithm for per-

for slices other than the one at @o = tan
forming an inversion of an equation such as (5.19) has been called the
Inverse Chirp z-Transform for reasons that will become evident in the

next section.

5.4 The Inverse Chirp z-Transform Algorithm

Rabiner, Schafer, and Rader (44) have derived an algorithm
which they call the Chirp z-Transform (CZT) algorithm, to efficiently

compute the sum

L-1
— o -n
X(zk) = I x(n) z, (5.22)
n=0
where z = AWk for k=0,1, ..., M-1.

k

The variable 2z, is in general complex and thus the CZT is seen

k
to be an efficient algorithm for evaluating a polynomial at points which

are regularly spaced in the complex z-plane. In the special case A = 1,
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W = expl] %gﬂ , M =L the CZT reduces to a computation of the DFT. If

2
we set A = exp[-] Z% (- §5-+ 1)], W = expl] Zg , L=M= Nz, then we
' N

obtain equation (5?19). Therefore a procedure for inverting (5.22) will
also invert equation (5.19). The {zk} correspond to M samples of a poly-
nomial X(z) by our generalized definition of a polynomial, and thus for
M > L, if the {zk} are distinct, equation (5.22) can be inverted to yield
{x(n)}.

A direct inversion using matrix techniques is impractical 1if
L is large both because of large storage requirements and because of the
amount of computation involved. Furthermore the matrix of coefficients
[z;n] is nearly singular which makes a direct inversion highly sensitive
to measurement or computational errors.

The approach which we will use is to employ Lagrange interpol-
ating polynomials to reconstruct X(z) from L of its samples, then use
Cauchy's theorem to recover x(n) from X(z) by performing a contour inte-
gration in the complex z-plane. This latter step can be avoided by con-
sidering x(n) as the unit sample response of a digital network and then
exploiting the properties of digital networks.

Since X(z) is a polynomial in zn1 of degree L - 1 which is
specified at the points L Z3s cees 21 1 (assume M = L) we can write

L-1

~ -1
X(z) = mio X(zm)lm(z ) (5.23)

]

vwhere z_ AW ™ and lm(z-l) is the Lagrange polynomial associated with
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-1 -1 -1 -1 -1 -1 -1 -1 -1 -1
. (z"l) ) (z ~ - z, Yz - zy )..(z ~ - zm_l)(z -z ). (z " - zL_l)
o het-gho et -2yt -ty et - T

m ) m 177 m m-1"""m mHl’ " M m L-1

(5.24)

It can be noted that lm(z;l) =1 and lh(zgl) =0 if m # n. Since the
denominator of the right-hand side of (5.24) is a constant which depends

upon m but not upon z. Thus we shall call it -l-and write (5.24) as

Cc
m
-1, _ -1 -1y,-1_ -1 -1 -1y, -1 -1 -1
zm(z ) = Cm(z z, )(z zy ). . (z zm_l)( zm+1) .(z z
or
L-1
T (Y- z;l)
% (2 1) -c p=0 (5.25)
m -1 -1
(z = - z, )
Thus substituting into (5.23)
L-1
T zt-21
X(z) = I C X(z) P - — (5.26)
m=0 (z -2 7)

m

The product term inside the summation is not a function of m, so it can
be brought outside the summation
L-1 -1

L
X(z) =[ T L-2"h 0 ¢
p=0 P m=0

-szmX(zm) 1

=) (5.27)

l1-2z2
m



-154-

We can consider X(z) to be the z-transform of the unit sample response
of a digital network, for which x(n) is the unit sample response. Thus
to determine x(n) it is sufficient to simulate the digital network, ex-
cite it with a unit sample, and examine the output. From the form of
(5.27) we see that the network can be realized as a cascade of a comb
filter (the product term) and a bank of digital resonators (the sum term)
as diagrammed in figure 5.2.

There is a further simplification that can be made. Let h(n)

represent the output of the bank of resonators. Then

L-1
- n,_
h(n) = I zm( zmcmx(zm)) (5.28)
m=0
However, since z = AW ™, (5.28) can be written as
L-1 -mn
h(n) = 3 (-2 C X(z)) A" , n=0,1, ...
m=0
n L-1
= A b

o -2 C XMW ", n=0,1, ... (5.29)
The only values of x(n) which are needed are those for which n = 0, 1,
...y L-1. Thus we only need to evaluate x(n) for these L values. As a
result since the comb filter can be realized as a causal filter, only the
first L values of h(n) need to be calculated. From (5.29) we see that if
we restrict the range of n, h(n) can be obtained by a CZT calculation.

In particular if we introduce the notation

N-1
czT(a, W, x(n), N) = T x()A ™ WK (5.30)
n=0
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Uy (m) x(n)

COMB FILTER

DIGITAL RESONATORS

Figure 5.2

A digital network whose unit sample response

is the solution to the inverse CZT problem.
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then (5.29) becomes

Lzl 1

_ A0 _ -mn _ _,n -
h(n) = A szmX(zm)W A CZT(1, W —, szmX(zm), L) (5.31)

m=0

Since the transfer function of the comb filter has only zerces (except for

poles at z = 0 , its unit sample response is of finite length L+1
points) and thus the convolution implied by the cascade in our network
structure can he imnlemented using high speed convolution techniques.
Fxcept for calculating the arrays {zmcm} and m(n) (the unit sample res-
ponse of the comb filter), the only computations required for the inverse
CZT are an array multiply, a CZT, and a high speed convolution. The ar-
rays {zmcm} and m(n) require additional computation, of course, but they
depend only upon A, W, and L and do not depend upon the data. Thus if
several ICZT's are to be performed using the same narameters, these ar-
rays do not have to be recomputed each time. The unit sample response
of the comb filter m(n) can be computed by actually iterating the comb
filter networl. The Lagrange coefficients can he generated recursively

since

‘YIJ-]. h—m - ‘-L
2C =z 0 o =B (5.32)
W -1
-1
L 1
zC =A" 1
oo 4=1 1 - w—l (5.33)

The Inverse CZT can be highly sensitive to errors in the values

X(zk) and as a result, it is impractical for performing reconstructions
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of large arrays of samples. This is not due to the specific algorithm
presented here, but is due rather to equation (5.22) itself. The sen-
sitivity of any technique for inverting equation (5.22) is discussed in

the following section.

5.5 The Sengitivity of the Inverse Chirp z-Transform to Input

OQuantization Errors

In the last section an algorithm was presented for inverting
the system of equations:
-1

¥(z) = I x(n) z;“ (5.22)

n="

-V
z, = AW L=0,1, ..., L-1

Tre sequence X(zk) can be considered as an input to the inverse CZT and
x(n) as an outout. X(zk) will never be known exactly because of the ef-
fects of quantization when X(zp) is stored in a finite register length

computer or because of measurement errors in determining X(z,). Further-

k
more we assumed in our derivation of the one-projection theorem, that
f(x,y) was a bandlimited function of finite order. Such mav in fact not
be the case and f(x,y) mav only bhe approximated by such a function. This
will cause errors in the values of Y(zk) as well.

We know that (5.22) can be inverted, for we have indeed found

a technique for inverting it, Furthermore we know that the inverse

mapping is linear. Thus we can write

L-1
x(n) = 1io pinX(zi) (5.34)
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The sensitivity of x(n) to errors in Y(zk) is due entirely to the mag-
nitude of the {Pin} and not to the technique hv which they are evaluated,
thus although there are severe difficulties in implementing the algorithm
of section 5.4 this is not the fault of the algorithm, rather it is in-
herent in the prohlem itself. The analysis which follows is approximate
so that a simple closed form result can be obtained, but experimental
verification suggests that its predictions are reasonable, The simpli-
fications which we shall ma%e are appropriate if the inversion is used
for the one-projection reconstruction of a large picture.

Assume that the input to the ICZT which ideally should be the
sequence Y(zi) is instead the sequence X(zi) + Ai wvhere Ai reflects the
effect of measurement errors and is a complex random variahle, which by

assumption is independent of Y(zi) and for which

RIA =0, i=0,1, ..., 1ol

(5.35)

i
Q
9
(o )
e
-
L
1
>
5
-
.
.
.
-
.
]
[

E[AiAg]

vhere * denotes the complex conjurate, Sij denotes the Kronecker delta,
and F[ 1 denotes expected (mean) value. Let us further assume that the
output of the ICZT to this input is {x(n) + (), n=10n, 1, ..., L-1}

where x(n) is the output when 02 = 0., Then

-1 L-1
E{6(n)] = E[ Pin(x(zi) + Ai) - 7 pin Y(zi)]
i=0 i=0
L-1
= E
J[.E Pin A
i=0
TJ-l
= 1 =
i Pin EfAi n (5.36)

i=0n
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and

IJ—l L-l

* * %
E[S(n) § (m)] R[(.E P Ai)( L ij Aj)]

j=0 M 4o

-1 L1,

*
LI I P, P, FE[AA]
1=0 j=0 in jm ij

L-1 L-1 *
r I P,P, 026.
1=0 §=0 in jm ji

2 Lgl ) p*
o 1= in im (5.37)

To go further requires a specification of the matrix [Pij].

To determine [Pij] requires that we invert (5.20) which we can
do by recognizing that X(z) is a polynomial of degree L-1 and that the
value of the polynomial can thus be determined at anv point from M sam-
ple values of that polynomial which we have in the form of the samples
X(zi). The sequence x{n) can be obtained from X(z) by finding the values
of X(z) at z = exp(i-%? ¥) for k=0, 1, ..., L.-1 and then performine an

I, - point inverse DFT,

L-1 L-1

1 2mkn 21k
x(n) =+ I expli—=—] I X(z,) &, (expl-3=—])

L 2o PEP A A L

-1 L-1

z 1 2mleyy o 2Tkn
120 X(zy) T kio 5. (exp[-3= Dexpli=7—] (5.38)
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27k
where ii(exp[-j—ifi) is the Lagrange polynomial associlated with zy
evaluated at z = exp[+j3§k]. Comparing equations (5.38) and (5.34)

we see that

1 L-1 Zﬂnk
Pin = 7L— z 2 (eXDr—j——])ex K] ] (5.39)
k=N

thus we can write

L-1 L-1
*
F[6.6°]=0> % {= 1 l(exp["l'—l’])exolj:mm]}{l ot (exn[—J.—.p[ (=12}

nm L -

1=0 k"O p= =0
2 L-1 L-1 1,-1 .
=2->‘ Lz exp[j-ziz(kn - mp)] I ’Li(exp[-j-z—g-k;]) 9-]._(exp[-']2—22])
L™ k=0 »n=0 ’ 1=0

(5.40)
If we assume that zi = AW—i where
V= exp[—jg}\—f1
A= exp[j2ﬂ®o] (5.41)
then
IJ—l
2tk . n S
SE (exp[—jT]—em[~J2v(Oo + 3]
2Tk i
P, (expl-33E]) = SEL (5.42)
’ - i : S
T (@l-521(0, +P)-expl-321(0, +391)

s#i
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and

2, (expl-12%1) ] (exp[-35R)) =

L-1

T (expl-12]-exp[-121(0, + $)1) (exp (15 R1-exn[127(0 + )]
s=0 ) '
s#i

L-1

T (expl-j2m(9_ + %)]-expf-j?-ﬂ(@o + %)U(exp[jh(ﬂo + }j_;{)]-exp[jfl‘ﬂ("-)o + %)])
s=0 ’ i

s#i

L-1 , .
Ho expljm(- ’]f:' - % + {- + %)]4 sin(n(®_ + % - {‘-))sin(n((-)o + % - %))
s=

_ s#i
L-1 o
T 21 - cos( 31 = 5)))
s=0
s#i
(5.43)
But

2m 27
1- cos—blf(i - s) = 2 sin ﬁ(i - 8)

20 EE - 9

This approximation is true if ;T;-(i - 8) << 1 which is the case since for

a 32 x 32 array %% 107* and l(1 - s)| < 10>, Then
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* .27
1i(expl-j£¥])li(exp[—3—?]) =

S;n €xpl] 1 ¢ sin N i S sin ) T
s#i

-1 2

TS - s
s=0 M
s#i
[im( -P)Ligﬂ L;l in(n(®@ +% - Eb) in(r(d_ + % - 2y)
exp|1m{p—-K T, 5;0 sin o 1 I sin o v I
- s#i
-2
@7 an? (@w-1-1H?
(5.44)

Now we shall make the assumption that sin(w(@o +-§;-—%?) n sin(n(?o - %?)_

This assumption is good if s:Ln(Tr((-)0 + ﬁ - %)) N1, Tf k is such that
this sine is not approximately one, then this term will make a negligibhle
contribution to the noise variance, so very little is lost by making this

assumption.

Therefore,

exp(jéil W(k—p))[sin(%% + Oo)sinc%?-+ C-)‘:’)]L_1

2T, % 2m
2, (exp[-3=1)2, (exp[-178) %
M, 2L-2

@22 an? (@ -1 - nn?

(5.45)
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Thus
2 L-1 L-1
gl 61 = L G2 3 exp[j—zw(kn ~pm + i - P x
nm 2 ' _ - L L
L k=0 p=0
(sin(CE + 210 31X T sin (@R + 270 )10t Lgl 1
sin L o L o

i=0 (13)2 (L -1- i)!)2

(5.46)

Now we can consider the innermost summation. Using Sterling's approxima-—

tion,

L-1 L-1
L L R R— L : :
i=0 (1!)2 (L -1 - 1)1)2 1=0 121 e-Zi(L -4 - 1)2(L—l-l)e_2(L_l—1)

N o2Lm2 (24212

I (5.47)

The last step in the approximation is due to the fact that the only term
in the summation which is significant is that for which i % %-. With
this approximation, equation (5.46) becomes
2 L-1 L-1
¥ o~ ,2Me,2L-2
E[andm] = =)

= G I I exp[j%?(kn - pm + L%l(k - p))] X
L k=0 p=0

e Y
[sin( T + ZﬂOo) sin(L + ZWOO)] (5.48)
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The double summation in (5.46) is dominated by the term k = p % %-— ZNOO
which has value approximately 1. Thus we finally get
* g 2Me, 2L-2
n 9 e2f€
E[éném] v LZ ( WL) (5.49)
For a 32 x 32 picture (L = 103, M=3x 104) we find that
* 2

E[Gném] ool 212’000. Thus the ratio of the variance of the output

noise to the variance of the input noise is roughly 12,000 bits! Thus
equation (5.22) is ill-conditioned indeed for any but small values of
L and M. I(s |2

In table 5.1 some values of log2 ——ii— are computed for dif-
ferent values of L and M. It will be noted that the only sequences which
are capable of being inverse chirp z-transformed are exceedingly short
ones. In an effort to verify these figures, an inverse CZT was programmed
using 36 bits for the representation of X(zk). According to (5.49) with
this precision it should be possible to invert a 2 x 2 picture but not
a & x 4 picture. The results of these inversions are summarized in tab-
les 5.2 and 5.3. As expected the ICZT could invert a 2 x 2 picture,
but we got meaningless results when we tried to recover a 4 x 4 picture

from 16 samples of the slice at O = t:an-1

1/4. Later results provided
additional confirmation of equation (5.49).

The inverse CZT algorithm can also be used to recover a band-
limited function of order N from N + 1 projections according to the pro-

cedure outlined in Chapter IV. In our demonstration that N + 1 projec-

tions were sufficient to specify the set of N2 picture samples it was
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64

256
1024
4096
16,384
65,536
10

36

136
528
2080
22

76

380

1072

(&4

64

512

4096
32,768
262,144
2,097,152
16,777,216
20

144

1088

8448
66,560

44

304

3040

17,152
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Bits

7

76

479
2400
11,809
55,700
250,000
1,150,000
26

186
1000
5000
24,000
64

400
2900

10,000

Table 5.1

Corresponding Problem

proj.
proj.
proj.
proj.
proj.
proj.
proj.
proj.
proj.
proj.
proj.
proj.
proj.
proj.
proj.
proj.

proj.

reconst.

reconst.

reconst.

reconst.

reconst.

reconst.

reconst.

reconst.

reconst.

reconst.

reconst.

reconst.

reconst.,

reconst.

reconst.

reconst.

reconst.

2 x 2 pict.
4 x 4 pict.
8 x 8 pict.
16 x 16 pict.
32 x 32 pict.

64 x 64 pict.

128 x 128 pict.

256 x 256 pict.

4 x 4 pict.
8 x 8 pict.
16 x 16 pict.
32 x 32 pict.
64 x 64 pict.
8 x 8 pict.
16 x 16 pict.
32 x 32 pict.

64 x 64 pict.

The sensitivity of the inverse chirp z-transform

for different values of L. and M and the corres-

ponding reconstruction problem for which these

values are appropriate.
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m n f( %% . %; ) actual f( %} . %? ) reconstructed
0 0 0 3.045 x 1077 +5 2.808 x 107/
0 1 1.0 .999902 -4 2.051 x 107/
-7 . -8
1 0 0 -1.926 x 10~/ -4 1.365 x 10
-7 . -7
1 1 0 -1.056 x 10~/ - 2.500 x 10

Table 5.2

The reconstruction of a bandlimited nicture of order 2

from the single projection at 90 = tan~l 1/2.
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mT 0T mT o7
n f( W W ) real f( v TF-) reconstructed
2 .. 2
0 1.0 6.768 x 10° +j 7.084 x 10
2 . 2
1 0 -3.86% x 10° +j 7.098 x 10
2 . m 3
2 0 -7.438 x 107 +j 267 x 10
2 .. - 3
3 0 ~1.494 x 10° +j 1.599 x 10
3 . 3
0 0 -3.147 x 10° +j 1.120 x 10
3 .. 3
1 0 1.451 x 107 +j 3.532 x 10
3 . 3
2 0 ~-5.072 x 10” -j 2.434 x 10
3 . 3
3 0 1.713 x 107 +j 4.851 x 10
3 . 3
0 0 -3.601 x 10 -j 4.632 x 10
2 . 3
1 0 -7.937 x 10° +j 2.808 x 10
2 3
2 0 5.742 x 10 -3 2.580 x 10
3 .. 1
3 0 ~2.739 x 107 +j 3.110 x 10
3 . 2
0 0 2.256 x 10° -3 7.186 x 10
3 . 5
1 0 -2.239 x 107 -j 1.123 x 10
3 .. 2
2 0 2.223 x 10 +j 6.109 x 10
3 . 2
3 0 -1.454 x 10”7 -j 6.536 x 10

Table 5.3

The reconstruction of a bandlimited picture of order 4

from the single projection at O = tan~! 1/4.
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pointed out that a polynomial extrapolation was needed. For a judicious
choice of projection angles, this can be accomplished using an ICZT.
Here the values of L and M would be such that the computational errors
might not be formidable. This algorithm has not been implemented, however.

5.6 Recovering a Bandlimited Three-Dimensional Function of Finite Order

from a Single Projection

In section 5.3 we demonstrated that a two-dimensional bandlimited
function of finite order could be reconstructed from a single projection.
We then proceeded to show that this technique was in practice unusable
because of computational difficulties. It is still an interesting and
theoretically a potentially valuable technique, however. Here we shall
consider three-dimensional functions of the same class. These can also
be reconstructed in theory from a single projection although in practice,
of course, we do not expect to be able to generate a viable reconstruc-
tion technique because of computational difficulties.

The simplest way to reconstruct a three~dimensional bandlimited
function is to use the technique that was outlined in Chapter II and
consider the three-dimensional unknown function as a stack of two-dimen-
sional functions. We can consider these planar functions as lying paral-
lel to the x - y plane of a coordinate system so that the variable z
indexes a particular member of the stack. The two-dimensional projection
is then taken by performing line integrals along lines normal to the pro-
jection plane, which we shall designate as the u - z plane. If the angle

1

between the x - z plane and the u - z plane is chosen to be Oo = tan = 1/N
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then the projection is a critical projection. Furthermore this two~dim-
ensional critical projection can be considered to be a stack of one-dim-
ensional projections each of which is a critical projection for one of the
two—dimensional unknowns in the stack of unknowns. This is, of course,
a straightforward extension of the two-dimensional problem and it suffers
from all of the difficulties associated with that problem.

A more interesting approach to the three-dimensional problem
is to parallel the reasoning which led to a solution of the two-dimensional
problem. In that case we found a line in the Fourier plane, along which
F(wx,wy) corresponded to a polynomial; by knowing F(wx,wy) along this
line, we then knew all of the Nyquist samples of the unknown function,
which completely specified it. Such a line exists in the three-dimen-
sional case as well. One such line is that line which is traced out by

—
the vecter wc ~7there

Nzw Nw W w )

> s (5.50)
VN4 + N2+ 1 VNG + N2+ 1 /NG + N2+ 1

—
w =
. = ¢

Along this line F(wx,wy,wz) corresponds to a polynomial of degree N3 -1
and the coefficients of this polynomial are the samples of the unknown
{f@%g , 3%-, %% )> 0 <m, n, p<N-1} where W is the bandwidth, defined

as in the two-dimensional case. If we sample along this line at N3
evenly spaced points across the band of F(wx,wy,wz) then

N-1 N-1 N-1 ﬂ 21k, 2
Glkbw) = I £ I £ -’% Pwl) exp[~i=5(N'm + N + p)]
m=0 n=0 p=0 N
3 3

K = -§—+ 1, ..., 0, 1, ’2‘— (5.51)
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nm

m .
T %F) using an inverse

Equation (5.51) can be inverted to yield fd%? ,
CZT with L = N3, M= NS. Thus as might be expected, performing the in-
version in the three-dimensions is even more formidable than it was in
two-dimensions. This particular line is not, of course, unique; there
exist other critical lines and all of the theorems which were presented
in the two-dimensional case can be extended to the three-dimensional
~case. This shall not be done here.

There is an important difference between the two and three-
dimensional one projection reconstruction problems. The projection func-
tions and the slice functions corresponding to a three-dimensional un-
known are two-dimensional functions, i.e. they are defined on a plane.

To reconstruct a three-dimensional function, however, only requires know-
ledge of F(wx,wy,wz) along a single one-dimensional line. The frequency
response along this line can be evaluated directly {rom the samples of
the two-dimensional projection (since the projection is a bandlimited
function) or equivalently since the critical line is a one dimensional
critical slice of a two-dimensional critical slice, a one-dimensional
projection of the two-dimensional projection can be computed, sampled and
then transformed. It must be remembered, however, when working with
two-dimensional projection functions that although these are bandlimited
functions, the bandwidths in the two orthogonal frequency variables will
depend upon the orientations of the projections. In figure 5.3 we show
the relevant parameters for computing the frequency response along the
critical line given in (5.50) when the original slice is evaluated on

the plane w_ = Nw_.
X y
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W

%/N2+L

—%/N7+1

— W
u

Figure 5.3

The location of one critical slice in re-
covering N3 function samples of a three-
dimensional baundlimited function of order
The plane illustrated is that for which

N.

W
X

= Nw .
y
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5.7 Using the Inverse CZT to Reconstruct Bandlimited Functions of

Order N from More than One Projection

The problems that were discovered in reconstructing bandlimited
functions of order N were computational ones and were due to the high
orders of the polynomials involved. (In terms of equation 5.44 this.is
reflected in the parameter L). This is unavcidable, since to recover
all Nz samples from a single projection, it was necessary to work with
a polynomial of degree greater than N2 - 1. If, however, we are willing
to use more than one projection, then perhaps we can work with lower
order polynomials. Thus if we are prepared to do more than one inverse
CZT, they each become easier to do. This procedure can perhaps best
be explained in terms of an example.

Let us try to reconstruct a bandlimited picture of order &
from the two projections at 01 = tan—l 1/2 and 92 = tan”1 -1/2. Since
each of these slices has a rational slope each corresponds to a poly-

nomial of finite degree. 1In this case the degree is 9 and we can write

S, (khw) = £(0.0) + £(0,1)W + [£(0,2) + £(1,0)102 + [£€0,3) + £Q1, D10
1
FE(LL2) + £2,00 00" + [£(1,3) + £, 1)1 + [£(2,2) + £(3,0)w°
FE@,3) + EG DI+ £G,DW + £(3,3)W

= I AW where W = exp[—jg%% (5.52)
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Similarly we can write

£00,3)W3 + £(0,20W 2 + [£(0,1) + £(1,DIW T + [£(0,0) + £(1,2)]

S . (kiw)
99
F[E(2,3) + EQL,DIW + [£(2,2) + £(1,00]07 + [£(2,1) + £(3,3)1W

£ [£02,0) + £3,0) 6 + £3, 0 + £3,01°

B w1—3 (5.53)

9
LBy

i=0

1f %3 (kAw) and S5 (kAw) are each available for 10 different
1 2

evenly spzced values of k then we can perform two (L = 10, M = 20) ICZT's

to obtain the two sequences Ai and Bi' From these we can compute the

picture samples by:

£(0,0) = Ao £(1,0) = A2—31 £(2,0) = B7 A8 £(3,0) = B9
£(0,1) = A1 £(1,1) = A3-Bo £(2,1) = B6-Ag £(3,1) = 38
£(0,2) = Bl £(1,2) = B3-AO £(2,2) = A6—Bg £(3,2) = A8
£(0,3) = Bo £(1,3) = B2—A1 £(2,3) = A7 B8 £(3,3) = A9

(5.54)

Referring to table 5.1 we see that to perform a 10/20
ICZT we get a sensitivity measure of 26 bits, whereas performing the
same reconstruction from one projection we get a sensitivity measure

of 76 bits. In tables 5.3 and 5.4 we see these two reconstructions
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n f( %g . %; ) actual £( %} ,-%; ) reconstructed
-3 -4
0 0 21.341 x 1072 -3 7.690 x 10
1 1.0000 1.000 +i 3.962 x 1072
2 2.0000 2.000 + 7.804 x 107°
3 3.0000 2.997 - 1.088 x 107>
-3, -4
0 0 -3.555 x 1073 - 9.295 x 10
1 1.0000 1.004 +i 1.289 x 107>
2 2.0000 2.001 +j 4.205 x 1074
3 3.0000 2.995 +i 3.164 x 107
-3, -3
0 0 7.416 x 1073 +§ 1.051 x 10
1 1.0000 .993 -5 4.296 x 107%
2 2.0000 1.994 ~§ 1.585 x 107%
3 3.0000 3.008 +§ 1.093 x 107>
-4 . -4
0 0 -3.557 x 107% 4§ 9.563 x 10
1 1.0000 .995 -5 9.980 x 107%
2 2.0000 1.995 -4 7.756 x 1074
3 3.0000 3.001 +§ 9.189 x 107%
Table 5.4

The reconstruction of a bandlimited picture of order 4

from the projections at 0; = tan™! 1/2 and 0y = tan~1 (-1/2).
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performed for a particular example. Here it can be noted that the re-
construction from 2 projections was successful in contrast to the one
projection reconstruction.

The technique for performing a reconstruction from more than
one projection following this approach can be summarized in the follow-

ing steps.

1) Find a sufficient set of slice angles

2) Sample the slices at d + 1 points where d is the degree
of the polynomial along each slice and compute the ap-
propriate ICZT on each slice.

3) Set up a system of linear equations relating the outputs
of the ICZT's to the picture samples.

4) Solve this set of equations to obtain the Nyquist samples
of the picture.

5) Use the bandlimited interpolation formula (equation 5.1)
to recover f(x,y) from its Nyquist samples.

None of these steps is particularly simple. For example in our
example we reconstructed from the slices at @l = tan“1 1/2 and 62 = tan-l-l/z.
Had we instead chosen to work with the slices at 61 = tanml 1/2 and
@2 = tan-1 2, which are of the same degrees, we would not have been able
to solve the resulting linear equations. We must therefore be careful
when we choose a set of slice angles. The only way to find a sufficient
set of slices is to set up the necessary linear equations and see if
they are solvable. This is difficult to do for large N since the number
of equations and the number of variables grows as Nz. It can be shown

that the projections at 0, = tan  2/N and 0, = tan 1-2/N are sufficient



~176-
to reconstruct a function of order N, although from table 5.1 we see
that for N > 4 it is difficult to perform the ICZT's on finite register
length machines. It can also be shown that an 8 x 8 picture (N = 8)

can be reconstructed from the four projectioms. Ol = tan-l 1/2,

1

0, = tan-l 2, 0, = tan—1 -1/2, and 94 = tan = -2. In all of these cases

2 3
the inverse matrices for solving the resulting linear equations are
straightforward to compute.

From table 5.1 we can perhaps infer that to reconstruct an
N x N picture will require on the order of N/2 projections by these tech-
niques, because of the sensitivity problems associated with the ICZT's.
Since for large values of N this requires formidable matrix manipulations
and since in Chapter &4 we discovered some techniques for performing good
quality approximate reconstructions using the same numbers of projections,
these techniques would not be used in practice. Nonetheless they do ex-
hibit the tremendous amount of structure that is inherent in bandlimited
functions of finite order.

These algorithms which perform a reconstruction by first sett-
ing up linear equations and then solving them, are reminiscent of the
algorithms of Herman, Gordon et al. ), (19), (20), (24), (25), (30),
(31) which they call ART (Algorithm Reconstruction Techniques). With
their techniques, linear equations are formulated in the space domain by
comparing actual projections with the projections that would be made by
an array of point masses. From the solutions to these equations, the
point masses are estimated, which provide an approximation to the un-

known. What is particularly interesting about their algorithm is that
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it provides good reconstructions even when the number of equations is
considerably less than the number of unknowns. This is accomplished

by choosing the solution to the set of equations which represents the

most likely unknown in some sense.
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Chapter VI

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

6.1 Summary

In this dissertation we have suggested and compared several
different algorithms for reconstructing multidimensional signals from
their projections. Comparisons bhetween the different algorithms were
made by comparing the abilities of each algorithm to reconstruct a ser-
ies of photographs from 64 computer generated projections. Special
attention was paid to bandlimited functions since these functions can
be completely specified by their samples. Thus such functions are read-
ily suited for digital processing.

For functions which are bandlimited within a square in the
Fourier domain, the idea of varying the sampling rate of each projection
with the projection angle was suggested. This allowed us to specify
F(wx,wy) the Fourier transform of our unknown signal f(x,y) on a con-
centric squares raster of points in the Fourier plane instead of on a
polar raster which would result if all projections were sampled ident-
ically. On all of the examples which were tried the reconstructions
from a concentric squarec raster were of higher quality than those from
a polar raster. One of the concentric squares algorithms was used to

reconstruct a cross-section of a bone from 36 x-ray photographs.
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It was also shown that bandlimited functions of finite order
could be reconstructed from a finite number of projections. In fact it
was shown that such functions could be reconstructed from a single pro-

jection.

6.2 Suggestions for Further Research

Perhaps the most obvious extension of this work that can be
performed is the discovery of other and hopefully better reconstruction
algorithms. More important than this, however, is the need for an ex-
tensive evaluation of some of the simple algorithms such as the ones
presented in this dissertation. In section 4.5 the effect of such para-
meters as the number of projections, the number of samples per projection
and the number of bits to be used in the representation of each sample
was examined for a particular algorithm - the concentric squares smear-
ing algorithn. These issues are related to such real-world effects as
the effect of limited projection resolution, the effect of additive noise
in the projections, and improper angular specification of the projectioms.
It would be useful to know how sensitive the simple reconstruction al-
gorithms are to these potential sources of error.

If reconstructions are to have any value for picture storage
then in addition to considering the reconstruction problem it is neces-
sary to consider the problem of computing projections. If the unknown
function is bandlimited, this calculation is straightforward but comput-
ationally involved. It remains to be seen what effects computational

approximations have on the final reconstructions.
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Another area where more work can certainly be done concerns
the one projection theorem. Here we have a powerful technique, which
has proven to be useful, theoretically at least in the reconstruction
problem. To what other problems can it be applied? Since it provides
a mapping (which is invertable) between a class of two-dimensional
functions and a class of one-dimensional functions, it would appear to
be applicable to other problem areas, such as for example, the problem
of designing multidimensional digital filters, particularly filters with
finite duration unit sample responses, since these are the counterparts

of bandlimited functions of finite order.
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