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Multidimensional  Signals 
Projections 

Atwtmct-In a wide variety of applications it is necessnty to infer the 
structure of a multidimensional object ftom a set of its projections. 
There has been I longstuding interest in this problem and a number of 
cliffant techniques have been proposed In ibis p8per, we present 8 
tutorial review of the reconstruction  problem and some of the a l g o r i t h m s  
which have been proposed for its solution. In addition, we present 8 
number of new a lgor i thms that appear to have some xi van tag^ over 
previous .Igorithms. Some comparisons of these a lgor i thms tpplied to 
reconstructions of twodimensional pictures are given. Furthermore, I 
number of new theoretical results are presented dating to the mini- 
mum number of projections newsmy for exact reconstruction. 

I 
I.  INTRODUCTION 

N A WIDE VARIETY of applications, it is necessary to 
infer  the  structure of a  multidimensional object  from a set 
of  its  projections. X-ray photographs,  for example,  repre- 

sent two-dimensional projections of the irradiated three- 
dimensional structures. Details can be obtained  from  the 
projections considered  collectively that  are  not  apparent in 
any one of them alone.  Similarly,  transmission electron 
micrographs  represent  two-dimensional projections of the 
three-dimensional structures being examined. Other examples 
arise in  the inversion of fan-beam radio-telescope scans and in 
the recovery of a  point-spread function  from a  set of line 
spreads. 

Because of its  potential benefits to so many different fields, 
particularly  medicine and molecular  biology, there  has been a 
long-standing interest in this  problem, and  a number of different 
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techniques have been proposed. While some analog techniques 
have been  considered, specifically optical  methods,  most of the 
techniques proposed are in part numerical  and thus  require  the 
use of a  digital computer. Typically, the  computations in- 
volved are  sufficiently  complex that off-line processing is re- 
quired. A part of the present interest in the problem appears 
to stem from  an awareness that  with  the  continuing  trend 
toward  faster,  cheaper, digital computers and  hardware it may 
soon be,  and to a  limited extent already is, possible to imple- 
ment systems on-line for  reconstruction  from projections. 

The  techniques  that exist for  reconstruction fal l  into  two 
basic classes-one in  which the  reconstruction is performed in 
normal signal space  and one in  which it is performed in Fourier 
space. While any technique  can, of course,  be interpreted  and 
analyzed  in either space or in both  together, most techniques 
are more easily implemented in  one space than  the  other. 
Whether implemented in signal space or  Fourier space, the re- 
construction algorithms can be conveniently interpreted by 
means of a  straightforward and interesting theorem which we 
refer to as the projection-slice theorem.  In essence this  theo- 
rem states  that  the  Fourier  transform of a projection is a slice 
of the  Fourier transform of the  projected  object. This theorem 
appears to have first  been  applied to the  reconstruction  problem 
in 1956 by Bracewell [ 1 1 .  His interest involved the inversion 
of fan-beam radio-telescope scans. The algorithm proposed  at 
that  time was implemented in Fourier space. Although still 
based on  the projection-slice theorem, a  modified  algorithm 
was later  proposed by Bracewell and  Riddle [2] which could 
be implemented  entirely in signal space. 

In  1968 DeRosier and Klug [ 31 proposed a Fourier space 
technique again based on  the projection-slice theorem which 
was similar to,  but  apparently derived independently  of, Brace- 
well’s results. DeRosier and Klug were interested in the recon- 
struction problem  primarily  within the framework of molecular 
biology, where the  projections  obtained corresponded to 
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electron micrographs. They  subsequently applied their  method 
to a  variety of virus structures and  in many of the examples 
were able to  take advantage of considerable symmetry in the 
structures  studied.  In  197 1  Vainshtein [4] and Ramachandran 
and Lakshminarayanan [SI,  following  DeRosier and Klug, 
formulated a signal-space algorithm similar to  that proposed  by 
Bracewell and Riddle. 

An optical  technique was used by  Garrison e t   a l .   [ 6 ]  for 
making reconstructions  from medical X-rays. It  implemented 
a  variation of the Bracewell and Riddle  algorithm  optically. 
Fourier domain reconstructions  from medical X-rays were also 
investigated by Tretiak,  Ozonoff, Klopping, and Eden [ 71. 

Another interesting set of approaches to  the problem are  the 
iterative algebraic techniques,  implemented in signal space, 
by  Herman [ 81,  Gordon, Bender,  and  Herman [9 ] ,  and 
Gilbert [ 101. A new system for on-line radiographic analysis 
of the brain using reconstructions made by an iterative 
algebraic technique  has  recently been marketed [ 111.  It  has 
proven  useful for locating tumors  and blood clots in the brain. 

In  this  paper, we present  a tutorial review of the  reconstruc- 
tion  problem and some of the algorithms  which have been 
proposed for  its  solution.  In  addition, we shall present  a  num- 
ber of new algorithms that appear to have some  advantages 
over previous algorithms. Furthermore, a number of  new 
theoretical results will be presented  relating to  the minimum 
number of projections necessary for  exact  reconstruction. 
Mersereau has shown, in particular,  that,  taken  at  the right 
orientation,  exact  reconstruction can theoretically be carried 
out  from a single projection [ 121, [ 131. While, as will be dis- 
cussed, this'is  not a  practical  algorithm for  reconstruction be- 
cause of the high sensitivity involved, it  appears  to be an 
important  theoretical result. In particular, it provides one 
means for mapping  multidimensional functions  to one- 
dimensional functiens  and may have potential application to 
bandwidth compression  and  multidimensional digital filter 
design [ 141. 

In  Section I1  we discuss the  theoretical background for 
understanding  the  reconstruction problem  including the 
projection-slice theorem and in Section I11  we consider the 
question of the  number of projections theoretically  required 
for  exact  reconstruction.  Section IV is concerned with a  re- 
view  of a  variety of practical reconstruction algorithms which 
are conveniently interpreted,  although  not necessarily best 
implemented, in Fourier space. Section V considers  some new 
modifications of these  algorithms. In Section VI we discuss 
briefly several other algorithms  including the iterative algebraic 
reconstruction techniques  referred to earlier. 

II. THEORETICAL BACKGROUND 
Although sometimes  implemented  in signal space,  most of 

the  reconstruction algorithms  which will be discussed in subse- 
quent sections are conveniently interpreted in terms of Fourier 
space and  the projection-slice theorem. Thus in this  section, 
we summarize  briefly the N-dimensional continuous  Fourier 
transform  (CFT)  for  continuous variables and  the N- 
dimensional  discrete Fourier  transform  (DFT)  for discrete 
variables. We shall then  define  projections  and prove the 
projection-slice theorem. 

A.  The  N-Dimensional  Continuous  Fourier  Transform  (CFT) 
We consider  here  a function f ( x l  , xz,  * * , X N )  of N con- 

tinuous variables X I .  X S .  * . . . XN. We will generally find  it 

convenient to express the  N-tuple ( x  1 ,  x ? ,  . * , XN) as  a vec- 
tor x and refer to  the  function as f(x). The N-dimensional 
Fourier  transform of f(x) is denoted by F ( w l  , oz, * * * , w ~ )  
or F ( o ) .  The  domain of f(x) will be referred to as signal 
space and  the  domain of F ( w )  as Fourier space. The N- 
dimensional function f ( x )  and its  Fourier  transform are re- 
lated  by 

F ( w l . w z , * * . , w ~ ) = J  -00 * * - I _  f ( x l , x z ; * - , x N )  
+oo +w 

exp [ - j ( w l x l  + 0 2 x z  + * + ONXN)] d x l d x z  . . - d x N  (1) 

P+W ,-+= 

and 
. r+- 

where x * w denotes  the  dot  product of the  vectors x and w 
or equivalently with x and o interpreted as row  matrices, 

A  useful property of the N-dimensional Fourier  transform 
pair  which 'we will want to use later  is  the  fact  that if f ( x )  and 
F ( w )  form a Fourier  transform pair, then f ( x A )  and F ( w A )  
form a Fourier  transform pair if A is an orthogonal  matrix, 
i .e. ,At=A-' .  

This property is easily verified by  direct substitution  into 
(3). Thus an orthogonal  transformation  or equivalently an 
orthogonal change of coordinates in signal space results  in the 
same change of coordinates in Fourier space. For example, 
for N = 2, if 

x * w = x u t .  

A = [fo,"e :s:] ( 5 )  

so that f ( x )  is rotated by an angle e ,  then  its  Fourier trans- 
form will be rotated by the same angle 0. 

B, The  N-Dimensional  Discrete  Fourier  Transform  (DFT) 
We shall generally be interested  in  functions which can be 

processed by  a digital computer and consequently can be 
represented by their samples. Thus we consider the class of 
band-limited functions. Specifically, f(x) is said to be band- 
limited if there  exists  an  N-tuple (W, , Wz , * * * , WN) such  that 
F ( o )  is zero  for I wi I > Wi, i = 1,2, . . . ,N. The  N-tuple W 
will be  referred to as the vector bandwidth. In some cases it is 
convenient to set W = max ( W 1 ,  W z  , - * * , WN) and  refer to  the 
scalar W as the  bandwidth of f ( x ) .  

The N-dimensional sampling theorem  states  that if f ( x )  is 
sampled in signal space on a  rectangular lattice  with  the sample 
spacing in  dimension x i  less than a/Wi, then f ( x )  can be re- 
covered from  its samples. Sampling on a  rectangular lattice 
will be  referred to as  periodic Cartesian sampling. 
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Let us denote by g(n)  the N-dimensional  sequence  corre- 
sponding to sampling f(x) with a  sample spacing of n/Vi in the 
dimension xi where 5 > Wi so that 

From  the sampling theorem  the  Fourier  transform F(w) of 
f(x) can be obtained  from  g(n) by the  relation 

where wv denotes  the vector (2,z . . .  !?&)and 
' ' V N  

I 1, I w j I <  Vi, i = l , 2 ; * . , N  

0, otherwise. 
b v ( o ) =  

Likewise, the sequence g(n) can be  obtained  from F(w) by 
the  relation 

The original N-dimensional function f(x) can be obtained  from 
the sequence g(n)  by  means of the  interpolation  formula 

+w 

f(x)= C g(n)G(n ,x)  (9) 
n=-w 

where 

When only a finite  number of the samples of f(x) are  non- 
zero, the  Fourier  transform F(o) can be represented  by  a 
finite  set of Cartesian samples. The relationship  between the 
Cartesian  samples of F(w) and  the Cartesian  samples of f(x) is 
the N-dimensional DFT. Specifically,  let us assume that 

g (n )=O,   i fn i>Miorn i<O,  i =  1 , 2 ; * . , N .  

We now  consider the Cartesian  samples of F ( o ) ,  which we 
denote  by G (k) given by 

where  ki is an integer such  that 

Then 
M , - 1  "-1 

and 

Since G (kl , kz , * * * , kN) as defined  in (1  1) is periodic in ki it 
is frequently convenient to use the values of ki  in the range 
0 < ki < Mi - 1 rather  than over the ranges given above. 
Adopting  this convention  and  defining the vector kM as the 
N-tuple 

we can  express (1  1) and (1  2) as 

and 

Equations  (1  3) and (1 4) are  referred to as the N-dimensional 
DFT pair. TheN-dimensional DFT can be computed efficiently 
by using the  onedimensional fast Fourier  transform  (FFT) 
algorithm,  since the  summations in (13) and (14) can  each  be 
decomposed as a cascade of one-dimensional  transforms. 

The class of functions f(x) which can be represented by a 
finite number of samples will be  referred to as band-limited 
functions of finite  order M where 

M=max  {M1,M2;**,MN}.  

C. Projections 
A projection is a  mapping of an N-dimensional function  to 

an ( N -  l)-dimensional function  obtained by  integrating the 
function in  a  particular direction.  For example, px,(xl ) 
given by 

+.w 
(15) 

is an example of a projection of the two-dimensional function 
f(x , x2 ) onto  one dimension. 

For  the general case, we define a projection as follows: Let 
f(x) denote  an N-dimensional function and  let u denote a new 
set of coordinates where 

x = u A  

and A is an  orthogonal  transformation.  Then a projection 
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onto  the  hyperplane (ul, u 2 ,  * * , ~ ( i - ~ ,  ~ ( i + ~ ,  a * * , UN) is de- 
fined as 

pui ( ~ 1 ,  ~ 2 , .  . . , ~ i - 1 ,  ui+l ,  * * * , uN) = J f ( u A )  dui. 
-00 

(16) 

The  coordinate axis ui, which is-  normal to  the  hyperplane 
onto which f ( x )  is projected, will be referred to as the  pro- 
jection axis. 

For N = 2, the  matrix A is given by 

In this case, the ul, u 2  coordinate axes are offset from  the 
( x  1 ,  x 2 )  axes  by an angle of 8 .  For two-dimensional functions 
it will generally be convenient to refer to a projection by its 
angle 8 .  A projection at angle e will be interpreted to mean a 
projection  onto  the  coordinate ul, which is at  an angle e with 
x l .  Equivalently, then,  the projection  axis u2 is at  an angle e 
to  the  coordinate axis x ? .  Equation  (15)  corresponds to a 
projection  at an angle e = 0 or equivalently  with x2 as the 
projection axis. 

D. The  Projection-Slice  Theorem 
The projection-slice theorem relates the (N - 1)-dimensional 

Fourier  transforms of the  projections to  the N-dimensional 
Fourier transform of the original function. Basically, the 
theorem  states  that  the (N - 1)dimensional Fourier  transform 
of a  projection is a “slice” through  theNdimensiona1  Fourier 
transform of f ( x ) .  

First, let us consider  a projection  for which the  projection 
axis is one of the  coordinate axes of f ( x ) ,  for  example, X I .  
Then p x ,   ( x 2 ,  . * , X N )  is  given by 

P x 1 ( X 2 , . * . , X N ) =  1-1 f(xIdx1 (17) 

and  its (N - l)-dimensional Fourier transform is given by 
+oo 

P x l ( w 2 , . . . , W p ) = I _ * _ ~ . . . ~ - ~  P X l ( X 2 , ” ‘ , X N )  

* exp [ - j ( w 2 x 2  + * * + O N X N ) ~ .  (18) 

Comparing (1 8) and (1 1, we see that 

P x , ( w 2 ,  * * , W N )  = F(w1, w2, - * * , WN) Iw,=o. (19) 

In other words, P x l ( w 2 ,  . . , ON) is a “slice” of F(w1, 
w2, * * * , w ~ )  defined  by w1 = 0. Clearly,  a projection whose 
axis is any  coordinate axis x i  has a Fourier  transform  that is a 
slice  of F(wl , w 2 ,  . . * , w ~ )  defined by wi = 0. 

A general projection was defined  in (16) where A is an 
orthogonal  transformation.  It was argued previously that if 
F ( o )  is the  Fourier transform of f ( x )  then F(52) is the  Fourier 
transform of f ( u )  where 

I‘ 
Fig. 1. The relationship  between  the  projection of a  two-dimensional 

function and the  slice of its Fourier transform. 

slice of F(n) for = 0 where the  coordinate systems u and 
are  related to the  coordinate  systems x and o by the same 
orthogonal  transformation.  In  two dimensions, for  example, 
the projection-slice theorem  states  that  the one-dimensional 
Fourier  transform of a projection  at  an angle e is a slice at  the 
same angle of the two-dimensional Fourier  transform of the 
original object. This  relationship is depicted in Fig. 1. 

E. The  Basis for  Reconstruction from Projections 
From  the projection-slice theorem, we see that specification 

of a projection in signal space corresponds to  the specification 
of a slice in  Fourier space and  thus represents  a  partial specifi- 
cation of the signal itself. In principle, then, if an unlimited 
number of projections  at  different  orientations are available, 
the  Fourier  transform off (x) can  be obtained  and  therefore so 
can f ( x )  itself.  Generally, in any practical context, we are re- 
stricted to a finite  number of projections. 

Under  certain  assumptions, it is possible to carry out  exact 
reconstruction  from a finite  number of projections. If the 
structure is highly symmetrical, for example,  a finite  number 
of projections might suffice for  exact  reconstruction.  For ex- 
ample, for a  two-dimensional  circularly symmetric  function all 
of its  projections  are  identical  and  consequently such  a func- 
tion can be  represented exactly by  a single projection. Simi- 
larly,  in three dimensions, for  an  object which is cylindrically 
symmetric all of the  projections  for which the  projection axis 
is normal to  the  longitudinal axis are  identical  and conse- 
quently, in this case also, a single projection  is sufficient. 
Helical objects can also be often  reconstructed  from a single 
projection. 

In  Section 111 we shall consider another class of functions 
that can be represented  by  a finite  number of projections. 

In utilizing projections  for  reconstruction,  many of the 
algorithms involve computing  the  Fourier  transforms of the 
projections. The  Fourier  transform of each projection  is a 
function of a set of continuous variables, but  only a finite 
number of points  from each Fourier  transform can be  com- 

x = u A  puted  and  stored.  Thus  from  the  projections,  only samples in 

w = 52A. (20) the  Fourier  domain are available, in part because of the limited 
number of projections and in  part because only samples of the 

From this, (19) is easily generalized to state  that a projection  Fourier  transform  on each slice can be obtained.  The essence 
for which the projection  axis is the  transformed  coordinate of the  reconstruction  problem,  then, is to approximate all of 
ui has  an (N - 1  )dimensional Fourier  transform which is a Fourier space from  its values on a  discrete point  set. 
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F. Reduction of the  Dimensionality of the 
Reconstruction  Problem 

As we saw in Section 11-E, the underlying basis for recon- 
struction is to  obtain samples in  the  Fourier plane by trans- 
forming projections. Intuitively it seems reasonable that 
projections need not be taken in all orientations.  For  three- 
dimensional  objects, for  example, we could imagine using only 
projections in the spatial domain  on planes parallel to  one of 
the  coordinate axes, say X I .  Slices of these projections  at 
x1 = A are then  projections of the two-dimensional function 
f ( A ,  x 2 ,   x 3 )  and,  consequently, a  two-dimensional reconstruc- 
tion algorithm can be applied to reconstructing this two- 
dimensional slice of the three-dimensional object. In this  way, 
the three-dimensional object can be built  up slice by slice and, 
consequently,  the three-dimensional  problem can be reduced 
to a series of two-dimensional  problems. In  the general case, 
we can apply a similar argument to reduce  an N-dimensional 
problem  to a set of (N - 1)-dimensional problems each of 
which can in  principle be reduced  to  an (N - 1)-dimensional 
problem,  etc. 

Thus in  principle, an N-dimensional  problem can be  reduced 
to a set of two-dimensional  problems. Often  this  procedure 
requires  considerably less storage and is simpler computa- 
tionally than  attacking  the N-dimensional  problem directly. 
Furthermore, in many cases, we may be content with very 
coarse  sampling  in one or several dimensions. For  the  three- 
dimensional problem,  for  example,  reconstruction of only a 
few slices may be sufficient. 

In  the  next sections, we discuss a number of reconstruction 
theorems  and algorithms. The discussion will be phrased in 
terms of reconstructing two-dimensional functions  from  their 
one-dimensional  projections.  This is motivated by a number of 
considerations. Notationally and mathematically,  the  two- 
dimensional  problem is easier to express  and all of the results 
presented easily generalize to  the N-dimensional case. Further- 
more, as we discussed above, an N-dimensional problem can be 
reduced to a  set of two-dimensional reconstruction  problems 
and for  most practical  examples, this is an efficient procedure 
computationally. 

111. EXACT RECONSTRUCTION FROM A FINITE 
NUMBER OF PROJECTIONS 

The  exact  reconstruction of an  arbitrary signal requires an 
infinite  number of projections, since an  infinite  number  of 
slices are  required to encompass all  of Fourier space. If, how- 
ever, the  unknown signal is known to have some  underlying 
mathematical  form,  then exact reconstructions can often be 
performed  from a  limited  set of projections. For  example, as 
indicated  previously, if the  unknown is circularly symmetric 
then all of its  projections are necessarily identical and f ( x  , x 2  ) 
can be recovered from  any  one of them. Similarly, if f ( x l ,   x 2 )  
is separable so that  it is of the  form f ( x l , x 2 )   = g ( x l ) h ( x 2 )  
then  it can be reconstructed  from  the  two projections taken 
normal  to  the  coordinate axes. This follows from  the  fact  that 
in this case p x , ( x 2 )  is proportional to h ( x 2 )  and px,(x1) is 
proportional to g ( x 1 ) .  The classes of circularly symmetric  or 
separable functions  do  not represent very general classes of 
signals. There is,  however,  a class of functions  that are some- 
what more general and that  can, in  principle,  be reconstructed 
from a finite  number of projections.  This is the class of band- 
limited functions of finite  order, i.e., the class of functions 
that can be specified  by  a finite  number of Cartesian samples. 
This class is very general, as evidenced by the  fact  that  most 

signals processed digitally are assumed to be of this class since 
they are  represented digitally by  a finite  number of samples. 
In this section, we consider the possibility of  exact  reconstruc- 
tion  from a finite  number of projections  for  this class of sig- 
nals. While the results do  not lead to practical reconstruction 
algorithms they emphasize the underlying structure in this 
class of problems. 

Throughout  the discussion we will assume that  the  unknown 
signal can be represented by a  square  raster of samples M 
points  on a side. We could, of course, assume with  more 
generality that we have a  rectangular  raster of M1 samples in 
one dimension and M 2  samples in the  orthogonal dimension. 
None of our results would be substantially changed although 
the  introduction of an  additional  parameter would have made 
the expressions slightly more  complex. Seeing no particular 
reason (theoretical  or practical) for  introducing  this  additional 
parameter, we have chosen not  to  do so. 

A .  The  One-Projection  Theorem /12]  

An important  property of band-limited functions of finite 
order is that  they can be represented  by  a single projection, 
as discussed below. This theorem will be referred to as the 
one-projection theorem. 

Theorem  (One-Projection  Theorem): Let A and B denote 
two positive or negative integers  and m ,   m ' ,  n ,  and n' integers 
in the range 0 < m ,  n ,  m',  n' < M - 1. A band-limited func- 
tion f ( x  1 ,  x 2 )  of bandwidth W and order M can be represented 
exactly by  a single projection  at angle 6' = tan-' ( A / B )  if A and 
B have no  common  factors and if Bm + A n  = Bm' +An'  only 
form = m' and n = n'. 

The angle 6' for such  a projection will be  referred to as  a 
critical angle and  the corresponding slice of F(w1 ,oz )  will be 
referred to as  a  critical slice. 

Proof: Since the  function is band-limited, it is sufficient to 
determine  its samples on a  Cartesian raster, i.e., to determine 
the samples f ( ( m n / W ) ,  (nn/W)) for 0 < ( m ,  n )  < M - 1. From 
(7),  the  Fourier  transform F ( u 1 ,  w2) of f(x1, x21 is expressed 
in terms of these  samples as 

where 

W & G - T I F  
1, I w l G  

b w  (a) = max [ 1 - 4  I, I B I1 (22) 

0, otherwise. 

Now consider  a slice of F(w1, w2) denoted by &(a), at angle 
8, corresponding to  the one-dimensional Fourier transform of 
the  projection  at  that angle. With w representing frequency 
along the slice, the slice is specified by 

so that 

Se(w) = F(w COS 8 ,  w sin 0). 
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Thus  with To obtain  the  function samples from  the slice polynomial 
we must  first obtain a  sufficient number of samples of Se(w), 

e = tan-' - the  number of samples required being one plus the degree of 
the  polynomial.  The samples  can  be obtained by sampling the 
projection above its Nyquist rate  and performing the  appro- 
priate DFT  computation.  For  example, when 0 = tan-'  1/M, 

tained from  the  DFT,  they will be equally  spaced along the 

band. Since for this example  the  width of this band is 
2 W d M q / M ,  the  frequency spacing between adjacent sam- 
ples is 

A 
B 

m=o n=o M 2  such  samples  are needed. When the slice samples  are ob- 

- e x p  -i kdr bw(w). (24) slice and they will extend along the  entire  nonzero  frequency [ 2w+Bz 
We observe that  for 

W d A V  
max [ ( A  I, IB I ]  A w = E d Z G T .  M 3  (27) 

(24) corresponds to a  one-dimensional  polynomial of the  form 

where S e o ( k A u ) = -  w 2  m=O n=o f (5.7) 

Thus  substituting in (24), the values of the M 2  samples are 
p ( z )  = a p z Q  + aQ-lZQ-' +. * + a R 8  (25) n2 M-1 M-1 mn nn 

and 

Q = m a x ( B m + A n ) ,   O < m , n < M -  1 

For  notational simplicity,  let us define 
R=min   (Bm+An) ,  O < r n , n < M -  1. 

R can,  and in  general will, be negative. The polynomial p ( z )  is 
specified by [(I A I + I B I) (M -- 1) + 1  ]  coefficients or equiva- 
lently by [( 1 A I + I B 1) (M - 1) + 11 samples. Thus  it will be 
convenient to refer to p ( z )  as a  polynomial of degree 
[ ( I A I + I B I ) ( M -  111. 

It is clear from (24) that p ( z ) ,  or equivalently S,g(w), has  at 
most M2 nonzero coefficients.  Under the  stated  conditions  on 
A and  B, we note  that  the coefficients of the polynomial p ( z )  
are the  function samples f((mn/W), (nn/W)). If the slice &(o) 
is completely specified then all of its coefficients,  and hence 
the  function samples, catl be found.  Consequently,  the  stated 
conditions represent  sufficient conditions  for  f(x1,  x2)  to be 
represented exactly by  a single projection. If the  stated condi- 
tions are not  met  then  at least one of the coefficients in p ( z )  
will consist of a sum of two  or  more  function samples  and the 
number of nonzero coefficients  in p ( z )  will be reduced ac- 
cordingly. In this case then,  the  function samples cannot be 
uniquely  recovered from  the polynomial  coefficients.  This 
completes  the proof of the  theorem. 

At this point, a comment should be made on  the degrees of 
the polynomials  corresponding to  the  different critical slices. 
The preceding theorem  has shown that  there are an  infinite 
number of critical slices. Each  corresponds to a polynomial of 
degree at least MZ - 1,  since there  are MZ nonzero  function 
samples and  thus MZ nonzero coefficients that each such poly- 
nomial  must contain.  There is no maximum degree for these 
polynomials. For example,  consider the slice at 6 = tan-' 1/2M. 
From  our  theorem  this is seen to be  a  critical slice and it corre- 
sponds to a  polynomial of degree 2M2 - M - 1.  Of the 2MZ - M 
coefficients that  it  contains, however, only M Z  are nonzero; 
M z  - M of the coefficients  are  identically  zero. On the  other 
hand,  the slice at angle 8 = tan-' 1/M corresponds to a  poly- 
nomial of degree MZ - 1. Since there are M z  function samples, 
no critical slice can be a polynomial of degree less than MZ - 1 
and thus e = tan-' 1/M represents  an  optimum in the sense 
that of all the critical slices this one is of minimum degree. 

g ( m M + n ) = f  - - . 
("w;9 3 

This  mapping of a twodimensional sequence to a one- 
dimensional  sequence is unambiguous because of the limited 
ranges of m and n. Then setting p = mM + n ,  (28) can be ex- 
pressed as 

Equation (28) or equivalently (29) is in  principle  invertible 
so that  the M Z  function samples g(p) can be computed  from 
M 2  samples of the critical slice. In practice,  however, this set 
of equations is nearly  impossible to invert. In  particular, 
assume that  the slice samples So, ( k A o )  are not  known  exactly 
due to measurement  errors, quantization  effects, model in- 
accuracies, etc. If the observed slice samples  are So, ( k A w )  + 
E(k) where ~ ( k )  is a random sequence  with  zero  mean  and 
for which 

where E [  * ] denotes  the  expected value, then  with6 ( p )  denoting 
the  error in g ( p )  due to  the  error ~ ( k ) ,  it has  been shown [ 121 
that 6 ( p )  has zero  mean  and 

For M = 256, log [SZ /aZ ] is more  than lo6 bits,  indicating 
that  the inversion of (29) is extremely  illconditioned  for any 
but very small values of M .  

The  problems involved in reconstructing band-limited func- 
tions of order M are computational  ones and  are due to the 
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high orders of the polynomials involved. This is unavoidable, 5 )  use the band-limited interpolation  formula (9) and (10) 
since to recover all M' samples from  a single projection,  it is to recover f(x, y )  from  its Nyquist samples. 

example. 
Let us consider a band-limited picture of order 4 which we 

wish to reconstruct  from  the  two  projections  at 8' = tan-' 3 
and 8 2  = tan-' -3. Since  each of these slices has  a  rational 
slope,  each corresponds  to  a  polynomial of finite degree. In 
this case the degree is 9 and thus 

L 

gees, we would not have been able to solve the resulting  linear 
equations. We must,  therefore, be careful  when we choose  a 
set of slice angles to insure that  the resulting equations are 
solvable. This is difficult to  do  for large M since the  number 
of equations and the  number of variables grow as M 2 .  It can 
be shown that  the  projections at 8 '  = tan-' 2/M and 82 = 

,ye, (kAw) =f(& 0) +f(o,  l)Ek + [f(o, 2) + f ( l ,  o)] ~i tan-'  -2/M are sufficient to  reconstruct  a  function of order M ,  
although  from  (32) we see that  for M > 4 it is difficult to de- 

.~ 

+ [f(O, 3) + f ( l ,  UIEB + 2) termine the  coefficients of the resulting  polynomials.  It can 

+f(2,0)1 f i  + [ f ( l ,  3) + f ( 2 ,   1 ) I E i  also be shown  that  an 8 X 8 array can be reconstructed  from 

+ [f(2, 2) +f(3,0)1 E; + t f (2 ,3)  
the  four projections 81 = tan-' 3, O 2  = tan-' 2, 83  =tan-' -4, 
O4 = tan-' - 2. In all of these cases the resulting  linear  equa- 
tions are  straightforward to  compute. 

From  the  orders of the polynomials involved and  (32), we 
= u~EL (33) can perhaps infer that  to  reconstruct  an M x M picture will re- 

i=O quire on the  order of M/2  projections by these  techniques, due 
to  the sensitivity problems, alluded to earlier, associated with 
the coefficient  calculations. Since for large values of M this 
requires formidable  matrix  manipulations,  it is perhaps reason- 
able to consider  alternative reconstruction  procedures which, 
using simpler algorithms, will produce good quality recon- 

Similarly we can write structions  from roughly the same number of projections.  This 

+f(3,  1)1 EL +f(3,  2)Ef: + f (3 ,   3 )E i  
9 

where 

E k  = exp [ - j  %I. 

(34) 

If So, (kAw)  and So, ( k A w )  are  each available for 10 differ- 
ent evenly spaced values of k then we can obtain  the  two se- 
quences ai and bi. From these we can compute  the  function 
samples  by 

different procedure  for  reconstructing  exactly  a band-limited 
function of finite  order M from  a set of M + 1 projections. 
While this procedure is also somewhat difficult to implement 
exactly,  it  forms  the basis for  an  approximate  procedure to be 
discussed in  Section V that appears to be among  the  most 
successful. 

To develop the  exact  reconstruction procedure we again con- 
siderf(x,y)  to be band-limited  with bandwidth W and of finite 
order M.  Then 

The  technique  for performing a  reconstruction  from  more 
than  one  projection, following  this approach, can be sum- 
marized in the following  steps: 

1)  find  a sufficient set of slice angles; 
2) sample the slices at d + 1 points, where d is the degree of 

the  polynomial along  each slice, and compute  the co- 
efficients  corresponding to these polynomials; 

3) set up  a system of linear equations relating the  poly- 
nomial  coefficients to the  function samples; 

4) solve this  set of equations to obtain  the Nyquist samples 
of the  unknown; 

' A  similar result was obtained by Smith er al.  [ 1 5 1  for a slightly 
different class of  functions. 

Thus over the region of support ( I  w1 I < W ,  102 I < W), 
F ( w l ,  w z )  corresponds to a two-dimensional  polynomial of 
degree M - 1 in  each of the  complex variables z1 and z2. 

Along horizontal (0' constant)  or vertical (a2 constant) lines 
in the  Fourier  plane, F(ul, u2)  varies as a one-dimensional 
polynomial of degree M - 1 in either z1 or z z .  Therefore, if 
F ( o l ,  w z )  is known  at any M points along any  horizontal  or 
vertical line in the  Fourier plane  (subject to  the  constraint 
that  the  points all must lie within the region of support)  it is 
known  at all points  on  that line. Now consider a slice at an 
arbitrary angle 8 in the  Fourier plane. Since f ( x l ,   x 2 )  is con- 
strained to be band-limited, s @ ( ~ )  = 0 for / w I 2 W,g where 
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o SAMPLES OBTAINED FROM PROJECTIONS 

DFT  SAMPLES 

Fig. 2 .  The set of  Fourier plane samples  from  which an 8 by 8 picture 

band-limited and of order 8. 
can be  reconstructed  exactly under the  assumption that the picture is 

is the  bandwidth of the  projection at  this  particular angle. 
Thus we can  expand the  projection in terms of its samples 
according to  (36). 

Now suppose that we limit 0 to fall in the range - (n/4) Q 0 Q 
(n/4)  and we evaluate the value of the slice function  at M 
equally spaced points  from  the sampled projection. Thus (36) 
becomes 

If this is done  for M different angles in the range - (n/4) < 
Bi Q (n/4)  then F(ol,  w 2 )  will be known  at an array of sample 
locations  such as that illustrated  in Fig. 2 for M = 8.  Included 
in the same figure  are locations  for  the M 2  DFT samples of 
f (x l ,  x?). It should be noted  that M vertical lines can be 
drawn through  the slice samples and  that  the  DFT samples lie 
along these same vertical lines. Therefore,  from our earlier 
statement, it is seen that all of the  DFT samples, except  for 
those  which lie along the line w, = 0, are completely de- 
termined from  the raster of slice samples. If,  however, in 
addition we know M slice samples of a slice whose angle falls 
outside  the range [- (a/4),  (n/4)],  denoted  by 6 0  in Fig. 2, 
then by interpolating along horizontal lines in the  Fourier 
plane we can determine  the  DFT samples along the line u1 = 0, 
since along each horizontal line we now know F ( w l ,  u2)  at M 
points: M - 1  from the previously computed  DFT  points and  1 
from this  last projection. nus ~II M' samples of ~ ( w l ,  0 2 )  
that correspond to  its  DFT can be determined  from M + 1 
projections  and  these samples, in  turn,  completely specify 
F ( x 1 ,  x2). This  procedure for exact reconstruction basically 

involves one-dimensional polynomial  interpolation.  In Sec- 
tion V we shall consider an approximation of this  interpola- 
tion  procedure.  First, however, we consider  in the  next 
section approximate  reconstruction  from a  polar raster. 

w. APPROXIMATE RECONSTRUCTIONS FROM A 

POLAR RASTER 

Since  specification of a projection in signal space corresponds 
to specification of a slice in  Fourier space, if all the  projections 
for a continuous range of angles 0 Q 8 G n are known,  the en- 
tire  Fourier space is swept out and consequently  the  function 
is known  exactly. Conversely, if only a finite  number of pro- 
jections are known,  an  arbitrary  function  cannot be specified 
exactly, since its  Fourier  transform is constrained only  on a 
finite set of slice lines and is elsewhere merely constrained to 
be infinitely  differentiable. If F(wl , w2) is expressed in  polar 
coordinates as 3(w, 8) then,  substituting  into  the inverse 
Fourier  transform iqtegral, 

1 +Oa 7r 
f (x l ,  x 2 )  = -I I, 3(0,e) 

(2nY -00 

. exp [ ~ ( x , w  COS e +x2w sin e)]  I w I dude  (38) 

or, since 3(w, 8 )  for fixed 8 is the slice of F(wl  , w 2 )  at angle 8, 

exp [ j(xl w cos e +x2w sin e ) ]  I o I d w d e .  (39) 

Equation  (39) tells us how f ( x 1 ,  x2) can be reconstructed 
from  its projections. In general,  however, to  apply  (39), an 
infinite  number of slices are needed, while in  practice only a 
finite  number will be available. Thus in general, (39)  must be 
approximated  from  the values of Se(w) at  only a finite  number 
of discrete angles. Intuitively,  one would expect  that as the 
number of projections used for  the  reconstruction increases, 
the accuracy of the  reconstruction,  or  more specifically, the 
resolution of detail  in the  reconstructed image will increase. 
This is basically a  consequence of the  fact  that  the slices Se(w) 
sample the two-dimensional Fourier  transform  at  only a finite 
number of discrete angles. Some  attempts  to  quantify  the re- 
lationship between  the  number of projections  and  the resulting 
resolution available in the  reconstruction are discussed in [ 21, 

In  addition  to requiring an  infinite  number of slices, (39) 
also requires that each slice be specified for all values of W .  
This is, in general, impossible to do because the  Fourier trans- 
forms which  must  be computed  to  determine  the slices of 
F(ol, w 2 )  must  be computed digitally. If the  projections  are 
all band-limited, which is the case if f(xl, x 2 )  is band-limited 
because of the projection-slice theorem,  then samples of Sg(w) 
can  be computed by  applying the  DFT to samples of the  pro- 
jection p e ( u ) .  With a finite set of equally spaced values of 8 ,  
and with samples of &(a) equally  spaced  in w computed  from 
the  projections, we obtain a set o f  samples of 3(w, 8 )  on a 
regular polar  raster  as  indicated  in Fig. 3. The first set of ap- 
proximate algorithms to be considered will be those utilizing 
such  a set of samples, although  they are not all implemented 
in the  Fourier plane. 

Before addressing the problem of reconstructing  from  this 
raster, however,  let us briefly  consider  some issues associated 

[16]-[18]. 
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t w2 

wI 

Fig. 3. Polar raster indicating the set of points at which a two- 

the Fourier transforms computed digitally. 
dimensional Fourier transform will be known from 8 projections with 

with obtaining these  polar samples. The radius of the polar 
raster  is, of necessity, finite and thus  only a  limited portion of 
the  Fourier plane can be  directly sampled. It  thus follows that 
if f ( x 1  , x 2 )  can be reconstructed  from such  a  raster then  the 
remainder of the  Fourier plane either is unimportant in speci- 
fying f(x 1 ,  x2)  or is completely  determined by the samples in 
the raster. We shall assume the  former  situation-that f ( x  1 ,  x2 ) 
is either band-limited or very nearly  band-limited  and that  the 
polar  raster  samples the  entire  nonzero  frequency region. 
Therefore, we shall assume that F(w1, wz) is nonzero  only 
over a bounded region of the  Fourier plane that can be en- 
closed by  a circle of radius fi W. Each  projection  then 
corresponds to a  band-limited onedimensional  function  with 
bandwidth less than fi W so that if each is periodically 
sampled with an intersample  distance less thann/fiW (meters) 
no  information will be lost. 

Each sampled projection  represents a  sequence of numbers 
of infinite  duration. We can obtain M samples of the slice 
corresponding to a particular  projection by  converting that 
infinitely long  sequence to  an M point sequence by aliasing. 
Thus if 

represents  the infinitely.long  sequence  and we define 

(40) 

then  &(n) is a  sequence of length M whose DFT  corresponds 
to evenly spaced  samples of the  Fourier  transform of p e ( u ) .  
In practice, of course, the sum in (40) must be performed 
using finite b i t s .  If this  procedure  is followed for each of the 
N projections  that  are evenly spaced in angle over the range 
0 to n, then we  will know  the  Fourier  transform F ( o l ,  wz)  
on a regular polar  raster such  as  that in Fig. 3.  

If f ( x l ,  x z )  is band-limited and of order M then  it is com- 
pletely specified by its M X M point  DFT. If it is not of finite 
order,  then  it can hopefully be approximately  determined by 
its DFT.  Since the  DFT  corresponds  to samples of F ( w l ,  w 2 )  
on a  Cartesian raster,  one possible reconstruction algorithm is 
to  interpolate  from  the  known samples on a  polar  raster to 

Fig. 4. Parameters for the  definition of zeroth-order and linear inter- 
polation. 

estimate  the samples on a  Cartesian raster,  perform  an inverse 
DFT,  and use the result  as an  estimate of samples on a 
Cartesian raster of the  unknown. This is the basis for  the first 
set of approximate algorithms that we shall consider. 

To  perform  the necessary interpolation we may  consider the 
use of a simple form of polynomial interpolation.  Two in- 
terpolation  techniques have been  used-zeroth-order  and linear 
interpolation. Each of these approximations is shown in 
Fig. 4. With zeroth-order  interpolation, each  Cartesian (DFT) 
sample is assigned the value of the nearest  polar  sample, 
whereas with  linear interpolation it is assigned a weighted 
average of the  four nearest  polar values, the weighting varying 
inversely with the Euclidean  distance between  the Cartesian 
Sample and the polar  sample in question.  In particular, for  the 
Cartesian sample c indicated  in Fig. 4, with d l  = min [ d l ,   d z ,  
d l ,   d 4  J ,  for zeroth-order interpolation we choose F ( c )  = 
F(P1). With linear interpolation, F ( c )  is computed as 

- F(P1) + - F ( P 2 )  + - F ( P 3 )  + - F(P4)  
1 1 1 1 

dl  d l  d3 d4 
1 1 1 1  -+-+-+- 

dl  dz d3 d4 

F ( c )  = . (41) 

The  reconstruction algorithm can thus be summarized in the 
following steps: 

1)  Compute  the  Fourier  transform of the sampled  projec- 
tions 'using a onedimensional  DFT  to  obtain a  collection of 
sampled slices of F ( o l ,  wz) which represents a  polar sampling 

2) Use zeroth-order  or linear interpolation to estimate  the 
Cartesian samples of F ( o 1 ,  w2) which  correspond to  the 
DFT of a  two-dimensional  sequence 

of F ( o 1 , w z ) .  

I f ( : , ; ) ,  O < m , n < M -  1 . 1 
3) Estimate 

, O < m , n <  M -  1 

using a  two-dimensional inverse DFT. 
4) Approximate f ( x 1 ,   x ? )  as 
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Fig. 5. Reconstruction  of  the pictures of  Fig. 7  from their projections 
using zeroth-order interpolation  from  a polar raster. 

Fig. 6. Reconstruction of  the pictures of  Fig. 7  from their projections 
using linear interpolation  from a polar raster. 

. - 

For  the  interpolation  to be effective, the  Fourier transform 
must be reasonably smooth.  Thus each projection should  be 
considered as a two-sided sequence with  its origin at  the 
center. Choosing the origin at one of the end points of the 
projection  introduces a  linear phase component  into  the  Fourier 
transform  which will seriously impair the  quality of the result- 
ing reconstructions. 

Figs. 5 and 6 present  some reconstructions  obtained by 
using the above technique with zeroth-order  and linear in- 
terpolation, respectively.2 Each of these reconstructions was 

'AU of the  reconstructions presented in this paper were performed 
on a Digital Equipment Corporation PDP-9 computer  with 2 4  000 
words of core memory using 18-bit  fixed-point  arithmetic. 
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Fig. 7 .  Four original pictures  for  which  the  reconstruction  from pro- 
jections is to  be carried out using a variety of  algorithms. 

made  from 64 computer-generated projections equally spaced 
in angle,  with  each projection represented  by 256 samples. 
The original pictures  from which  these projections were com- 
puted are  included for  comparison in Fig. 7.  Discrepancies 
between the  reconstructions and the originals are due to two 
distinct  factors-errors made in computing  the  projections 
themselves, and  errors introduced in  performing the recon- 
structions. All of the  reconstructions  performed in this section 
were performed  from  the same set of projections  and  thus  any 
comparison between  different algorithms  which reconstruct 
from a  polar  raster is dependent  on only the  latter  type of 
error.  In  computing  the  projections  it was assumed that  the 
original photographs represented two-dimensional band-limited 
functions of order M, where the  DFT  computed in the recon- 
struction algorithms was of dimension M X M. 

A  cursory examination of Figs. 5 and 6 reveals that  the  qual- 
ity of the final reconstruction is very much dependent  upon 
the  method of interpolation which was used, although  neither 
set of reconstructions is as good, perhaps, as one might wish. 
The  reconstructions  performed using linear interpolation seem 
preferable to  those performed using zeroth-order  interpola- 
tion. This is certainly  reasonable since if F ( q ,  w2) is con- 
tinuous  and slowly varying, one would expect  the  error  from 
a piecewise planar approximation to be less than  that  from a 
piecewise constant  approximation. 

One of the possible explanations  for  the  errors  that were 
introduced by these  algorithms is that insufficient  projections 
were taken  for  linear  interpolation  to  approximate  accurately 
the  entire  Fourier plane. Indeed,  it was noted  experimentally, 
as expected,  that as the  number of projections was increased, 
the  quality of the resulting reconstructions  improved. Taking 
an increasing number  of projections is impossible,  however, in 
many  practical situations because this requires  more X-rays, 
more electron micrographs (a specimen can be destroyed  by 
too  much  electron  bombardment),  etc.  Another possibility to 
improve reconstruction  quality is to use higher order  interpola- 
tion algorithms, but  this involves a  major computational  effort 
and  would  significantly add to the  total  computation  time re- 
quired. A third  alternative, which is closely related, would be 
to augment the set of projections  with additional projections 
computed  from  the given ones by  some computationally  ef- 
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fisent scheme,  and  then  from  this larger set of projections  the 
linear interpolation  algorithm can then be  applied as before. 
Were these  extra  projections  computed  from  the  original set 
by linear or  zeroth-order  interpolation,  then our reconstruc- 
tions would  be  identical t o  those of the previous section,  but 
by  using  some other  interpolation scheme different and  (it is 
hoped)  improved  reconstructions might  be obtained. This is 
the  central idea  behind  an  algorithm  which we refer to  as the 
polar  expansion  algorithm. 

Let us assume that F(wl , w 2 )  can  be  expanded in the  form 

~ ( w  cos e ,  0 sin e )  = 3(w, e )  = f m n  *,,(a, e )  
m m  

m =-w n =-OD 

where w and 0 are  polar  coordinate  variables  and  where 

q m n ( w , B ) = e x p  [ i ( - +ne)] b w ( w )  (44) f i w  
1,  o < o < f i w  

b w(w) = (45) 
0, otherwise. 

This choice is made  because the  set {qmn(w,  e ) }  is complete 
over  the  set of band-limited functions  with  bandwidth fi W 
and  a  finite  subset of the set  should  be  capable of producing  a 
good approximation to  most  unknowns. 

In  order to  compute  the coefficients f m n  of (43) we require 
an  infinite  number  of  projections.  If,  however, we approxi- 
mate 3 ( w ,  8 )  by  a  truncated  expansion 

the  coefficients fmn can  be computed  efficiently  from  a  finite 
number of projections  using the DFT.  In  particular,  we  recog- 
nize that with fmn viewed as a  two-dimensional  Cartesian 
sequence, (46) corresponds to  its two-dimensional  Fourier 
transform. By inserting  finite  limits in (46) we  assumed that 
f m n  is of  finite  order.  Consequently, the two-dimensional 
DFT  of f m n  corresponds to  samples of 3(w,8) equally  spaced 
in w and  equally  spaced  in 0 .  Hence f m n  can  be obtained 
from  these  samples  by means of the inverse DFT relation,  i.e., 

* exp -j2n - + - (47) [ (: 3 1  
where 

f i w  2n 
3 ( 7 a , - b ) ,  a = O , l ; - . , M -  1 and 

Ml 
b = O , l ; * . , M z -  1 

correspond to samples of F ( o l ,  0 2 )  on a  regular  polar raster 
formed  by  taking  the 2 M 1  - 1 point  DFT's  of M 2 / 2  evenly 
spaced  projections.  From  the  coefficients { f m n }  we can cal. 

Kg. 8. Reconstruction of the pictures of Fig. 7 from  their  projections 
using the polar  expansion  algorithm. 

culate the values of F(ol, w2) along  any  other slices we  wish 
using the  expansion of (46). In  particular, to  obtain samples 
of F(wl , w 2 )  on  a polar  raster  with M4 rays of M 3  samples 
each, (46) becomes 

2 m k  2ml 

Incorporating (47) we  can thus arrive at a  formula  for  inter- 
polating the values  of  these extra slices. Specifically 

e x p [ - j n ( k -  z+Mq- a 1  - 
M 2  )I 

Fig. 8 shows  some reconstructions  that were  made from 64 
original  projections  of 256 points  each. Using the above tech- 
niques, 256 projections of 256 points  apiece  were then com- 
puted  according to  (48). Linear interpolation was then used to  
estimate  the 256 X 256 DFT of the  unknown,  and  an inverse 
256 X 256 point  DFT was performed.  On  the basis of these 
restricted  examples  it  might  be  inferred  that  this  algorithm 
yields slightly improved  reconstructions  compared  with simple 
linear interpolation. This algorithm is quite similar to  one 
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presented  by DeRosier and Moore [ 191 using Hankel  trans- 
formations, as discussed in  Section VI of this  paper.  Their 
algorithm as used by themselves and others  has been quite 
successful at  reconstructing viruses, which do  exhibit such 
symmetries. 

Both algorithms which have been  presented thus  far have 
been based on  interpolating  from a  polar  raster to a Cartesian 
raster and  then using the  DFT  to  obtain samples of the original 
function. An alternative class of algorithms is based on a 
direct approximation of ( 3 9 )  using a  two-dimensional exten- 
sion of the trapezoidal  rule. In  particular, let us approximate 

Se(W)exp{jw(xcos8+ysin8)}=g(B,w) 

by  a piecewise planar function  that is planar over the “rec- 
tangular” region bounded by two radii  and two circular sec- 
tions. Assume that slices are known at angles 80, 81, * * , 
8 ~ - ~  (not necessarily evenly spaced) and that along  each slice 
the values of S e i ( o )  are known  at  the R values (R even) des- 
i g n a t e d b y ~ [ - ( R 1 / 2 ) + 1 1 , ~ ~ ~ , R o , ~ 1 , ~ ~ ~ , ~ ~ l / 2 .  Since 
these samples will presumably  be computed  from sampled 
projections using a DFT, we shall assume that  the radial 
samples are evenly spaced and  that 

The angular  spacing shall be designated  by 

( 5 2 )  

Equation (52) represents  a reconstruction algorithm  since it 
sxpresses f ( x l   , x 2 )  in  terms of S e ( k A o ) ,  the slice samples. 
The direct  computation of (52) is difficult as that  equation is 
written. However, we can reinterpret it and use the  DFT to 
make it easier to compute.  Reinterpreting (52)  has multiple 
advantages. It results in a  straightforward computational  pro- 

Fig. 9. Approximation of g(0, a) by a planar section. 

cedure for  implementing  the  algorithm, provides us with some 
insight into  how  the algorithm works,  and shows us that this 
algorithm is equivalent to another algorithm-the so-called 
smearing  algorithm  which can be implemented  in  the space 
domain. With the smearing algorithm, each projection is 
back-projected or smeared in the  direction of the original pro- 
jection and  the smeared  projections  are then weighted and 
summed. Let us define  what is meant by smearing. If pe/Ui) 
represents the projection of f ( x ,  y )  at angle 8i  where 

ui = x1 cos 8 i   +x2  sin 8i  

vi = - x 1  sin 8i + x 2  cos 8 i  (53;  

then  the smeared  projection at angle B i ,  P e i ( U i ,  v i ) ,  is de- 
fined by 

Pei(ui, vi) = Pei(ui). (54) 

To express (52) in  terms of smeared  projections, we can f m t  
rewrite it as 

where 

R1/2 
g i ( X l , x 2 ) =  E I k I S e i ( k A a )  

k=-R1/2+1 

exp [ j k A o   ( x 1  cos Bi  + x 2  sin & ) I .  (56)  

If  we define &(ui, v i )  = gi ( x ,  y )  with a change of coordinates, 
then 

From (57) we see that ;(ui,   vi)  is a function only of ui and 
that it is thus a  smeared quantity.  Furthermore,  the  quantity 
that is smeared is a  filtered projection. This filtering can be 
accomplished by  computing  the  DFT of the  projection, mul- 
tiplying the resulting  sequence  by I k I, and  then inverse trans- 
forming. According to  (56 ) ,  these  filtered  smeared projections 
( g i ( x l ,   x 2 ) }  are  then weighted, summed,  and  added to the  dc 
bias (constant)  function. 

Instead of computing &(ui) from pei(ui) by computing 
transforms, we could  confine ourselves totally to the space 
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domain and  express &(u i )  as a  (circular) convolution of pei(ui) 
and  the inverse DFT of I k(. This computation is cumber- 
some, however,  and the modification of the projections is 
more easily carried out  in  the  frequency  domain  than by 
performing the  convolution in the space domain. Rama- 
chandran  and Lakshminarayanan [SI and  Shepp  and Logan 
[21] have shown, however, that by  modifying the weighting 
function slightly, the  convolution is more  conveniently done 
directly than by using Fourier  transforms. 

This algorithm  has  been used by Bracewell [ 11, Vainshtein 
[221,  Ramachandran  [231, Herman [81, Gilbert [241,  and 
perhaps others,  with  minor variations. There  are a number 
of nice features to  it.  First,  it imposes no  requirements  on 
f ( x 1 ,  x 2 )  except  that  it be nearly  band-limited  and that 
F ( w l ,  02) be “slowly varying” in o1 and a2 so that  our 
original approximation of an integral by a sum is valid. These 
are not severe restrictions to impose.  Another advantage of 
the algorithm is that  the  entire procedure can be implemented 
in the space domain  (although, as we have seen,  it may be 
more efficient to filter the projections  in the  frequency  do- 
main). Omitting  the  modification of the  projections,  this sys- 
tem  can, in fact, be implemented  optically  and  such  an  optical 
system has  been  built  by  Garrison, Grant et Q Z .  [ 61,  [251. 
Another  feature of this algorithm,  actually  the nicest feature 
of all, is that  it yields very good reconstructions. 

There are,  on  the  other  hand, several problems inherent  in 
use  of the smearing algorithm. One of the most  serious is that 
the  reconstructions are very sensitive to inaccuracies in  the 
input  projections. Any error  or “noise”  in the  projection is 
amplified in  the  reconstructions  and, as a result,  the final re- 
constructions  appear  noisy;  that  is,  the  reconstructions have 
a mottled  or speckled appearance. 

Some reconstructions  formed by using this  algorithm are 
shown in Figs. 10  and 1 1. In Fig. 10 several photographs are 
reconstructed  from 64  projections-the projections  that were 
used for  the preceding  algorithms. In Fig. 11  reconstructions 
are shown  for  16,  32,64, and 128  projections.  It will be noted 
that  for  the  example chosen the  degradation with  a  decrease  in 
the  number of projections is serious. Such a  degradation is to 
be expected  but  it is particularly  serious for this example.  It is 
informative to compare these reconstructions with those  pro- 
duced  by  linear interpolation.  The smearing reconstructions 
clearly display  more resolved details,  although  they  do have a 
grainy or speckled appearance  due to  the noise mentioned 
earlier.  A possible explanation is due  to  the  fact  that  with  the 
linear interpolation  algorithm,  the values of Cartesian  samples 
of F(ol, 02) were estimated  from neighboring  polar samples 
prior to performing an inverse DFT. As a result, polar 
samples which were not close to  Cartesian  samples were 
ignored.  For large values of o (the radial variable in a  polar 
coordinate  system) this effect is negligible since  almost all of 
these  polar  samples  are used,  but  for polar  samples close to 
the origin  this  effect  becomes  significant, especially since for 
photographs, 1 F(wl,  02) 1 is largest for  those values of and 
w2 near the origin. On the  other  hand,  the smearing  algorithm 
uses all of the  information  contained  in  the polar samples 
since all of the projections  are treated  identically. 

The noise  which is introduced  in  the smearing reconstruc- 
tions is due  to  the high-frequency  emphasis filter  that is ap- 
plied to  the projections and it introduces.computational errors 
similar to those  introduced by  numerical differentiation. 

We close this  section  with  the discussion of an  algorithm 
similar to  the polar expansion  algorithm. This technique has 
not been used by the  authors,  but  it has been used successfully 

Fig. 10. Reconstruction of the  pictures of Fig. 7 from 64 projections 
using the smearing algorithm. 

( C )  ( d  1 
Fig. 1 1 .  Reconstruction of the  test pattern of Fig. 7 using the smearing 

algorithm  for  different  numbers of projections. (a)  16 projections. 
(b) 32 projections. (c)  64 projections. (d) 128 projections. 

by  DeRosier and Klug and  their colleagues [3] , 1141 , [261, 
[27]  to  reconstruct  from  electron micrographs. 

Let f(r, 4) represent the’ picture  function in polar coordi- 
nates and let F ( o ,  e )  represent  its  Fourier  transform.  Then, 
since f ( r ,  4) is necessarily a  periodic function  in @ with period 
277, we can express f ( r ,  4) in  a Fourier series as 

where 
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However,  since f ( r ,  9) and F(w, 8 )  are a  Fourier  transform pair 
it is true  that 

Interchanging  the  order of the  integrations, 

( 6 4 )  

where J n ( x )  is the  nth-order Bessel function of the  first  kind. 
Since F(w, 0 )  is a  periodic  function  in 0 with period 277 we 
can express  it  in a  Fourier series as well, as 

~ ( w , e ) =  F,(w) exp +in e + - de .  (65) 
00 

n = - m  [ ( 3 1  
The factor of n/2 has  been included  in  the  exponent of (65) 
so that by comparing (65) and (64) we can see that 

1 
00 

f d r )  = Gl, F n ( w ) J n ( r o )  d w  (66) 

Fn(w) = [00 f , , (r)  J n W )  dr. (67) 

(66) and (67) say that f n ( r )  and Fn(w) form  a 
Fourier-Bessel or  Hankel  transform  pair. 

From this derivation we can formulate  a  reconstruction 
algorithm.  From  the slices we compute  the  sequences Fn(w) 
using the inverse of (65). If the slice angles are evenly spaced, 
this  can be done using a  DFT.  Then we can  take  the  nth-order 
Hankel  transform of each of the Fn(w) to  obtain  the f n ( r ) .  
Then, using another DFT  calculation, f ( r ,  9) can be approxi- 
mated on any desired number of radii  and angles. 

The  major  difficulties with this  technique  are  computational. 
Each of the Hankel transforms which  must be taken is dif- 

ferent  since  each uses a  different Bessel function.  The 
amount of computation  can,  therefore, be large. DeRosier 
and Klug [3] ,  in their  original work,  reconstructed helices. 
The unique  properties of helices  allowed them  to  obtain sev- 
eral of the Fn(w) from  a single projection. 

V. APPROXIMATE  RECONSTRUCTION FROM A 
CONCENTRIC-SQUARES RMTER 

In  Section I11  we considered a  procedure  for  exact  recon- 
struction of a band-limited function of finite'  order based on 
using the  projections  to  obtain  samples of the  Fourier  trans- 
form  on  a  concentric-squares  raster. An exact  reconstruction 
procedure  then consists of interpolating  or  extrapolating  from 
this concentric-squares  raster  to  a Cartesian  raster.  Since the 
vertical  lines of the  concentric-squares and Cartesian  rasters 
are  identical,  interpolation  from  a  concentric-squares  raster to 
a Cartesian  raster involves only  onedimensional  interpolation 
rather  than  two-dimensional  interpolation as was required  for 
the polar  raster. 

One difficulty  with  the  concentric-squares  raster is that  with 
the slices confined  to  the range - (n/4) < 8 < +(n/4), as was 
done  in  Section 111, for small radial values the  samples  are 
closely spaced over a small frequency range and  consequently 
extrapolation  far  away  from  these  points is necessary. 

In  this  section we consider a  modification of this  procedure. 
In  particular,  by  generalizing  the  raster of Fig. 2 to  include 
additional  projections,  it is possible to avoid the  extrapolation 
problem previously mentioned. In addition,  for  approximate 
reconstruction, we  will use low-order  interpolation. 

In deriving the polar  raster  it was assumed that  the  Fourier 
transform of the unknown was confined  to  a circular  region  in 
the  Fourier plane of radius fi W. Here we assume that  it is 
instead confiied  to  a  square region of half-side W, as illustrated 
in  Fig. 12. It  should be noted  that  such  a  function is also con- 
fined to  a disk of radius fi W. 

For  such  a  function,  by  the  projection-slice  theorem  it  is 
seen that  each  projection  can be represented by a band-limited 
function  whose  bandwidth  is  a  function of the  projection 
angle 8. Thus we can represent  the  projection  at angle 8 ,  
P e  (u) by 

where 

W 
W e  2 m x { I c o s e l , I s i n e l )  * 

(69) 

The  right-hand  side of (69) specifies the  minimum  sampling 
rate  that can be used to sample  the  projection of a band-limited 
function of angle 8 .  If a  lower  sampling  rate is used, informa- 
tion will be lost  through  the  sampling process. If each  projec- 
tion is sampled  at  this  rate  and  the  resulting  sequences  are 
transformed  by using 'an N point DFT to compute  the  sum 
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Fig. 12. Illustration of  the Fourier transform confined to a square 
region of half side W. 

w2 

Fig. 13. A concentric-squares raster. 

w I 

we will obtain a  set of slice  samples that  are  different  from  the 
polar case. In  fact, we can in  general control where the sam- 
ples of Se(W) are  located by  controlling the sampling  interval 
used to sample the  projection p e ( u ) .  We shall define a 
concentricsquare raster to be a  raster of sample locations 
formed  by sampling  a finite  number of projections at  their 
respective  Nyquist rates  and  then  taking N point  transforms 
of the results.  Such  a  raster is illustrated in Fig. 13. 

As a comment,  it should  be noted  that if the projections  are 
made  by  a source of collimated radiation  such as an X-ray 
source  then concentric-squares  samples can be obtained with  a 
hardware  scanner which does not have an  adjustable sampling 
interval. This technique is illustrated  in Fig. 14. Assume that 
the  object  that we  wish to identify is irradiated by  a  col- 
limated beam and  that  it lies between  the beam  source  and  a 
recording  surface such as a photographic plate.  Instead of 
rotating  the  unknown  to  produce  different  projections,  the 
beam and  the  photographic plate will be moved simulta- 
neously.  In  particular, assume that 'we begin with the beam 
perpendicular to  the x axis and  the  plate parallel to  the x axis 
as indicated in Fig. 14(a). As the beam is rotated,  the  center 
of the plate is shifted as indicated in Fig. 14(b). When the 
projection angle exceeds n/4,  the plate is placed parallel to  the 
y axis as indicated in Fig. 14(c),  and  as  the  projection angle 
increases further,  the  center of the plate shifts  accordingly, as 
indicated in Fig. 14(d). Thus the  photographic plate is moved 
in  such a way that  its  center follows  a square.  In this way the 

.PROJECTION 
AXIS-: 

1 yJ 
c , 

WOTCGRAPHIC PLATE 

( a i  

c 

Fig. 14. Illustration of a technique for  obtaining  projections  for con- 
centric-squares  samples. 

Fig. 15. Reconstructions of  the pictures of Fig. 7 using h e a r  interpola- 
tion  from a concentric-squares raster of 64 evenly  spaced  slices. 

recorded picture is seen to be expanded by  a factor of 

1 
max(Icos8l , I s ineI )  

by the obliqueness of the recording  surface. If all projections 
are  now  sampled  with the same  sampling  interval, n/W, the 
resulting  sequences  correspond to  a  set of sampled projections 
on a concentricsquares  raster. 

As with  the polar raster, we can use linear interpolation to 
estimate  the values of Cartesian samples of F ( w l ,  w 2 )  from 
the  known samples on  the concentric-squares  raster. 

Fig. 15 shows  some reconstructions made by using linear 
interpolation  from a concentricsquares raster of 64 evenly 
spaced slices. In Fig. 16 we have used a similar algorithm 
with  a different set of slice (projection) angles. Instead of 
choosing the angles to be evenly spaced, we have chosen them 
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Fig. 16. Reconstruction of  the pictures of Fig. 7 using the  same  algo- 
rithm as for Fig. 1 5  but  with a different set of projection angles. 

. -  

Fig. 18. Reconstruction based on high-order polynomial’interpolation 
along  the  sides of  a series of concentric squares. 

dimensional  and the  Fourier  transforms of the  photographs 
used have regions of support  in  the  Fourier plane  which are 
more  nearly square  than circular. From Fig. 17 we note a 
steady  improvement in reconstruction  quality  with increased 
projections. This result is certainly  not surprising. The  im- 
provement is particularly  striking when we go from 32 to 64 
projections,  although this is somewhat  dependent  upon  the 
example  chosen  which  has 30 circularly  arranged  black spokes. 
As the preceding  algorithm  represented  a straightforward 

extension of the polar  linear interpolation  algorithm, so also 
can we extend  the polar expansion algorithm and  compute 
extra concentric-squares slices from a  limited number which 
are available from projections.  Instead of performing an  ex- 
pansion in  polar coordinates, however, we must perform it in 
“.concentric-squares coordinates,”  i.e.,  along the slice lines and 
along the squares.  Actual interpolation along the slices is 
unnecessary  since all of the concentric-squares  samples  already 
lie on  the squares  which contain all of the  DFT samples- 
this, of course, is the advantage of using concentric-squares 
coordinates. Thus our algorithm  reduces to  the  implementa- 
tion of a high-order polynomial interpolation (in exp [ iol ] 
or  exp [ io2 ] ) along the sides of a series of concentricsquares, 
a  task that can be  accomplished using a DFT. 

Suppose,  for  example,  that Nu slices intersect the vertical 
sides of an array of concentric squares  where Nu 2 N .  (If 
Nu < N ,  then by the  arguments of Section 111, exact  recon- 
struction can be performed.) We can approximate F(w1, W Z )  

along each vertical side  by  a  polynomial of degree Nu - 1 in 
the variable exp [-j(n/W) wz 1. Similarly, if each horizontal 
side is intersected by N h  slices ( N h  < N ) ,  we can approximate 
F ( w l ,  w z )  along these lines  by  a  polynomial of degree N h  - 1 
in the variable exp [ j (n /W)  o1 1. We know, however, that 
f(xl, x z )  is  of finite  order and that in fact F(w1, w2) varies as 
a  polynomial of degree N - 1 in the  appropriate variable along 
all .of these  lines. Thus to the  extent  that  the higher order 
polynomial can be closely approximated  by  the  lower  one, 
we can expect  an  accurate  reconstruction. 

Fig. 18 illustrates four  reconstructions  performed  by  this 
techniaue. Whereas these  reconstructions  represent  an  im- 

Fig. 17. Reconstruction of  the  test pattern of Fig. 7 using the identical 

(a)  16 projections. (b) 32 projections. (c)  64 projections. 
algorithm as for Fig. 16 but varying the number of projections. 

(d)  128 projections. 

so that  the  intersections of the slices with the  concentric 
squares  are evenly spaced on each square. This set of angles 
yields a computationally simpler  algorithm and  it results  in  a 
higher density of samples in  the  “comers” of the  nonzero 
region of F(ul, uz). It  should  be noted  that these two  dif- 
ferent  sets of projection angles yield virtually identical  recon- 
structions. In Fig. 17 we have taken  this  latter strategy for 
choosing projection angles and  examined reconstructions made 
with 16, 32 ,64 ,  and 128 projections to see what improvement 
in reconstruction  quality could be gained by adding more 
projections. 

From  these examples we note  that  the  reconstructions  from 
linear interpolation  from a  concentric-squares  raster  seem to 
be of better  aualitv  than  those  from a  polar  raster. This is - -  
probably  due to  two factors. The  interpolation is one- 
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provement over the corresponding  polar reconstructions,  they 
represent very little  improvement over the straightforward 
linear interpolation  from a  concentric-squares raster. 

As a  final step  in our development of parallel polar and 
concentric-squares reconstruction  algorithms,  it remains to 
implement  the smearing algorithm in concentric-squares fash- 
ion. This is straightforward.  First, we must  express F ( w l ,  wz) 
in concentric-squares coordinates. Defining o to be  a variable 
that designates the  square of interest, i.e., w remains constant 
on each square, and h as the normalized arc length, we obtain 

ju((2- X ) x l   + x z ) ]  dhdw 

j o ( - x l  +(4-  h ) x z ) l  a d o  

(70) 

Now we can apply  the trapezoidal  rule to  the samples in 
concentric-squares  coordinates. We shall assume that  the 
samples are  located  on a regular concentric-squares raster, i.e., 
evenly spaced  in w and evenly spaced in h. We thus  obtain 
a summation  that very much resembles the similar result  in 
polar coordinates: 

2Wk 2N- 4i 
(x1 + x z )  1 

* exp [ j  7 2 Wk ( -x l  + - x 2 ) ] .  N (71) 

Equation  (71) can be shown to  have an interpretation in terms 
of smearing exactly as in the polar case. Each  projection is 
sampled,  and  transformed to obtain concentric-squares samples 
of F(wl , wz). They  are then multiplied  by the weighting 

Fig. 19. Reconstructions  obtained  by using concentric-squares smearing. 

Fig. 20.  Reconstruction of the test pattern of Fig. 7 using concentric- 
squares smearing for several choices of the number of projections. 
(a) 16 projections. (b) 32 projections. (c) 64 projections.  (d)  128 
projections. 

function I w I ,  inverse-transformed, and back-projected as be- 
fore. As in  the polar  case, the mean gray levels of the original 
and of the  reconstruction  are  adjusted  to be equal. 

Fig. 19  presents  some reconstructions generated  by using 
concentric-squares  smearing and in Fig. 20 we present  some 
reconstructions of one of these  photographs  for 16, 32, 6 4 ,  
and 128 projections. It should be noted  that  the quality of 
the  reconstructions,  at least when more than 64 projections 
are used, is very good-in fact,  it is better  than  with any other 
algorithm used for  this  paper. 

One objection to  the use of the concentric-squares  raster 
might be that it assumes a  particular orientation  for  the object 
being reconstructed and that  the projections  are not all being 
treated equally in some  sense.  There  are two  important cases, 
however, in which this can be a  distinct  advantage. One is 
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Fig. 21.  Reconstruction  from  a  series of X-rays of an excised  human 
femur using the  concentric-squares linear interpolation  algorithm. 
(a) One of the  set of  X-rays. @) Reconstruction of cross section at 
the level of  the dark line  indicated in Fig. 2l(a). 

when the  unknown itself has a  preferred orientation, i.e.,  when 
it  tends  to have a  square region of support.  The  second is 
when the  reconstruction algorithm itself does  not  treat all 
projections  identically. This class  of algorithms  includes all of 
the  interpolation algorithms which perform an inverse two- 
dimensional DFT, but  does  not include the smearing  algorithm 
or  the algorithm in  Section IV which uses Hankel transforms. 

In  an  effort to see how well one of these  algorithms would 
perform  on real data, a series of X-rays of an excised human 
femur were obtained. The complete series consisted of 36 
X-rays which were taken  normal  to  the long  axis of the  bone 
at 5' intervals.  Since the algorithms were all designed to per- 
form  twodimensional  reconstructions  from  onedimensional 
projections,  each of the X-rays  was sampled  logarithmically 
along a single line  noimal  to  the long axis and  a single cross 
section of the  bone was reconstructed. Each projection was 
sampled at  256  points and the sampling  interval was the same 
for each projection. These samples were then used to compute 
both polar  and wncentric-squares samples of F(wl , 0 2 ) .  The 
concentricsquares linear interpolation  reconstruction is pre- 
sented  in  Fig. 21(b)  and  one of the X-rays from which it is 
produced is in Fig. 21(a). The  hollow tubular  structure of the 
bone is evident from this reconstruction.  In  addition, material 
of lighter  density is seen inside the  bone.  The  reconstruction 
from a  polar grid was virtually identical. 

VI. ALGEBRAIC RECONSTRUCTION TECHNIQUES 
In  the previous sections we have concentrated  on a number 

of reconstruction algorithms that  are conveniently interpreted 
in Fourier space. In this section we wish to briefly discuss a 

. . . .  

Rg. 22. Procedure for obtaining the Mh value of the pseudo-projection 
at  angfe 6. 

class of algebraic reconstruction  techniques which are imple- 
mented  directly in signal space. A variety of  such approaches 
have been proposed  by Gordon, Bender,  and  Herman [91; 
Gilbert [ 101 ; Goitein [281; and Hounsfield [ 11 I .  The  latter 
has resulted in a marketable device for performing brain scans. 
AU of these  techniques begin with  the  assumption  that  the 
object to be reconstructed is a  sampled array, i.e., it is repre- 
sented  by samples of its  density  on a  Cartesian grid. A pseudo- 
projection at angle 6 for  such  an  object is defined  by  consider- 
ing the  sum  of  the densities contained within  a set of rays of 
width w parallel to the  projection axis. For a twodimensional 
object,  for  example, we consider the  object  as-representable 
by  the densities p(i ,  1) on a  Cartesian grid. The  kth value of 
pseudo-projection at angle 6, denoted by Re (k), is  obtained  as 
indicated in Fig.  22. Specifically, R e ( k )  is equal to the  sum 
of the densities  associated  with the  points  contained within 
the  indicated  ray. 

If the projections from which the  object  is to be recon- 
strukted corresponded to the pseudo-projections, then,  in 
principle, the  reconstruction could be carried out algebraically. 
Specifically, if the  unknown can be  represented  by an N X N 
grid then  it is defined  by N2 density values. Each  pseudo- 
projection value represents a  linear equation  in  the Nz 
unknown density values. Thus  with a  sufficient number of 
projections  a set of Nz linear equations can be obtained which 
can then be solved for  the  unknown densities p ( i , j ) .  For  any 
reasonable value of N this would  result in a large number of 
equations-too  many  equations  in  fact to solve algebraically 
in a  practical system. As an  additional  consideration,  the ap- 
proximation of pseudo-projections  by  projections and  the 
effect of measurement errors  are likely to make the  set of Nz 
equations ill-conditioned or  inconsistent.  Therefore,  the equa- 
tions are solved approximately  in  an iterative  fashion. This 
removes the  constraint  that  the  number of equations equal Nz . 
In fact, Hounsfield uses 4N2 equations  and  Gordon, Bender, 
and Herman use a  much smaller number, typically Nz /4 or so. 

In  the class of algebraic reconstruction  techniques,  an initial 
set of densities for  the  object  are assumed. These initial den- 
sities  are then changed iteratively in  such a  manner that  the 
calculated  pseudo-projections converge to the available pro- 
jection  data. A variety of  methods have been  proposed for 
iteratively changing the densities and  the reader is referred to 
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the  literature  for specific discussions of the various methods, 
A typical  approach is the following adapted  from  Herman, 
Lent, and  Rowland [ 2 9 ] .  Let P,(k) denote samples of the 
projection at angle 8 and R j ( k )  the pseudo-projection at angle 
8 on  the  qth  iteration of the  algorithm.  Furthermore,  let 
p 4 ( i ,  j )  denote  the density at  the i, jth  point  on  the  qth  itera- 
tion.  The algorithm then  sets 

N O ,  k 

where 6 ( i ,  j ,  k, 8) is an  indicator variable which is 1  when p ( i ,  j )  
is included  in the ray  corresponding to R j ( k )  and 0 when it is 
not  and N 6 , k  is the  number of elements  in  that  ray. 

The  family of algebraic reconstruction  techniques  has gen- 
erated a  certain amount of controversy [ 301 , [ 3 1 1, which 
centers  primarily on  the comparison with  Fourier  methods. 
The development and  modification of these  techniques  and 
the  comparison with other  methods  appear  to still be an 
active  area of discussion. These techniques being signal space 
techniques have the  important advantage that signal space 
constraints,  such as the  fact  that densities are of necessity 
positive,  are relatively easy to impose, whereas they suffer 
from  the drawback that  they become computationally in- 
efficient for very large values of N .  These techniques, like the 
Fourier  space techniques, impose  certain constraints  upon  the 
object to be reconstructed. Which set of constraints is the 
more appropriate will probably vary with the  object  under 
investigation and  the required resolution of the finished 
reconstruction. 
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