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ABSTRACT

Data selection algorithms in detection search for a small
subset of the available data that is sufficient for making an
accurate decision. This paper considers data selection for
detection of a known signal in colored Gaussian noise. In
our model, the performance of the matched filter detector
for a specific subset is parameterized by a quadratic form.
Selection of the best subset leads to a combinatorial opti-
mization problem using the quadratic form as the objective
function. Simulations show that heuristic search algorithms
often find good solutions for the selected subset. Addition-
ally, if the noise has a banded covariance matrix, a dynamic
programming algorithm finds the optimal solution for any
subset size.

1. INTRODUCTION

Data selection algorithms identify a subset of data for sub-
sequent signal processing. A variety of hardware architec-
tures amenable to data selection have been proposed. Spe-
cific examples include multiple-antenna wireless commu-
nication systems [4], and wireless sensor networks [2]. In
these systems, collecting data can provide a large portion of
the operating cost, so collecting only a subset of available
measurements can yield significant resource savings. Ad-
ditionally, if the density of sensors or antenna elements is
sufficient, a small subset of the data can yield performance
close to that possible with the full data set.

In practice, selection algorithms should be tuned to a
particular underlying signal processing task. We focus on
the matched filter algorithm for detection of a known signal
in zero-mean Gaussian noise. In this model, the detector
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processes data denoted by the N -dimensional random vec-
tor x. The target signal is given by s and the noise covari-
ance is Λ. The general form of the detector derived from
the likelihood ratio test for this model [6] is

sTΛ−1x
Ĥ=H1

�
Ĥ=H0

η. (1)

The receiver operating characteristic (ROC) for this detector
is parameterized by the quadratic form sTΛ−1s. Increasing
it improves the entire ROC. This quadratic form reduces to
the traditional expression for signal-to-noise ratio when the
noise is white, i.e. Λ = σ2I. We refer to it as equivalent
signal-to-noise ratio, and denote it by SNR.

2. THE RESTRICTED-LENGTH MATCHED
FILTER

We formulate the data selection problem by restricting the
size of the detector input to K measurements. The detec-
tor for any fixed subset is a matched filter, so the critical
issue involves choice of the best such subset. We refer to
a detector designed under the data selection constraint as a
restricted-length matched filter (RLMF).

We can identify selected subsets using diagonal matrices
with boolean entries with K non-zero entries on the main
diagonal. One example is

G =


 1 0 0

0 0 0
0 0 1


 . (2)

The notation for a selected data set with the identity of each
data component preserved is xg = Gx. Using the ma-
trix displayed in equation (2), the selected data is xg =
[x1 0 x3]T .

A compact notation for selection can be denoted by ma-
trix multiplication between x and a non-square boolean ma-
trix. Let G̃ be a K × N matrix restricted such that each
row has a single non-zero entry, and each column contains



at most one non-zero entry. An example corresponding to
the same selection measurements shown in equation (2) is

G̃ =
[

1 0 0
0 0 1

]
. (3)

Likewise, the selected data vector is denoted by x̃g = G̃x.
For a fixed subset indicated by G, the RLMF is designed

according to equation (1) using the covariance and the con-
ditional mean of the random vector x̃g . The new mean and
covariance are

E[x̃g; H1] = s̃g = G̃s
E[x̃gx̃T

g ; Hi] = Λx̃g
= G̃ΛG̃T , i = 0, 1.

(4)

The densities under H0 and H1 are the Gaussian densities
determined by these parameters.

Since the probabilistic model for the hypothesis test af-
ter data selection has the same structure as the original model,
the optimal detector is the matched filter determined by s̃g

and Λx̃g
. Thus, for a fixed subset of measurements, repre-

sented by a particular instance of G, the performance of the
associated whitened matched filter is given by the quadratic
form

SNR(G) = s̃T
g Λ−1

x̃g
s̃g. (5)

The notation in equation (5) represents the SNR quadratic
form for a subset of sensors indicated either symbolically as
G or explicitly, such as {x1, x3, x8}.

Selecting the data subset yielding the best RLMF is a

combinatorial optimization problem. There are
0
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lection matrices that satisfy the subset size constraint. Op-
timization of SNR(G) over this finite set produces the best
detector. When the noise is white, selection of the subset
that maximizes ‖s̃g‖2 maximizes SNR(G). In the gen-
eral case, however, the maximum energy selection rule may
work poorly.

To cope with non-white noise, a variety of heuristic so-
lutions have been suggested [3, 5]. Common approaches
involve tests for local optima, branch and bound search, and
incremental searches that add measurements to maximize
the change in SNR, referred to as greedy algorithms.

3. GREEDY SEARCH ALGORITHMS FOR THE
RLMF

This section focuses on forward and backward greedy se-
lection algorithms. The forward greedy algorithm builds a
selected subset by adding measurements that maximize the
incremental increase in SNR, terminating after selecting a
K element subset. The backward greedy algorithm discards
measurements one at a time, minimizing SNR loss in each
stage, again terminating with K measurements. These algo-
rithms initialize more complicated search procedures such
as the local search and the branch-and-bound search.

An expression for the changes in SNR is derived using
a formula for the inverse of a partitioned matrix [5]. To
apply this result, we require notation to identify individual
columns of Λx̃g

. Let G denote a subset, and consider the
change in SNR from adding xi, such that Gii = 0. Let zi

contain the elements of the ith column of Λ corresponding
to the rows identified in G. In terms of these quantities, the
SNR after adding xi to the subset is

SNR({G ∪ xi}) = s̃T
g Λ−1

x̃g
s̃g +

(
si − zT

i Λ−1
x̃g

s̃g

)2

[Λ]ii − zT
i Λ−1

x̃g
zi

. (6)

The forward SNR increment, the change in SNR due to
adding measurement i to the subset identified in G, is given
by

∆+(G, i) =

(
si − zT

i Λ−1
x̃g

s̃g

)2

[Λ]ii − zT
i Λ−1

x̃g
zi

. (7)

The SNR increment when a measurement is discarded has
a similar form. For a subset where Gjj = 1, let G′(j)
indicate the selection matrix formed when j is discarded.
The reduction in SNR is ∆+(G′(j), j) using the form of
equation (7). For convenience, the SNR reduction is also
written as ∆−(G, j).

The greedy algorithms determine the measurement to
select or discard by computing the SNR increments for each
possible measurement. The forward greedy algorithm be-
gins with no selected measurements and adds the unselected
measurement that maximizes ∆+(G, i); the backward greedy
algorithm begins with G = I, and removes the measure-
ment that minimizes ∆−(G, i).

4. CONDITIONS FOR AN EXACT SOLUTION
WITH MAXIMUM SIGNAL ENERGY SELECTION

In certain cases, selection algorithms less computationally
complex than the greedy search can find the optimal RLMF
subset. As mentioned in section 2, the maximum signal en-
ergy subset is optimal when Λ = σ2I. This section gen-
eralizes this result, providing a sufficient condition for the
optimality of the maximum signal energy selection rule in
cases when Λ is not diagonal. In this section, G∗ denotes
the K element maximum signal energy subset, and s̃g∗ de-
notes the corresponding signal measurements.

The sufficient condition follows from bounds on SNR(G).
Let dmax(Λ) and dmin(Λ) be maximum and minimum eigen-
values of Λ. The relationship between Λ and Λ x̃g

[1, pg.
189] indicates that the inequalities

dmax(Λ) ≥ dmax(Λx̃g
) ≥ dmin(Λx̃g

) ≥ dmin(Λ) (8)

hold for any choice of Λx̃g
. Applying this result, we see



that SNR(G) is bounded by

‖s̃g‖2

dmin(Λ)
≥ SNR(G) ≥ ‖s̃g‖2

dmax(Λ)
(9)

for any subset G.
The maximum energy subset remains the source for the

optimal RMF if the inequality

SNR(G∗) ≥ SNR(G) (10)

holds for all K sample subsets. An application of the lower
bound in equation (9) to SNR(G∗) and the upper bound to
SNR(G) shows that the condition

‖s̃g∗‖2

dmax(Λ)
≥ ‖s̃g‖2

dmin(Λ)
(11)

guarantees that SNR(G∗) exceeds SNR(G). If the inequal-
ity holds for every arrangement of G with K elements, the
inequality gives a sufficient condition for the maximum en-
ergy subset to yield the best RMF. The condition can be
checked by comparing G∗ with the subset that has the sec-
ond largest signal energy. If (11) holds for this subset, it
holds for all other K element subsets. In cases where the
condition does not hold, the maximum signal energy selec-
tion rule is not optimal, and the greedy search algorithm
often performs better.

5. WORST-CASE PERFORMANCE OF THE
GREEDY ALGORITHM

In general, the greedy algorithm is sub-optimal, but we can
characterize its worst-case behavior. If the SNRs for the
optimal subset and one selected by a greedy algorithm are
SNR(Gopt) and SNR(Ggr), the approximation ratio for
the greedy algorithm is α = SNR(Gopt)/SNR(Ggr). If
Ggr = Gopt, the ratio is α = 1. Large values of α corre-
spond to poor RLMF performance.

The upper bound on α follows from the bounds in equa-
tion (9). Applying these bounds to the expression for α, we
find that the approximation ratio is bounded by

α ≤ ‖sopt‖2

‖sgr‖2

dmax(Λ)
dmin(Λ)

=
‖sopt‖2

‖sgr‖2
κ(Λ), (12)

where κ(Λ) denotes the condition number of Λ and s opt

and sgr are placeholders for the signal entries selected by
Gopt and Ggr. Note that equation (11) can be rearranged to
resemble equation (12).

Thus, the greedy algorithm can perform poorly when
κ(Λ) is large and the ratio between ‖sopt‖ and the norm of
any other selected subset exceeds some finite constant. Un-
fortunately, there are instances where the greedy algorithm
selects a subset that meets the upper bound in equation (12)
with equality [7].
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Fig. 2. SNR versus K for Forward Greedy selection al-
gorithm, maximum signal energy selection, and exhaustive
search selection.

6. PERFORMANCE COMPARISON FOR THE
GREEDY ALGORITHM

In practice, the greedy algorithm often performs well even
when κ(Λ) is large. As an example, consider the signal in
Figure 1. The signal is a 15-sample damped sinusoid. In the
simulation, the covariance is a symmetric Toeplitz matrix
generated by the sequence 12 ∗ (.995)i, for i = 0, . . . , 14.
The condition for this covariance matrix is κ(Λ) = 5774.8.

Despite the large condition number in this instance, the
forward greedy algorithm performs well. Figure 2 shows
the performance of the forward greedy algorithm, the maxi-
mum signal energy selection algorithm, and the optimal se-
lection based on an exhaustive search. The forward greedy
algorithm does almost as well as the exhaustive search, and
significantly better than the maximum signal energy selec-
tion rule. Additionally, the RLMF with K = 5 performs
almost as well as the full matched filter.

7. DYNAMIC PROGRAMMING SOLUTIONS FOR
BANDED MATRICES

In some cases, we can use the special structure of Λ to de-
rive search algorithms guaranteed to find the optimal RLMF
subset. In this section, we consider instances of the RLMF



problem where Λ is a tri-band matrix. In these instances,
all the non-zero entries of Λ lie along the main diagonal
and two adjacent diagonals. Exploiting this structure, the
best RLMF subset for any K can be determined by a dy-
namic programming algorithm. This section develops the
ideas behind the algorithm and presents a brief example.

Regardless of the properties of Λ, the vector xg can be
built from segments of consecutive data, which we refer to
as fragments. For example, consider the selected subset

xT
g =

[
x1 0 x3 x4

]
. (13)

In this example, the selected subset consists of {x1, x3, x4}.
For this subset, the two fragments are {x1} and {x3, x4}.
For tri-band matrices, the fragment decomposition constrains
the structure of Λx̃g

. In example (13), the selected covari-
ance matrix is

Λx̃g
=

[
[Λ]11 0T

0 Λ{3,4}

]
. (14)

Here, Λ{3,4} is the covariance matrix for {x3, x4} and 0 is a
2× 1 vector of zeros. Note that measurements from distinct
fragments are uncorrelated.

The decomposition can be extended to an arbitrary num-
ber of fragments. Any selection matrix G can be broken
into f distinct fragments. The selection matrices identify-
ing the fragments are expressed as G1,G2, . . . ,Gf . When
Λ is tri-band, the selected covariance matrix Λ x̃g

is block
diagonal, as indicated in equation (14). Thus, the SNR can
be decomposed as

SNR(G) =
f∑

i=1

SNR(Gi) (15)

since the inverse of a block diagonal matrix is also block
diagonal and the SNR(G) denotes a quadratic form.

A dynamic programming algorithm exploiting this struc-
ture can determine the optimal RLMF subset for any K . We
give an example for the case of K = 2 that illustrates the
general ideas in the algorithm. A brute-force search for the
best K = 2 RLMF requires O(N 2) computation. The dy-
namic programming algorithm reduces this complexity to
O(N log N).

As a first step, consider a two-element subset with the
first element fixed as xi. If the subset elements are not con-
secutive, the subset SNR can be written

SNR(G) = SNR({xi}) + SNR({xi+j}), (16)

where j > 1. Since the first element of the subset is xi, op-
timization over all such subsets composed of two fragments
is reduced to choosing the index of the second element ac-
cording to

a(i) = arg max
j∈[i+2,N ]

SNR({xj}). (17)

As a second step, the best K = 2 subset with first element at
index i can be determined by comparing SNR({x i, xi+1})
and SNR({xi, xa(i)}). Finally, the best K = 2 RLMF sub-
set can be determined by calculating the best subsets with
fixed first element for i = 1 to i = N − 1 and searching the
list for the best subset.

Equation (17) indicates that the optimization procedure
for K = 2 utilizes results for single element subsets. Specif-
ically, a table of the maximum SNR({xj}) element with
index satisfying j > i, for i = 1, . . . , N − 1 simplifies
the optimization in the equation from a search through a list
to a look-up. The computation necessary to construct this
table is dominated by an O(N log N) sort of the single ele-
ment SNRs. The computation of all the SNRs of the form
SNR({xi}) and SNR({xi, xi+1}) has O(N) complexity,
and calculating a(i) for i = 1, . . . , N − 2 from the sorted
K = 1 results has O(N) complexity, so the sort dominates
the computational complexity of the algorithm for K = 2.

This dynamic programming procedure, where solutions
for K are computed using intermediate solutions for subsets
of up to K − 1 elements, can be expanded to computing
optimal subsets for any value of K . The complete algorithm
is developed and generalized to banded matrices with wider
bands in [7].
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