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4g ~ ~ - Abstract

In this thesis, a new theory analyzing the relations between 3-D convex objects
and their silhouettes in orthographic projections is presented. The theory is based on
three new representations of 3-D surfaces in terms of scalar, vector and tensor func-
tions on the Gaussian sphere, and the matching representations of 2-D curves by func-
tions on the Gaussian circle. The key advantage of these representations is that a slice
through the spherical representation of a 3-D object is closely related to the circular
representation of the silhouette of the object in a plane parallel to the slice. This rela-
tion is formalized in three Silhouette-Slice theorems, which underline the duality
between silhouettes in object space and slices in the representation space. These
theorems apply to opaque objects and have a conceptual similarity with the
Projection-Slice theorem, which applies to absorbing objects.

Silhouette construction with the theorems is demonstrated by examples of
silhouettes of complex curved surfaces. Applications to the reconstruction of object
shapes from silhouette measurements and to the recognition of objects based on their
silhouettes are suggested.

Thesis Supervisor: Jae S. Lim
Title: Associate Professor of Electrical Engineering
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Chapter 1
Introduction

Visual information is the prime communication medium for humans. Analysis of

this visual information and of its processing is important and serves multiple pur-

poses. Visual information generally consists of images of scenes in the three-

dimensional world projected on two-dimensional surfaces such as paper, film, video

screens or the human retina. Information intrinsically contained in these images is

best characterized by regions with intensities, colors and texture, and discontinuities

between these regions. On the other hand, scenes are better described by the sets of

objects present in the scene, shapes, surface properties and spatial arrangement of these

objects and the illumination of the scene. Substantial work has been accomplished in

studying the relations between scene properties and image properties. Theories

developed so far have permitted for example, the development of systems for syn-

thesizing realistic images, for enhancing images, and for recognizing objects in images.

In most theoretical analyses of the relations between scenes and images, only one

or a few image properties are related to their correspondent properties in the scene. In

addition, assumptions are made which decouple these relations from other effects. The

decoupled problems are amenable to analysis, and their solutions are often found

valuable outside the simplified context. The present thesis follows this approach by

considering only relations between silhouette shapes in images and object shapes in the

scene.

1.1. Silhouettes

The word silhouette" is generally used in two similar senses. The first

corresponds to portrays or scenes depicted as outlines filled in with black, whereas the

second corresponds to just the outlines themselves; see Fig. 1.1. Clearly, these two con-

cepts are closely related, and it is easy to transform one form into the other. For the

sake of clarity, we have decided to use the word "silhouette" for the outline only, and

the expression "filled-in silhouette" for the outline filled-in with black. More pre-

cisely, the silhouette of an object in an image will refer to the curve which outlines

the image region covered by the projection of the object.

- 10-
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Fig. 1l.1. Silhouette as a) a filled-in outline, ) an oulline. (from [1].)

Among a variety of features which can be identified in an image, silhouettes are

known to convey a strong perceptual content for humans [2, 3]. For example, most of

us recognize without difficulty the various animals represented by filled-in silhouettes

in Fig. 1.2. In this thesis, a new theory is developed to relate shapes of silhouettes to

shapes of the corresponding 3-D objects.

1.2. Three Basic Problems

Although the initial motivation for our work came from the domain of machine

vision, relations between objects and silhouettes can be exploited in a variety of con-

texts. A majority of the applications are closely tied to one of three basic problems,

namely silhouette construction, reconstruction from silhouettes and recognition from

silhouettes. These -three basic tasks are now outlined as a motivation for the analysis

of object-silhouette relations.

The first problem is that of silhouette construction from a description of the 3-D

shape of the object and the imaging geometry. This construction is required for exam-

ple for the synthesis of blueprints from 3-D object models. Presently, most synthetic

renditions are in the form of shaded images. For these, silhouette construction is not

explicitly required but can be used for anti-aliasing processing or for outlining areas to

be covered by surface painting processes.

I - -
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I

Fig. 1.2. Filled-in silhouettes of animals (from [1]).

The second problem is that of reconstructing the shape of a 3-D object from

silhouette data. It is easy to see that the reconstruction of the shape of a 3-D object

from one silhouette is largely underconstrained. Reconstruction of general shapes is

possible only when multiple silhouettes are available for processing; this occurs in

some examples of medical imaging and non-destructive testing, and for vision systems

where several views of the object are available [4].

The third problem is that of 3-D object recognition from silhouette data. A

silhouette recognition system would exploit silhouette data obtained from an image,

M
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and compare this with a description of the 3-D shape of a known object. The system

must determine if there is evidence in the silhouettes suggesting the presence of the

given object in the imaged scene, and estimate its position and orientation in the scene.

A large number of solutions to this problem have been proposed for the case where the

viewing direction relative to the object is known a-priori. In that case, the silhouette

can be precomputed up to a rotation and a translation in the image plane, so that the

matching process is greatly simplified. When there is no a-priori estimate of object

orientation relative to the camera, the same object can produce very different

silhouette shapes, and the problem is much more complex.

1.3. Previous Work on Silhouettes

Previous approaches to silhouettes are briefly sketched here; they will be dis-

cussed in greater detail in Chapter 2. Most algorithms presented in the past for solv-

ing the problems mentioned in the previous section have been based on the well-

known relation between coordinates of points in the scene and coordinates of their

projection in the image [5]. In order to relate object shape and silhouette shape, this

relation must be combined with the knowledge of which points of the object in the

scene are projected onto the points of the silhouette in the image. Silhouette analysis

based on projections of points is satisfactory for the development of many computer

graphics algorithms, has helped to develop methods for reconstructing objects from

silhouettes and methods for recognizing block objects from their silhouettes. How-

ever, there are several drawbacks in the classical formalism. First, the classical

method does not explicitly analyze the relation between curved 3-D shapes and their

silhouettes. Shapes of generalized cones have been related to the shapes of their

silhouettes [6], but these relations are approximate and apply to simple generalized

cones only. Second, the classical method does not easily support intuitive reasoning

when several object points are related simultanesouly to the corresponding silhouette

points. Third, no intermediate representation has been proposed where information

from different silhouettes is readily combined. Finally, the relations between

silhouette points and object points must be supplemented by various ad hoc arguments

to solve different problems.

t
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Deficiencies of the classical silhouette theory are most severe for the problem of

recognition, but the other two application areas can also benefit from new results on

silhouette analysis.

1.4. Thesis Overview

Solving any of the three basic problems described in section 1.2. requires a good

understanding of the relation between the shape of a 3-D object and the shape of its

silhouette obtained for any given viewing direction. In this thesis, we present new

representations for objects and silhouettes, and the relations between these representa-

tions for corresponding object-silhouette pairs. Specifically, silhouette curves will be

represented by functions on the Gaussian circle, and object surfaces by functions on

the Gaussian sphere. The functions describing these shapes are chosen in such a way

that the relation between object functions and silhouette functions is particularly sim-

ple. The representation of a given silhouette is simply related to a slice of the

representation of the object on the sphere. The new theory hence relates silhouettes of

objects to slices of their representations, and the theorems formalizing these relations

have been named "Silhouette-Slice" theorems.

The theories presented in this thesis apply to the case of orthographic projection

only, and are initially developed for smooth strictly convex objects, such as the super-

quadric in Fig. 1.3. Although the class of smooth convex shapes is somewhat res-

tricted, the theorems will be extended to cover objects with corners, edges and flat

components, which include convex polyhedral objects such as in Fig. 1.4. As a conse-

quence, the same theories are capable of analyzing silhouettes of curved objects and of

V

a) b)

Fig. 1.3. Superquadric and its Silhouette for the Viewing Direction 7.
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v

a) b)

Fig. 1.4. Cube and its Silhouette for the Viewing Direction v.

polyhedral objects. Furthermore, some of the results are applicable to non-convex

objects such as the torus depicted in Fig. 1.5. However, Silhouettes of non-convex

objects may contain singularities such as inflections and cusps which are not well

analyzed with the Silhouette-Slice theorems, but which have been studied in detail in

other work [7, 8, 91. Finally, the scope of the results can be extended considerably

when Boolean combinations of objects are considered. Indeed, combinations of simple

primitives such as the superquadric in Fig.1.3 have been shown to adequately model

complex objects [101.

The new theorems allow the derivation of closed form expressions for the

silhouettes of complex 3-D shapes, when these are defined analytically. In addition to

these mathematical relations between silhouette and surface shapes for the class of

a) b)

Fig. 1.5. Torus and its Silhouette for the Viewing Direction v.

if

1a
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objects of interest, the new theory also provides an elegant qualitative interpretation

of these relations. The framework of the Silhouette-Slice theorems is well suited to

develop an intuitive understanding of the relations between silhouette shape and

object shape. The representations proposed for 3-D shapes can be thought of as inter-

mediate representations in which information from silhouettes corresponding to

different viewing angles is readily combined. Finally, the representations of an object

by functions on the sphere can be interpreted as a compact representation for the set of

all the silhouettes of the object.

1.5. Thesis Organization

The second chapter of the thesis reviews some earlier work on silhouettes in the

context of the three basic problems outlined in section 1.2. As object modeling plays

an important role in the analysis of relations between object shape and silhouette

shape in general, and in the analysis presented in this thesis in particular, previous

work on that subject is also reviewed.

Chapter 3 reviews some basic concepts of analytic and differential geometry. In

addition to the review of classical concepts, a number of original geometrical concepts

are presented. The first is the definition of an invariant measure of surface curvature.

The second concept is the definition of local reference directions at each point of the

Gaussian sphere, in order to support the discussion of object functions with vector and

tensor values. Finally, a relation is proposed between representations of normals with

gradients in a Monge parameterization on one side and with coordinates on the Gaus-

sian sphere on the other side.

In Chapter 4, the classical approach to silhouette construction is reviewed. This

approach consists of a two-step process, where the first step is the selection of object

points which contribute to the silhouette, and the second step is the projection of these

points. This approach is illustrated in the case of a simple object, a cone. The

equivalent formalism is also presented in the dual space of tangents. For both

methods, surface normal orientation is shown to be the key parameter to silhouette

construction with orthographic projection. This conclusion motivates representations

of objects and silhouettes where normal orientation is explicit.

____



- 17 -

Chapters 5 and 6 present the major developments in this thesis. A set of

representations is developed or 2-D curves and for 3-D surfaces, with the relation

between these representations for an object-silhouette pair.

Chapter 5 introduces three different representations for the shapes of 3-D object

surfaces and for the shapes of 2-D silhouette curves, as functions on the Gaussian

sphere and on the Gaussian circle respectively. All three representations are unique

and uniquely invertible for objects in the class of interest, and are explicitly phrased

in terms of normal orientations. A close parallel is followed in the discussion of the

representations in 2-D and 3-D.

Chapter 6 presents three theorems expressing the relations between corresponding

silhouette circular functions and object spherical functions. A unified proof method is

presented for the three theorems corresponding to each of the three representations.

The spherical transforms of 3-D objects are also interpreted as compact representations

of the set of all their silhouettes.

Chapter 7 extends the theories presented in Chapter 5 and 6 to the case of object

surfaces with edges, corners and planar faces.

In Chapter 8, examples of silhouette construction with the Silhouette-Slice

theorems are provided. Other applications of the method are suggested, such as a stra-

tegy for reconstructing objects from silhouette data, and the principles of a recognition

scheme for silhouettes.

Finally, Chapter 9 concludes by summarizing the key contributions of this thesis

and suggesting directions for future work.



Chapter 2
Literature Review

In this chapter, previous work on silhouette analysis is reviewed. As no general

framework previously existed for this analysis, much of the work on silhouettes pub-

lished in the literature is found in application areas and considers relations between

object shape and silhouette shape only in the context of particular tasks. Literature is

most abundant for the problem of recognition, but it is also instructive to consider

how silhouettes have been handled in other application areas. The first part of this

chapter examines existing approaches to the three basic problems outlined in Chapter 1.

In order to relate silhouette shapes and object shapes, it is necessary to base the

relations on some description of the shape of the object surfaces. Therefore, surface

modeling procedures play a central role in any analysis of the silhouette problem. In

addition, one of the key contributions of this thesis is a set of surface representations

for which the relations between objects and silhouettes are greatly simplified. The

second part of this chapter reviews previous work on surface modeling, with special

emphasis on the relations between the proposed representations and the shapes of

silhouettes.

2.1. Literature on Silhouettes

2.1.1. Construction of Silhouettes

Most examples of numerical evaluation of silhouettes are found in the synthesis

of images in the field of computer graphics. Several references, such as [11, 12], pro-

vide a good introduction to the field. The synthesized image can take different forms,

such as wireframe diagrams, blueprints, or shaded renditions. In the case of blue-

prints, the output image consists of lines and curves representing creases in the object

surface and silhouettes of the object and of its parts. For this type of output, explicit

silhouette construction is necessary. In the case of shaded images however, explicit

construction of silhouettes can be avoided, as they are implicitly generated on boun-

daries of rendered surfaces. Although explicit construction of the silhouettes is not

indispensable for the synthesis of shaded images, it can be useful for example in the

- 18-
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elimination of jagged outlines, known as anti-aliasing processing. In the synthesis of

both shaded renditions and wireframe drawings, silhouettes can also be used to deter-

mine a-priori which regions of the image will be covered by which objects. With this

information, the rendition can be divided into several processes without risk of

interferences if the processes are run in parallel. Silhouettes can also be useful for the

rendition of shadows. The determination of the shadow of an object on a planar sur-

face is equivalent to the determination of a silhouette of the object for an appropriate

imaging geometry [13]. Results obtained for silhouettes are hence immediately appli-

cable to shadows. In summary, the construction of silhouettes is used or has a poten-

tial for use in several facets of image synthesis.

Computer graphics is a relatively mature field, and some silhouette construction

methods are well known. Most of these are based principally on the relation between,

coordinates of points in the scene and coordinates of their projection in the image

plane; these relations are nicely illustrated in the context of graphics in [5]. In addi-

tion to the relation between point coordinates, the exact shape of the silhouette

depends on which points of the object are projected onto the points of the silhouette;

this set of object points is referred to as the silhouette generator in this thesis.

Methods for determining the silhouette generator depend on the type of representation

for the objects. In the case of polyhedral objects, the silhouette generator is the set of

all edges touching a face oriented towards the eye position and a face oriented away 4

from the eye position. The selection of this set of edges usually requires a search

through all the edges of the polyhedron. Objects with curved surfaces are often

described as collections of curved surface patches, such as segments of spheres,

cylinders, general quadrics, superquadrics, Bezier patches, B-spline surfaces ... In this

case, the silhouette is a 3-D curve containing all the points where the viewing rays are

grazing the object surface; this curve is twisted in general. For quadrics and some

higher order surfaces, closed-form expressions have been determined for the silhouette

generator and for the silhouette itself. For other surfaces, accurate approximations

have been proposed.

_ .__ ___
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2.1.2. Reconstruction from Silhouettes

In a significant number of cases, images contain little more information than the

silhouettes of the imaged objects. This arises for example in some nondestructive test-

ing x-ray images, in images of backlit objects, and in some range images [14, 15]. It is

often desirable to estimate the 3-D shape of the imaged objects in those circumstances.

It is intuitively obvious that a large number of different 3-D objects could have gen-

erated any given silhouette, so that reconstruction of a 3-D object shape from the

shape of one silhouette is ambiguous. Several ways have been proposed to reduce or

resolve this ambiguity, e.g. by considering restricted object classes, by using more than

a single silhouette, or by applying regularization methods. Previous work on these

three facets of reconstruction from silhouettes is now reviewed.

Exact reconstruction of a 3-D shape from one silhouette can be guaranteed only

by considering a restricted class of 3-D objects. An interesting class which has been

considered is the class of axisymmetric objects. For these objects, the silhouette con-

struction is invertible in the absence of self-occlusions, for known object orientation.

However, the orientation of the object axis is usually unknown a-priori and must be

estimated from the image data. Methods have been proposed for estimating this orien-

tation from the shape of the silhouette of the object base, or from a self-shadow on the

object image [13]. In a recent paper, the author has proposed an alternative method

based on the Silhouette-Slice theory, for determining the orientation of the axis [16].

A second approach to the reconstruction of object shape from silhouette data is to

consider the problem as improperly posed and to apply regularization techniques [17].

A unique shape estimate is obtained by maximizing some smoothness constraint while

matching the observed silhouette. Strong constraints are imposed by the silhouette

observations when object surfaces are assumed to be continuous along the silhouette

generator, so that the surface must be tangent to the viewing rays corresponding to the

silhouette. The object surface orientation is uniquely determined at these points by

the silhouette orientation in the image and by these viewing rays. Reconstruction

results obtained with this method seem to be in acceptable agreement with the human

perception of shape from silhouette images.

Complete and accurate reconstruction of 3-D shapes from silhouette data is possi-

ble for a large class of objects, when multiple silhouettes are available. A well-known
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solution to this problem consists of first considering, for each projected silhouette, the

object outlined by the corresponding viewing rays. This object, referred to as the

extruded silhouette by some authors, is a prism for parallel projection, a generalized

cone for perspective projection. The orientation of each extruded silhouette in a world

reference frame can be determined from the imaging geometry for the corresponding

silhouette so that all extruded silhouettes can be combined in the world reference

frame. Among all objects with shapes consistent with the measured silhouettes, the

intersection of all these extruded silhouettes is the object with the largest volume.

This maximal volume object can be considered as an estimate of the object shape.

Implementations of this reconstruction procedure are discussed in [4, 18].

2.1.3. Recognition from Silhouettes

Object recognition from image data is a major concern in the field of machine

vision. Several books, such as [19, 20, 21], provide a good introduction to the field.

Silhouettes are important features in images of objects, so that substantial research has

been accomplished in the area of recognition from silhouette data. A summary of

some important published research on this topic is sketched below.

Whereas objects in a scene are generally three-dimensional, their silhouettes in

images are necessarily two-dimensional. As a result, object shapes can not be directly

related to the shape of their silhouettes. Several strategies have been proposed to cir-

cumvent this apparent mismatch. The first approach consists of precomputing

silhouettes for the known objects and performing the match at the 2-D level. In the

second approach, only planar objects or planar object parts are considered, but their

plane is not required to be parallel to the image plane. The third approach consists of

first processing the observed silhouette to estimate the shape of the corresponding 3-D

object, then performing the match at the 3-D level. The fourth approach consists of

devising judicious models for both objects and silhouettes so that the match can be

performed between features of these models. Most algorithms proposed for recogni-

tion from silhouettes can be related to one of the above classes.

Systems which compare the observed silhouette with synthesized silhouettes

must perform matches between 2-D outlines differing by only translations and rota-

tions in their plane. Numerous methods have been proposed for performing this
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operation on complete silhouettes [22- 301. However, these methods require the

knowledge of the correct 3-D object orientation and work well only when this orienta-

tion can be estimated a-priori. Otherwise, a large number of orientations must be tried,

requiring matching and either computation or storage of large numbers of silhouettes

for each object in the data base. These requirements may easily become excessive for

medium to large object data bases.

When only planar objects are considered in the scene, the object outline is related

to the observed silhouette by an affine transformation. A method has been proposed to

characterize planar objects by features invariant in affine transformations [31]. With

this method, general polyhedral objects can be recognized by building a separate model

for each planar face and matching each of these to image features.

A different strategy consists of first performing an approximate reconstruction of'

the 3-D shape of the object using procedures similar to those described in the previous

section. The reconstructed shape is then matched with known object models. When a

restricted object class can be hypothesized or when a large number of silhouettes is

available, accurate reconstruction of the 3-D object shape is possible, and the problem

becomes one of 3-D shape matching. When the approach is applied to a single

silhouette with no constraints on the 3-D shape, the information is insufficient to accu-

rately reconstruct the 3-D shape so that this strategy is difficult to implement. Work

has been done on qualitative estimation of object shape from silhouette data, and on

the use of this information for recognition (see for example [32, 33]).

A number of systems have been reported where nontrivial 3-D object features are

compared to 2-D silhouette features. Two characteristic examples are described here.

The first example is given by the ACRONYM system [34], where object features are a

collection of generalized cones which describe the object shape. These features have

"ribbons" for silhouettes and the relations between corresponding cone/ribbon parts are

readily evaluated. A parsing mechanism converts each measured ribbon into sets of

inequality constraints on the parameters of corresponding object cones. These con-

straints are collected and the matching is converted into a decision procedure for the

large resulting set of inequalities. Success of this approach is partially linked to the

astute choice of cones and ribbons, a set of corresponding features which judiciously

relate silhouette information to object information. The second approach considered



- 23-

here consists of extracting edge features from both the silhouette and the object and of

performing the match based on these edges. Goad proposes a fast implementation of

this procedure [35]. In this case too, the choice of features is appropriate since relation-

ships between image edges and object edges are straightforward.

In many of the approaches discussed above, the measured silhouette must be com-

plete. If part of the silhouette is missing, recognition can be much more complex.

Missing silhouette parts may be due for example to occlusions in the scene or segmen-

tation errors in early processing of the image data. Although recognition of 2-D

objects has been demonstrated in cases of partial occlusion, for example in [36], the

problem of 3-D object recognition from partially occluded silhouette data still requires

substantial work.

In addition to the work presented above which is intrinsically related to applica-

tions, some more general analyses of silhouettes have been presented. Shafer reviews

some basic silhouette construction methods, referred to as "classical" in this thesis, and

draws a number of conclusions for the analysis of silhouettes of generalized cones [13].

In other work, Koenderink has considered the relation between characteristic events on

the silhouette curve and corresponding surface features [7]. His work is the only

reference known to the author where relations between shapes of surfaces and shapes

of their silhouettes are analyzed in detail. He independently discovered the dual of

Euler's theorem [33] presented in Appendix 3. d

4
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2.2. Literature on Object models

This section gives a brief overview of modeling methods for 3-D shapes and their

consequences for silhouette analysis. Quite different approaches to modeling must be

followed, depending on whether the models are used for synthesizing or for recogniz-

ing shapes. Modeling methods intended for synthesis are used in CAD/CAM systems,

and the theories are covered in texts such as [37, 38]. Modeling for recognition is

addressed in texts on computer vision and in a number of articles such as [39, 40]. As

models for synthesis pertain to silhouette construction and models for recognition per-

tain to recognition, both aspects of modeling are addressed here. Since silhouettes

depend only on the exterior surfaces of objects, modeling methods specifying the inte-

rior of objects such as constructive solid geometry or solid patches are not addressed

here. .: . :,

The synthesis of a complex shape usually starts by breaking up the surface into

simpler parts (surface patches), then independently describing each part by some

atomic surface element using a limited number of parameters. Basic elements include,

in order of increasing complexity, planar facets, segments of spheres, cylinders, cones,

quadrics, superquadrics and parametric surfaces such as Bezier patches or B-spline

patches. In order to determine silhouettes of the synthetic shapes, closed-form expres-

sions are desirable for the silhouettes of the set of basic element types.

When defining a model for the shape of a given object by the above method, it is

generally attractive to position the element boundaries at some meaningful surface

boundaries, although this is not necessary. It is usually possible to define or closely

approximate the same shape by several different descriptions. In the field of machine

vision however, careful attention is paid to the uniqueness of the representation of the

objects. Difficult issues arise in recognition when the same shape can be described by

different representations. Therefore, representations used for shape synthesis are usu-

ally not appropriate as such for recognition applications.

In some early machine vision systems, 3-D objects were represented by 2-D views

corresponding to different aspects. The major problem of this method is the large

number of different views required for describing each object. Although 3-D represen-

tations are now generally preferred, interesting approaches based on 2-D representa-

tions are still proposed [41]. Analysis of complex silhouettes such as the ones in
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Fig. 1.2 is difficult because natural objects such as these animals have extremely com-

plex and variable shapes. Analysis of their silhouettes requires the combination of an

understanding of image processing and geometry on one side, and of representation

mechanisms for the structure of complex shapes on the other side. Some authors in

the computer vision community have adopted a representation of 3-D objects in terms

of generalized cones [6, 13, 19, 34, 42]. These models are viewpoint independent and

are well adapted to the representation of complex shapes. When applied to silhouette

analysis, the proposed method is attractive because silhouettes can be approximately

predicted by a simple method for a large class of generalized cylinders. There are

however a number of drawbacks to modeling with generalized cones. Generalized cone

models are not always unique and, for complex surfaces, the usual approximations

involved may lead to incorrect conclusions [43].

A very different modeling approach is taken by Horn with the Extended Gaussian

Image [44]. The Extended Gaussian Image represents a complex shape in one step,

specifying the shape by a scalar function on the Gaussian sphere. The value of the

function on the sphere defines the inverse Gaussian curvature of the surface at the

corresponding point of the object. This representation is known to be complete and

unique for convex objects. An algorithmic inversion has been proposed and its imple-

mentation reported in [451. The Extended Gaussian Image combines information

related to different viewpoints in an elegant way. It has been successfully used in

recognizing and positioning 3-D objects [46]. It will be shown in this thesis that the

Gaussian mapping greatly simplifies the selection of silhouette generator points. How-

ever, the Gaussian curvature of the object is not related to silhouette properties in a

straightforward way, a fact that makes the Extended Gaussian Image inappropriate

for work on silhouettes.

2.3. Conclusion

To summarize our analysis of the literature on silhouettes, we notice that work

published on silhouettes suffers from the lack of a basic theory which would summar-

ize most of the individual results. In addition, a detailed analysis of the relation

between complex curved shapes and their silhouettes has not been presented. Finally,

our survey of classical modeling techniques reveals that silhouette shapes cannot
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usually be related to the 3-D representations. This thesis tries to overcome these

deficiencies by contributing a basic theory of silhouettes for objects with curved sur-

faces. It will be shown that the theory based on curved surfaces can be easily

extended to surfaces with edges, corners and planar faces, so that the same theory can

be used in many situations.

The new theory is based on a set of three new representations for the shape of 3-

D surfaces, and the corresponding representations for planar curves. The new object

representations presented in this thesis retain a basic concept of the Extended Gaussian

Image. namely the description of object shapes by functions on their Gaussian sphere.

The functions used in the representations proposed in this thesis specify points,

tangent planes and complete curvature of the object surfaces. These functions are

easily related to the corresponding functions for silhouettes corresponding to any

viewing direction. Some of the functions on the Gaussian sphere are substantially

more complex than the the function represented in Extended Gaussian Image function

and require the definition of vectors and tensors at each point of the Gaussian sphere.
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Chapter 3
Background

In this chapter, the framework in which the silhouette analysis will be developed,

is reviewed. As silhouettes refer to outlines of image projections, the study of

silhouette shapes is equivalent to the study of the shape of closed curves. A key issue

addressed by this thesis is the relation between silhouette shapes and shapes of the

corresponding objects. Opaque objects are completely determined by their bounding

surface so that object shapes are equivalent to shapes of closed surfaces. It will hence

be possible to phrase the relations between object shapes and silhouette shapes in terms

of curves and surfaces. Both curves and surfaces are sets of points which can be

specified by expressions for their coordinates in appropriate frames. These sets will be

analyzed in this thesis with tools from analytic geometry and differential geometry.

Basic concepts from these fields are reviewed here, and notations used throughout the

thesis are defined.

In the first section, geometry of points, lines and planes is reviewed. Coordinates

are defined for these elements and effects of transformations of axes on these coordi-

nates are studied. Specification of the imaging projection is addressed. Relations

between coordinates of points and planes in the scene and the coordinates of their pro-

jections in the image are developed.

In the second section, the geometry of curves and surfaces is reviewed. Represen-

tations in terms of global parametric equations and in terms of local Monge parameter-

izations are discussed. Curvature is defined in terms of a Taylor expansion of the

Monge parameterization. For curves, the resulting definition is identical to the classi-

cal curvature k, which is also the inverse of the radius of curvature p = k -1. In the

case of surfaces however, our method defines curvature by two new invariant tensors

which are inverses of each other, and will be denoted here as the tensor of curvature

and the tensor of radius of curvature.

In the third section, the Gaussian mapping is reviewed, and definitions of

silhouette and object properties in terms of functions on the Gaussian sphere and on

the Gaussian circle are proposed. Geographical coordinates on the sphere are

- 27 -
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introduced, and representations of vector and tensor valued functions on the sphere

are formally addressed. Finally, the global definition of normal orientations on the

Gaussian sphere is related to local definitions in terms of Monge parameterizations.

In our review of concepts of geometry, it will often be useful to develop the

arguments in the simpler case of two dimensions first, and to use this formulation to

introduce the more complicated case of three dimensions. However, for some problems

which are essentially meaningful in three dimensions only, the case of three dimen-

sions is analyzed firs-.

A pragmatic approach is followed through this chapter. More rigorous accounts

of differential geometry are provided in textbooks such as [47, 48].

3.1. Geometry of Points

3.1.1. Coordinates of Points and Vectors

Cartesian Coordinates (x ,z ) and (x ,y ,z) are used for the representation of

points in 2-D and 3-D respectively; see Fig.3.1. Axis orientation corresponds to a

counterclockwise rotation from Ox to Oz in 2-D, and to a right-handed trihedron in

3-D. Vectors are denoted as X = (x z ) and x = (x y z )T. The notations tI and

n are reserved for vectors normal to a curve and to a surface respectively. Unit vec-

tors are denoted as, for example, x, for a unit vector along X in 2-D, and in for a

unit vector along ni in 3-D.

We have chosen the letters x and z to denote the axes in the plane instead of the

usual x and y to emphasize the relation between the vertical axis z in 2-D and 3-D.

z

x x

Fig.3. 1. Cartesian Coordinates in 2-D and 3-D.

11
.Y
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3.1.2. Tangential Coordinates

Tangential coordinates, also referred to as dual coordinates, will be considered for

the characterization of lines tangent to a silhouette and planes tangent to an object.

These coordinates are discussed in some detail here since no reference consistent with

our notation could be found. Additional material and insight can be found in [49].

Curves and surfaces are usually described in terms of their points and the coordi-

nates of these points. However, it is also possible to describe curves and surfaces by

the sets of their tangents; these descriptions will be referred to here as tangential

representations. Tangential representations require the definition of coordinates for

lines and planes. As in the case of points, coordinates for a tangent ( a line or a plane )

represent the position of this element relative to a system of axes. One set of coordi-

fates used in this text to specify tangents is the set of inverse intercepts with the axes.

In 2-D, a line intersecting the axes at (l/X ,) and (0,1/X. ) will be given coordinates

(X ,y ) and a plane intersecting the axes at (l/,X 0,0), (0,1/ X ,0) and (0,0,1/X )

will be given coordinates (K ,A. ,z ); see Fig.3.2. These coordinates for lines and

planes will be referred to as Cartesian tangential coordinates in this text. They can be

viewed as coordinates of elements (lines and planes) represented by points in an other

space, which will be referred to here as the tangential space; this space is isomorphic to

the dual space. Elements in the tangential space can be referred to by sets of coordi-

nates or also by vectors in the tangential space, X = (x z)T in 2-D and

A = (A, A+. K ) in 3-D.

It is sometimes useful to consider a different set of coordinates for elements in

tangential space, which will be referred to as polar tangential coordinates. For both

lines in 2-space and planes in 3-space, the polar coordinates specify the distance p to

the origin and the normal orientation. Orientations are specified in 2-D by the polar

angle qt and in 3-D by the longitude 5 and latitude -r; see Fig.3.2. The conversion from

polar coordinates (p ,) to Cartesian coordinates ( ,X, ) of a line in 2-D is given by

Ax = cosIP/p
(3.1)

k~. = sins/p
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x
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Y

Y

Fig.3.2. Tangential Coordinates.

The corresponding relations between 3-D Cartesian coordinates ( x ,X. ,k z ) and polar

coordinates (p ,,77) for a plane are given by

xI

xz

= cosfcos77/p

= sinecosr1/p

= sinr7 /p

(3.2)

Points of a line with tangential coordinate vector X have coordinates which

satisfy

x x + y x3, = 1 ,also written X x = 1 (3.3)

The vector X in tangential space defines a line in point space which is perpendicular to

X considered as a vector in point space. Similarly, the equation for points of the plane

I

z

xz

Ai
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with coordinate vector = (X, X . z )T is given by

x Xh + y X + z Xz = 1 , also written A ,x=1 (3.4)

The equation for points on a line with polar tangential coordinates (p ,4) is given

by

x cos + y sin = p (3.5)

which is sometimes referred to as the normal equation of the line. Points of a plane

with polar tangential coordinates (p ,,r2) satisfy the equation

x coscosrt + y sinfcosr) + z sin- = p (3.6)

which is referred to as the normal equation of the plane.

3.1.3. Transformations of Axes

Coordinates of points, lines and planes depend on the choice of a system of axes.

The same physical point, line or plane is described by different sets of coordinates in

two sets of axes. Relations between these coordinates are investigated in this section.

Three systems of axes will be considered in this thesis for the description of

curves and surfaces: these systems will be referred to as global, rotated, and local

axes. The local axes are rotated and translated with respect to the global axes; they

are centered at PO. The rotated axes are parallel to the local axes but centered at the

origin of the global axes. The three systems are sketched in Fig.3.3, for both 2-D and

3-D space.

3.1.3.1. Transformations for Point Coordinates

Denoting coordinates in rotated axes by the subscript R, coordinates in local axes

by the subscript I, and coordinates in the global axes by symbols without subscripts,

the various coordinates in 2-D are related by
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X

Po 

x

Y
Fig.3.3. Global, Rotated and Local Systems of Axes

Ix

x |cos4o -sinmo XR

z sinpo cosp|o ZR

= R G(%o) R

x o coso -sin4O|

-o+ sinto cosO 

x = xo + RR -G() x 1

(3.7)

Xl

Zl

(3.8)

where the symbol R R G denotes the matrix of the 2-D rotation from rotated to global

axes and Xo is the coordinate vector of Po in global axes. The corresponding relations

for coordinates in 3-D are given by

cosfOcos770

= sinfocos770

sinrlo

-sino -cosSosinno

cosSo -sinfosin77

0 cosrt 0

= RR -G(oo) XR

ZR

0

-YR

x

y

XR

YR

ZR

(3.9)
A
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x x o coscoso -sino -cosfsinrlo xl

Y = Yo + sinocoslo cosfo -sinsinro0 YZ

z z osinro 0 cosTr o z

x = xo + R3 (o0,70) x (3.10)

where the symbol R3 -G denotes the matrix of the 3-D rotation between the rotated

frame and the global frame, and Zo is the coordinate vector of Po in global axes. In

the above expressions, o is the counterclockwise angle from the global axes to the

rotated axes in 2-D and 60, ro are the longitude and latitude of the orientation of the

rotated OXR axis with respect to the global frame in 3-D, a notation consistent with

angular coordinates introduced for the Gaussian circle and Gaussian sphere in a later

section.

As is done repeatedly in this thesis, both expanded and compressed notations are

provided for the same equation. The abridged notation stresses the similarity between

relations in 2-D and 3-D, whereas the expanded notation is more explicit.

3.1.3.2. Transformations for Tangential Coordinates

After having considered the transformation of point coordinates between

different reference frames, transformations of tangential coordinates are now derived

for the case of pure rotations of axes. Coordinates for a plane in rotated axes are

obtained by first writing the equation in global axes for the coordinates of the points

of the plane. These coordinates are related to the coordinates in the rotated axes using

the transformation discussed in the previous section. An equation is obtained for the

coordinates of the points of the plane in the rotated axes, from which the tangential

coordinates of the plane can be extracted. It will be concluded that the transforma-

tions of Cartesian coordinates of planes are identical to the transformations of Carte-

sian coordinates of points. The same argument and the same conclusions also apply to

the coordinates of a line in 2-D.

Consider a plane with global coordinates X. This plane contains the points x for

which; see equ. (3.4)

7T X= 1 (3.11)
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The equation of the plane of interest in the new axes has the form

ARXR -- = 1 (3.12)

where T has to be determined. Equation (3.11) is transformed into a form more

similar to (3.12) by applying the transformation in equation (3.9) to the point coordi-

nates x.

i7 RfR-G = 1 (3.13)

Identifying this form with equation (3.12) produces

A = T RfG ,also written X = R AR (3.14)

The tangential coordinate vectors for planes hence transform in the same fashion as

point coordinate vectors. This is not surprising, si- e the vector X in point space is a

normal to the plane at hand. Transformations of tangential coordinates between

translated axes is less straightforward and is not discussed here.

3.1.4. Imaging Projections

This section describes how the imaging geometry is specified, and how coordinates

of points and lines in the image can be obtained from the coordinates of points and

planes in the imaged scene.. For a general perspective projection, the imaging geometry

is completely defined by the position and orientation of the "camera frame" and by the

focal length of the "camera". In this thesis, only orthographic projections are con-

sidered; these projections are completely defined by the viewing direction.

It is customary in machine vision to relate the camera frame to the reference

frame of a particular object in two steps by considering an intermediate world frame

attached to the scene being analyzed. The "camera" is defined by a system of axes

XC Yc ZC; its position and orientation are specified with respect to the world frame

XW Yw Zw and account for the position and orientation of the imaging device relative

to the scene. On the other hand, each object is described in an individual reference

frame, say x0 Yo zo; the relation between this frame and the world frame accounts

for the position and orientation of the object in the scene; see Fig.3.4. The geometry of

the imaging projection relative to the object is hence determined by the composition of

the transformation from x 0 yO Zo to XW Yw Zw, then to XC YC ZC . In this thesis, only

4
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ZW ZO
i.~ ~ ~ ~ ~ ~ ~ ~

L Yo

Yw
XW

Fig.3.4. Traditional Definition of Positions and Orientations.

the combination of these two steps is considered, by describing the imaging geometry

directly in the object frame.

For orthographic projections, the imaging geometry is entirely specified by the

viewing direction, which is parallel to the vector V pointing away from the scene

towards the viewer. The vector V itself is referenced by its longitude b and latitude 0

in the object frame; see Fig.3.5.

.

V

Y
x

Fig.3.5. Relative Orientation of the Object and the Viewing Direction.
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Cartesian coordinates for the unit vector 1,, are given by

. = ( cosScosO sinocosO sinO )T (3.15)

In the discussions of this thesis, the global frame Oxyz defined in section 3.1.3.

denotes a frame in which the object is described, hence a frame similar to xo o 

The local frame Poxz Yz zz defined in section 3.1.3. is not related to the frames intro-

duced here. It is used to locally define the geometry of of the object in the neighbor-

hood of Po.

Relations between coordinates of points and planes and coordinates of their pro-

jections in the image plane are now investigated. Points and planes of 3-D space are

referenced to the global object-centered frame Oxyz. A cartesian frame 0 ,rX ,rz r is

chosen in the image plane II, where O r is the projection of the origin O and O rz r is

the projection of the Oz axis. Coordinates in these axes of the projection plane will be

denoted by a subscript 7r. In order to simplify the projection operation, it is useful to

first consider a rotated system of axes, in which the viewing direction is parallel to one

of the axes. This particular rotated frame is referred to as the camera frame here, and

coordinates in these axes are denoted by a subscript C. The system Oxc Yc Zc is

chosen so that OXC is parallel to the viewing direction, Oyc parallel to O0x , and

Ozc parallel to O trz ,; see Fig.3.6. The coordinates of points in this system of axes are

v

z
ZC

x

Fig.3.6. Coordinate Frames in 3-D and in the Projection Plane.
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related to global coordinates by

XC coskcosO

Yc = -sin

ZC -cossinOZC

sinqkcosO sinG

cos O0

-sinSsinO cosO

XC - X

Similarly, coordinates of

by

planes in the camera frame are related to global coordinates

coskcosO

-sinob

-cossinO

sincosO

cost

-sinsinO

sine XX
0 k

cosO X
/?.

kc = R3 -

Projections are meaningful for planes only when they are parallel to the viewing

direction, in which case XxC = O. For such planes, the projection in the image plane

consists of a line, whereas the projection of all other planes in the scene covers the

entire image plane. This property will be useful when considering the projection of

surfaces defined in tangential coordinates. Note that a plane is parallel to the viewing

direction if

kxC = X cosqcosO + X, sin4bcosO + X z sinG = 0 (3.18)

In the rotated axes, the viewing direction is parallel to the OxC axis. As a conse-

quence, the coordinates in the image plane are related to coordinates in the camera

frame by the straightforward expressions

1 x c

ZC

Xr = 123 XC

X

Y (3.16)

xxC

xyc=
xzc

(3.17)

(3.19)

X V 0

17 ir 0
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IAX I I0 1 0 C

kZ 001 
XzC

X7r = 23 C (3.20)

where I23 denotes the 2x3 matrix including the 2x2 matrix in the above expressions.

Note that the last equation relates coordinates of lines in the image to coordinates of

planes parallel to the viewing direction in the scene.

Coordinates of the projected points and lines can be obtained directly from coor-

dinates in the global object frame by combining the above projection operations with

the rotation from global axes to camera axes in (3.16) and (3.17).

IX iT 0 1 0 cos4cosO sinkcosO sinO x

0 0 1 -sino coso 0 Y
-cossinO -sinsinO cosO z

-sino cosb 0 X

-sinOcoso -sinOsino cosO | 

r 123 R3 - (3.21)

o x101 cos|cosO sinkcosO sin kX.
x A v 1| -sinb cos( 0 y=, 0 0 1

-cossinO -sinsinO cosO kz

-sinb cos 0 k]

-sinOcosb -sinOsinb cosO k A
kz

Xrr = I2 3 RG - (3.22)

3.2. Curves and Surfaces

In this section, a number of classical results on representations of curves and sur-

faces are reviewed, and an original definition of curvature is proposed. In the first

subsection, definitions of curves and surfaces in point space are presented, followed by

__ ___ ___.
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definitions in tangential space and conversions between the two representations. In the

second subsection, the Monge parameterization, a particular specification method for

curves and surfaces, is presented. In the third subsection, curvature is defined in

terms of the coefficients of the second order Taylor expansion of a local Monge parame-

terization. This definition of curvature is equivalent to commonly used definitions in

the case of curves, and provides a new intrinsic definition of curvature in the case of

surfaces.

3.2.1. Definitions

Precise definitions of curves and surfaces require careful attention to avoid the

possibility of pathological cases. However, refinements will be omitted here for the

sake of conciseness. A curve in 2-space is defined as the set of points

{P(x,y) I x=x(t ), y=y(t ); tET} (3.23)

where T is some domain for the parameter t. A surface in 3-space is defined as the set

of points

{P(X ,y,z ) I x =x (u ,v ), y =y ( ,v ), =z(u ,v ); (u ,v )EW} (3.24)

where W is some 2-D domain for the parameters u, v. Note that in both cases, curves

and surfaces are defined as sets of points. Although parametric equations are used to

define the sets, the sets themselves exist independently of the parametric equations.

Two curves or surfaces are identical if they contain the same points. For example, the

curve

P (x ,y ) I x =X (t (s )), y =y (t (s )); s Et (3.25)

where s (.) is a monotonic function, is identical to the curve defined in (3.23). The

same curves or surfaces may also be specified in different ways, for example the points

can be defined by an implicit equation for their coordinates, F (x ,y ) = 0 for a curve

and F (x ,y ,z ) = 0 for a surface. The distinction between curve/surface points and

curve/surface equations is stressed here. In a later section, a new representation of

surface curvature is presented, which depends only on the surface defined as a set of

points. In contrast, definitions of surface curvature in most differential geometry text-

books also carry information about the equations used for defining the surface. This

difference is investigated in Appendix 4.

__�
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Unless otherwise specified. only smooth curves and surfaces are considered in this

thesis. Smoothness refers here to te existence and continuity of second order deriva-

tives of parametric equations defining the surface. Other important concepts such as

regularity are not discussed here. Partial derivatives will be denoted by subscripts as

in X = 0/8u, except when confusion is possible. It can be shown that first deriva-

tives of the parametric equations are related to tangent directions. Specifically, X, (t o)

is a vector parallel to the tangent to the curve X(t ) at X(t o). Similarly, Xu (u 0 ,v o)

and ,. (u ,v o) are tangent to the surface x(u ,v) at (u ,v). The vector

= Xx,. defines a surface normal. First derivatives of parametric equations are

hence related to tangent and normal orientations. In a later section, second derivatives

will be related to curvatures.

3.2.2. Convexity

As mentioned in the introduction, the silhouette problem is first analyzed in this

thesis for convex objects only. For a convex object, the straight segment joining two

points of the object is completely included in the object. In order to avoid the presence

of straight components in the object surface, a stronger definition of convexity will be

required. For a strictly convex object, the open straight segment joining two points of

the object must be completely included in the interior of the object, even when the

two points are on the boundary of the object. Examples of a non-convex object, a con-

vex object and a strictly convex object are given in Fig.3.7.

Later in the text, curves and surfaces will be described by equations in terms of

normal orientations, instead of parametric equations in terms of the generic parameters

a) b) c)

Fig.3.7. Smooth 2-D Objects: a) Non-Convex, b) Convex, c) Strictly Convex.



- 41 -

t, u, v. The parameters chosen for this purpose are the polar angle 4, of the normal

for curves and the longitude 6 and latitude r of the normal for surfaces. Representa-

tions in terms of angular parameters are unique and regular for the class of strictly

convex smooth surfaces considered in this thesis. Relations between this type of

parameterization and generic parameterizations are addressed in Appendix 2.

3.2.3. Tangential Space Representations

As indicated in section 3.1.2., it is sometimes useful to define curves and surfaces

by their sets of tangents instead of their sets of points. As in the case of point

specification, both parametric and implicit equations are possible. For example, a curve

can be specified by the set of tangent lines L as

L (,X ,. ) I F(X ,X,. ) = }3.26)

A surface can be specifed by the set of tangent planes P

{P(X ,. Xz ) I F (x ,X, , )= o (3.27)

where implicit equations were used in both cases to prescribe coordinates of the

tangents. Conversion from a tangent representation to a point representation is now

considered. This conversion corresponds to determining curves and surfaces as the

envelopes of their sets of tangents. In the general case, the set of lines tangent to a

planar curve is a one-parameter family. Points of these lines satisfy equations such as

F (x ,y ,a) = 0 where a is a parameter for the lines. An equation for the envelope of

these is obtained by eliminating the parameter ac between

F (x ,y,a)= 0
t ( ~F (X 'y a)-O (3.28)

(6/a)F (x ,y ,c) = 0

Similarly, when all the planes tangent to a surface are given by a two-parameter fam-

ily with equation F (x ,y ,z ,,) = 0, an' equation for the envelope is obtained by

eliminating the parameters a and 3 between

F (x ,y ,z ,,3) = 0

(5/3oa)F (x ,y ,z ,a,3) = 0 (3.29)

(I/a1)F (x ,y ,z ,a,) = 0

The above formalism will be exploited in Chapter 5, for the discussion of a



representation which explicitly specifies curves and surfaces by the sets of their

tangents.

3.2.4. Monge Parameterizations

This section reviews a description of curves and surfaces by explicit equations of

the form x = f (z) and x = f (y ,z ), which are referred to as Monge parameteriza-

tions. Several features of these descriptions have prompted their use for describing

surfaces in the machine vision literature. These features include a direct relation to

image-plane coordinates and straightforward expressions for surface normals. In our

work, Monge parameterizations will not be used as general object models because of

their strong dependence on the reference frame, but will be used to define surface cur-

vature in local axes. Monge parameterizations in local axes will be related to global

descriptions in a later section. Monge parameterizations have been studied mainly for

surfaces, which are therefore analyzed first.. Subsequently, a simple equivalent is

sketched for the case of 2-D curves.

The Monge parameterization for a surface

parametric equations, in which the parameters

nates, say y and z; see Fig.3.8.

can be considered as a special form of

are two of the three Cartesian coordi-

n

I

z

Y
Fig.3.8. Monge parameterization for a Surface.

..

d9

- -
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x = f (y ,z)

y = y (3.30)

Viewing these equations as a parametric form x = x(y,z ), a surface normal is easily

obtained as

1 1

n= x XxZ= -y = y (3.31)

where m = ax /y and m z = ax /z are referred to as gradients of the surface. In

other work, these gradients are often denoted by the symbols p, q; this notation is not

followed here because of possible confusions. The simple expression for surface nor-

mals in (3.31) makes Monge parameterizations convenient in surface-reconstruction

problems from a single image, such as the shape-from-shading problem [21].

In the equivalent formalism for 2-D curves, the parametric equations in the plane

x , z have the form

x = (z)
(3.32)

A normal vector for points on the curve is given by

1 1
Z _Z= (3.33)

3.2.5. Curvature

In this section, definitions for curvature will be proposed and justified. The

simpler case of 2-D curves is addressed first, followed by the case of 3-D surfaces.

3.2.5.1. Curvature of 2-D Curves

In the case of a planar curve, curvature corresponds to the intuitive notion of

how fast the curve diverges from its tangent. The definition chosen here for curvature

is based on this notion, as it is the first non-zero coefficient of a Taylor expansion of the

Monge parametric form of the curve in a local coordinate frame. Consider the curve C

�1_1_1�
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around the point Po, and the local system of axes Pox, zl where Poxl is along the

normal at Po; see Fig.3.9. The Monge parameterization of the curve in these local axes

has the form x = f (z l ). Since Po is on the curve and since Pozl is tangent to C at

Po, the Taylor series of f (z l ) contains no terms of order zero and one in z . The first

nontrivial expansion is hence given by

XI = -1/2 Zl kz + 0 (zl 3 ) (3.34)

where the term kz 2 has been decomposed for similarity with the corresponding

expression for surfaces. The error term O (z l 3) indicates that the error of the expan-

sion is upper bounded by a third order polynomial in Z . The curvature of C at Po is

defined in this thesis as the coefficient k in the above expansion, a choice consistent

with-the intuitive notion of curvature since large valuesfof k imply a fast divergence

of the curve away from its tangent at Po. Note that the coefficient k in the above

Taylor expansion is identical to the second derivative 82x /z 2 at the origin, so that

curvature is formally related to second derivatives of the equations of the curve. This

definition of curvature is equivalent to the classical definition k = d 4/ds, as is

shown in Chapter 5. The inverse of the curvature k is defined as the radius of curva-

ture p = k -1. A justification of the definition is now presented by showing that the

radius of curvature of a circle is equal to the radius of the circle. The equation for a

circle of radius R tangent to z l at the origin is given by

ZI zi

C

/

Po
Xl

'1f

Yl

Xl

Fig.3.9. Local Axes for the definition of Curvatures in 2-D and 3-D.
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(xl +R)2 + 2 R(3.35)

Considering only the branch through the origin, then expanding to second order in z z ,

the following explicit equation is obtained.

xI =-R + .a-n

ZI ~ ~ ~z2 2

= -R + (R -z)+0(z1
3 ) =-1/2 +0(Z3) (3.36)

Comparing this expression with the expression used to define curvature in equation

(3.34), it is clear that the curvature for the above circle is given by k = 1/R, which is

the desired result.

3.2.5.2. Curvature of 3-D Surfaces

In the case of a surface, curvature is also related to the intuitive notion of diver-

gence rate away from the tangent plane. Curvature of a surface will be defined here

in the same way as it was defined for a curve, namely as the coefficients of the first

non-zero term in the Taylor expansion of a local Monge parameterization of the sur-

face. Specifically, consider the surface E in a neighborhood of the point Po; see Fig.3.9.

Consider also the local frame Pox, ye zl where x z is along the normal at Po. The

second order expansion of the surface equation in these axes can be written as

X -/2 | LZz | |k1 k | 21 ,I3 + ((y ,z ) 3 ) (3.37)
where the error term ((y )3) indicates that the error of the expansion is bounded

where the error term O ((Yt .zz )3) indicates that the error of the expansion is bounded

by a third order polynomial in yz, zl. The above equation will also be written in vec-

tor form as

X = -1/2 Z l KZ + O (Z 3) (3.38)

which stresses the similarity with the 2-D equation (3.34). Characterizing the curva-

ture of a surface is more involved than in the case of a curve, as divergence from the

tangent plane may depend on the direction chosen along the tangent plane. In equation

(3.37), there are three independent coefficients in the second order term, thus

emphasizing the added complexity of surface curvatures over curvatures of curves.

Curvature of the surface E at Po will be taken as the set of second order coefficients of

�II�
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(3.37), namely as the symmetric 2x2 matrix A. It is now shown that this matrix is

really a tensor by showing that it transforms as a tensor in transformations of axes

[47].

Consider a second system of local axes, Pox1l z,, ,zz V, related to the original local

frame Poxz Yl z1 by a rotation with angle qF around the Poxl axis; see Fig.3.9. Coordi-

nates in the two frames are related by x l = x , and

Yz cost -sin |l Y (3 39)

z l = sing cos0j zI Vt

A Taylor expansion of the Monge parameterization of the surface in the rotated frame

is obtained by combining equations (3.37) and (3.39)

X /2 VI | V cost k sin k12 cos -sin Yz (3.40) 
l *- - 11 t-sink costl | | k 12 k22 sino cosT lZ 1

kll_ k120 Y 

= /2 Yz VI lZZ V k 12, k 2 21 zt¢,

where the 2x2 curvature matrix in the rotated axes is given by

kll, k 12 | cost¢ sin+| kl k 12 cos 0p -sin+ (341)

k 12 k22¢ - -sin*e cos k 12 k 2 2 sini cos0j

The matrix K transforms as a covariant tensor in coordinate transformations suc' as

the one studied above, and is therefore a covariant tensor. Therefore, it will be

referred to as the tensor of curvature of the surface at Po. In differential geometry,

the name of tensor of curvature is usually reserved for a tensor with 4 indices due to

Riemann which is not directly related to K.

The components of our tensor of curvature are related to second derivatives of

the surface equation; for example, k ll = 02 x /y, 2 at y = z = O. Preserving the

parallelism with the case of curves, the inverse of the tensor of curvature will be

defined as the tensor of radius of curvature

1 =
- k k 2 1 r 11 r 12 (3.42)

k12 k 2 2 r 12 r2 2

1
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The above definition of curvature by a tensor in local axes is original. Its relation

with other definitions is discussed in Appendix 4. For a general surface, there exists at

each point an orientation ¢ of the axes PoYt oz , in the tangent plane for which the

2x2 tensors R and K are diagonal. In these axes, values on the diagonal of K are

referred to as the principal curvatures k and k 2. The diagonal values of R are

referred to as the principal radii of curvature p, = k 1 and P 2 = k 21 . The Gaussian

curvature of a surface is defined as the product of the two principal curvatures,

kg = k 1 k 2; in general axes, kg = detK. The mean curvature of a surface is defined

as the mean of the two principal curvatures, km = /2(k 1 + k 2); in general axes,

km = 1/2trlK. Note that in the case of a strictly convex surface and an outward nor-

mal pointing towards positive x , the curvatures k 1, k 2, km and kg are all strictly

positive.

To illustrate the above definitions, the tensor of curvature is evaluated for a

sphere of radius R through Po, tangent to the P oY zl plane at Po. The equation of

this sphere is given by

(x z + R )2 + y2 + t 2 = R 2 (3.43)

Solving for x t , considering the branch through the origin, then expanding to second

order produces

YZ2 zz 2
xI = -R + Z- -' = -R +(R --- ) + ((y Z ) 3 ) (3.44)

2R 2R

-1/2Yt 1
1 I R J | + 0 ((yj ,1 )3) (3.45)

The curvature tensor and the radius of curvature tensor for the sphere are thus

respectively given by

= 0 1R/R ' =| R= (3.46)
0 1R 0 R

The form of the tensor of radius of curvature, i.e. a unit tensor scaled by the constant

R, expresses the fact that the curvature of the sphere is isotropic and that normal sec-

tions all have a radius of curvature equal to R. For the sphere, both principal

_ I _____
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curvatures and the mean curvature are equal to 1/R. Both principal radii of curva-

ture are equal to R. The Gaussian curvature is equal to R 2.

3.3. The Gaussian Mapping

In this section, the theory of the Gaussian mapping is reviewed, together with its

application to curve and surface representations. The Gaussian Mapping is presented

as a mapping between points on a 3-D surface and points on a unit sphere, and also as a

mapping between points on a 2-D curve and points on a unit circle. The images of the

mapping are usually referred to as Gaussian circles and Gaussian spheres, and also col-

lectively as Gaussian images. It turns out that the Gaussian images can also represent

the normal orientations of curves and surfaces. This construction is then exploited to

define representations of curve and surface properties as functions on the Gaussian

images, referred to as Property Circles and Property Spheres. Coordinates used in this

thesis to parameterize the Gaussian circle and Gaussian sphere are also defined in this

section.

Two new concepts are proposed in addition to the classical theory of the Gaussian

mapping. First, local reference frames are defined on the Gaussian images and the

problem of representing vector and tensor fields on the Gaussian sphere is formally

addressed. Second, gradients in local Monge parameterizations of curves and surfaces

are related to normal orientations and their specifications by angles on the Gaussian

sphere. The advantage of the Gaussian sphere over the Monge gradients for represent-

ing normal orientations is two-fold. First, gradients are able to represent only half of

the complete set of normal orientations. In contrast, the Gaussian sphere is capable of

describing all surface normals [44]. Second, the representation of surface normals

with the Gaussian sphere does not favor specific viewing directions as is the case for

the Monge gradients.

The Gaussian mapping was initially developed in the context of 3-D surfaces, see

for example [50]. We will therefore also start with the case of 3-D surfaces, then

show that the equivalent formalism for 2-D curves is trivially obtained.
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33.1. Definitions

The 3-D Gaussian mapping is a relation between points on a surface and points on

a unit sphere, referred to as the Gaussian sphere. To each point PI of the surface

corresponds a point PG on the sphere so that the normals at PI: and PG are parallel

and have the same direction; see Fig.3.10.

a) b)

c) d)

Fig.3.10. Examples of 3-D and 2-D objects, their Gaussian images,
and the normal orientations at corresponding points.

a) 3-D object. b) Gaussian sphere of a).
c) 2-D object. d) Gaussian circle of c).

___I�
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Points on the Gaussian sphere will be referenced by coordinates, namely by the

longitude ~ from the x-axis and latitude 77 from the Oxy equator; see Fig.3.11. Points

on the sphere are related to normal orientations in 3-D through the Gaussian mapping.

Hence, the coordinates (,r) can also be used to specify directions in 3-D.

The corresponding unit vector is given by

1 nln (3.47)

The 2-D Gaussian mapping is a relation between points on a curve and points on a

unit circle. Corresponding points on the curve and on the circle have parallel normal

orientations; see Fig.3.10. Points on the Gaussian circle and the corresponding orienta-

tions in the plane are referenced in this text by the polar angle 4~ measured counter-

clockwise from the x-axis; see Fig.3.11. The polar angle it can be used as a coordinate

for directions in the plane, namely to refer to directions parallel to the unit vector

cosIv
i = si (3.48)

For strictly smooth convex 2-D curves and 3-D surfaces, the Gaussian mapping is

one-to-one. Examples of the Gaussian mapping are presented in Appendix 1, when

deriving the transforms of various geometrical shapes.

z

in

x
y X

Fig.3.11. Coordinates and local orientations on Gaussian Images.

_ _�� __ __
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3.3.2. Property Circles, Property Spheres

In his work on object recognition, Horn defined the extended Gaussian image, a

representation of surfaces by scalar functions on the Gaussian sphere [44]. The basic

concept of the extended Gaussian image is to represent a function of surface points in

terms of normal orientation, then as a function on the sphere, since each point on the

sphere is uniquely related to a specific normal orientation; the name of "property

spheres" was given to this type of representations in [51]. In this thesis, three new

representations of 3-D objects in terms of property spheres will be defined. A major

conceptual difference between previously proposed property spheres and two of the

new representations stems from the vector and tensor ranges of the new object func-

tions as opposed to a scalar range for the extended Gaussian image. In order to

represent vectors and tensors, it is necessary to describe their values in terms of com-

ponents in a system of axes. We propose to use axes aligned with local orientations on

the Gaussian sphere, which are hence different for each point of the sphere and each

corresponding object point. The axes chosen in this thesis are oriented in the directions

of the unit normal in, the unit tangent 1 to the parallel and the unit tangent 1 to

the meridian; see Fig.3.11. The components of those unit vectors in global object axes

Oxyz are given by

cosgcosTq -sin6 -cossin-q

I n = sincost , 1 = c-sindsin-1 (3.49)
sinkr 0 costr

Note that these vectors are functions of the angles 6 and '1. At a later stage, it will be

helpful to consider the derivatives

1 , _co~ ---
= cosl = 1

___E =-cosfl1n + sinn- 83 (3.50)

01'n -- sinll ' =Mn a71
- -singl1d 8 -1

The above system of reference frames is singular at the poles of the sphere.

Unfortunately, the topology of the sphere does not permit the definition of a continu-

ous field of axes at each point, without singularities. For our choice of frames, the
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singularities correspond to multiply defined frames at the poles. These singularities

create some problems, but these can be overcome by requiring special equivalences

between the multiple definitions. For T? = + 7r/2, all the values of s refer to the same

point, namely the pole. Compatibility between the potentially different values of a

property sphere function for all 6 must hence be ensured. In the case of a scalar func-

tion f (S,), the consistency conditionbetween the multiple definitions is simply

f (,+±7/2) = f (0,+r/2) for all (3.51)

In the case of vector and tensor fields, the consistency is more complex since the com-

ponents are referred to different axes for each value of at the poles. The necessary

consistencies for a vector function vF and a tensor function T are given by

cos5 sine
v(6,7r/2)= -sine cost 7(0,7r/2) (3.52)

cos~ sin cos -- sin(
T(6,r/2)= -sine cost T(0,7r/2) sin6 cos¢ (353)

for the north pole. Consistency relations at the south pole are similar, except that the

transformation matrices must be transposed.

Representations equivalent to the property spheres are now considered for planar

curves. Properties of planar curves expressed in terms of normal orientation can be

represented as functions on the Gaussian circle of the curve, these functions being

referred to as property circles. Three representations of curves in terms of property

circles will be defined in this thesis; they are exactly equivalent to the three new pro-

perty spheres proposed for surfaces. A key contribution of this thesis will be a set of

relations between the 2-D and 3-D representations when these are applied to an

object-silhouette pair. As in the case of property spheres, non-scalar property circles

rely on the definition of rotated axes for each point on the Gaussian circle. The axes

chosen here are oriented along the unit normal 1n and the unit tangent It; see

Fig.3.11. The components of these vectors in the global axes Oxz of the image plane

are given by

A.*
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cos -sin (54)
in- 1sinip Icos ,(3.54)

Derivatives of these vectors with respect to the orientation parameter 4i are given by

- i , - -
dn , Mt T~i (3.55)

3.3.3. Relations between Monge Gradients and Coordinates of the Gaussian

Image

In this section, a relation is obtained between two different specifications of sur-

face normals. Specifically, normal orientations can be defined in terms of gradients in

Monge parameterizations, but also by points on the sphere and by angular coordinates

for these points in the Gaussian sphere representaLon. Relations between these two

representations are described here, first in the case of 3-D surfaces, where both Monge

parameterizations and Gaussian spheres are especially meaningful. A similar formal-

ism is then briefly developed for the case of 2-D curves.

Consider a small surface element Ali in the neighborhood of the point Po, and a

Monge representation of AZ in the local axes Poxl y z where x l is normal to AE. Let

the normal orientation To at Po be defined by the angles o, rTo on the Gaussian

sphere. The normal in at a points on A can be defined by its coordinates s, -r on the

Gaussian sphere. but also by its local gradients myl , mzz in the local PoSxZ Yj zl axes.

Relations will be obtained between the gradients and the differences -o, rT- in

angles on the Gaussian sphere, for small values of the gradients; see Fig.3.12. The

result is obtained by considering the general form of a normal vector in global axes,

transforming this expression to local axes and comparing with the expression in terms

of the Monge gradients.

A normal vector is defined in local axes by an expression similar to (3.31).

nz = -my (3.56)

-- mzl

On the other hand, the same normal vector is expressed as a function of angular coor-

dinates on the Gaussian sphere as
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n

Y
x

Fig.3.12. Angular Coordinates for Normals on the Gaussian Sphere.
.

.. .

n cosfcos-7

n sincos-q

n sinl7
(3.57)

where n is the length of the normal vector. This last expression for normal orienta-

tion is now expressed in local axes as

nz = R3 n =

cosfocos7 0o

-sino

sinSocosjo sin7o

coso 0

-costosinrqO -sineosinro cos77o

n cosicos-q

n sinfcos7

n sin

= n

coslcosrlocos(s - So) + sinigsinno

cosrsin(6 - 60)

-cos-sin 0ocos( - o0) + sinrncos7 0

For small values of (g-o) and (r-ro), the above form of the normal in local axes is

given to first order by

1
cosrsin(-o 0 )

sin(r -ro)
(3.59)

Comparing components in the above expression with the corresponding components in

4(3.58)

n,_:

4,
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(3.56) produces the following first order relations between Monge gradients and global

normal angles

m. x -( S - So ) cosno
(3.60)

mz -( r - ro)

These expressions underline the close relation existing between local gradients and glo-

bal angular orientation coordinates. Note the cosrlo coefficient which takes into account

the shortening of longitude units at higher latitudes.

An argument similar to the one developed above can be developed for the Monge

parameterization of curves in 2-D. The relation between the local gradient mrz and

the polar angle qb is obtained as

mz - ( - o ) (3.61)

3.4. Summary

A number of tools from geometry have been reviewed or presented in this

chapter. The combination of these will allow us to develop an elegant theory for the

relations between object shapes and silhouette shapes. Chapter 4 reviews the classical

analysis of silhouette shapes and motivates some of the directions chosen in our

analysis of silhouettes. The main results of this thesis are then presented in Chapters

5 and 6.



I



Chapter 4
Classical Silhouette Theory

In this chapter, a number of silhouette construction methods are discussed and

illustrated by the simple example of the silhouette of a cone. This chapter aims at the

double goal of familiarizing the reader with classical silhouette analysis methods, and

of discussing some basic concepts which introduce our original formulation of the rela-

tion between objects and silhouettes.

First, the well-known silhouette construction based on the silhouette generator is

presented; this is the approach primarily used in the literature, and is very similar to

themethods presented in [2, 13]. In the second step, silhouette construction is !ibvesti-

gated with tangential space representations. Finally, silhouette construction is

developed with the Gaussian mapping. These last two approaches are not intrinsically

new, but their application to silhouette analysis has not received much attention in the

computer graphics and computer vision communities. Through the discussion of these

silhouette construction methods, it becomes apparent that normal orientations on the

object surface play a prominent role in silhouette construction, and that the represen-

tation of surface normals with the Gaussian mapping is particularly convenient for

silhouette analysis. This conclusion motivates the development of representations

based on the Gaussian mapping and the development of relations between the

representations of an object and the representations of its silhouettes.

4.1. Silhouette Construction Based on the Silhouette Generator

In this section, we discuss a classical method for obtaining the shape of a

silhouette given the shape of the corresponding object and the viewing direction rela-

tive to the object. It is straightforward to see that the silhouette is the projection of a

set of points on the surface of the object. This set is a smooth curve for a smooth con-

vex object, and is referred to as the silhouette generator in this thesis; other authors

use different terms such as contour generator or boundary rim. The geometry of the

projection and the silhouette generator are illustrated in Fig.4.1 for the example of a

superquadric. For this example, the silhouette generator is a complex twisted curve.

Marr has shown that the silhouette generator is planar for all viewing directions only

-56-
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Viewing Tangent Plane
Direction

Object

Fig.4. 1. Imaging Geometry for Orthographic Projection

when the object surface is quadratic [2]. The silhouette generator is the set of points

of the object surface where the projection rays are grazing the surface; for a smooth

object, this corresponds to the set of points where the tangent plane is parallel to the

viewing direction. An equivalent property of the points on the silhouette generator is

that the normal orientation is perpendicular to the viewing direction. The tangent

plane and the normal at one point of the silhouette generator are displayed in Fig.4.1.

The silhouette of a smooth convex object in orthographic projection can be deter-

mined in two steps. The first step consists of selecting which points of the object sur-

face have a tangent plane parallel to the viewing direction, thereby defining the

silhouette generator. The second step consists of projecting the points of the silhouette

generator onto the image plane, thereby producing the silhouette itself. This procedure

is outlined in the diagram of Fig.4.2.

In order to gain better insight into the relation among object, silhouette and

silhouette generator, it may be useful to consider an analogy with shadows. If the

projection is replaced by a beam of light parallel to the viewing direction, the object,
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Fig.4.2. Silhouette Construction with Point Representations.

presumed opaque, will cast a shadow on the projection screen. The outline of that sha-

dow is identical to the silhouette in the previous setup. In the shadow setup, only part

of the object surface is illuminated by the light beam, as the other part is self-

shadowed. The boundary between the illuminated and self-shadowed parts of the

object is identical to the silhouette generator. Light rays emanating from the light

source graze the object at the points of the self-shadow boundary. Similarly, in the

case of silhouettes, rays parallel to the viewing direction graze the object at each point

of the silhouette generator.

4.1.1. Example: Silhouette of a Cone

The silhouette construction method described above is now illustrated with the

simple example of a circular cone; the geometry of the projection is sketched in Fig.4.3.

The geometry of the cone itself and of its silhouette are depicted in Fig.4.4. The stra-

tegy for determining the shape of the silhouette consists of first computing the normal

orientation at each point of the surface. Then, the surface points with a normal per-

pendicular to the viewing direction 1,. are determined; these constitute the silhouette

generator. Finally, the silhouette generator points are projected onto the image plane,

producing the desired silhouette. In all the developments, the sets of points are

defined by parametric equations. Therefore, the final result is a set of parametric

equations for the silhouette from which the silhouette shape can be interpreted.
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Fig.4.3. Geometry for the Projection of the Cone.
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Fig.4.4. a) Circular Cone. b) Silhouette.
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In a system of axes centered at a distance z 0 below the vertex of the cone, with

the z-axis along the axis of symmetry, the points of the cone can be described by

u sinrocosv

= (u ,v ) = u sinrosinv (4.1)

zo- u cos 0o

where u E R+, v E(0,27r] are parameters and To is a constant, equal to the half-angle

of opening of the cone. The choice of positive values for u corresponds to the choice of

the lower sheet of the cone illustrated in Fig.4.4a).

A vector normal to the surface is obtained by a formula decsribed in section 3.2.,

by

-= . xx. (4.2)

which is proportional to

cosv cos7 0

n = sinv cos7lo (4.3)

sinro

Comparing this vector with the canonic form of a unit normal vector i n in terms of

the angles (dr) on the Gaussian Sphere,

cos cos71
i1 = sinfcosr7

sinr

it appears that the canonic orientation angles of the normal are related to the parame-

ters of the surface by =v, r=ro Consider now the orthographic projection with a

viewing direction specified by the angles (,0) in object-centered axes. The viewing

direction unit vector is given by

1,. = ( cosOcosb cosesin/) sinO ) (4.4)
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Points of the silhouette generator are the points for which 1n 1,. = 0, i.e.

cosOcosqbcos-ocosv + cosOsinocosrosinv + sin0sinro = 0

also writtten

cos(5 - v ) = -tan-otanO (4.5)

This equation has two solutions for v, which will be denoted by

VSG 1 = b + acos(-tanrotan0)

VSG 2 = qb- acos(-tanrlotan0)

The silhouette generator is hence defined by

X = u sin7oCosvsGi

y = U sinrocosvSGi

- z o0 - COS70

(4.6)

(4.7)

for u ER+, i = 1,2. These are the equations of two straight lines parameterized in u .

The projected silhouette is obtained by applying the projection operation to the coordi-

nates of points of the silhouette generator.

coordinates was determined to be

x 7r -sino> cosO

_zl v J =-sinOcos4 -- sinOsin4>

The result of

The projection transformation for point

0 
COSO YcosO 

z

applying this transformation to the parametric equations of the

silhouette generator in (4.7) is

x r = u sinr b0 sin(vSGi - )

z = -u sinr77sinOcos(vSGi- 4) - u cosr70cosO + z OcosO
(4.9)

for i = 1,2. The following equations are obtained after replacing VGSi by its value in

(4.6), 4

x rr = + sinr 0-/l-- -tanZOtan'O

cos2rlocos20 - sin2

Z r = Z oCOSO - C
cosrbcosO

i770sin20 (4.10)

(4.8)
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These equations for the silhouette define two lines parameterized in u. These lines

intersect at the point (x 7r,,z ) = (0,z Ocos0) in the projection plane and are symmetric

about the Oz r axis. The half-angle opening o of the two silhouette lines is defined in

Fig.4.4b), and can be evaluated as

xA - an 'notanda
tanvi = = sin77ocosnocosO - 7 2 * 2a 2

taOcsO - = sin cos2
0ocos2 0 - sin 2 qosin 2 o

sin)o
- fT 0 (4.11)

/cos U-sin qo

A simpler expression can be obtained for the sine of Po, namely

tan'o sinpo
sin+qO = = t .jFl7- (4.12)

sin + ta qjo o s0

The above relation between the opening angle of the cone ro and the opening angle qJo

of the silhouette is a relation between 3-D object orientation and silhouette slope. It

will become clear later on that this type of relation, obtained here in the context of a

particular example, is independent of object shape. Furthermore, similar relations will

be obtained with much less effort in Chapter 6 using arguments on the Gaussian

sphere.

It is worthwhile to note that the simple example of the cone has interesting appli-

cations. Indeed, different circular cones can be obtained by choosing different values

for the ordinate z and for the opening r0. A large class of axisymmetric objects can

be defined as stacks of sections of such cones, so that a silhouette theory for axisym-

metric objects can be developed based solely on this simple analysis for the cone.
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4.2. Silhouette Construction in Tangential Space

In this section, silhouette construction is discussed with a method based on

tangential representations; these representations were reviewed in section 3.1.2. A

tangential representation describes a 3-D object by the set of all its tangent planes. It

is easy to see that only the planes tahgent at the points of the silhouette generator

effectively contribute to the shape of the silhouette. Since the surface normal is per-

pendicular to the viewing direction for points on the silhouette generator, the planes

tangent to the object on silhouette genrator are all parallel to the viewing direction.

This set of planes will be referred to as the silhouette generating planes. The

silhouette generating planes are also perpendicular to the image plane, so that their

projections are equivalent to their traces in the image plane. These projections are a set

of lines tangent to the silhouette, so that this procedure provides a tangential represen-

tation of the silhouette. One silhouette generating plane and its projection are illus-

trated in Fig.4.1. The construction procedure in tangential space is outlined in the

block diagram of Fig.4.5.

Silhouette construction in tangential space can be more convenient than in point

space. Indeed, the crucial operation of selecting the silhouette generating planes can be

much simpler than the corresponding selection of the silhouette generator points. As a

consequence, even when the object is initially described in point space, it may be

advantageous to evaluate a tangential description of the object from the given point

representation first, perform the silhouette construction in tangential space and finally

convert the silhouette representation back to a point space representation. The block

diagram of Fig.4.6 outlines this scheme.

Object Selection Silhouette Projection Silhouette
(tangent _ Generating _ (tangent

representation) Planes representation)

Fig.4.5. Silhouette Construction with Tangential Representations.
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Selection Silhouette Projection
Generating

Planes

.W~~~~~~~~~T

Fig.4.6. Silhouette Construction with Conversion to Tangential Representation.

4.2.1. Example: Silhouette of a Cone

Silhouette construction in tangential space is now illustrated with the same exam-

ple developed previously in point space. In order to determine the silhouette of the

cone, the first step is to determine parametric equations for the tangential coordinates

of the cone. The silhouette generating planes are then determined as the tangent

planes parallel to the viewing direction. The coordinates of the traces of these planes

in the image plane are determined by applying the imaging transformation. ,This

derivation produces parametric equations for the tangential coordinates of the

silhouette in the image plane. Finally, the shape of the silhouette is interpreted from

these equations.

Equations for the planes tangent to the cone may be obtained by noting that in

general, for a point 3Xo with surface normal T o, the tangent plane is the set of points

with coordinate vector 5x satisfying

no(x o -+x) = O

Object
(point

representation)

Silhouette
(point

representation)

Object
(tangent

representation)

Silhouette
(tangent

representation)

l 1,

(4.13)
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The plane tangent to the cone at the point with parameter values (u o,v o) is obtained

by applying the above formula to (4.1) and (4.3), which produces

x cos7r 0cosv o + y cosro7sinv o + z sin770 - z osinzlo = 0 (4.14)

This equation is compared with the canonic equation of a plane,

x x + y X. + z z = 1, to determine the tangential coordinates (, X,, ) of

the tangent planes

kx = cotT7oCosv / z 

A, = cot7osinv / zo (4.15)

Z = l/zo

Note that these coordinates are undefined for z = 0 since in that case, all tangent

planes pass through the origin. The case of z = 0 can be addressed rigorously using

homogeneous tangential coordinates, although this is not done here. The equations

obtained above are a set of parametric equations for the tangential coordinates of the

circular cone. Note that the parameter u does not appear in the parametric equations.

The tangent planes are only a one-parameter family in the case of the cone, as opposed

to a two-parameter family in general. This degeneracy stems from the fact that the

cone is a special ruled surface, for which each tangent plane is tangent to the surface

along a whole line of points.

The silhouette generating planes are now determined by selecting the planes

parallel to the viewing direction. The vector X determining a plane in tangential space

can be considered as a point-space vector normal to the plane defined. The silhouette

generating planes have a normal vector perpendicular to the viewing direction and are

therefore determined by

T . =0 (4.16)

cotrpocosv cosOcos4 + cotqosinv cosOsin4b + sine = 0 (4.17)

cos( v - )= -tanOtano (4.18)

which produces exactly the same two solutions for v as obtained in section 4.1.1.

These solutions are referred to as vSG 1, VSG 2. The silhouette generating planes are

characterized by the parametric equations
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kX = COtrlOCOSVSGi / Z 0

KA. = CotTosinvSGi / Zo (4.19)

kz =1/zo

for i=1,2, and with VGi given by equation (4.6). The projection transformation

defined in section 3.1.4. is now applied to the tangential coordinates of the planes in

(4.19) to obtain the coordinates k X r, KZ 7 of the tangents to the silhouette. The pro-

jection transformation for tangents was determined to be

|X e -- sino cosb 0 X

z 7r -- -sinOcosk -sinOsino cosO k (4.20)
Xz

The result of applying this transformation to the parametric equations fpr the

silhouette generating planes in (4.19) is given by

Ax X = cot77coSVSG sinb - cot770sinvSG coso = cotr7osin(vSG - 4)

|k Ar = -sincotcos(b- vG ) + cosO = /cos (4.21)

The tangential coordinates of the silhouette take on just two values, determined by

the above equations for VSG =VSG 1, VSG 2. Therefore, the silhouette is composed of

two straight lines. The silhouette is degenerate since, in the general case, a parametric

equation for the silhouette tangents would be obtained instead of the fixed values in

(4.21).

The two silhouette lines defined in (4.21) are symmetric about the Ox r axis. The

half-angle ifo between the lines is obtained by noting that a line with coordinates kx ,

Xz2T crosses the axes at the points (1/k r,0O) and (0,1/kzr,); see Fig.4.4b). Note that

o0 is also the polar angle of the normal orientation of one of the silhouette lines in the

image plane.
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It is given by

1/A ,_ tanlo tano70
tanqli=

an° -- 1/kz r- cosOsin(vsGi - ) = cosO 7/1 - tanSo0tanch

sino
(4.22)

which matches the result obtained previously.

In the above example, it appears that, given an object description in tangential

coordinates, the determination of the silhouette equation can be much simpler than

with point coordinates. When the object is initially defined by a point coordinate

representation, the relative merits of the direct construction method depicted in Fig.4.2

and the indirect method depicted in Fig.4.6 depend on the effort required for convert-

ing the representation. For example, if many silhouettes must be computed numeri-

cally for the same object, the tangential description must be computed only once,

thereby providing a larger potential advantage for the indirect method.

� ���__ _ �_�_
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4.3. Silhouette Construction with the Gaussian Mapping

In this section, we will see that the Gaussian mapping suggests a very simple

method for selecting the silhouette generator or the silhouette generating planes.

Although silhouette construction with the Gaussian mapping can be related directly to

silhouette construction in point space, it is instructive to introduce it through the dis-

cussion of silhouette construction with polar tangential coordinates, which is

presented in the first subsection. Phrasing the construction method developed in the

previous section for tangential space representations in terms of polar coordinates pro-

vides a relation between normal orientations on the object surface and normal orienta-

tions on the silhouette; this relation is independent of object shape. In a second subsec-

tion, this relation is re-interpreted by mapping normal orientations on the Gaussian

sphere and discovering that the silhouette generator corresponds to a slice of the Gaus-

sian sphere.

4.3.1. Silhouette Construction with Polar Tangential Coordinates

A particular case of silhouette construction in tangential space is considered in

this section, where polar coordinates (p ,,r ) are chosen to represent planes to the 3-D

object, and polar coordinates (p ,) to describe lines tangent to the 2-D silhouette;

these coordinates are defined in section 3.1.2. First, in order to avoid confusion

between the perpendicular distance p in 3-D and 3-D, this distance will be represented

by the symbol p r for the silhouette in 2-D.

Consider a description of the surface of a 3-D object by parametric equations for

the polar coordinates (p ,S,r) as a function of two independent parameters, say u and

V.

P p(u,)

s= (u ,v) (4.23)
rl r(u ,v )

For smooth strictly convex objects and for a regular parameterization in (u ,v ), the

functions defining the angles (,r) in terms of the parameters (u ,v ) are invertible.

The parameters (u ,v ) in the above expressions can then be replaced by inverse func-

tions in terms of (,rl). Examples of this parameter change are presented in Appendix

1. When this change of parameters is performed in equation (4.23), identities are
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obtained for 6 and , and an explicit equation is obtained for p,

p = p (,r) (4.24)

The above representation form is now discussed in some detail, as it will be the basis

for new representations of 3-D surfaces. Equation (4.24) represents, for each point Po

of the object with a normal orientation (~r), the perpendicular distance p between

the origin and the tangent plane at Po. This explicit equation describes the shape of

the object surface by expressing the dependence of one polar tangential coordinate on

the other two, and can be compared in this respect with the Monge parameterization

z = x (y ,z ) which expresses one Cartesian coordinate as a function of the other two.

In both cases, the explicit equations are invariant in transformations involving only

tlf independent variables. The Monge parameterization is*therefore invarianetin 2-D

translations of the Oyz plane, whereas the form in (4.24) is invariant with 3-D rota-

tions around the origin. Hence, this last representation elegantly casts a surface

representation in a form invariant with viewing direction. The function p (,r/) is

sometimes referred to as the support function, as it describes the distance from the ori-

gin to a potential support plane when the object is oriented with the direction (,ri)

towards nadir.

Silhouette construction is now investigated for an object shape described by an

equation such as (4.24), by first considering the selection of silhouette generating

planes, then their projection onto the image plane.

For a plane with polar tangential coordinates (p ,6,T7), the normal orientation is

n = (coscosl sinfcosr1 sinr ) (4.25)

The silhouette generator equation is n1 . = 0, more explicitly

(cosgcosrl sinfcos- sini ) ( cosqcosO sin>cosO sin ) = 0 (4.26)

cos(6 - = -tanrntanO (4.27)

This equation defines a set of values for (,r7) which correspond to silhouette generat-

ing planes. The following expression for the one-parameter family of solutions will be

derived in Chapter 6.
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|SG (t) = b + r/2 + atan ( tant sin) (4.28)

{TSG (t) = asin ( sint cos )

where t E(0,27r] is a parameter. The subscript in SG ,rlsG emphasizes that these

expressions apply to the silhouette generating planes. The result in (4.28) can be

justified by inserting the proposed solution in equation (4.27), then performing simple

trigonometric manipulations to obtain an identity; this justification is omitted here.

Once the silhouette generating planes are determined, the next operation consists

of obtaining the coordinates of their traces in the projection plane. The transformation

of polar tangential coordinates in the projection can be obtained by exploiting the pro-

jection transformation for Cartesian tangential coordinates in (3.22) and by replacing

the Cartesian coordinates in terms of the polar tangential coordinates, as given in (3.1)

and (3.2). The resulting projection equation for polar tangential coordinates is

cosu/p , -sin cos 0 cossin77/p

sin0/p -, -sinOcoso -sinsinb cosO j sincosrq/p (4.29)
sinT7/p

The above relation applies only to planes perpendicular to the projection plane, i.e. to

planes determined by (4.27) or (4.28). The following expressions for polar tangential

coordinates of the silhouette can be obtained after trigonometric manipulations, by

replacing S and r in the right-hand side of the above projection equation by their

values in equation (4.28).

(4.30)
pTr =

The first equation above provides an interpretation for the generic parameter t in

(4.28). The second equation can be combined with (4.28) to obtain an explicit equation

for the silhouette in polar tangential coordinates.

Pr(q) = P ( G (), '1SG (P))

= p ( +r/2+atan(tan4, sinO), asin(sinmJ cosO) ) (4.31)

The expressions obtained above for silhouette construction in polar tangential

coordinates are remarkable in several respects. First, equation (4.28), determines the
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silhouette generating planes based on the independent variables (,r 1 ) only. This

result is hence independent of object shape. Selection of the orientations of silhouette

generating planes depends only on viewing orientation and can be precomputed for a

set of viewing angles; the resulting selection procedure applies to any object. Second,

correspondences between the silhouette orientation coordinate * and the object orien-

tation coordinates 6, r are also independent of object shape, and are given by equations

(4.28) after replacing the parameter t by the angle 4.

SSG = b + r/2 + atan ( tanmsinO (4.32))

TSG = asin ( sin-4cosO )

Finally, the normal distance p 7r for points of the silhouette is related to the normal

distance p at the corresponding point of the object by the trivial relation p r = P .

4.3.1.1. Example: Silhouette of a Cone

In order to apply the method developed in the previous section to the derivation

of the silhouette of the cone, it is necessary first to determine parametric equations for

the polar tangential coordinates of the cone, second to convert these into the form of

equation (4.24). and third to determine an equation for the silhouette with (4.31).

Polar tangential coordinates for the cone are easily determined by comparing

equations (4.15) and (3.2).

x = cotlo cosv /z o = cos cosr /p

A. = cot1 sinv /z 0 = sing cosr lp/ (4.33)

k z = /zO = sin l/p

It is clear from the above equations, that

e=v , rl=T1o, p =z osinr7 0 (4.34)

This result shows again that the cone is a degenerate case since l=cst, p =cst and only

g is variable, whereas in general, both g and 7r would be variable and p would be a

non-trivial function of (,r7). The tangential coordinates of the silhouette are easily

determined with (4.31) and (4.32).
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r = zosin-lo 0 , sint° = si-o 0 (4.35)
cosO

After conversion of these polar coordinates to Cartesian tangential coordinates using

(3.1), the above results are found to be identical to those obtained previously in (4.21)

and (4.22).

4.3.2. Silhouette Construction with the Gaussian Mapping

In the previous section, relations between normal orientations on the object sur-

face, on the silhouette generator and on the silhouette were obtained by analyzing

silhouette construction in polar tangential coordinates. These relations are interpreted

in this section by considering normal orientations in the Gaussian sphere and Gaussian

cirete representations. The resulting interpretation is muchs more attractive vicually

than the one obtained in the previous section, although no new equations are derived.

Indeed, it is much easier to visualize points on the sphere than orientations in 3-D

space. Finally, the relation between silhouette analysis and the Gaussian mapping is

extended by introducing property spheres and property circles.

The relation in (4.32) between normal orientations in 3-D and normal orienta-

tions in the projection plane has a double interpretation. First, considering J as a gen-

eric independent parameter, these equations characterize the set of normal orientations

of points on the silhouette generator, for a given viewing direction (,0O). These nor-

mal orientations are defined by the polar angles (,ri). Second, it relates points on the

silhouette parameterized with the normal angle qt to the corresponding points of the

silhouette generator.

It is interesting to interpret these relations in representations particularly suited

for normal orientations, namely the Gaussian sphere for the object and the Gaussian

circle for the silhouette. The silhouette generator on the object surface is the set of

points for which the normal orientation is perpendicular to the viewing direction. As

the Gaussian mapping preserves normal orientation, the image of these points on the

Gaussian sphere is the set of points for which the normal orientation is perpendicular

to the viewing direction or, in other words, the silhouette generator of the sphere for

the same viewing direction. It is straightforward to see that this set of points is the

great circle perpendicular to the viewing direction. In addition, surface normals at the



- 73 -

points of the silhouette generator are parallel to the projection plane and remain

unchanged in the projection operation, so that normal orientations on the silhouette are

identical to normal orientations at the corresponding points on the silhouette genera-

tor. The consequence is that the great circle of the Gaussian sphere is also a Gaussian

circle for the silhouette. The relations discussed above are illustrated in Fig.4.7.

In the above discussion, equation (4.32) has been interpreted in terms of the

Gaussian mapping. Although this interpretation indicates a relation between object

points and silhouette points, it does not suggest a complete method for inferring the

shape of the silhouette from the shape of the object. A complete relation is obtained,

however, by combining equation (4.31) with the Gaussian mapping and considering

object descriptions by property spheres and silhouette descriptions by property circles.

Indeed, the support functions p (,r) and p rr(i) represent perpendicular distances to

tangent planes in terms of normal orientations. Mapping normal orientations on Gaus-

sian images produces functions defining p and p r on the Gaussian sphere and on the

Gaussian circle. These can be considered as property spheres and property circles as

Viewing
Direction

\?~~~~~~ \ ~~Gaussian Sphere
Object

Great
Circle
Slice

Fig.4.7. Silhouettes and the Gaussian Mapping
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defined in section 3.3.2. For these representations, equation (4.31) suggests that the

silhouette property circle function values p , are identical to the property sphere

function p on the slice corresponding to the silhouette. Hence, the silhouette property

circle can be considered as a slice of the property sphere of the object.

In this section, we have interpreted silhouette analysis with polar tangential coor-

dinates by representing the 3-D object by a property sphere for the distance between

origin and tangent planes, and the 2-D silhouette by a property circle for the distance

between origin and tangent lines. The silhouette property circle is identical to a slice

of the property sphere of the object by a plane perpendicular to the viewing direction,

through the center of the sphere.

4.3.2.1. Example: Silhouette of a Cone

Construction of the silhouette with the Gaussian Mapping is now illustrated by

the example of the cone. First, the distance p to the tangent is the constant z sinr77

for all points of the cone. As a consequence, the distance p v to silhouette tangents is

simply equal to the same constant everywhere on the silhouette.

The investigation of silhouette normal orientations leads to a more interesting

discussion. As derived in previous sections, the normal orientations of points on the

surface of the cone are determined by

e (0,27rT], 77=o (4.36)

This set of orientations is represented by the parallel at latitude 770 on the Gaussian

sphere; see Fig.4.8. Considering a projection along the direction (,0O), the silhouette

corresponds to the great circle slice perpendicular to the viewing direction, which is a

Gaussian circle for the silhouette. In the case of the cone, this slice intersects the small

circle r/=rlo at two points with polar angles qo, r-o in the slice plane. The

silhouette is hence characterized by only two distinct normal orientations, so that it is

composed of two lines with those normal orientations. The exact position of these lines

is determined by the distance p 7r to the origin, which was determined previously. The

exact value of the orientation %Po in the silhouette plane can be obtained in terms of 70o

and 0 by resolving the right-angled spherical triangle in bold lines in Fig.4.8.
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Viewing
Direction

ro n
Slice

=o 7

Gaussian Sphere

Fig.4.8. Silhouette of the Cone and Gaussian Sphere.

The relation obtained with standard expressions of spherical trigonometry is

sino = cosO sino (4.37)

which is consistent with the results obtained previously with other methods (e.g.

equation (4.12)).

Although the Gaussian mapping does not provide new numerical expressions for

the relation between silhouette shape and object shape, it is well adapted to conduct

qualitative prediction of the results. Indeed, the following conclusions can be drawn

by considering the Gaussian sphere of the cone and the silhouette slice in Fig.4.8.

First, the intersection points between the parallel of the cone and the great circle slice

are on the opposite side from the viewing direction. As a consequence, the silhouette

generator on the object is on the same side of the object as the projection plane; this is

clearly seen in Fig.4.4. Second, by an appropriate choice of the elevation 0 of the

viewing direction, it is possible to give the half angle to of the silhouette any value

between o and r/2; this is valid for any value of the opening angle ro of the cone

itself. Hence, if a pair of lines observed in the image plane are presumed to be the

silhouette of a cone, nothing can be determined about the shape of the cone without

estimating its orientation with respect to the projection plane by some other method.



- 76 -

Finally, for very large elevations 0 of the viewing direction, namely for 0> 7r/2-T0o,

the great circle does not intersect the parallel 1=r77o, and there is no silhouette. It is

not hard to see that this corresponds to a case where the viewer is "above" the cone so

that its image fills the whole projection plane. Similarly, when 0<-7r/2+Tlo, there is

no intersection on the Gaussian sphere, and this corresponds to the case where the

viewer is "inside" the cone, so that, once again, no silhouette is obtained in the image

plane.

We have shown in this section that interesting qualitative arguments on

silhouettes can be developed based on the Gaussian mapping. This advantage of

representations with the Gaussian mapping is extremely useful in developing a

thorough understanding of the relation between silhouette shape and object shape.

4.4. Conclusion

In this chapter, we have developed a number of silhouette construction methods

and their illustration on a simple example. Starting from the method used most fre-

quently in the literature, we have gradually progressed to methods based on tangents,

then to methods based on tangent orientations. In the last method, the Gaussian map-

ping was introduced to interpret first a relation between object points and silhouette

points, and second a relation between object properties and silhouette properties. Both

relations are independent of object shape, and the first is independent of the choice of

object property. The second relation depends on which object property is represented

on the Gaussian sphere, and is independent of object shape only for adequate choices of

object properties and silhouette properties.

The keys contribution of this thesis are first the formal analysis of the property

sphere for the distance to tangents introduced in section 4.3.2., and the demonstration

of its relation with corresponding silhouette property circles, and second the develop-

ment of two additional object properties for which the relation between sphere and

circle are independent of object shape.

In Chapter 5, three representations of 3-D objects in terms of property spheres are

proposed and analyzed, together with the corresponding representations of silhouettes

with property circles. In Chapter 6, the relation between these silhouette property cir-

cles and object property spheres is formally developed.
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Chapter 5
Representations for Curves and Surfaces

Based on the Gaussian Mapping

In this chapter, three property circle "--ocsentluons of 2-D curves and the

corresponding property spheres of 3-D surf a, , are proposed. The advantages of this

type of representation for silhouette analyst- o',ere suggested in Chapter 4 and will

become more clear in Chapter 6, when simple ?elatirns are developed between each of

the representations for an object surface and ne corresponding representations for its

silhouettes.

The three pairs of representations describe three dfferent properties of the objects

being described as functions on Gaussian circes zartd spheres. The first representation

describes the normal distance between tangents and a reference point; this scalar pro-

perty sphere/circle is named the Support Transfcrm (ST). The second representation

describes coordinates of object points in rota:r:- axes and is named the Vector Support

Transform (VST). The VST has three componns for 3-D surfaces, two components

for 2-D curves, and it turns out that in eac-. case. one component is identical to the

scalar ST. Finally, the third representation describes local curvatures and is named

the Curvature Transform (CT). The three reoresentations are collectively referred to

by the name of transforms, in part to emphasize that these representations are com-

plete and therefore uniquely invertible, and n part to preserve the similarity between

our silhouette theory and the Projection-Slice theorem in computerized tomography.

The particular choice of object properties for these three representations is

justified a-posteriori by the existence of simple reiations between each transform of an

object and the corresponding transforms of :s silhouettes; these relations are demon-

strated in Chapter 6. The existence of such simple relations was suggested for the ST

in Chapter 4. In the case of the VST, it car e expected that simple relations exist

between point coordinates in 2-D and 3-D. Fnally, in the case of the CT, the dual of

Euler's theorem indicates a relation between silhouette curvature and object surface

curvature. The dual of Euler's theorem is demonstrated independently of the Gaus-

sian mapping in Appendix 3, and it turns out to be also a corollary of the relations

- 77 -
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between the 3-D CT of an object and the 2-D CT of its silhouettes.

The definitions of the transforms presented in this chapter are accompanied by

the derivation of conversions to and from Cartesian representations. These relations

are useful when evaluating or inverting the transforms for specific object shapes. In

addition, the conversion relations are used in Chapter 6 to develop the relations

between 3-D transforms of an object and 2-D transforms of its silhouettes.

In this chapter, all arguments are developed for curves and surfaces which are

outlines of smooth strictly convex objects. It is possible to describe these curves and

surfaces by equations parameterized with the normal orientation angles 1P in 2-D,

(,r/) in 3-D. Only these parameterizations are considered here for Cartesian coordi-

nates. Relations between these and other parameterizations are briefly discussed in

Appendix 2. Extensions of the representations to include object surfaces with edges

and their silhouette curves are discussed in Chapter 7.

The concepts of the three transforms are very similar in 2-D and 3-D, a similarity

emphasized by the vector notation used in this chapter. As the algebra is more

straightforward in the 2-D case, we have chosen to discuss the 2-D transforms in the

first section of this chapter and the 3-D transforms in the second section. The algebra

supporting the discussion of 3-D surface models is more involved than in the 2-D case,

but the parallelism of concepts substantially improves readability. In order to

preserve the similarity of notations, some aspects are presented with considerable

detail in the case of 2-D curves.

5.1. Representations for Planar Curves

In this section, three property circle representations of 2-D curves are defined,

and their transformations to and from Cartesian coordinates are developed. The

representations, collectively referred to as transforms, define curve shapes by property

functions on the Gaussian circle. The object properties are represented in a different

set of rotated axes for each object point, so that the rotations of coordinates defined in

equation (3.7) appear in both the direct and inverse transform expressions. Relations

among the three transforms of the same curve are developed at the end of this section;

these relations are exploited to develop consistency constraints for the ST and the

VST.

_ __ _ __�
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5.1.1. Support Transform of a Planar Curve

Definition: The Support Transform of a planar curve is the property circle defining

the normal distance between the origin and the tangent at each object point. This dis-

tance is denoted by the symbol p.

The ST is equivalent by definition to a representation of the distance p to the

tangent as a function of the normal orientation angle , and is hence a representation

of tangents to the curve equivalent to the explicit equation p (') for the polar tangen-

tial coordinates. The function p () is sometimes referred to as the support function,

a name which has determined our choice for the name of the Support Transform.

Figure 5.1 illustrates the definition of po for the point Po on the curve C. Let

4o be the polar angle of the normal at P 0 . The distance p o is measured along the nor-

mal at Po, which is parallel to the OXR axis of the rotated frame OXR ZR for Ir=¢o.

The ST function is hence related to Cartesian coordinates by p = R (Po). This rela-

tion is given, for a generic point of the curve, by

P)= G)= XR (') I costp sin X
Pz () = = -sink' cos0 z ()

= |cosp sin (J ) 

C

X

Fig.5.1. Tangent to the curve C at Po and normal distance Po.
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P (I) = E[ XR (4') = of R2G - R X() = i TX(p) (5.1)

where E1 denotes the canonical unit vector (1 0 )T . The transformation from ST to

Cartesian coordinates is now derived by first considering the equation for the Carte-

sian coordinates of the points on a tangent line with polar tangential coordinates p (4),

O.

x cos + z sin = p (P) (5.2)

The above equation describes a. one-parameter set of tangents to the curve, where 4 is

the parameter. The curve itself is the envelope of these lines and its equation can be

evaluated by eliminating the parameter ¢ between the equation for the tangent and

the derivative of this equation with respect to 4,. These two equations are given by

x cos +z sin+= p(tq)

-x sin40 + z cos0 = P (0P)

cos4' sin | x p

--sine; cosqj z p ,

where p ,, = dp id 4,. Comparison of these equations with

global to rotated coordinates, namely

XR cos0 sing x

ZR | - -sin0 cost T

= RG-R XR- 2

reveals that the coordinates of points of the curve in the

XR (J) p(0)

ZR () =P p()

(5.4)

the transformation from

(5.5)

rotated frame are given by

(5.6)

and that global Cartesian coordinates are related to the ST by

x (1) cos0t -sini p (1)

z( (0) = sink costP p ,(t) 

I
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(f) = R --G() | P () | (5.7)

The following alternate vector notation emphasizes the contribution of the ST along

each local unit vector on the Gaussian circle.

(qJ) = P () iT + p (Jp) Ti (5.8)

5.12. Vector Support Transform of a Planar Curve

Definition: The V'ector Support Transform of a planar curve is the property circle

defining the Cartesian coordinates of each point in a rotated frame oriel2ed along the

normal and the tangent at that point. These coordinates are denoted by n and t for the

coordinates along the normal and along the tangent respectively. The vector combining

these coordinates is denoted by = [ n t ]T.

The above definition emphasizes that the VST describes object point coordinates.

However, it is easy to see that the first component of the VST is identical by definition

to the scalar ST. Therefore, the VST is a superset of the ST and it explicitly describes

tangents to the curve in addition to points of the curve. The presence of two com-

ponents in the VST and its relation to the ST justify the name of Vector Support

Transform.

Figure 5.2 illustrates the definition of the VST for the point P on a curve C

described in global axes Oxz. If 'to is the normal orientation angle at Po, the VST

z

C

x

Fig.5.2. VST of PO as Coordinates in the Rotated Frame.
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defines the coordinates of Po in rotated axes OXR R for f=tqo . The transformation

between VST and coordinates in the global axes is given by the transformation of coor-

dinates between rotated and global axes in equation (3.7). The transformation is a

rotation with an angle tpo for the point Po and, for a general point, the normal angle

4,. This angle has a different value for each point on the curve. The transformation

from the VST to equations for Cartesian coordinates in the global frame is given by

x (4) cosqt -sin+| n ()

z(t) - sin0 cos0t t (,)

X(tq) = RR -G(t) s(Gp) (5.9)

The following alternate vector notation emphasizes the contributions of the VST along

each local unit vector of the Gaussian circle.

()= n (0) i +t(NJ) , (5.10)

The transformation from Cartesian coordinates to the VST is the inverse of the above

transformation, namely

n () cos0 sin, x ()

t () = --sin0k cosP z (4,)

At) = RG-R()() (5.11)

5.1.3. Curvature Transform of a Planar Curve

Definition: The Curvature Transform of a planar curve is the property circle

defining the radius of curvature at each corresponding object point. This radius of cur-

vature is denoted by the symbol p.

The CT defines the radius of curvature p for each given normal orientation 4i and

is hence equivalent to the intrinsic equation p(tP), a representation which is well

known in differential geometry [52]. Our motivation for defining curvature by the

radius p as opposed to the curvature k is the simplicity of object/silhouette relations

for this choice of representation for curves and for the corresponding representation

for surfaces.
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The definition of radius of curvature at the point Po of a curve C introduced in

section 3.2.5. is based on the Taylor expansion of the Monge parameterization in local

axes Poxz yl zz oriented along the tangent and normal at Po.

x, = -1/2z 1 po +0 ( 1
3 ) (5.12)

where o is, by definition, the radius of curvature at Po. Local axes for the above

Monge parameterization are sketched in Fig.5.3. Note that for a convex curve without

straight segments, p(6) > 0 for all 4i.

The transformation from the CT function p(/) to Cartesian coordinates is now

determined. In contrast with the ST and the VST, the CT defines the shape of the

curve only locally. As a result, it is not possible to determine direct relations between

parametric equations X(O) and the CT represent:tion, although a relation will be

obtained between the first differential d (4') and the CT. The curve is first con-

sidered in a small neighborhood of the point Po and analyzed in the fixed local refer-

ence frame Poxl z . An expression for the differential d (/) in the local axes is

obtained by the chain rule

d x (z) dzL dm,,
d ()= d d d (5.13)

dz l dmZl d 

where m:Z was defined in section 3.2.4. as the gradient of the local Monge equation.

The first two derivatives in the right-hand-side of (5.13) depend on the particular

curve shape at Po expressed in (5.12). The last derivative in (5.13) depends on the

AC

x
0

Fig.5.3. Local axes for Defining the Curvature of AC at Po.

� __



- 84 -

relation between the local gradient and the global orientation angle, a relation dis-

cussed in section 3.3.3. Each of the factors in (5.13) is evaluated in Appendix 6; the

resulting expression for d XI is given by

dxl 0

dz| =Po 1 dip+O(i-V o )d'P

d x, = po T d + O (-to) d 0p (5.14)

The above expansion is exact for 4s = 4 o. which corresponds to the point Po

d x l (o) = po zT d ,

The differential of global coordinates is obtained by applying the coordinate transfor-

rrmtion from I to X, defined in equation (3.8) .. 9

dx (,o) cosO -sin|o | -sinqr0
d ( 0) = sintpo cosIO| 1 o d P |cos'PO p0 d qj

d x(ip0) = RR -G(4o) 2 pod 0 = it O Pd ip (5.15)

As the point Po is generic, the above relation is valid for all the points of the curve, so

that

dx -sin p
dz cos P(t ) d O

d x(p) = iT p(p)d 40 = R R -G() E2 P(P) d tp (5.16)

The above equation is a first-order differential which can be integrated to produce an

expression for Cartesian coordinates of points on the curve

| x(+) | DO) I#)\o -sini 
z () lo 0 P costP d0 

s(0.) = x0 + f p()tp( (0) d qP (5.17)

For a simple closed curve, the vector function R(j) must be periodic in 'p with a

period of 27r. Therefore, the CT function p(i) must satisfy the following constraint

'4
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27T ,r ( -sino 

f p~p)
0

2X

f p(¢) L () d= 0 ( 5.18)
0

One interpretation of the above relation is that p(O), considered on a 27r interval,

must have no Fourier series term of order one. The relation in (5.18) has also been

interpreted by considering p(4') as a distribution of mass on the unit circle [53]. The

consistency relation is then equivalent to requiring the center of mass of the distribu-

tion to be at the center of the unit circle.

Two expressions for the CT in terms of Cartesian parametric equations are now

obtained, the first by multiplying both members of equation (5.16) by T, the second

by taking the modulus of (5.16).

P () = ) = d(tf) I(5.9)

Note that the right side of the above expression is identical to a classical definition for

the radius of curvature of a convex curve [52].

5.1.4. Relations between the ST, the VST and the CT of a Curve

Relations between the three transforms of a 2-D curve are developed in this sec-

tion. Based on these relations, a number of consistency criteria are developed for the

ST and the VST.

By definition, the first component of the VST is identical to the scalar ST. As a

consequence, the VST is a superset of the ST and is therefore redundant, since the ST is

complete. Comparing equations (5.8) and (5.10). it is straightforward to determine

that

n =p

t - 'P, (5.20)
t= n,

where the first two equations express the relation between the ST and the VST, and

the third equation is a consistency relation for the VST.

----__
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In addition to the above relations, a consistency criterion for the ST and for the

VST can be obtained by relating these to the CT, then expressing the convexity con-

straint p>O0 on the CT. The relation between the ST and the CT is obtained by con-

sidering the inverse ST equation

x(VJ) = p(J) I, + p(J) T (5.21)

and by comparing the differential of this expression with (5.16). The differential of

(5.21) is easily obtained. using the derivatives of unit vectors in (3.55).

XA(1 p)= IP(J)+P,(j)j It (5.22)

Comparing this expression with (5.16), the relation between the ST and the CT is

determined to be

P(O) = p (0) + p(+A) (5.23)

The corresponding relation between the VST and the CT can be obtained by a similar

argument.

p(q) = n (q,) + t ,() (5.24)

For a convex curve, p(k6) > 0 for all tb. As a consequence, the following inequalities

must apply to the ST and to the VST components:

(J) + PW(qJ) > o (5.25)

n () + t ,() > 0 (5.26)

It is instructive to consider the relations between each of the three transforms

and derivatives of the support function p (4).

p (p) = p

(1) = [p P V ]T (5.27)

P(q) = p + Poo

The above relations emphasize the dependence of the ST, the VST and the CT on

derivatives of p up to orders 0, 1 and 2 respectively; similar conclusions will be

observed for 3-D surfaces. These relations will be useful in Chapter 7 when analyzing

discontinuities of these functions for curves and surfaces with straight edges.
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5.1.5. Examples of 2-D Transforms

In Appendix 1, the three 2-D transforms are derived analytically for superconics.

Graphs of the transform functions are presented in Fig.5.4 for a superconic with major

axis half-lengths a =2.0. c = 1.0 and an exponent of n =1.2. The property functions

are drawn on polar plots in Fig.5.4. with the origin of the plots offset from the center

to allow the representation of negative values in t (0).

5.2. Representations for 3-D Surfaces

In this section, three property sphere representations for 3-D surfaces are defined.

These representations are extensions to 3-D of the three representations defined for 2-

D curves in the previous section. The representations of surfaces will be referred to

by'the same names as their 2-D counterparts, namely theiST for a property'sphere

specifying normal distances to tangent planes, the VST for a property sphere of object

a) b)

c) d)

Fig.5.4. 2-D Curve and Polar plots of 2-D Transforms.
a) Superconic with exponent 1.2, b) Support Transform,

c) Tangential Component of Vector Support Transform, d) Curvature Transform.
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point coordinates, and the CT for a property sphere of curvatures. Transformations to

and from Cartesian coordinates are derived for the three transforms. Relations among

the three transforms are developed and exploited to develop consistency constraints

for the ST and for the VST. In addition to the above relations, relations between the

extended Gaussian image and the three surface transforms are determined. A close

parallel has been preserved with the notation used in the case of 2-D silhouettes, as

this association improves the readability.

5.2.1. Support Transform of a 3-D Surface

Definition: The Support Transform of a 3-D surface is the property sphere defining

the normal distance from the origin to the tangent plane at each point of the object. This

distance is denoted by the symbol p.

The ST function on the Gaussian sphere specifies the normal distance p to the

tangent plane with the given orientation and is hence equivalent to the representation

of planes tangent to the surface by the explicit equation p =p (,r7) for the polar

tangential coordinates. In other work, the function p (5,77) is referred to as the sup-

port function for the surface. As illustrated in Fig.5.5, the normal distance p o for the

point Po on the surface element E is the distance between the origin and the tangent

plane at Po. This distance is measured along the normal, and is equivalent to the XR -

coordinate of Po in rotated axes for 6=0o, r=rlo. The ST function is hence related to

Cartesian coordinates for the curve by

XR (Srl)

P (_) = XR = 1 o o YR (')

ZR (,7)

coscosr7 sinfcosr7 sinr x (,r)

= |1 0 0 -sin6 cost 0 y(,r)
-cosfsinr -sinfsinrl cos-r z (,77)

(n)
z (6,r7)=- coscos sinfcos sinl z (Str)

p (), ) = 6T X (,r1) = 1T R3-R (,) = (5(2,8)

_

(5.28)
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x

y
Fig.5.5. Tangent Plane II to the surface at Po and normal distance p o.

where -l denotes the canonical unit vector ( 0 0 )T. The transformation from ST to

Cartesian coordinates is now derived by first considering the equation for the Carte-

sian coordinates of points on a tangent plane with polar tangential coordinates

x coscos + sinfcosr + z sinrp= p (,r) (5.29)

The above equation describes a two-parameter set of planes tangent to the surface.

The surface is the envelope of these planes and its equation can be evaluated by elim-

inating the parameters ,rn among the equation of the tangent plane and its derivatives

with respect to and 7r. The three equations are given by

cosfcosr x + sinfcos- y + sin z = p

-sinscos- x + cosfcosr y = Pg (5.30)

-cos4sinrl x - sinfsin y + cos z = p 

where the subscripts in p and p denote partial derivatives. After scaling of the

second equation by cos-r,

__�
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the above equations can be rewritten in the following matrix form.

coscosT sincos7 sin x
-sing cos6 0 Y =

-cosgsin77 -sinsinrl cost z

P

J n/COSfl

Pr)

(5.31)

Comparison of this equation with the transformation from global coordinates to coor-

dinates in rotated axes, namely

XR

YR

-R

cosgcosr1 sincos77 sinTe x

-sing cost o Y

-cossinT7 -sinsin7 cosT z

XR = R 3 x aX (5.32)

reveals that the coordinates of the surface points in the rotated frame are related to

the ST by

XR

YR

-R

P
p /cosT7

Pn7

(5.33)

and that Cartesian equations for the surface are expressed in terms of the ST by

cosicosq

= sinfcos

sinr

-sin6 -cosfsinTl
cosf -sinfsinr

0 cost7

p (,ri)
P (r)/cos-q

p (,77)

(, 77) = R 3§-G (,))
P (,r)

p (,r)/cosrl

P (6,1)

The following alternate vector notation emphasizes the contribution of the ST along

each local unit vector on the Gaussian sphere.

'(f,rn) = p (,)) in + P (g,T)/COSr -f + p 1(,rl) 1(

X(qr)

y (1rn)
Z (1n)

(5.34)

______�

(5.35)
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5.2.2. Vector Support Transform of a 3-D Surface

Definition: The Vector Support Transform of a 3-D surface is the property sphere

defining the three Cartesian coordinates of each surface point in a rotated frame

oriented along the local normal, parallel and meridian of the Gaussian Sphere. The com-

ponents are denoted individually as n, h and v respectively. The vector combining

these components is denoted bye'= ( n h v )T.

The above definition emphasizes that he VST specifies point coordinates, but it is

easy to see that the first component of the VST is identical to the scalar ST, so that the

VST is a superset of the ST and defines tangent planes in addition to points.

Consider on the surface , the point Po with normal orientation 0o(orto), as

illustrated in Fig.5.6. The VST components n 0, h o, ' O for the point Po are the Carte-

sian coordinates of P in the rotated axes OXR YR ZR for Po. The transformation

between this frame and the global object frame is defined in equation (3.9), for S = So

and 7 = r . This relation is valid for each point of the surface, when and 77

x

Y
Fig.5.6. Tangent Plane n to the surface £ at Po,

VST s- = (n o,h o,v 0) and principal orientation vectors.

_ 
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represent the corresponding normal orientation. The Conversion from Cartesian

parametric equations x = (6,r) to tne VST is hence given by

n (,7) cosgcos7r sincos77 sinr) x (,r?)

h (,r7) = -sine cos 0 y (,rl)
v (,7i) -cosfsinrl -sinSsin7 cos-T z (,7r)

t r) = RGR(,r) x(7) (5.36)

The inverse transformation the VST to equations for the Cartesian coordinates is

the inverse of the above 3-D rotation, namely

x (,r7) cosfcos- -sine -cosfsinr7 n (,r7)

y (,r) = sinfcos-? cost -sinsinr? h (,-r)

z (, 1) sin-q 0 costr v (,7)

(~r, ) = R3 -G(S,T )s(,r ) (5.37)

The following alternate vector notation emphasizes the contribution of the VST along

each local unit vector on the Gaussian sphere.

x(f,7) = n (,A) 1i + h (,r1) 1i + v (,r) 1,' (5.38)

5.2.3. Curvature Transform of a 3-D Surface

Definition: The Curvaturl-e Transform of a 3-D Surface is the property sphere

defining the tensor of radius of curvature of the surface expressed in axes oriented along

the parallels and meridians of the Gaussian Sphere. The components of the tensor are

referred to as r 11, r 12 and r 2 2 , with the index I corresponding to the direction of the

parallel. The tensor itself is represented by the symbol R.

This definition of the CT is a natural extension of the CT defined for 2-D curves

in section 5.1.3. Other extensions to three dimensions of the 2-D CT are also possible.

For example the 2-D extended Gaussian image is identical to the CT [53], but the 3-D

extended Gaussian image represents a scalar property, namely the inverse of the Gaus-

sian curvature of the 3-D surface [44]. Relations between the extended Gaussian image

and our 3-D transforms are developed in a later section.

The curvature of a surface E at the point Po was defined in section 3.2.5., based

on the Taylor expansion of the Monge parametric form in local axes at Po,
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-1

o0 0

r 12 r22 l

x = -1/2 Z1Ro Z1 + O ( 3)

O ((yz ,zI ) 3)

where x is along the normal and yl ,z2 in the tangent plane at Po. In the above

expression, Ro is, by definition, the tensor of radius of curvature at Po, and Zz denotes

the 2-vector ( Yl zI ) in the local tangent plane. The surface and the local axes at Po

are sketched in Fig.5.7.

The transformation from the CT representation to Cartesian coordinates is now

determined. As the CT representation describes only local properties of the object sur-

fate, it can not be directly related to Cartesian coordinatesealthough it will berelated

to the first differential d (6,r/) of these coordinates. For this purpose. a small surface

element AE in the neighborhood of Po is analyzed in the fixed local axes Pox, YZ zl.

An expression for the differential is first obtained in the local axes by the chain rule

2

x

Y
Fig.5.7. Local Axes for the Definition of the Curvature of E at Po.

Xl = -1/2 Y (5.39)

(5.40)

I
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_ Dx ( )
dI9 = Dz1

Dz Dd
de

Df1Tt De

where expressions such as D 1 /DZ l denote Jacobian matrices, mzZ = (y mrn ) is

the 2-vector of local gradients, and d is the vector of normalized global angle

differentials d e = ( cosrd a d rq )T. The first two Jacobian matrices in the right hand

side of (5.41) depend on the shape of the particular surface around Po, defined by

(5.39). The last Jacobian matrix in (5.41) depends on the relation between local gra-

dients and global orientation angles, a relation which was discussed in section 3.3.3.

Each of the factors in (5.41) are evaluated in Appendix 6. When inserted in equation

(5.41), they produce an expression for the differential d Xz in local coordinates, valid

to first order around Po. The expression is exact at Po, and since Po is generic, the

differential in local axes at a given point is represented by a similar expression.

dx 0 0 r 1 1 r 12 cosTld

dy t I 0 r12 r 1 dr
dz t 01 ' 

d xz = I 3 2 d (5.42)

where 132 is a 3x2 matrix consisting of

face in global coordinates is obtained

(3.10).

dx cos[cosr7 -sine -co:

dy = sincos-r cosS -sir

dz sinrl 0

dx= 

only zeros and ones. A differential for the sur-

by applying the coordinate transformation in

s[sin-r

ifsinrp
cost/

zR-G 1323 I32

i01 I r1l r12 Icospd 
1 0 
01

d (5.43)

In principle, the above differential can be integrated to produce Cartesian equations for

the surface. As the integration domain is two-dimensional, an integration path must be

prescribed; this question is addressed in the next section.

Transformations from Cartesian equations to the CT are easily developed based

on equation (5.43). Indeed, explicit expressions for the partial derivatives of x can be

obtained from (5.43) as

(5.41)

*
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T/ cos*? r l r12
(5.44)

~rl r 12 r22

An expression for determining the CT of a surface given by parametric equations

x(,rn) is hence

r|1 r12 l f'V/cosl l1>'x/cosr|
=_# __+ (5.45)

r 12 r 22 1 'qx7

5.2.3.1. Consistency Constraints for the 3-D CT

In this section, consistency constraints are determined for the CT function defined

on the Gaussian sphere. Equation (5.44) relates first derivatives of Cartesian coordi-

nates to the CT. This expression has a conceptual similarity to the expression for sur-

face reconstruction from needle maps [21]. In both cases, first derivatives of a func-

tion are given on a two-dimensional dornain. In the case of the needle map, surface

reconstruction is possible only if the gradient field corresponding to the needle map is

curl-free. The curl-free condition. also referred to as an integrability constraint,

corresponds to a zero elevation gain on all closed loops in the image plane, and is

equivalent for smooth surfaces to equality of the mixed derivatives. This condition

guarantees that integration of the Cartesian coordinates is independent of integration

path and is a necessary and :ufficient consistency constraint for a needle map. A simi-

lar condition is derived here for the CT by requiring equality of the mixed derivatives

xf'. and Xg'. These mixed derivatives are first evaluated from (5.44), taking into

account the derivatives of local unit vectors given in equation (3.50).

x = (r l cost) + r 12 Cos I- r 12 cosr n

(5.46)
= r 12 - r 22 sinr I + -r 22 + r 12sing 1 -r 12cosT in

The consistency constraints are obtained by comparing individual components of the

above expressions for the mixed derivatives.



- 96-

-r(r 1 Cosr7)- r 12 - r 22 sinl
3r ~ - (5.47)

A r 22 - ( r 12 COS ) - r 12 sinrl

When the above consistency relations are verified, the integral of the differential d is

independent of integration path.

A second type of constraint must be satisfied by the components of the CT of a

convex object. Specifically, positivity of mean and Gaussian curvatures implies posi-

tivity of the trace ( r 1 l + r 22 ) and of the determinant ( r lr 2 - r 12 )

5.2.4. Relations Between the ST, the VST and the CT of a Surface

In this section, relations between the three transforms of a given 3-D surface are

developed. From these relations, consistency constraints are determined for the ST

and for the VST.

By definition, the first component of the VST is identical to the scalar ST. Since

the ST representation is complete, the above relation indicates that the VST is redun-

dant. Comparing equations (5.38) and (5.35), it is straightforward to determine that

n -p

h = p /Cosr7 (5.48)

w' -p r)

h = n /cost

V = n (5.49)

v = /ala-(h cost)

where the first group of equations expresses the relations between the ST and the com-

ponents of the VST. The equations in the second set are relations among the three VST

components.

In addition to the above relations, a set of inequality constraints can be developed

for the ST and VST by relating these representations to the CT, then expressing the

convexity of the surface in terms of the CT representation. The relation between the

ST and CT is derived by considering the inverse ST equation,.
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(6n7) = p (n) n + pE( ,)/cosr7 1e + p (,rn) T (5.50)

and by comparing the derivatives of this expression with (5.44). The derivatives of

(5.50) are easily obtained with the derivatives of unit vectors in (3.50).

'X/cos7| p + p ff/cos2rl -p ,tanr7

(x p v/,cos r + p t sinrl/cos 2 T)

p f/cos r + p f sina/cosr

P +PqT)

Comparing this expression with (5.44) produces the following expression for the CT

tensor in terms of the ST function p (,r)).

r 12 | p + p tcos 2 l -- P tanr7

r 22 | P r/cos rl + p sinr/cos2r7

p 6,/cos r + p £ sinr1/cos2 rl

P +P q

For a convex object surface, both the determinant and the trace of must be positive.

The following inequalities must therefore be satisfied by p (,r).

2p + p f/cosr + p n-- p tan > (5.53)

(p + p /cos2rl - p tanr)(p + p n) - (p g~/cos7 + p fsin7r/cos 2 r) 2 > 0

Relations similar to (5.52) can be formulated between the VST and CT; these also

allow the development of convexity constraints for the VST.

VST and CT is given by

r l

r 12

The relation between

r 12 n + h /cos - v tan-r v /cos + h tanr

r2 2 h n + ,
(5.54)

The resulting convexity constraints are

2n + h /cosr + v - v tanr > O0 (5.55)

( n + h f/cos7 - v tanf )( n + v ) -h ) ( v /cosq + h tanr ) > O0

Considering equations (5.48) and (5.52), it can be observed that the ST, VST and

CT depend on derivatives of p up to orders 0, 1 and 2 respectively. This conclusion is

rll

r 12

(5.51)

(5.52)
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identical to the corresponding observation made for the transforms of planar curves.

5.2.5. Relations between the Extended Gaussian Image and the CT, VST, ST

In this section, relations between the extended Gaussian image (EGI) and the three

property sphere representations are developed. The EGI is a property sphere for the

inverse of the Gaussian curvature. The Gaussian curvature is the determinant of our

curvature tensor K and is also the inverse of the determinant of the radius of curva-

ture tensor R; see section 3.2.5. Hence, the EGI is equal to the determinant of the CT.

G(6,r) = detl(,r*) (5.56)

where G denotes the EGI function. The CT function is hence a redundant superset of

the EGI. In the case of 2-D curves, the CT is identical to the EGI defined in [53]. The

3-D EGI and the 3-D CT can be considered as two different generalizations to 3-D sur-

faces of the same representation for 2-D curves. The ST can be related to the EGI by

combining (5.56) and (5.52).

G(6,rn) = (p + p /cos27 -p tan)(p + p )
(5.57)

- (p /cos-q + p 6sinr?/cosZ2?) 2

The above relation should prove useful in combining EGI and ST representations, such

as for the work presented in [45]. Finally, a relation between VST and EGI is obtained

by combining (5.56) and (5.54).

G(,r)= (n + h /cosr--v tan7, )(n +v) (.8)

- h, ( v /cos-r + h tan )

5.2.6. Examples of 3-D Transforms

In this section, the three transforms of a simple object are derived. These deriva-

tions illustrate the computation of transforms from parametric equations. The object

considered here is a sphere of radius R offset from origin, centered at Po (x o,Y o,z o).

Transforms of more complicated object shapes are derived in Appendix 1.

Parametric equations for the sphere are given by

1
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x = x + R cosf cosrl

= y + R sine cost (5.59)

Z = z + R sin-r

The ST of this sphere is obtained by applying (5.29) to the above parametric equations

p (5,rl) = x cosScosrl + y o sinfcosrl + z o sinrl + R (5.60)

In the particular case where the center Po of the sphere is at the origin, the above

expression simplifies to p (6,r) = R.

The VST of the sphere can be derived by applying equation (5.36) to (5.59).

x coscosri + y sinfcosrl + z sin-r + R

ST ~.r) = -x o sin5 + y o cos,?. (5.61)

-x cosSsinr - Y o sinfsinrl + z 0 cosrl

In the particular case that Xo = 0, the VST is given by -s-,rn) = (R 0 0 )T.

It is possible to derive the CT from the parametric equations in (5.59) by different

methods. Indeed, the CT can be determined directly from (5.59) with equation (5.45),

indirectly from the ST with equation (5.52), or indirectly from the VST with equation

(5.54) The indirect derivation via the ST is developed here. Partial derivatives of the

ST can be evaluated as

p = -x 0 sin cosl + y o cos cos77

p it = -x o cos cosr - y sin cos-r

p ~, = x 0 sinfsin7 - y cos[sin-r (5.62)

p = -x o cos sinrl - y o sinssinr + z o cosrl

p qT = -x cosfcosl + y o sinfcosl -z o sinrl

Using the above derivatives, the 3-D CT function is determined as

r 11 r 1 2 P + P tf/cos2 - tanl p /cos r + p sinr/cos 2 |

r 12 2 2 | p p/cos r + p sinrl/cos2 rT p + p1 n

= R 0 (5.63)



- 100-

Note that this result is independent of the position of the center of the sphere. The CT

function is identical to the curvature tensor of the sphere determined in section 3.2.5..

Each 3-D transform contains large amounts of information, so that it is not easily

displayed on one graph. In Chapter 8, some 3-D transforms will be represented by

polar plots of their components on meridians of the Gaussian sphere.

5.3. Summary

Three representations for closed curves and the corresponding representations for

3-D surfaces have been defined in this chapter. The motivation behind the study of

these representations is the simplification they introduce in the analysis of relations

between object shapes and silhouette shapes. In the following chapter, three theorems

wil be demonstrated, relating the transforms of a 3-D object to the transforms of its

silhouettes. Specifically, it will be shown that the property circle of the silhouette in

an orthographic projection can be obtained by slicing the property sphere of the object

by a plane perpendicular to the viewing direction and going through the origin, then

appropriately projecting the vector or tensor information onto the slice plane. The

specific object properties represented by the three transforms were carefully chosen to

lead to such simple relations.

Aside from their interest in silhouette analysis, the transforms presented in this

chapter can also be analyzed simply as representations of 2-D curves and 3-D surfaces.

Each of the transforms is now discussed individually in this respect.

In both 2-D and 3-D, the ST is quite similar to the support function, an explicit

equation for polar tangential coordinates. Although this form is known, it has not

received much attention in the graphics and vision fields.

The 2-D and 3-D VST are simply related to descriptions in terms of Cartesian

point coordinates, but their relation with the ST and CT is interesting for at least two

reasons. First, the relations between the ST and CT on one side, and the VST on the

other side are quite simple, so that the VST may be used as an intermediate step when

converting the ST or the CT to a description in terms of Cartesian coordinates. In

some applications, when a Cartesian representation is required, the VST itself may be

appropriate, thereby eliminating the need for a different Cartesian representation. For

example, it should be easy to synthesize a shaded rendition of an object for a general
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view-point, based on the VST only. A second interesting feature of the VST is that i'

forms with the ST and CT, a range of representations depending on derivatives of p

up to orders 0, 1, 2. Instead of the VST which combines normal and tangential com-

ponents of rotated Cartesian coordinates, it is possible to describe property circles and

spheres describing only the tangential components. These representations would avoid

the trivial redundancy with the ST, but would not be uniquely invertible. For exam-

ple, the VST of a sphere centered at the origin is zero everywhere and does not depend

on the radius of the sphere. We have therefore preferred the definition of the VST

proposed in this chapter, and its interpretation as a complete description of point coor-

dinates of the object.

The CT representation of 2-D curves and 3-D surfaces will now be discussed.

Forms closely related to the 2-D CT have been proposed by various authors

[23, 53, 54]. The 2-D CT is closely related to the intrinsic form relating radius of cur-

vature and normal orientation: Intrinsic descriptions of the shape of curves have been

extensively studied in differential geometry and are well known [52]. However, to the

best of the author's knowledge, equivalent representations have not been proposed for

surfaces. The 3-D CT can be considered as such an intrinsic form for surfaces and

should therefore be of interest when analyzing the shapes of 3-D surfaces. Represen-

tations of srface shapes presented in textbooks of differential geometry usually rely

on two tensors, referred to as the tensor of the first fundamental form and the tensor

of the second fundamental form. The two tensors convey information about both the

shape of the surface and the parameterization used to define the surface. With this

formalism, it is not possible to retain a complete description of surface shape without

interfering with the description of the parameterization. The literature on surface

representation in machine vision seems strongly influenced by this description of sur-

faces in terms of fundamental form tensors. Characterizations of surface curvature

by local invariants have also been proposed. These invariants combine information

from the two fundamental tensors and are independent of parameterization. For

example, the extended Gaussian image defines surface shapes by one invariant, the

Gaussian curvature; a description of surfaces by two invariants, the Gaussian and

mean curvatures, has also been proposed [40]. These representations, although inverti-

ble with appropriate boundary conditions, do not carry a complete local
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characterization of surface shape. The 3-D CT representation proposed here is an

elegant alternative to the classical shape description methods. It combines a new

invariant curvature tensor function with the parameterization used to represent nor-

mal orientations in the extended Gaussian image. Relations between the CT and classi-

cal descriptions of surface curvature are further addressed in Appendix 4.

The framework developed in this chapter for representating shapes stresses the

similarities between 2-D and 3-D, and suggests straightforward generalizations to

representations of n-dimensional hypersurfaces in (n+l)-dimensional space. These

generalizations are not addressed here.



Chapter 6
Silhouette-Slice Theorems

In this chapter, relations between the transforms of 3-D convex object surfaces

and the corresponding transforms of their 2-D silhouettes in orthographic projections

are determined. It turns out that these relations prescribe pointwise correspondences

between property-function values on the Gaussian sphere of the object and property-

function values on the Gaussian circle of the silhouette. Hence, there are two aspects

to the relation between 2-D and 3-D transforms. The first part of the -elation deter-

mines which values of the 3-D object property sphere directly contribute to the

silhouette, whereas the second part specifies how the values of the 2-D transforms are

related to the values of the 3-D transforms at the corresponding points. These two

aspects of the relation are closely tied to the selection and projection steps of the clas-

sical silhouette construction method reviewed in Chapter 4.

The exact form of the relation between the transforms of the object and the

transforms of its silhouettes will be determined by applying the classical silhouette

construction method sketched in Fig.4.2 to the surface shape expressed as the inverse

transform of each of the three representations. The first step of the classical method

will indicate an equivalence of points on the Gaussian circle of the silhouette and

points on a slice of the Gaussian sphere of the object. The slice is the intersection of

the Gaussian sphere with a plane through the center and perpendicular to the viewing

direction. The second step of the classical silhouette construction will indicate how

transform values on the slice of the Gaussian sphere of the object are related to

transform values on the Gaussian circle of the silhouette. Specifically, it will be

shown that the silhouette ST values are identical to the object ST values on the slice,

and that the values of the VST and CT of the silhouette can be obtained by projecting

onto the slice plane the vector or tensor values of the corresponding 3-D transforms on

the slice of the object Gaussian sphere. The relations among 3-D objects, 2-D

silhouettes and their transforms have a strong conceptual similarity with the

Projection-Slice theorem of computerized tomography. The theorems describing the

relations in the case of silhouettes have been named Silhouette-Slice theorems to

underline this similarity.

- 103 -
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In the first section of this chapter, the relation between Gaussian circles of

silhouettes and slices of the Gaussian sphere of the object is demonstrated. Relations

among angular coordinates on the sphere, the angular coordinate on the silhouette slice

circle and the viewing direction are determined. In the second section, the transforma-

tion between local systems of 3-D axes corresponding to the slice of the Gaussian

sphere and local systems of axes on the silhouette is derived. It will be shown that

this transformation is the composition of two 3-D rotations and a projection, and that

its expression can be substantially simplified. In the third section, relations between

silhouette property circle functions and object property sphere functions are deter-

mined by applying the transformation derived in the second section to coordinates of

points of the silhouette generator of the object, expressed in terms of the ST, VST and

CT representations. Finally, the results are discussed and compared with the

Projection-Slice theorem of computerized tomography.

6.1. Silhouettes, Gaussian Spheres and Gaussian Circles

The first step in determining relations between silhouette properties and object

properties is to determine which object points contribute to the silhouette, and which

points of the silhouette are affected by which points of the object. It is shown in this

section that only the points on the great circle slice of the Gaussian sphere perpendicu-

lar to the viewing direction contribute to the silhouette, and that the points of the slice

are related to corresponding points of the silhouette by the Gaussian mapping.

The following discussion refers to Fig.6.1 which illustrates a 3-D object and its

orthographic silhouette in the image plane. Consider a point PSG on the silhouette

generator of the object, its projection Ps in the image plane and its image PG on the

Gaussian sphere. First, by definition of the Gaussian mapping, the normal to the object

surface at PSG is parallel to the normal to the sphere at PG Second, since PSG is on

the silhouette generator, the normal at PSG is parallel to the projection plane, so that

its direction is unaffected by the projection operation. Hence, the normals to the

silhouette at Ps, to the object at PSG and to the sphere at PG are all parallel. The

image of the silhouette generator on the Gaussian sphere is thus the set of points of the

sphere for which the normal orientation is perpendicular to the viewing direction.

This set of points is the great circle of the Gaussian sphere perpendicular to the
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Viewing
Direction

Gaussian Sphere
Object

Great
Circle
Slice

Fig.6. I. Relation between the Silhouette Generator and a Slice of the Gaussian Sphere.

viewing direction. Individual points of the silhouette and of the slice corresponding to

the same object point, such as Ps and PG, are related by the parallelism of their nor-

mals. Therefore, the slice of the Gaussian sphere of the object is a Gaussian circle for

the silhouette. This conclusion is formalized as follows:

Silhouette-Slice Theorem 0: Each great circle slice of the Gaussian Sphere of a

smooth convex object is the Gaussian Circle of the silhouette of the object in an ortho-

graphic projection on a plane parallel to the slice.

The above theorem is now complemented by trigonometric relations between the

angular coordinates (yr) of points on the slice, the angular coordinate on the Gaus-

sian circle of the silhouette, and the angles (,0) specifying the orientation of the

viewing direction. Consider the point PG on the slice of the Gaussian sphere

corresponding to the viewing direction v, as illustrated in Fig.6.2. For this point, the

five angles of interest appear in the spherical triangle APG C, drawn in bold in the

figure. This triangle is also displayed "flattened out" with the values of all its

�
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Fig.6.2. Great Circle Slice and Angles on the Gaussian Sphere

elements on the same figure. The sixth element of the triangle ABC is related to the

angle c characterizing the orientation of the slice plane in local axes PG x l Yt Z, at PG 

Applying the standard relations between elements of a right-angled spherical triangle

PG

T?
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in[55] to the above triangle produces the following identities

sinrl = tan(6--7/2) tanoe

-cos(6-) = tantr tanO

sinG = tan([--7r/2) cotqJ

since = tanr cot0

cosqJ = tanG tanca

sinr = cosO sin4k

-cos(6-) = cosa sinqJ

sinG = cosr cosot

since = sin(6--) cosO

cos0 = cosnr sin(6--)

Note that the angles 5, ,. q4 are defined over the range [-r,+rr] and the angles r7, 0

over the range [-r/2,7r/2]. The full range of these parameters is covered by relating

the quadrants of the arguments in the tangent trigonometric functions in expression

(6.1 )(c).

For a fixed viewing direction (,O), the silhouette point with normal orientation

4, in the image plane corresponds to the object point with normal orientation (br l ) for

the values of these angles satisfying (6.1). Specifically, (6.1)(c) implicitly relates the

angles i, and A, whereas (6.1)(f) relates the angles ip and r7. Explicit forms for these

relations are given by

I= SG (0) = + /2 + atan ( sin tan )

- = rTSG () = asin ( cosG sin0 )
(6.2)

where the subscripts SG indicate that the angles correspond to points of the slice

which are the images of points on the silhouette generator. In the above expression,

the range of the arcsine is (-r/2,7r/2) and the quadrant of the arctangent must be the

quadrant of q4 when 0>0 and the quadrant symmetric with respect to the x-axis oth-

erwise. The above expressions can be considered as parametric solutions for equation

(6.1 )(b); this equation is equivalent to the equation of the silhouette generating planes

in (4.27). The solutions in (6.2) of this last equation were anticipated in Chapter 4.

The angle ac is the tilt of the slice at each point relative to the local axes PG X1 Yl Zz.

This angle is useful when projecting vectors and tensors defined by their components

in local axes, onto the slice plane.

(a )
(b )

(c )
(d )
(e )

(f )
(g )
(h )

(i )

(j)

(6.1)

�
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Equations (6.1) and (6.2) can be further exploited to derive expressions for the

differentials d 6 and d r in tellins of d 4, on the slice for a fixed viewing direction.

These relations are sketched in Fig.6.3; they will be useful when projecting

differentials of Cartesian coordinates expressed in terms of the CT. The differentials

of 6 and 1 along the silhouette generator could be evaluated from derivatives of (6.2),

but are evaluated here instead from the corresponding implicit forms (6.1)(c) and

(6.1)(f). For a fixed viewing direction, the differential d 6SG along the silhouette gen-

erator is obtained by differentiating a form equivalent to (6.1 )(c), namely

-cotq = sinO tan(k--)

d ib =sinO d 
sin2 = cos2(6-0)

which can be simplified, using (6.1)(g) and (6.1)(h).

COSCd
d sG = - d (6.3)

cost

z

y

Fig.6.3. Relation between Angle Differentials on the Slice.
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The expression for d r-G is obtained by differentiating (6.1)(f).

sinrl = cosO sinqJ

-cos7r d 7 = -cosO costs d p

This can be further simplified using (6.1 )(d).

d rSG = sin d (6.4)

As a result, the normalized differential d tSG has the following form

cos 7scG d SG COScaSG

d SG = d 7SG = SipSG (6.5)

wlgre CoSG refers to the value of xx on the silhouette generator. This relation confirms

the geometrical intuition suggested by Fig.6.3.

6.2. Projection of the Silhouette Generator

In the previous section, the set of points of the object property sphere which are

directly related to the silhouette was determined. In this section, a procedure for

relating values of the property functions of the silhouette to the values of the pro-

perty functions of the object is developed. This procedure consists of formally

expressing coordinates of silhouette generator points in terms of the transforms of the

object and applying the classical projection operation to these forms. Expressions for

the inverse transforms of the property spheres are simplest when object coordinates

are expressed in rotated axes at each point; they are given by

p (I,r)
XR (,rT) = p t(6,)/Cos

n (1r)
XR (r7) = h (,r7) ) (6.6)

(,rT)

0 0 r 11(6,7) r 12(6,r) d /cos7
d xR (,r) = 0 r 1 2 (,) r 2 (,,) d 

0 1
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The rotated coordinates of points on the silhouette generator are easily obtained from

the above expressions by replacing (,rn) by their values on the silhouette generator as

given in equation (6.2).

P (SG (),71SG ())

XR (¢) = P (S (),rnSG ())/cosrTSG (')

P ~(6SG (),rSG ()) (6.7)

XR (') = sSG ('),r7SG ('))

d R () = 132 R(6SG (O),rlSG (4')) d CSG

Note that the variables (s,ri) must be considered as independent when evaluating

derivatives p t, p for the expression of the ST. However, the differentials d 6, d r in

the expression for the CT must be taken along the great circle slice; their relations to

d 4' are given in (6.5).

The projection of points of the silhouette generator is now addressed. Coordinates

of silhouette points can be obtained by first converting the coordinates in rotated

frames in (6.7) to coordinates in global object axes by the transformation in (3.9), then

applying the projection transformation (3.21). Coordinates of silhouette points in glo-

bal axes of the projection plane are hence obtained from the rotated coordinates of the

object by

5r() = 123 R3 -C RR -G(6SG ('),'TSG (')) X () (6.8)

The operations described in the above equation correspond to the 3-D rotation RR -G

from rotated to global coordinates, followed by the 3-D rotation RG - from global to

camera axes, and finally the projection I23 along the first coordinate axis of the camera

frame. The composition of the two rotations in the above equation is a third rotation

which will be denoted by R3 -c and which relates coordinates in the camera axes to

coordinates in rotated axes.
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This rotation is explicitly written as

R3 c = RG -G (6.9)

coscosO sinocosO sinO costcosr -sine -cosgsinrk
= -sin cos45 0 sincosr C cos[ -sinsinr

-cossinO -sinsinE cosO sinrl 0 cosrl

cosOcosrcos(-5) + sinOsin) -cos{sin(f--) -cosesincos(f--O) + sinecos,1
cosnsin(--b) cos(-X) -sin'sin(f--)

-cosr)sinecos(E -- ) + sin7)cosO sinksin(6-) sin-)sinecos(--;) + coscosfl

When only rotated axes corresponding to points on the silhouette generator are con-

sidered, the angles in the above rotation matrix are related by the expressions in (6.1).

The expression of R - C can then be simplified substantially. After tedious but

straightforward trigonometric manipulations, it can be shown that

O -sincSG COsaSG

RR -C(SG SG ) = cosC -cosC s sin0s - sinaSG sin4e

sini cososG cost0 sinaSG cost0
(6.10)

0 0 1 0 0
= cosJ -sin0 0 0 cosasG sincaSG

sin# cos0 0 0 -sinasG cosasG

This result can also be derived derived through geometrical reasoning on the composi-

tion of the two rotations in equation (6.9). Referring to Fig.6.4, the rotation from

rotated to camera axes links coordinates in axes parallel to the local orientations ,

1, 1, with coordinates in the global silhouette axes x , z r, which are parallel to

no, It . It is clear that these two axes can be aligned with l n , 1 by a rotation

around ln, with an angle a, followed by a rotation with an angle ¢ around the rotated

17) axis.

The transformation from rotated object coordinates XR to global silhouette coor-

dinates ir in the image plane is obtained by combining the above rotations with the

projection operator 123, producing

-
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z

7r

in

y

Fig.6.4. Illustration of the Composition of Rotations.

= I23 R3G -CXR

x10 0O -sinaG COSOSG XR
00 1 cosq -cosscG sin4J -sincsG sin YR

sin OSSG c os sinaSG cos4s zR

cosq -cosacsG sinl -sincaSG sin 1 XR

sinj cosasG cos4J sinceSG cos YR (6.11)
ZR

cosqj -sin 1 0 0 1 XR

= sinqJ cosIj 0 coscaG sinaSG YR

ZR

where the last form was obtained using the factorization of R3 - c in (6.10). Com-

parison of this form with (3.7) suggests that a simpler expression for the imaging
transformation is obtained by expressing silhouette coordinates in rotated 2-D frames.

����__ _ _I ___�
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1 0 0
R = R2 -( ) 0r = Q COSaSG sincSG YR (6.12)

ZR

This expression is now rewritten for the individual components of the silhouette coor-

dinate vector in the rotated frame.

X R = XR 
(6.13)

rR = YR COSQSG + R sinacSG

This simple expression is a key element in the derivation of the three Silhouette-

Slice theorems described in the next section. It formally expresses that for points on

the silhouette generator represented by coordinates in rotated axes, normal components

are unaffected by the projection operation. Components along the tangent plane are

projected as a 2-vector in the tangent plane to produce the corresponding silhouette

coordinate along the tangent in the projection plane. This relation between rotated

coordinates on the silhouette generator of the object and on the silhouette is illustrated

in Fig.6.5. The orientation involved in the above projection is the angle YCSG character-

izing the orientation of the slice in local axes of the Gaussian sphere. Note the

equivalence of he first equation with the relation derived for the normal distance to

tangents in Chapter 4, specifically in equation (4.31).
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)

Viewing
)irection

x

Silhouette
Generator

4

Fig.6.5. Projection of Rotated Coordinates.
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6.3. Property Circles of Silhouettes

In this section, formal expressions for silhouettes in terms of the 3-D transforms

of the object are obtained by applying the projection transformation in (6.13) to the

coordinates of points on the silhouette generator in terms of the 3-D object transforms

in equation (6.2). The resulting expressions are then related to the corresponding 2-D

transforms of the silhouettes to obtain a direct relation between 3-D transforms of the

object and 2-D transforms of its silhouettes. These relations will be formalized as

three Silhouette-Slice theorems.

6.3.1. Silhouette-Slice Theorem for the Support Transform

When the imaging transformation for rotated coordinates in (6.13) is applied to

the rotated coordinates of silhouette generator points expressed in terms of the ST in

(6.6), the following equation is obtained for the silhouette coordinates in rotated local

axes.

X 7-R p
Pt COS (6.14)

z R P COSaG / cosTlG + n in(6.14)

where p and its derivatives in the right hand side must be evaluated at =6SG,

=rtSG, so that the right hand side is implicitly parameterized in 4, through SG , rsG

and cSG This expression can be compared with the expression for rotated coordinates

in terms of the 2-D ST, namely

X lrR 177- (6.15)

where the index in p , indicates that this normal distance is relative to the silhouette

in the image plane. The equality between the first components in (6.15) reveals that

the ST function of the silhouette, p 1r(4), is identical to the 3-D ST on the slice of the

Gaussian sphere of the object.

P() = P (SG (),rlsG ())

I

(6.16)



- 116-

The identity between the second components of (6.15), and (6.14) is consistent with

the following evaluation of the partial derivative P r,/CO.

p 7 = p = - + -d + p, sinasG (6.17)
al al 8f d 0 r d 0 = c + p COSnSG X

where (6.5) was used to determine d 6/d tP and d rl/d it. The relation between the ST

of the silhouette and the ST of the object is formalized as follows:

Silhouette-Slice Theorem 1: The 2-D Support Transform of an orthographic

silhouette of a smooth convex object is the restriction of the 3-D Support Transform of

the object surface to the great-circle slice parallel to the projection plane.

This theorem indicates a silhouette construction method identical to the last

method presented in Chapter 4.

6.3.2. Silhouette-Slice Theorem for the Vector Support Transform

When the imaging transformation for rotated coordinates in (6.13) is applied to

the rotated coordinates of silhouette generator points expressed in terms of the VST in

(6.6), the following expression is obtained for the silhouette coordinates in rotated

axes.

X rR n
=CO5O~56 +VS~flaSG (6.18)

' -, R h ososSG + sintSG (618sG

where the components (n ,h ,v ) must be evaluated for 6=SG, rT =7rsG, so that the

right hand side implicitly depends on 0 through SG , 7rSG and csG. This expression

can be compared with the expression of coordinates in rotated axes in terms of the

VST, namely

X rR I In

7 rR tr

where the indices in the components n 7r, t r indicate that these correspond to the

silhouette in the image plane.
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This comparison implies that the relation between the 3-D VST of the object and the

2-D VST of the silhouette is given by

n (qj) = n (sG (),rSG ())

t r(6S) = h ()s (),sG C ())cOSacG (I) + v (6SG (qJ),rnSG ())SinCSG ()

(6.19)

The above equation for the projection of the VST components has the same geometrical

interpretation as the projection of rotated coordinates illustrated in Fig.6.5. The rela-

tion between the 3-D VST and the 2-D VST is formalized in the following theorem:

Silhouette-Slice Theorem 2: The 2-D Vector Support Transform of an ortho-

graphic silhouette of a smooth convex object is obtained by considering the restriction of

the 3-D Vector Support Transform of the object surface to the great-circle slice parallel

to the projection plane. The normal component of the 2-D VST is identical to its 3D

counterpart on the slice, and the tangential component of the 2-D VST is obtained by

projecting the tangential part of the 3-D VST as a 2-vector onto the projection plane.

6.3.3. Silhouette-Slice Theorem for the Curvature Transform

When the imaging transformation (6.13) is applied to the differentials of coordi-

nates of silhouette generator points in rotated coordinates in terms of the CT represen-

tation (6.6), then combined with the expression for the differentials of the angular

variables on the slice in (6.5), the following differentials are obtained for 'he

silhouette coordinates in rotated axes

dx 7rR I 1 0 0 r1 l r 1 2 COSCaSG
dz rR 0 COSaSG SinaSG 0 r12 r 2 sinaSG d (6.20)

Combining the first two matrices on the right-hand side reveals that dx R = 0 and

that

r1r 1 , coscxsG
dz rR c= costSG sincs r 1 r 1 

r12 r22 |sinoaSG

��I�
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Comparison of this equation with the expression of the 2-D differential of silhouette

coordinates in terms of tilne 2-D CT, namely dz rR = p(q)d qi, reveals that the CT

function p(Ob) of the silhouette is related to the 3-D CT function by

p(-) = | COSOs n r 1SG sn G r 1G 2 SG COSSG (6.21)
r 12SG r 22SG sincasG

where the dependence of the right-hand side on 40 is implicit through aSG and

rijSG = rij (SG ,rlSG ) The right-hand side of (6.21) is the projection of R along the

direction given by cos&aSG, sinasG. As the tensor of curvature is defined in the

tangent plane, (6.21) exactly corresponds to a projection of this tensor onto the trace

of the image plane in the tangent plane. This relation between silhouette curve CT and

object surface CT is formalized as follows:

Silhouette-Slice Theorem 3: The 2-D Curvature Transform of an orthographic

silhouette of a smooth convex object is obtained by considering only the restriction of the

3-D Curvature Transform of the object surface to the great-circle slice parallel to the

projection plane, and projecting the tensor-valued object function on the slice onto the

projection plane.

In addition to relating the property functions for the CT, equation (6.21) indi-

cates a remarkable result relating the radius of curvature of the silhouette to the

radius of curvature tensor at the corresponding point of the object surface.

Remembering that CaSG is the angle between the local y -axis and the plane of the

slice, the above equation indicates that the radius of curvature of the silhouette is the

projection of the tensor of radius of curvature on the plane of the slice. This result is

the dual of a well known theorem due to Euler in the geometry of surfaces. Both

Euler's theorem and its dual are discussed in more detail in Appendix 3.

6.4. Example: Silhouette of a Sphere

The Silhouette-Slice theorems are illustrated in this section by the simple example

of a sphere of radius R centered at Po(xo,yo,zo), as illustrated in Fig.6.6. The three

transforms of this sphere were evaluated in section 5.2.6. Although this particular

example could be solved by a number of alternative methods, the approach used here

provides insight into the mechanism of analytic silhouette evaluation with the

.4
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Y

Fig.6.6. Projection of a Sphere

Silhouette-Slice theorems. More complex illustrations of the Silhouette-Slice theorems

are provided in Chapter 8.

The 3-D ST of the sphere is given by

p (,r) = xocoscosrI + vo sinfcosrl + zo sinr + R (6.22)

For a viewing direction (,0O), the 2-D ST of the silhouette is obtained from the above

expression with equation (6.16), as

P rr() = o COSfG COT7SG + y sin6SG COSISG + Zo SinrSG + R (6.23)

where SG MSG implicitly depend on (,0,4) by equation (6.2). Replacing SG rSG

by these expressions, performing trigonometric manipulations and rearranging terms

produces

p v = (-x o sinb + y o coso) cosq6

+ (-x o sinOcos - y o sinOsink + z cosb )sintp + R

The coefficients of costs and sinkr in the above expression can be recognized as the coor-

dinates x o0 ,, z 0 of the projection in the image plane of Po, the center of the sphere.

__
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Indeed, these coordinates are related to the 3-D coordinates (x o,Y o,z o) by

O 1 0 cosocosO sinekcosO sinO X 0

zO 0 0 | 1 -- sin cosO 0 Yo (6.25)
-cossinO -sinqbsinO cosO

The 2-D ST of the silhouette is hence given by

P r(O) = xo rcoS + z orsin + R (6.26)

This expression is identical to the 2-D ST of a circle of radius R centered at

(X Or,Z Or)'

The 3-D VST of the sphere is given by

x 0 cosgcos7 + y sinecos77 + z 0 sing + R

s(,r) = -x o sin + y o cosS (6.27)

-x 0 cosfsin-r - Y o sinSsinr1 + z o cosrt

The 2-D VST of the silhouette is obtained from the above expression by applying

equation (6.19). The resulting normal component of the VST is, by definition, identi-

cal to the 2-D ST derived above. The tangential component is given by

t 7,() = csckscG h (sG ,SG) + sinasG v (SG 7SG) (6.28)

The angles ,,,c in the above expression are replaced in terms of ,0,4 using (6.1) and

(6.2). After trigonometric manipulations, the result is found to be

t r(+) = -x 0 , sin/ + z O, cos4, (6.29)

where x 0 r, z Or are as defined above. The above result is identical to the tangential

component of the VST of a circle centered at (x Or,-Z Of).

The 3-D CT of the sphere was obtained in section 5.2.6. as

R (6.30)

The 2-D CT of the silhouette is obtained from the 3-D CT of the object with equation

(6.21) as

_
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R 0 COSCeSG
p(qp) = COScSG s G sinso = R (6.31)

which is obviously the 2-D CT of a circle of radius R. Note that the ST is indepen-

dent of translations so that the position of the silhouette cannot be predicted by the

construction with the CT. The independence of the CT on translations is an advantage

in some applications, a disadvantage in others. Relative merits of the various

transforms and Silhouette-Slice theorems are discussed in Chapter 8 in the context of

applications presented there.

6.5. Discussion

In this chapter, theorems have been proposed to relate representations of

silhouette curves in terms of functions on their Ga- ssian circles to the corresponding

representations of object surfaces in terms of functions on the Gaussian sphere. Two

additional aspects of the Silhouette-Slice theory will be discussed in this section,

namely its relation with the Projection-Slice theorem in computerized tomography,

and an interpretation of the 3-D transforms as compact representations of the collec-

tion of all silhouettes of an object.

6.5.1. Comparison: Silhouette-Slice Theorems and Projection-Slice Theorem

The formal relations among an opaque convex object, its silhouettes, and their

representations on Gaussian images are sketched in Fig.6.7. The concept of this

diagram bears a strong similarity with that relating an absorbing object, its line-

integral projections and their Fourier Transforms, sketched in Fig.6.8. This last set of

relations is important in the field of computerized tomography, and is referred to as

the Projection-Slice Theorem to stress the duality between projection in object space

and slicing in transform space. The similarity between this result and the new rela-

tions presented in this thesis has suggested the name of Silhouette-Slice Theorems for

the new relations, to stress the duality between silhouette construction in the object

domain and slicing in the model domain.

In spite of the formal similarity between the Projection-Slice theory and the

Silhouette-Slice theory, there are substantial differences between the two formalisms.

First, the Projection-Slice theorem applies to absorbing objects which can be defined by
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Silhouette
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Fig.6.7. Block Diagram for the Silhouette-Sl~je Concept

Projection ISlice

Fig.6.8. Block Diagram for the Projection-Slice Theorem

a real-valued function defined in 3-space, whereas the Silhouette-Slice theorems apply

to opaque objects which can be described by functions of two variables, or by func-

tions with binary values defined in 3-space. Second, the Fourier transform used in the

Projection-Slice theorem is an integral transform, where each value of the transform

depends on all the values of the function specifying the object. On the other hand, the

transforms of opaque objects defined in Chapter 5 of this thesis are point transforma-

tions where each value of the transform depends only on the value of a function

defining the object at one point.
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It is possible that a theory of silhouettes comparable to the one presented in this

thesis could be obtained by modeling an opaque object as an object with a finite uni-

form absorption coefficient, to which the Projection-Slice theory applies, then consider-

ing the limit of the line-integral projection when the absorption coefficient becomes

infinite. This approach to silhouette analysis would provide a nice bridge between

theories for absorbing objects and for opaque objects, but we have not been able to find

an appropriate formulation for the limiting argument.

6.5.2. 3-D Transforms as Compact Representations of Silhouettes

The relation between slices of 3-D transforms of objects on the Gaussian sphere

and 2-D transforms of silhouettes leads to the interpretation of the 3-D transforms as

indirect representations of the set of all silhouettes of a convex object. Indeed, for any

given orientation of the viewing direction, simple representations of the silhouette,

namely the ST, the VST and the CT. are obtained by slicing the corresponding 3-D

representation of the object. It is worthwhile to emphasize that this type of construc-

tion is possible only for selected representations of the silhouettes. It is tempting to

investigate the existence of other 3-D representations of objects, for which a slice

would be related to the silhouette by expressions simpler than the inverses of the ST,

VST and CT. For example, one could try to construct a "dual" object, such that a

silhouette of the original object is identical to a slice of the dual object. A simple

counter-example suggests that this construction fails in most cases.

Consider a cube and the silhouettes of this cube obtained for a set of viewing

directions covering a 1800 arc around the cube; this set of directions and one particu-

lar silhouette are represented in Fig.6.9 a). If a "dual" object of the cube exists, it can

be constructed by superimposing the set of silhouettes corresponding to the viewing

directions in Fig.6.9 around a center, while keeping their respective orientations. The

resulting object is shown in Fig.6.9b), where the contribution of the particular

silhouette illustrated in Fig.6.9a) is drawn in bold. It is easy to see that this object

does not have the desired property by considering a viewing direction outside the set

used to synthesize this candidate dual object. One such viewing direction is shown in

Fig.6.9a) and the corresponding slice in Fig.6.9b). This slice is quite different from the

actual silhouette, which is a perfect square. As each silhouette of a 3-D object is two-
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a) b)

Fig.6.9. Counter-Example of a Direct Representation of all Silhouettes.
a) Object, a particular silhouette and the set of viewing directions.

b) Dual object constructed from a set of silhouettes, and a test slice.

dimensional and as the set of viewing directions is two-dimensional also, a "dual"

object whose slices are the silhouettes of the original object is necessarily four-

dimensional, unless special relations among individual silhouettes are exploited.

The three transforms presented in Chapter 5 are compact representations of the

set of all silhouettes of the object, as they are only three-dimensional as is the object

itself. In order to obtain this compactness of representations, redundancies among

individual silhouettes must be detected and exploited. The existence of redundancies

between the set of all silhouettes of a single object are now discussed, together with

their impact on the representations of silhouettes and 3-D objects.

Redundancies among silhouettes of an object can be expected in the general case

only when relating the contribution of the same surface element in different

silhouettes. Consider the set S i of all silhouettes for which the point Po on the object

surface is on the silhouette generator. This set of silhouettes corresponds to all the
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viewing directions perpendicular to the normal -no at Po; see Fig.6.10. Let Pi be the

projection of Po on each silhouette S i . We have identified three properties of the

silhouette curves around the points PorTi which have a high degree of redundancy

among the different silhouettes S;. The first two properties are the projections onto

the normal and tangent at Poi of the vector from the origin Ori to Po0 ri . The third

property is the radius of curvature, Pi , of the silhouette curve at Po,i . It is straight-

forward to show that the normal components of the vector O rrPori are identical for

all silhouettes and that the tangential components of these vectors are the result of the

vector projection of a single 2-vector in the tangent plane. Finally, the relation

between the curvatures of the Si 's at Pori is given by the dual of Euler's theorem

discussed in Appendix 3. This theorem shows that the radii Pi depend on the orienta-

tion of the viewing direction as a function specified by only'three independent parame-

ters, namely the components of the 2x2 tensor of curvature of the surface at Po.

The above argument clarifies the redundancy between silhouettes corresponding

to different viewing directions. This redundancy is now related to property circles

and spheres by considering the image POCG of Po on the Gaussian sphere, the property

sphere value at POG , and the values of the various silhouette property circles at POG .

It is easy to see that the slices corresponding to the set Si are all the great circles

Fig.6.10. Set of Viewing Directions for which Po is on the Silhouette Generator.
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passing through P G drawn on Fig.6. 11. The relations between property circles

defined on these slices at the point POG correspond to the relations between silhouette

properties at P 0ori. For the transforms defined in Chapter 5, the ST property func-

tions have the same value on each slice at POG, the VST tangential functions are pro-

jections of a single 2-vector, and the CT functions are projections of a 2x2 tensor.

We have shown in this section that the Silhouette-Slice theorems provide an

interpretation of the 3-D transforms as compact representations of the set of all

silhouettes of a convex object. In addition, we have shown which type of constraints

must be satisfied by property circles for constructing compact 3-D representations of

silhouettes. It is conjectured that, aside from higher order properties corresponding to

terms of order 3 and higher of Taylor expansions of curves and surfaces, there are no

property spheres and circles representing metric information, other than the ST, VST

and CT, for which the Silhouette-Slice theory applies.

Fig.6.11. Slices of the Gausian Sphere corresponding to Silhouettes including Po.



- 127 -

6.6. Summary

In this chapter, theorems have been proposed to relate representations of

silhouette curves in terms of functions on their Gaussian circles to the corresponding

representations of object surfaces in terms of functions on the Gaussian sphere. It was

first shown that the silhouette representations are directly related to a great-circle

slice of the object representations. In the second step, the silhouette property func-

tions on the Gaussian circle were related to the object property functions on the slice

of the Gaussian sphere. The relations are an identity for the ST function and for the

normal component of the VST function, a vector projection for the tangential part of

the VST function and a tensor projection for the CT function. It is interesting to note

the correspondence between the projection operations applied to great circle slices,

which are projections of scalars, vectors and tensors, and the observation that the ST,

VST and CT depend on derivatives of p () up to orders 0, 1 and 2 respectively.

The silhouette theory developed in this chapter is applicable to smooth strictly

convex objects only. In the following chapter, these results will be extended to objects

with corners, edges and planar faces, and to their silhouettes. In Chapter 8, a number

of examples of silhouette construction with the three theorems are presented; one of

these examples shows that the results are sometimes valid even for non-convex

objects. Other potential applications of the Silhouette-Slice theorems are also dis-

cussed in Chapter 8.
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Chapter 7
Extensions to Surfaces with Edges and Corners

and their Silhouettes

In Chapters 5 and 6, a theory relating the shapes of smooth strictly convex object

surfaces and the shapes of their silhouettes was developed. In this chapter, extensions

of this theory to more general types of objects will be investigated; specifically, object

surfaces with abrupt changes of curvature, edges, corners and embedded straight seg-

ments will be considered. Using limiting arguments, it will be shown that most of the

results developed so far for smooth surfaces can be extended to these types of sur-

faces. In the first section of this chapter, the basic method for obtaining the extensions

is developed. In the subsequent sections, the extensions themselves are analyzed suc-

cessively for the circular transforms of 2-D curves, for the spherical transforms of 3-

D surfaces, and finally for the Silhouette-Slice theorems relating the transforms of the

object to the transforms of its silhouettes

7.1. Extensions of Theories developed for Smooth Surfaces

Extensions of the theories developed so far, to include abrupt changes of curva-

ture are trivial. Indeed, continuity of curvatures, which is identical to continuity of

second derivatives, was exploited only in the derivation of consistency constraints for

the 3-D CT in section 5.2.3.1. Except for these conclusions on consistency, all the

theories developed in Chapters 5 and 6 are valid for surfaces with curvature discon-

tinuities and their silhouettes. The other extensions of silhouette analysis will be

developed with the following argument. Each convex surface NS ,whether or not

smooth and strictly convex, can be considered as the limit of a sequence {Isi of

smooth strictly convex surfaces. In the presence of edges and corners in ENS, the

sequence {Esi } could be constructed as dilations [56] of the object with balls with

radii 1/i. For each surface Esi, the 3-D spherical transform is well defined and can

be evaluated by the methods developed in Chapter 5. For a given viewing direction,

the Silhouette-Slice theorems apply to these spherical transforms and determine the

circular transforms of the silhouettes corresponding to each si. Finally, these

transforms can be inverted to determine the silhouettes Ssi of all surfaces Zsi . If the

- 128 -
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initial object surface IE.S 5 is smooth and strictly convex, the sequence of 3-D

transforms of the Esi converge to the 3-D transform of ENS, the 2-D transforms

obtained with the Silhouette-Slice theorem converge to the 2-D transform of the

silhouette Sys of s , and the silhouettes Si themselves converge to SAs .

Convergence of the above sequences is now investigated in the case where ENS

does not satisfy the smoothness and/or strict convexity constraints required for the

theories developed in Chapters 5 and 6. Although the surface EVNS is not smooth, its

silhouette Ss is well defined, and it is obvious that the sequence of silhouettes {Ssi 

of the surfaces ESi converges to the silhouette SNS. However, convergence of the

spherical transforms of the si and of the circular transforms of the Ssi is not

guaranteed. Since the transforms are defined as functiors on the Gaussian images of

curves and surfaces, convergence must be analyzed for both the Gaussian mapping

itself and for the property functions defined on the Gaussian circle/sphere. Conver-

gence of the mapping is analyzed first. During our analysis of particular discontinui-

ties, it will become apparent that the Gaussian mapping converges to singular map-

pings in the neighborhood of each discontinuity. Two basic types of singularities will

be observed. In the first type, one point of the object is mapped onto many points of

the Gaussian image. In the second type of singularity, many points of the object are

mapped to the same point of the Gaussian image. For the first type of singularity, each

point of the Gaussian image of ENS corresponds to a single point of the surface. We

will show that in this case, the spherical transforms of IENS are well defined and equal

to the limits of the transforms of the Esi. For the second type of singularity how-

ever, only the CT converges in the space of continuous functions. The limits are func-

tions of class C o for the VST and generalized functions for the CT.

The extension of the class of surfaces of interest has implications also on the

inverse transforms of the circular and spherical functions. The case of the 2-D inverse

transforms is considered first. The result of the inverse circular transform is a set of

equations parameterized with the normal orientation angle iJ. For a curve with

straight segments, a set of equations parameterized with qJ cannot explicitly define all

the points of the curve, as is now illustrated by the example of a square with rounded

corners.
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This curve is sketched in Fig.7.1a) and defined by the parametric equations

x cosip + sign (cos0r)
z sin* + sign (sin) 0 < 2.1)

where

1 for x >O
sign (x) = -1 otherwise

By definition, a curve is the set of points obtained as the image of the domain in

parameter space in the transformations specified by the parametric equations. Hence,

only the four arcs of circle displayed in Fig.7.1b) are defined by (7.1). In order to

define the curve in Fig.7.1a) by parametric equations such as (7.1), it is necessary to

consider this representation in a wider sense. namely that the image of the mapping

(7.1) from the parameter space to R 2 is a sel of arcs such as those in Fig.7. lb), and that

these arcs must be implicitly joined by straight segments. Equivalent arguments show

that inverse transforms of surfaces for which the Gaussian mapping has singulartities

of the second type also represent surface patches with gaps corresponding to the

straight components. These inverse transforms must also be considered in a wide

sense, with straight segments implicitly bridging the gaps.

a) b)

Fig.7.1. Curve with Straight Edges. a) Complete Curve.
b) Points explicitly defined by the parametric equations.

I
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In order to make precise conclusions about the limits of the sequences of surfaces,

silhouettes and transforms defined above, several issues must be addressed. For exam-

ple, the type of convergence of the sequences of 2-D curves and 3-D surfaces must be

defined and it must be shown that the limits of the sequences depend only on the sur-

face being approximated, not on the particular sequence {Esi }. These and other issues

are important to develop a mathematical theory, but we have decided instead o rely

on inuitive reasoning and to focus on qualitative interpretations of the results.

7.2. Extensions of the Circular Transforms of 2-D Curves

In this section, the circular transforms are extended to curves wiih corners and

edges. In the neighborhood of a corner, a curve is considered as the limit of a sequence

of curves with a rounded corner, as the radius of the corner tends to zero. In the

neighborhood of a straight edge, the curve is considered as the limit of a sequence of

arcs, as the curvature of the arc tends to zero. Finally, the extensions are illustrated

by defining a rectangle as the limit of a sequence of superconics of degree n for n -oo.

The rectangle has both corners and straight edges; its circular transforms obtained

with the sequence of superconics are consistent with the results obtained for indivi-

dual corners and straight edges.

7.2.1. Circular Transforms for a Curve with Corners

The circular transforms are considered here for a corner joining two edges with

normals T 1, n 2 and corresponding normal orientations 01, q02; see Fig.7.2. The corner

4W

if1
\P

Fig.7.2. Curve with a Corner.
a)Sequence of curves approximating the corner. b) Gaussian circles.
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is modeled as the limit of a sequence of arcs joining the two straight edges, as tL

radius of the arc tends to zero. Each one of these arcs is mapped to the arc [ql, q2]1 of

the Gaussian circle. The image of the corner on the Gaussian circle is hence the arc

[ 1l, 0I2] joining the images of the sides of the corner. The singularity of the Gaussian

mapping is of the first type. Each point of the Gaussian circle represents one point of

the object and the sequence of transforms converges to continuous functions. In addi-

tion, the values of the three transforms are well defined everywhere in the limit. The

inverse transforms correctly reconstruct all the points of the original curve. Among

all the transforms, the presence of the corner is conspicuous only in the CT, where the

radius of curvature is zero over the image of the corner on the Gaussian circle. The

length of the null arc representing the corner in the CT is equal to the exterior angle

'P2 -4' 1 of the silhouette corner.

7.2.2. Circular Transforms for a Curve with Edges

In this section. the circular transforms are considered for a straight edge of length

Z and normal orientation 0o. from A to B; this edge is considered as the limit of a

sequence of arcs joining A and B, when the radius of curvature of the arcs increases

without bound; see Fig.7.3. The image of each arc AB on the Gaussian circle is a

small segment of the circle around tPo as for example, the bold arc in Fig.7.3b). In the

limit, all points of the edge AB map to the single point t=bo of the Gaussian circle.

As the normal orientation is identical for all points on a straight edge, it is natural

that the limiting process defines the Gaussian image of the segment as the single point

fr I

Fig.7.3. Curve with a Straight Edge.
a) Sequence of curves approximating the straight edge. b) Gaussian images.

-Jv
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P=4'o corresponding to this orientation. For an edge then, the Gaussian mapping has a

singularity of the second type. One consequence is that parametric equations defining

a curve with edges in terms of normal orientation must be considered in the wide

sense defined in section 7.1.

The effect of the singularity of the mapping is now investigated for each of the

three circular transforms. In the simple case of a straight edge, it is possible to obtain

the resulting transforms without applying the limiting argument. In the case of the

ST, the normal distance to the tangent is, by definition, identical for all points on a

straight edge. As a consequence, this unique value unambiguously determines the

value of the ST for ,=4,o . Examining the tangential component t of the VST next, it

can be observed that t, by definition the distance between the contact point and the

projection of the origin on the tangent, varies continuously along the edge, with a total

variation equal to the length of the edge. The t -component of the VST has hence a

step discontinuity of height at 0o. Finally, the effect of the edge on the CT can be

predicted with equation (5.20), p(4) = p () + t ,(0). As p (,) is continuous and

t (,) has a step discontinuity of height I, it can be predicted that t , and therefore p

have an impulse of height . This conjecture can be verified by noting that, if s

represents the arc length along the curve,

'2

(2)- s (41 ) = f p(4/)d q, (7.2)

so that

I = lim Is (o+E)-s (o-E)] = lim f p(J)d (7.3)

Therefore, s (,) must have an impulse with height I at 00.

p(4,) 1 (4-,o) (7.4)

7.2.3. Example: Transforms of a Rectangle

The extensions of the circular transforms obtained in the previous sections are

illustrated here by the example of a rectangle, considered as the limit of a sequence of

superconics.
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A superconic can be defined by the implicit equation

I In + I

a b 
=1 (7.5)

This curve is smooth and strictly convex for 1 <n <oo, and tends for n -- oo to a rec-

tangle with sides 2a, 2b centered at the origin: see Fig.7.4.

n -Coo

n -- c

Curves Support Transforms

n -0oo

t-component of VST's Curvature Transforms

Fig.7.4. Circular Transforms of a Rectangle and of a Sequence of Superconics.

L3

--

I
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The circular transforms of the superconic are derived in Appendix 1; the property

functions are given by

p = Ia cos kk +1 + sin +1 (7.6)

n p k +1
= P _k k +1 I COS=p I k -1 k + I k-1) (7.7)t = sin cosp(-a + Icos 1 + b I sin ik )

p(pif) k (ab )k +1 I cos sint* I k - 1

2k +1 (7.8)

I acos k++ b sin I k+I1 k + 1

where k = l/(n-1). The limits of the above transforms are now considered for

n -- oo, so that k -0.

lim p ) I a cos I + I b sini 1 (7*9)
k -O

lim t (p) = -a sin4, sign (cosq) + b cosqf sign (sinip) (7.10)
k-O

lim c for q = 0, /2, , 3r/2 (7.11)

k -0 O otherwise

It is clear from the above expressions that the ST is continuous, although it has slope

discontinuities at 4, = 0, r/2, r, 37r/2. The expression for t reveals discontinuities

with alternating heights 2b and 2a for the same values of tP. Finally, the CT func-

tion contains impulses at these four values of 4,. The strengths of the impulses in the

limit for k -0 can be determined by integration. For example, the height h of the

impulse at 4, = 0 is determined as

+E

h = limlim f p(,)d 4
E-0 k-0 _E-E

=m lin urnk(ab)k"+l Icos4J sinit Ik - 1 d P= lim lim k (ab )k1 + 2k +1
E-O k - O 2k +1

IacosqIk+l + IbsinI k+1l k+I
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= lim 2bkfX- d = 2b
E-0 k -0 0

The height of the remaining impulses can be determined by symmetry, so that

limp(+) = 2a | ( -7r/2) +85P-37r/2) |+ 2b |(.i.)+8(41-7r) (7.12)
k -+++0

The above result confirms that the value of the CT is zero for the segments of the

Gaussian circle corresponding to the corners of the rectangle. The impulses are located

at the images of the sides on the Gaussian circle and have strengths equal to the

lengths of the edges. Parametric equations for the rectangle can be obtained by invert-

ing any of the circular transforms determined above; the result is given by

x = a sign (cosP) (7.13)
v = b sign (sin0i)

Note that these equations explicitly represent only the four corners of the rectangle.

The limits of the transforms for the rectangle are displayed together with transforms

of the superconics in the limiting sequence, in Fig.7.4. The various discontinuities of

the circular transforms of the rectangle are consistent with the relations t = p ,,

P=p +P t.

Summarizing the extensions of the 2-D transforms, curves with corners are

readily accomodated by the formalism developed for the ST, VST and CT in terms of

smooth curves. The direct and inverse transforms also apply to curves with straight

edges, when generalized functions are considered for the CT, and when the parametric

functions in terms of normal orientation are considered in an extended sense.

7.3. Extensions of the Spherical Transforms of 3-D Surfaces

Extensions of the spherical transforms are considered in this section successively

for surfaces with curved edges, developable surfaces, surfaces with straight edges,

corners, and planar faces.

Each non-smooth surface is considered as the limit of a sequence of smooth sur-

faces, and its transforms are defined as the limit of the transforms of the surfaces in

the sequence. It can be shown by arguments similar to the ones exploited for curves,

- ~ ~ ~
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that the extension of the forward and inverse transforms is straightforward when the

Gaussian mapping has only singularities of the first type, which is the case for surfaces

with curved edges and corners. Furthermore, it turns out that the extensions are also

straightforward for the ST of surfaces with any of the discontinuities listed above.

Extension of the VST to all these surfaces requires only to allow step discontinuities

in the tangential components of the spherical function. The discussion of this section

will therefore emphasize the two remaining aspects, namely the definition of the Gaus-

sian mapping for non-smooth surfaces, and the singularities introduced in the CT ten-

sor when representing straight surface components.

7.3.1. Curved Edges

"' The first singularity considered here is a curved edge, sch as the edge joining two

segments of sphere in the object illustrated in Fig.7.5a). This type of edge can be con-

sidered as the limiting case of a torus patch which smoothly joins the two faces of the

edge, when the section radius of the torus tends to zero. A sample of the limiting

sequence is illustrated in Fig.7.5c). In this example, the torus patch smoothly "fills"

the gap between the surfaces on each side of the edge, which have normals with lati-

tudes r71, r 2. As the section radius goes to zero, the image of the smooth edge on the

Gaussian sphere is unchanged. In the limit then, each point on the curved edge is

mapped to an arc of points on the Gaussian sphere, namely the great circle arc joining

the limits of the normals on both sides of the edge. For example, the point Po at long-

itude ~o on the curved edge in Fig.7.5a) is mapped to the arc between n'l(O,l) and

n 2(0,r1 2 ) on the Gaussian sphere, see Fig.7.5b). The Gaussian mapping has a singular-

ity of type 1, so that the three transforms and their inverses are well defined. The

presence of the curved edge is not clearly apparent in the ST and the VST of the sur-

face, but the limiting argument can be used to determine that the CT has special

values on the Gaussian image of the corner. In Appendix 1, the CT of a torus patch

with cross-section radius r and principal radius R is determined to be

R + r cosr 
coS7~ (7.14)

Rtorus = 0 r 1 < 77 < 2r l < rl < /2

The CT value corresponding to the curved edge is obtained as the limit of the above

__ � _I __�_�
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a) b)

c) d)

Fig.7.5. Surface with a Curved Edge
a) Surface with sharp edge. b) Gaussian image of a point on the edge.

c) Surface with smooth edge. d) Gaussian image of smooth edge.

expression as r -0, namely

R/cost/ O
|/cosfll<2 = (7.15)

In our example, the edge is oriented along the local axis 1 . More generally, the CT

tensor on a curved edge is singular, i.e. its determinant is zero. The principal values in

our example are zero and R /cosT7, the second of which is related to but not equal to

1.
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the radius of curvature of the edge. In addition to being curved, a general edge may

also be twisted. However, torsion of a curve is related to third order derivatives of

the equations of the curve [47, 52]. Therefore, the expression of the CT for a twisted

edge is similar to that for a planar curved edge.

7.3.2. Developable Surfaces

The case of a developable surface is considered in this section, and illustrated by

the example of a section of cylinder with radius r and length ; see Fig.7.6a). This

section of cylinder will be considered as the limit of sections of tori with constant sec-

tion radius r, increasing principal radius R and constant length = R (2- 1) along

the principal axis. One of these torus sections is illustrated in Fig.7.6c). The image of

the section of torus on the Gaussian sphere is the area between the two meridians with

longitudes 1, 2, shown on Fig.7.6d). As the radius R increases to oo, the longitude

interval 2-1 = I I/ R decreases to zero. In the limit, all points on each generatrix of

the cylinder are mapped onto a single point of the Gaussian sphere, and the cylinder

surface is mapped to a single meridian =So, sketched in Fig.7.6b). The Gaussian

mapping has a singularity of the second type .

The CT values corresponding to the torus patch are obtained by the limiting pro-

cess

R-oo. R (2-1s)= 

R + r cosrt 

cost?
,=1 Climr [u (I- l) -- u (--2)]

R -oo. R 2- I=l 0 r

where
I x 0

u(x)=0 x <0

= cos?) (7.16)

RC- O0 r
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y

a) b)

z

y

c) d)

Fig.7.6. Developable Surfaces.
a) Section of a Cylinder. b) Gaussian Image of Cylinder.

c) Section of a Torus. d) Gaussian Image of Torus.

7.3.3. Straight Edges

A straight edge E with length joining two faces with normals nl, n 2 is now

considered, and defined as the limit of a cylinder patch joining the two faces when the

radius of the cylinder goes to zero. The edge is depicted in Fig.7.7a), and a rounded

surface in the limiting sequence in Fig.7.7c). The image on the Gaussian sphere of the

cylinders in the limiting sequence is the great circle arc nl, n2 sketched in Fig.7.7d),

I
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nl

a) b)

nl

c) d)

Fig.7.7. Surface with a Straight Edge.
a) Sharp straight edge. b) Gaussian image of edge.

c) Smooth straight edge. d) Gaussian image of smooth edge.

and is defined in the limit as the image of the edge E: see Fig.7.7b). The singularity of

the Gaussian mapping for this edge is complex, as each point and all points on the edge

are mapped to the arc n, n 2.

The behavior of the CT corresponding to this edge is now investigated. The CT of

the edge is determined as the limit of the CT's of cylinders in (7.16), as r -- 0. As a

consequence, impulses with strength I /cos77 are introduced in the tensor component

n2
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parallel to the edge, at all points of the Gaussian image of the edge. For example, for a

horizontal edge with longitude &o joining faces with normal latitudes rll, 712, the con-

tribution of the edge to the CT tensor is the impulse ridge

6(= -cos i
edge COS77 0

0
o

(7.17)

Note that the CT value at the points of the Gaussian sphere corresponding to the

straight edge has one zero eigenvalue while the other eigenvalue has an impulse.

7.3.4. Corners

The Gaussian mapping and the transform values are now considered for surface

corners. A corner is defined as the limit of a rounded corner when the size of the

rounding becomes arbitrarily small. A polyhedral corner Po is considered first, at the

intersection of' three faces with normal orientations nl1, n2, 3, as illustrated in

Fig.7.8a). The image on the Gaussian sphere of a rounded corner approximating the

corner at Po covers the area between the three great circle arcs nl1 i 2, n 2 n3, 3 n 1

illustrated in Fig.7.8b). The limiting process defines the Gaussian image of the sharp

corner to be the same area. The Gaussian mapping has a singularity of the first type, so

that the spherical functions and their transforms are well defined.

113
n3

n-,

n,

a) b)

Fig.7.8. Surface Corner.
a) Polyhedral Corner. b) Gaussian Image of the Corner.

n]
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Among the three transform functions, only the CT has a special value at a corner,

namely the null tensor

00
0 0 (7.18)Rcorner 0 0 

Polyhedral corners with three or more faces are mapped to spherical polygons on the

Gaussian sphere. In general, the image of convex corners is a convex area on the Gaus-

sian sphere. An example of a corner surrounded by a smooth curved surface is given

by the tip of an object similar in shape to a football; the image of the corner on the

Gaussian sphere is an area limited by a small circle. The surface and the Gaussian

image of the corner are displayed in Fig.7.9.

7.3.5. Planar Faces

The discontinuity corresponding to a planar face with normal orientation n o is

now addressed. The image of this face in the Gaussian mapping is first considered. All

points of the face have the same normal orientation Tio, and are therefore mapped to

the corresponding point of the Gaussian sphere: see Fig.7.10. The Gaussian mapping

has a singularity of the second type on a neighborhood containing the face. The

representation in terms of normal orientations is hence defined only in the extended

sense, as are the inverse spherical transforms.

a) b)

Fig.7.9. Surface Corner.
a) Corner on a single curved surface. b) Gaussian image of the corner.

-



-144-

--o nono

a) b)

Fig.7. 10. Planar Face. a) Surface element. b) Gaussian Image.

The values of the spherical transforms are now considered. First, the normal dis-

tance between the origin and the tangents is identical for all points on a planar face.

The ST value is hence well defined for the point corresponding to ino on the Gaussian

sphere. However, the tangential components of the VST are measured in the plane of

the face and have therefore a different value at each point of the face. The tangential

VST components are hence undefined at no and the VST function has step discontinui-

ties at this point of the Gaussian sphere. Considering the behavior of the CT around

no, the correspondence with the case of an edge for a planar curve suggests describing

the planar face by a tensor impulse in the CT. This conjecture happens to be false

however, as it is not possible to explicitly define the shape of any face boundary by

only three numbers, the three CT components. It is not possible in general to ade-

quately describe a planar face locally by the CT function on the Gaussian sphere.

The results obtained in this section for the description of non-smooth convex 3-D

surfaces by the three spherical transforms are now summarized. At corners and edges

of a surface, one point of the surface is mapped to many points on the Gaussian sphere.

The values of the spherical transform functions are well defined, and special values

are obtained only for the CT, where the tensor is null on a corner, and has a zero

eigenvalue on an edge. When a straight component is present in the surface, all points

of the segment are mapped to the same point on the Gaussian sphere. This is the case

for developable surfaces, straight edges and planar faces. The ST is well defined at the
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corresponding points of the sphere, but tangential components of the VST have step

discontinuities. In the case of the CT, impulses must be introduced in one eigenvalue

of the CT tensor at points corresponding to a straight edge or a developable surface.

The other eigenvalue is finite in the case of a developable surface and null for a

straight edge. Finally, the shape of a planar face cannot be modeled adequately by the

CT.

7.4. Silhouette-Slice Theorems

In this section, extensions of the three Silhouette-Slice theorems presented in

Chapter 5 for smooth surfaces are discussed. The appropriate extensions are obtained

in most cases by the limiting process described in section 7.1. Specifically, the

extended theorems describe the relations between the limit of the spherical transforms

of the Esi and the limit of the circular transforms of the Ssi. When the spherical

transform of EVs is a function in the strict sense, the limiting process defines the cir-

cular transform of the silhouette as the appropriate projection of the great circle slice

of the corresponding spherical transform, exactly as in the case of smooth objects.

This argument shows that the Silhouette-Slice theorems for the ST and VST can be

extended without modifications to cover surfaces with corners, edges and faces, and

also developable surfaces. By the same argument, the Silhouette-Slice theorem for the

CT can be extended to surfaces with corners and curved edges.

The extension of the Silhouette-Slice theorem for the CT to surfaces with straight

edges and to developable surfaces cannot be obtained only by the formal argument

used for the other cases, since the corresponding sequences of spherical and circular

transforms do not converge in the space of strict-sense functions. This remaining issue

concerning the extensions is investigated in a first subsection. The second subsection

considers some corollaries of the extended Silhouette-Slice theorems.

7.4.1. Silhouette-Slice Theorem for CT's with Impulses

In the two cases to be analyzed here, namely straight edges and developable sur-

faces, the 3-D CT was determined in section 7.3. to contain ridges of impulses. The

main issue is then to determine how a ridge of impulses intersecting the silhouette slice

contributes to the CT on the slice. To simplify the analysis, the issue of slicing a ridge
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of impulses is first considered for a scalar function in the Euclidean plane Oxz. Con-

sider a function f Xz (x ,z ) on R 2 , and a slice of this function along a line through the

origin, with an angle or with the Oz axis; see Fig.7.1 1. The slice points can be

represented by the parametric equations

x = t sin (719)

7 = t CosOa

where t is a metric parameter along the slice axis. When f x is a strict-sense func-

tion, the values of the function along the slice, f (t ), are obtained by introducing

(7.19) into f xz (x , ), giving

f t (t) = f ( t sina, t cosc) (7.20)

A generalized function is now considered for f xz , namely a ridge of impulses of unit

height along the x axis,

n O<z <1l/n (7.21)
fn la 0 otherwise

The correct value of the slice is obtained by applying the slicing operation to the

sequence of functions in the above definition.

.7

lice

x

Fig.7.11. Geometry of the Slice in the Oxz plane.

_-
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n O0t cos< l/n

i -t ' 1)= 0 otherwise

n Ot <l/ncosc (7.22)
lim

= -o im otherwise

ft(t) = 8(t)
Cost

The same result is also obtained by formally introducing (7.19) directly into (7.21)

and carefully considering the scaling of the impulse.

f t(t) = fxz(t sina, t cos))= (t cosa)

I cosa I

Hence, the correct result of the slice of an impulse ridge can be formally obtained by

simply replacing the two variables of the function being sliced by their expressions in

terms of the parameter on the slice, then applying the scaling expression for the 8(.)

distribution.

The analysis of the slicing of impulse ridges in the Euclidean plane suggests that

the result of slicing a ridge of impulses in the 3-D CT function on the Gaussian sphere

can be evaluated by applying the equation used for predicting the silhouette CT for a

smooth surface, equation (6.21)

p(/p)= cosO~ sinaSG J r12SG r22SG CffiaSG (7.23)
p()= | ~cour sinaSG I r 12SG r 22SG inaSG

and considering the change of variables in the impulses present in the components of

R. This procedure leads to the correct silhouette CT function, as is illustrated below

for the case of a straight edge with length 1. The object axes are chosen so that Oy is

parallel to the edge. The contribution of the edge to the 3-D CT is given by (7.17) as

Redge r O 1 0 (7.24)
edge cosr 0 0
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For a viewing direction specified by the angles , 0, the contribution of the edge to the

silhouette 2-D CT is given by introducing (7.24) in (7.23).

p()= (co7 SG (I)) COS'2(SG

The appropriate scaling of the delta function is accounted for by writing

p(0)c= d .SG G(P-tpo) COS 20SG
COSnSGc; d 6s ]

I d 

where 4Po is determined by SG (o) = 0. The derivative in the above equation was

determined in (6.3) as d 6SG Id q = cosasG /cosrlsG . Therefore,

p(q) = coscaSG (- 0o) (7.25)

Comparing this result with (7.4) shows that the predicted contribution of the 3-D edge

to the silhouette is a 2-D edge with length coscxsG . This result is consistent with the

well-known result of the projection of an edge making an angle UOSG with the projec-

tion plane.

The Silhouette-Slice theorem for the CT is now considered for surfaces with

planar faces. As the contribution of planar faces to an object shape cannot be modeled

by the 3-D CT. the corresponding contributions to the silhouette shapes cannot be

predicted with the CT either. However, planar faces are mapped only to individual

points of the Gaussian sphere. Considering a surface with planar faces as the limit of a

sequence of smooth convex surfaces, the planar faces will prevent convergence of the

sequence of silhouette circular transforms only when the great circle slice passes

through some of the points corresponding to the faces. In all other cases, the CT's are

well defined on the slice and the Silhouette-Slice theorem applies without

modifications. The set of viewing directions for which the slice intersects the image of

a face has a measure zero for surfaces with a finite number of faces. As a consequence,

the Silhouette-Slice theorem for the CT applies to surfaces with planar faces, for

almost all viewing directions.
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7.4.2. Corollaries of the Extensions

Two particular consequences of the extended Silhouette-Slice theorems are

covered in this section. The first is the relation between the angle of a silhouette

corner and the shape of the corresponding corner of the object. The second is an

expression for the curvature of the silhouette generated by a flat surface with a curved

boundary.

7.4.2.1. Silhouette of a Corner

In section 7.1. and 7.2, it was shown that the presence of a corner on a surface

and on its silhouette is apparent mainly in their CT's. Specifically, the 3-D CT of the

object surface is the null tensor in the region of the Gaussian sphere corresponding to

the object corner, so that the 2-D CT of the silhouette has a zero value for the arc of

the slice circle inside the image of the corner. It is clear that whenever the slice

corresponding to the viewing direction traverses the image of the 3-D corner on the

Gaussian sphere, a corner will appear on the silhouette. The size of the null gap on the

2-D CT of the silhouette is given by the arc length of the slice inside the image of the

corner on the Gaussian sphere: see Fig.7.12. As the arc length of the image of the

corner on the Gaussian circle is equal to the exterior angle of the silhouette corner, the

above discussion provides a qualitative procedure for relating corner angles on the.

- n3
_o
1"3

'n2
nil

a) b)

Fig.7.12. Silhouette of a cube corner. a) Corner.
b) Gaussian image, with a slice corresponding to

the silhouette with the largest exterior corner angle.

nj
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silhouette with the geometry of the 3-D corner of the object. This procedure can be

used for example to determine the largest exterior angle of the silhouette corner that

can be generated by a given 3-D corner. This angle is given by the largest arc of great

circle in the image of the 3-D corner on the Gaussian sphere. This argument shows

that a cube corner can generate only right-angled or obtuse silhouette corners: see

Fig.7.12.

7.4.2.2. Curvature of the Silhouette of a Planar Object

In this section, the curvature of the silhouette of a planar object with a curved

boundary is related to the curvature of the object boundary itself. This result pro-

vides an expression for the radius of curvature of the orthographic projection of a 3-D

curye, as a function of the radius of the curve and the orientation of the vewing

direction.

The problem is first analyzed in a system of axes where Oxy is in the plane of the

object and in which S=0. In the Oxy plane. the object has a 2-D CT Po (¢) where is

chosen to characterize the normal angle in the Oxy plane. In the Gaussian mapping of

the object considered as three-dimensional, the two faces of the object are mapped to

the poles of the Gaussian sphere, and each point of the boundary to a half meridian

with a longitude corresponding to the normal orientation of the curve in the Oxy

plane. The 3-D CT of the object can be obtained with equation (7.15)

Po (g)/cosrj O0
_ O)o= (7.26)

0 0

The radius of curvature s of the silhouette is obtained with the Silhouette-Slice

theorem for the CT, as

Ps = cos's PO (7.27)
COS so

It is useful in this case to specify the viewing direction in terms of angles with respect

to the Frenet trihedron of the curve at each point. The angles 6, 0 are chosen for this

purpose: see Fig.7.13. The angle 0 is the angle between the viewing direction and the

osculating plane of the curve, whereas is the angle between the projection of the

viewing direction in the osculating plane and the principal normal to the curve.
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V

b

Fig.7.13. Planar Curve and
Angles Specifying the Viewing Direction in the Frenet Trihedron.

Equation (7.27) can be expressed in terms of these angles with (6.1)(h) and (6.1)(i).

( 1 - sin2 scos20 )3/2
Ps = s Po () (7.28)

sin0

The above equation expresses the radius of curvature of the orthographic projection of

a 3-D curve, in terms of the radius of curvature of the 3-D curve and the orientation

of the viewing direction in the Frenet trihedron of the curve. This result can also be

obtained by a classical method, as is done in Appendix 5; it is also valid for non-planar

curves, since torsion only affects third order derivatives. When =0, the viewing

direction is in the normal plane of the curve and the relation simplifies to

Ps = Po /sin0.

�I _ _I
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7.5. Summary

In this chapter, the silhouette theories developed in Chapters 5 and 6 for smooth

surfaces have been extended to cover surfaces with discontinuities, edges and planar

faces. It is remarkable that theories supported by differential geometry of smooth sur-

faces provide correct results when extended to surfaces with sharp edges and corners.

In addition to the analytic expressions for the silhouette shapes, a number of powerful

qualitative relations between silhouettes and 3-D shapes have been derived. These

qualitative relations prove to be useful when developing algorithms for object recogni-

tion from silhouettes. This is briefly explained in Chapter 8.

__ �
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Chapter 8
Examples and Applications

This chapter presents a number of examples of silhouette construction with the

Silhouette-Slice theorems. In addition, applications of the new theories to the recon-

struction of the shapes of 3-D objects from silhouette data are suggested, followed by

the principles of a system for recognizing polyhedral objects from their silhouettes. It

must be pointed oul that the main results of this thesis are theoretical. Applications

presented in this chapter prove that these theories are useful for solving practical

problems, but they have not been developed in great detail.

It is tempting to develop algorithms for solving each of the three basic silhouette

problems by sampling the spherical and circular object functions introduced in

Chapter 5, and relating these discrete transforms to Silhouette-Slice theorems for

discrete transforms. However, sampling questions introduce difficult obstacles in the

development of a discrete theory. First, sampling continuous functions defined on the

sphere is a complex problem which has not been adequately solved. In addition, great

circle slices corresponding to given viewing directions do not typically intersect the

sampling grid on the sphere at sample points. As a result, interpolations between the

sample values of the spherical transforms are necessary to generate samples of the

silhouette transform in almost all cases. The choice of sample points on the sphere

was addressed in [44, 57] for the case of the Extended Gaussian Image. It was shown

that the largest number of regularly spaced sample points on the sphere is equal to the

largest number of faces on a regular polyhedron, namely 20. For any larger number

of samples, an irregular sampling must be considered. In addition to the choice of

sample points, both the choice of sample values in terms of the continuous function

being represented and the interpolation of sample values to recover the corresponding

continuous function must be considered, but these have not been studied in detail. At

this point, the unsolved sampling issues make it difficult to apply the new theories

directly to the development of numerical algorithms. However, the theories developed

in this thesis provide valuable tools for qualitative reasoning which the examples of

applications presented in this chapter attempt to illustrate. In addition to the relations

between objects and silhouettes, the CT representation for 3-D surfaces presented in

- 153 -
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Chapter 5 is a valuable contribution to the understanding of surface shapes, both for

geometry and for computer applications. Since this aspect of the theory is not directly

related to silhouette analysis, its discussion is relegated to Appendix 4.

8.1. Silhouette Construction

In this section, a number of examples are presented to illustrate silhouette con-

struction with the Silhouette-Slice theorems. These examples demonstrate that

numerically correct answers are obtained with the proposed formalism. They further

provide insight into the form of the three transforms and the result of the slicing

operations. In a number of cases, qualitative reasoning with the Silhouette-Slice

theorems is proposed to predict the gross aspect of the silhouette.

As mentioned in the introduction of this chapter, samhpling of the spherical and

circular functions raises non-trivial issues. To generate the examples presented in this

chapter, sampling of the transforms on the Gaussian sphere has been circumvented by

using closed-form analytic expressions for the spherical functions. On the other hand,

the circular functions and the corresponding silhouettes must be sampled, at least for

display purposes. The sampling issues have been largely eliminated by using a large

number of samples for the circular transforms of the silhouettes. Our approach to the

sampling question is tractable when closed-form expressions are available for the

transforms of the surface shapes considered. It will be shown that accurate

silhouettes can be determined by this method for many surface shapes. The

Silhouette-Slice theorem can provide the shape of silhouettes for surfaces for which no

closed-form silhouette expressions are available, for example, for superquadrics. The

three spherical transforms for superquadrics are derived analytically in Appendix 1.

Although it relies on analytical formulas, our treatment of the sampling problem is

compatible with the computation of silhouettes for surface models designed with a

CAD system. These surfaces are defined as combinations of a number of surface

patches, where each patch is described by a relatively simple analytic equation. The

silhouette problem can be solved with the proposed method when spherical transforms

can be evaluated analytically for the primitive surface elements.

Although continuous spherical transform functions are used in the examples

presented in this section, silhouette shapes have also been obtained by considering

.I
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samples of the transform functions on the Gaussian sphere and by relating these to

samples of the silhouette transforms on the appropriate slice. This discrete formula-

tion of the Silhouette-Slice theorems requires a large number of interpolations between

sample points on the sphere to determine samples of the silhouette circular transforms

on the great circle slice. In addition, sampling effects introduce degradations in the

shapes of the computed silhouettes. These degradations become negligible for dense

samplings, but the number of samples required to ensure a given accuracy cannot be

quantified because of the lack of a sampling theory for this problem. The sampling

questions are beyond the scope of the thesis, which oncentrates on the theories for-

mulated in terms of continuous functions.

Silhouette construction will be illustrated for three different types of objects,

namely a cylinder, superquadrics, and a torus. In the context of these examples, a

number of qualitative aspects of the theory are discussed. Qualitative aspects of the

circular transform graphs such as signs, extrema and zero crossings are related to the

silhouette shape. The effect of the choice of a reference frame on the transforms is dis-

cussed. A qualitative prediction of the shape of silhouettes of polyhedra with the

Silhouette-Slice theorem is presented. This result is then extrapolated to predict the

shape of silhouettes of smooth surfaces which are closely approximated by polyhedra,

such as some superquadrics. Finally, silhouettes of a torus illustrate the application of

the results to a non-convex object and raises issues related to the extension of the

results to these objects.

8.1.1. Silhouettes of a Cylinder

The first example is that of a simple axisymmetric object, namely a cylinder of

height 2H and radius r, sketched in Fig.8. 1. The various transforms of the object are

also axisymmetric, when the reference point is positioned on the object axis. For a

reference point at the center of the cylinder, the 3-D VST of the cylinder is given by

I (rcos + H sin-) 0 ( Hcos -rsin-)j 0 °O < < 90 °

So= r (8.1)
(r cos - H sink) 0 (-H cos - r sink) -90 °< r 40 °
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2H
x

Y

Fig.8.1. Cylinder with radius r =2, height 2H =5.

The CT of the Cylinder is given by

r/cost7 0

RZ | 0 2H 8(77) + r 8(X7-r/2) + r 8(+rr/2)2)

Except for h and r 12 which are identically zero. profiles of the components of the

transforms are displayed in Fig.8.2. The profile of an axisymmetric function on the

Gaussian sphere is, by definition, a l-D function representing the values of the

axisymmetric function for a fixed value of . The profile is defined for

-90 ° r 900 , but the profiles were extended to the range of -- 180° < r/ < 180 °

for display purposes. In this form, the profiles correspond to a vertical section of the

Gaussian sphere. These extended profiles are represented by polar diagrams in Fig.8.2.

In these diagrams, the zero value is offset from the center to allow the representation

of negative values.

The cylinder does not satisfy smoothness and strict convexity constraints

required in the theories of Chapters 5 and 6, because of the presence of edges and

embedded straight components. As a result, the ST displays discontinuities in the first

derivative, the v-component of the VST displays step discontinuities, and the CT con-

tains impulses. These discontinuities are all related to the length of the corresponding

straight surface components, as discussed in Chapter 7. Specifically, the discontinui-

ties in the slopes of the ST, the step discontinuities in v and the lateral impulses in r 2

- o
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Profile of 3-D ST Profile of v-component of 3-D VST

Profile of r ,-component of 3-D VST Profile of r 2 2 -component of 3-D VST

Fig.8.2. Profiles of the Spherical Transforms of the Cylinder in Fig.8. 1.

are equal to the height 2H of the cylinder.

Circular transform functions for silhouettes of this object are obtained by pro-

jecting the spherical function values on the appropriate great circle slice onto the plane

of the slice, according to the Silhouette-Slice theorems developed in Chapter 6.

Silhouettes and the corresponding circular functions are displayed in Fig.8.3a)-b) for

two different orientations of the viewing direction. The circular silhouette functions

were computed at 200 equally spaced samples of the appropriate great circle slice;

points of the silhouette were generated by inverting the silhouette VST with equation
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Silhouette for 0 = 100

t-component of VST

Support Transform

Curvature Transform

Fig.8.3a). Silhouette of the Cylinder for 0 = 100, and Corresponding Transforms.
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Silhouette for 0 = 50 ° Support Transform

t-component of VST Curvature Transform

Fig.8.3b). Silhouette of the Cylinder for 0 = 50 ° , and Corresponding Transforms.

(5.9) applied to the sample values. The following characteristics can be observed on

these silhouettes and their circular transforms. The ST is strictly positive every-

where, because of our choice of the origin inside the 3-D object. The angular points in

the graph of the ST correspond to the flat sections of the silhouette. The t-component

of the VST has values with alternating signs, since it must integrate to 0 over the 2r

interval. The zero crossings of t correspond to points for which the normal goes

through the reference point. The 2-D CT's of both silhouettes contain two impulses

corresponding to the straight sections on the sides of the silhouette, which correspond

themselves to the lateral surface of the cylinder. In addition, the 2-D CT of the
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silhouette contains two maxima corresponding to the top and bottom parts of the

cylinder. Note that the silhouette CT's contain impulses related to the lateral

impulses of r 22 in Fig.8.2, but none related to the top and bottom impulses in r22.

This observation can be justified by considering the 3-D graph of r 22 on the Gaussian

Sphere in Fig.8.4. In the 3-D CT of the cylinder, the lateral surface generates an equa-

torial ridge of impulses. The impulses on the 2-D CT of the silhouette correspond to

the intersection of the great circle slice with the equator, as is shown in the figure for a

slice corresponding to 0=30. As all slices cut the equator, the equatorial impulses

related to the lateral surface appear on all silhouettes. However, the impulses of the

3-D CT corresponding to the top and bottom parts of the cylinder are located only at

the poles of the Gaussian Sphere. Therefore, they affect only great circle slices through

the poles, which'correspond to silhouettes with 0 = 00 .

The effect of translations of the reference point on the various surface spherical

transforms and the corresponding silhouette circular functions is now investigated.

The effect of origin position on the VST is characterized by the expression

n cosfcosir sinfcosr sinr | x (,rl) x

h = -sin6 cos6 0 Y ( ) Y- o (8.3)

v -cossin77 -sinksin- cos7 Z (,77) O

where (x o,Yo,-o) are the coordinates of the reference point in fixed object-centered

coordinates. The ST is identical to the first component of the VST, and the CT is

Fig.8.4. Graph of the r 22 component of the 3-D CT of the cylinder
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unaffected by the choice of origin. The effect of the choice of origin on the ST and on

the VST components of the silhouette is illustrated in Fig.8.5a)-d) for the silhouette of

the cylinder with 0 = 20° , =0 ° , and for four excentric positions of the reference

point. It can be observed in these figures that significant changes of the ST and VST

result from the displacement of the origin. Specifically, negative values appear in n r

when the reference point is outside the object, the number and locations of zero-

crossings of t ,. and extrema of n , t , are modified; of course, the numerical values of

the transforms are considerably affected.
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Y 7T

Y

Cylinder and Reference Point

Support Transform t-component of VST

Fig.8.5a). Normal and Tangential Components of the VST of a Cylinder Silhouette
with the Reference Point (0,0,--1).
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Y

Cylinder and Reference Point

Support Transform t-component of VST

Fig.8.5b). Normal and Tangential Components of the VST of a Cylinder Silhouette
with the Reference Point at (0,0-4).
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Cylinder and Reference Point

Support Transform t-component of VST

Fig.8.5c). Normal and Tangential Components of the VST of a Cylinder Silhouette
with the Reference Point at (0,1,0).
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Cylinder and Reference Point

Support Transform t-component of VST

Fig.8.5d). Normal and Tangential Components of the VST of a Cylinder Silhouette
with the Reference Point at (0,3,0).
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8.1.2. Silhouettes of Superquadrics

In this section, silhouette construction is demonstrated for a subclass of super-

quadrics [58]. The subset of superquadrics considered here is defined by the implicit

equation

Ix In I In I I

I-I +I.-. + I-I =1 (8.4)
a I Ib cl

The parameters a , b, c correspond to the intersections with the coordinate axes. They

hence control the size and elongation of the surface shape. The parameter n , however,

controls the smoothness of the surface. For 1 <n <co, surfaces defined by (8.4) are

smooth and strictly convex. Examples of superquadrics with a =4, b =3, c =2 are

displayed in Fig.8.6 for n = 1, 1.2, 4.5, oo. Ellipsc.is are a-special case of superqua-

drics for n =2. In the limit for n -oo, the superquadric becomes a parallelepiped,

whereas the limit for n -- 1 corresponds to an octahedron.

It is possible to evaluate the three spherical transforms in closed form for the

surfaces specified by (8.4), and therefore to compute the shape of their silhouettes in

orthographic projections. The analytic computations of the spherical transforms

require relatively tedious algebra and are therefore relegated to Appendix 1. Examples

of silhouettes of the two smooth superquadrics in Fig.8.6 are shown in Fig.8.7a)-d).

As mentioned in Appendix 1, the CT of superquadrics contain discontinuities when

n > 2. These discontinuities are apparent in Fig.8.7d) for n =4.5. They correspond to

the six slowly curving parts in the corresponding silhouette. Such discontinuities in

the CT of superquadrics with n > 2 present an additional obstacle to discrete represen-

tations of the CT.

An example of qualitative predication of the shape of silhouettes with the

Silhouette-Slice theorems is now presented, first for the polyhedra (n = 1, co), then

for the smooth superquadrics (n = 1.2, 4.5). The qualitative shape of silhouettes of

the octahedron and the parallelepiped can be readily estimated with the Silhouette-

Slice theorem for the CT. The CT of the two polyhedra have ridges of impulses on the

great circle arcs which are the images of the polyhedron edges on the Gaussian sphere.

In Fig.8.8, these arcs have been plotted on the Gaussian sphere for the two polyhedra,

for the same values for the diameters as in Fig.8.6. Slices of the 3-D CT of the
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n =4.5 n =oo

Fig.8.6. Superquadrics with a =4, b =3, c =2.
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Support Transform

t-component of VST Curvature Transform

Fig.8.7a). Silhouette and corresponding Circular Transforms for the superquadric
with n = 1.2, for the viewing direction (k,O) = (10 ° ,100 )
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Support Transform

t-component of VST Curvature Transform

Fig.8.7b). Silhouette and corresponding Circular Transforms for the superquadric
with n = 1.2, for the viewing direction (k,O) = (400° ,200 )
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Support Transform

t-component of VST Curvature Transform

Fig.8.7c). Silhouette and corresponding Circular Transforms for the superquadric
with n = 4.5, for the viewing direction (,0O) = ( 10 ,10 )

A
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t-component of VST Curvature Transform

Fig.8.7d). Silhouette and corresponding Circular Transforms for the superquadric
with n = 4.5, for the viewing direction (,0O) = (40° ,200 )

- 171 -

Silhouette

-



- 172 -

Parallelepiped, (,0O) = ( 100, 100 ) Parallelepiped (,0O) = (400, 20 )

Octahedron, (,0) = ( , 10° , 0 ) Octahedron, (,0O) = (40 ° , 200 )

Fig.8.8. 3-D CT of the superquadrics with n = 1 (octahedron) and n =oo (parallelepiped)
The CT's have ridges of impulses along the lines drawn on the Gaussian sphere.
Also shown are the great circle slices corresponding to two viewing directions.

polyhedra are composed of impulses so that the silhouettes are polygons with a

number of edges equal to the number of great circle arcs sliced by the silhouette great

circle. Except for special coincidences, the number of silhouette edges is 6 for the

parallelepiped and can be 4 or 6 for the octahedron. The similarity betwen superqua-

drics with small values of n and the octahedron (n = 1), and between superquadrics

with large values of n and the parallelepiped (n =oo) is preserved in the silhouettes.
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As a result, the silhouettes of the smooth superquadrics in Fig.8.6 can be predicted to

be polygons with bent edges and rounded corners, with a number of edges equal to the

numbers for the corresponding polyhedra. It can be observed in Fig.8.7a)-d) that the

silhouettes of both superquadrics contain the numbers of bent edges qualitatively

predicted by the above argument. The presence of these bent edges in the silhouette is

also apparent as maxima in the CT, which are maxima of the radius of curvature.
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8.1.3. Silhouettes of Tori

The example of silhouette construction for the torus presented in this section

introduces issues arising from the application of the Silhouette-Slice theorems to non-

convex objects. It is clear that each point of the Gaussian sphere corresponds to two

points of the torus surface (see Fig.8.9) except for the poles of the sphere; each pole

corresponds to an infinite number of object surface points. To determine its

silhouettes, the torus surface is cut into two parts, which will be called the interior

and exterior parts, see Fig.8.10. The set of points along the separation line between the

two parts has a zero measure and is not considered here. The Gaussian Mapping is

4

Torus Gaussian sphere

Fig.8.9. Gaussian Mapping of the Torus.
Both points marked on the torus surface map on the same point of the unit sphere.

Exterior Surface Interior Surface

Fig.8.10. Interior and Exterior parts of the torus surface.
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one-to-one for each of the two parts. The exterior part consists of elliptic surface

points only, so that the Silhouette-Slice theory applies without restriction. The inte-

rior surface points are all hyperbolic however. As the ST and VST do not specifically

depend on surface curvatures, these representations and the related silhouette theory

apply without modifications for the interior part. In the case of the CT, the main

difference is that the tensor R is no longer positive definite. The Spherical transforms

of the torus are given by

n + R cost + r
s= h 0 (8.5)

v -( + R sin,)

= I+R +r cosrl )/cosrl 0

where r is the radius of the section, R is the radius of the principal axis, and the posi-

tive and negative signs in the above equations have to be considered for the exterior

and interior parts respectively. These spherical transforms are axisymmetric. Polar

plots of the profiles of the non-zero components of these transforms are displayed in

Fig.8.11 for both the interior and exterior surfaces. Transforms for the silhouette can

be obtained by slicing the above 3-D object transforms. The silhouettes are then

obtained by inverse transformation of the silhouette functions. Two examples of

silhouettes are developed %fr a torus with R=3, r=l1, for viewing directions

corresponding to 0=40° and 0=25 °. The two silhouette parts corresponding to the

interior and exterior parts of the object surface are generated separately, then superim-

posed in the final figure. For the case of 0=40 , the silhouettes of both parts and their

transforms are displayed superimposed in Fig.8.12a). The corresponding diagrams are

presented for the case where 0=20 in Fig.8.12b).
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Profile of 3-D ST (exterior)

Profile of 3-D ST (interior)

Profile of r ,-component of 3-D VST

Profile of t-component of 3-D VST (exterior)

Profile of t-component of 3-D VST (interior)

Profile of r 22-omponent of 3-D VST

Fig.8. 11. Spherical Transforms of the two parts of the torus

4



Support Transform

t-component of VST Curvature Transform

Fig.8. 12a). Silhouette of the Torus and Circular Transforms.
Viewing Direction: 0-40° .
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Silhouette Support Transform

t-component of VST Curvature Transform

Fig.8.12b). Silhouette of the Torus and Circular Transforms.
Viewing Direction: 0-=250.

After the silhouettes are evaluated separately for the interior and exterior parts

of the torus, issues of registration may arise when combining the individual silhouette

parts. When the silhouettes are obtained with the ST or VST, both parts are referred

to the same point in the projection plane and registration is trivial. However,

silhouette parts generated with the CT are not related to an origin. In the case of the

torus, accurate superposition of the two parts was possible thanks to the symmerty of

the surface shape. In the case of a surface in the shape of a distorted torus, the interior

and exterior silhouettes could not be accurately registered.

_
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The silhouettes evaluated with the Silhouette-Slice theorems correspond to the

projection of all object surface points with a normal perpendicular to the viewing

direction. For a non-convex object, some of these points may be occluded by other

object parts, so that they do not effectively contribute to the silhouette. The set of

silhouette points of a non-convex object determined with the Silhouette-Slice theorems

must therefore be considered only as a set of candidate silhouette points. The

silhouette itself may be equal to this set, as in the example of Fig.8.12a, or may be a

subset of the candidate silhouette, as in the example of Fig.8.12b. Indeed, spurious

silhouette parts appear on this figure. They correspond to the projection of points of

the object surface for which the normal is perpendicular to the viewing direction, but

which are occluded by other parts of the object. When occluded silhouette parts are

removed from the interior silhouette, the result displayed in Fig.8.13 is obtained. Note

that in this figure, there are two segments of silhouettes in the interior of the object.

These must also be eliminated if the silhouette is considered as the set of outline points

in the image plane, but are included in the silhouette if it is considered as the set of

discontinuity points of a range map in the image plane. Note that, in the example of

Fig.8.12a generated for 0=40, the correct silhouette is obtained directly. It can be

observed that, for 0=400, the CT of the silhouette part corresponding to the interior

surface has a negative radius of curvature while the Gaussian curvature of the surface

is negative. In this circumstance, all silhouette points generated with the Silhouette-

Slice theorem are true silhouette points. In the case of 0=25, the CT of the

silhouette contains alternating signs and zero crossings. The curve of candidate

silhouette points has cusps corresponding to the zero crossings. It has been shown by

Fig.8.13. Silhouette of the torus for 0=25.
The occluded parts have been removed.
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Koenderink[33] that when candidate silhouette points corresponding to a surface with

negative Gaussian curvature have a positive curvature, these points are necessarily

self-occluded. This property allows us to eliminate the two lateral parts of the inte-

rior silhouette in Fig.8.12b. Points on the two remaining longitudinal silhouette parts

cannot be tested for visibility by arguments on local surface shapes. On the other

hand, the presence of self-occluded silhouette parts suggests the presence of additional

silhouette segments for which occlusion occurs due to remote surface elements.

Summarizing our discussion on non-convex objects, each point of the Gaussian

sphere may correspond to several points of a non-convex object. The surface can be

decomposed into parts so that for each point, the Gaussian mapping is 1:1. When

applied to these parts, the Silhouette-Slice theorems provide the correct silhouettes in

some cases. More generally, the theorems provide a set of candidate silhouette points

in which the silhouette points are included. The actual silhouette points are deter-

mined by testing the candidate points for visibility. One necessary visibility condition

requires corresponding signs for the curvature of the silhouette and the Gaussian cur-

vature of the surface on the silhouette generator.

8.1.4. Discussion

In this section, silhouette construction has been demonstrated with all three

Silhouette-Slice theorems. Through simple experiments, we have observed that con-

struction with the VST is less sensitive to sampling problems than the other two

methods, although accurate results are obtained with the three transforms when

sufficiently fine samplings are used. We have generated the examples presented in this

section with a mixed analytical/numerical method; this strategy can be exploited only

when analytical expressions can be determined for the 3-D transforms of the surface

shapes of interest. The ST and the VST of a surface can be determined in closed form

only for surfaces which can be explicitly parameterized with the normal orientation

angles (,r). Although such parameterizations can be derived for several surface

shapes, this indicates a limitation of the method. However, it is shown in Appendix 2

that the CT values can be determined analytically for any surface represented by

parametric equations. Silhouette construction with the CT is hence applicable to a

larger set of surfaces than with the ST and the VST.
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In addition to numerical silhouette construction, the Silhouette-Slice theorems

can also be exploited to predict qualitatively the shapes of silhouettes. Qualitative

shape features of silhouettes include mainly corners, edges and curvatures. These

features are best represented by the 2-D CT of the silhouette, and can be easily related

to the corresponding features of the object by the Silhouette-Slice theorem for the CT.

We conclude that the CT should be preferred for prediction of qualitative

silhouette shape, that the VST is numerically less sensitive than the ST and CT for

silhouette construction, but that the CT can be evaluated analytically for a larger set

of surfaces than the VST.
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8.2. Reconstruction from Silhouettes

The formal problem of reconstructing the shape of a convex object from a set of

silhouettes is addressed in this section, and a strategy for solving this problem with

the Silhouette-Slice theory is suggested. Due to the lack of a good understanding of

sampling issues on the sphere, a practical algorithm for applying the proposed strategy

has not been implemented. However, interesting conclusions can be drawn from a for-

mal analysis of the reconstruction problem.

The reconstruction problem addressed in this section can be described as follows.

A convex object of unknown shape is projected orthographically onto a number of pro-

jection planes Ili , and the corresponding silhouettes Si are recorded in each plane.

The viewing directions are referred to by their longitude/latitude 4 i , Oi. Given this

collection of silhouettes, a method for constructing a description of the 3-D shape of

'the object is desired. In addition to devising a reconstruction method, it is useful to

determine what range of viewing angles b, 0 must be covered in order to obtain com-

plete reconstruction.

In the first stage, it

global frame Oxyz. In

orthogonal axes O x r

Fig.8.14.

is assumed that all silhouette measurements- are referred to a

each projection plane I i , the silhouettes are measured in

r, where Orz is the projection of the global Oz axis, see

c

Fig.8.14 Reference frame for the projection plane

4

z z��
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The scheme of the reconstruction procedure is to evaluate a circular transform

for each measured silhouette, to relate these 2-D transforms to great circle slices of the

corresponding 3-D transform of the object, to use this relation to reconstruct the

spherical transform, and finally to invert this transform for the object shape.

As reference axes are available in each projection plane, the evaluation of the cir-

cular transform of each silhouette is straightforward, and is formally obtained with

equations (5.1). (5.11), (5.19). Each circular transform function Pri (), i (),

P () is related to the great circle slice of the corresponding spherical transform of the

object, which is perpendicular to the viewing direction 95i , i, namely p (SG ,rsG ),

s(SG rSG ), (6sG rnSG ). The exact relation between the transform value at one

point of the silhouette Gaussian circle and the corresponding value of the transform of

the object on the slice of the Gaussian sphere depends on the particular transform in

question and is given by the appropriate Silhouette-Slice theorem. These relations and

their consequences for the reconstruction of 3-D transforms are now investigated in

sequence for the ST, the VST, and the CT.

In the case of the ST, the silhouette transform values on the Gaussian circle are

exactly equal to the object ST values on the great circle slice of the Gaussian sphere.

Therefore, the value of the 3-D ST of the object at one point of the Gaussian sphere is

obtained directly as the value of the silhouette ST on a slice passing through that

point. In order to recover the complete ST function on the sphere. it is hence necessary

to process silhouettes obtained from a range of viewing angles such that the

corresponding great circles entirely cover the sphere. One set of such viewing angles is

obtained by turning the observer around the object by a 1 80 ° arc, see Fig.8.15.

l~t-

Fig.8.15. A sufficient set of viewing directions for reconstruction with the ST
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Reconstruction using the VST is now considered. First, the normal component of

the VST is equal to the ST for which reconstruction has been already discussed. The

discussion is hence focused on the reconstruction of the horizontal and vertical com-

ponents h, v of the 3-D VST from the tangential component t of the 2-D VST's of the

silhouettes. The Silhouette-Slice theorem for the VST identifies the value of t r on the

Gaussian circle of the silhouette to the projection onto the slice plane of the vector

(h v ) at the corresponding point of the great circle slice. Estimating h and v' is hence

equivalent to estimating a 2-D vector from projections of this vector, and is possible

when at least two different projections are known. The vector (h v ) can hence be

reconstructed at a point of the Gaussian sphere if and only if its projection t is given

on two distinct slices through the point. As a consequence, the set of viewing direc-

tions must provide a coverage of the Gaussian sphere by two distinct great circle slices

at each point, in order to reconstruct the 3-D VST of the inspected object. A set of

viewing directions satisfying this criterion almost everywhere is given by the combi-

nation of two different sets of measurements similar to those proposed for the ST. An

example of a sufficient set of viewing directions is given in Fig.8.16.

It can be observed that the 2-D VST of each silhouette specifies two values for

each point of the Gaussian circle, as opposed to one in the case of the 2-D ST.

Although these components are redundant. it is tempting to consider that the VST

Fig.8.16. A sufficient set of viewing directions for reconstruction with the VST
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captures "more information" about the silhouette at each point of the Gaussian circle.

Therefore, it seems counterintuitive that the reconstruction using the VST requires a

larger set of silhouettes than reconstruction with the ST. This stronger requirement in

the case of the VST arises because the redundancy of the 3-D VST was not exploited in

the reconstruction method.

Consider now the reconstruction of the object shape through the reconstruction of

its 3-D CT. The relation between the 2-D CT of the silhouette at a point of its Gaus-

sian circle and the 3-D CT of the object at the corresponding point on the slice of the

Gaussian sphere is that the silhouette 2-D CT, a scalar, is the projection on the slice

plane of the object 3-D CT, a 2x2 symmetric tensor. In order to reconstruct a 2x2

symmetric tensor from projections, three projections on different axes are required. In

order to reconstruct the value of the 3-D CT of the surface at one point on the Gaus-

sian sphere then, silhouette 2-D CT's on three different great circle slices through the

point must be used. The requirement on the minimum set of viewing directions is that

the Gaussian sphere must be covered everywhere by three layers of great circle slices.

This requirement is satisfied almost everywhere by three orthogonal 180 ° arcs of

viewing directions. such as depicted in Fig.8.17. In this case again, consistency

Fig.8. 17. A sufficient set of viewing directions for reconstruction with the CT.
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constraints on the 3-D CT are not exploited in the above reconstruction strategy. These

constraints could b used to relax the requirements on the minimal set of viewing

directions.

A substantial difference between 3-D shape reconstruction with the CT on one

side and reconstruction with the ST and VST on the other side is that the CT is

independent of translations whereas the other two transforms strongly depend on

translations of the origin. It was assumed up to now that measurements in each pro-

jection plane are referred to axes O rx rz7 7r, and that each of these sets of axes is accu-

rately related to the global system of axes Oxvz. As silhouette CT's are independent

of translations of the origin in their plane, the requirement on registration of the

observed silhouettes can be relaxed when reconstruction is performed with the CT.

Sjecifically, only a reference orientation such as the projection of the global 0O direc-

tion must be known relative to the global axes in each projection plane, in addition to

the orientation of the plane itself. Uncontrolled translations of the reference axes in

each projection plane do not affect the reconstruction mechanism. This conclusion can

be exploited to determine an interesting difference between the reconstruction of a 3-D

object from 2-D silhouettes and the reconstruction of a 2-D object from I-D

silhouettes. Indeed, in the latter case. reconstruction is ambiguous in the absence of an

origin for each silhouette. Typical examples of this ambiguity are given by ovals of

constant breadth [59]. These 2-D objects have silhouettes of constant length for all

orientations, just as circle. These two objects could not be differentiated by unre-

gistered silhouettes.

In the previous paragraphs, reconstruction of 3-D transforms of an object surface

from silhouettes has been investigated. Although reconstruction of the object itself

merely consists of inverting the reconstructed transform, additional issues may arise

in the case of the VST and CT, because of their intrinsic redundancy. It is clear that

for a set of silhouettes which actually correspond to the same convex object, con-

sistency of the silhouette circular transforms guarantees consistency of the recon-

structed object spherical transform, in the absence of noise and biases. In practical cir-

cumstances, however, degradations are inevitable so that the reconstructed 3-D spheri-

cal transform is inconsistent in general. When and how to exploit the consistency con-

straints in the reconstruction is an open question. These constraints could be forced on

.X
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the reconstructed spherical transform before reconstruction of the object shape; or

they could be exploited earlier, during the construction of the spherical transform,

thereby potentially relaxing the requirements on the number of viewing directions.

8.2.1. Discussion

Strategies for reconstructing the shape of a 3-D object from silhouette measure-

ments have been discussed, using the transforms defined in Chapter 5 and the

Silhouette-Slice theorems developed in Chapter 6. In order to develop numerical algo-

rithms for implementing these strategies, sampled circular transforms must be con-

sidered for representation of the measured silhouettes, and interpolation schemes must

be developed for reconstruction of the spherical transforms. As the discrete versions

of the Silhouette-Slice theorems have not been formulated yet, the interest of the stra-

tegies presented in this section is conceptual at this point.

Reconstruction methods based on the three silhouette-slice theorems are now

compared, assuming that satisfactory solutions can be provided for the sampling

issues. When consistency constraints of the 3-D transforms are not exploited, the ST

seems preferable since it is least redundant and requires the smallest set of viewing

directions. For reconstruction using the constraints, the 3-D VST should be preferred,

since it incorporates more measurements from the silhouette. In addition, the inversion

of the 3-D VST is only a set of 3-D rotations, while derivatives must be estimated for

inversion of the 3-D ST. Finally, reconstruction with the CT should be considered

when registration of the origins in the various silhouette planes is absent or imprecise.

Incorporating consistency constraints in the reconstruction of a 3-D transform

could be implemented as an optimization problem where the solution would have to

satisfy the constraints while minimizing the total deviation from the slices

corresponding to the measured silhouettes. The solution could be obtained by iterative

methods similar to the ones used to solve other surface resontruction problems such as

the shape-from-shading problem [21].
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8.3. Recognition from Silhouettes

This section suggests an application of the Silhouette-Slice theory to the deriva-

tion of constraints for a system performing object recognition from silhouettes. The

arguments are based on the extension of the Silhouette-Slice theorem for the CT to

polyhedral objects developed in Chapter 7.

It was demonstrated in the previous section that a large number of silhouettes

corresponding to different viewing directions are required for accurately reconstruct-

ing the shape of a 3-D object. It would seem then that one silhouette contains too lit-

tle information to discriminate between different objects. Although some different

objects may produce exactly the same silhouettes when viewed from selected direc-

tions, shapes of objects of interest are sufficiently different in general so that these

singularities of the problem are rare. As a result, one silhouette is often sufficient to

specify one object in a set of known objects.

The principles of a system for recognizing polyhedral objects from one of their

silhouettes are now presented. The system is based on a well-known approach in

model-based vision. Primitive features such as points, edges or facets are first

extracted from the input data. These features are then matched to corresponding

model features, implicitly creating a large matching tree. The tree is explored and

pruned by constraints resulting from the pairing of small sets of measured features to

sets of model features. Finally, the remaining hypotheses are tested more thoroughly

for correspondence with the models. Implementation of this approach has been

reported for recognizing 2-D objects from 2-D measurements, and for recognizing 3-D

objects from 3-D measurements [60]. In the case of 2-D models and data, powerful

constraints arise from the pairing of two object features to two model features, so that

the pruning is very effective. When matching 2-D data such as silhouettes to 3-D

models, the constraints resulting from the pairing of two primitives are much weaker

since there are six degrees of freedom. In the proposed approach, constraints are con-

sidered for the pairing of three silhouette features to three model features.

The proposed recognition method is based on primitive features consisting of

polyhedral edges. Its scope is restricted to polyhedra or shapes with a sufficient

number of straight edges. For a number of objects expected in the input images, it is

assumed that geometric models explicitly describing the edges are available. An
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unknown silhouette is analyzed by first detecting straight edges and measuring their

length and orientation. Pairings are hypothesized between measured edges and edges

of the 3-D models. As the number of potential global matches may be astronomical,

pairings between sets of only three silhouette edges and three model edges are con-

sidered first. Each such set of pairings is tested against a set of constraints, an example

of which is derived later in this section. After discarding the pairings that fail these

tests, additional edges are added to the remaining hypotheses. and further testing is

applied. In a favorable case, a large fraction of the search tree is eliminated by the

constraints, leaving only a few potential interpretations of the data. Each of these

interpretations is then tested in more detail by an appropriate method.

A number of constraints are now derived for the matching of three silhouette

edges to three particular model edges. The derivation of Ane pruning constraints is

substantially simplified by reasoning with the-Silhouette-Slice theorems. First, it is

worthwhile to note that position and orientation of a detected object are unknown a-

priori in recognition problems. The ST and VST strongly depend on the choice of an

origin, as was illustrated in section 8.1. Therefore. these transforms are not appropri-

ate for recognition applications. The derivations in this section are based solely on the

Silhouette-Slice theorem for the CT.

The contribution of three edges e 1, e 2, e 3 to the 2-D CT of the silhouette is given

by three impulses at orientations 01, 'P2. 3 corresponding to the normals of the edges.

The strengths of these impulses are given by the lengths l 1, 2, 3 of the silhouette

edges, see Fig.8.18. Note that the orientation of the object is unknown a-priori, so that

the reference orientation in the silhouette plane cannot be related to the object model.

The angles to be considered in the constraints are hence the differences 'P 12 = q2-ql1l

and P23 = 0 3-P2 -. These angles can be directly estimated from the image, and can be

related to angles in the object model.

Consider now a hypothetical match between the three measured edges e 1, e 2, e 3

and three model edges E l, E 2, E 3. The three model edges each correspond to an arc of

great circle on the Gaussian sphere, as illustrated on Fig.8.19. When the silhouette

great circle slice intersects one of these arcs, the image of the corresponding edge is

present in the silhouette, and has a normal orientation determined by the orientation

of the intersection in the slice plane. The strategy for accepting or rejecting the match
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n l

Measured Silhouette 2-D CT

Fig.8.18. Three Silhouette Edges and the corresponding CT

Model Polyhedron 3-D CT

Fig.8.19. Three Model Edges and the corresponding CT arcs

consists of first deciding if there is an orientation S, 0 of the viewing direction for

which the slice cuts the model arcs at points separated by the measured angles 1fl2,

I23. When the hypothesis is accepted on the basis of these orientations, the viewing

direction is fixed. For this viewing direction then, the lengths M 1, lM2, M3 of the

silhouette edges corresponding to the model edges E l, E 2, E 3 can be evaluated. For a

4
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convex object not obscured by other objects, the measured edge lengths li must match

the estimated lengths 1i kwithirl some tolerance bounds. For non-convex objects, par-

tial self-occlusions may occur, and, more generally, object edges may be partially

obscured by other objects. A better test in those cases is to require the measured edges

1I to be smaller than the estimated Elmi , within a tolerance bound.

Expressions for the orientations d, 0 and acceptance constraints are now derived

for three silhouette edges such as those depicted in Fig.8.18. The derivation is

simplified by considering three model edges perpendicular to one another, such as the

ones displayed in Fig.8.19. The case of three right angles arises frequently in man-

made parts; extensions to include one or two acute or obtuse angles are tractable. Con-

sider hence matching the three silhouette edges e depicted in Fig.8.18 with the three

model edges depicted in Fig.8.19. The great circle slice corresponding to the match is

drawn on Fig.8.19; the angles of interest appear in the two spherical triangles 1A 2,

2B 3, which are displayed "flattened out" in Fig.8.20. We consider the angles tP1 2 , 'P23

as positive. In order to match the great circle slice, the silhouette edges must be such

that 0 1 2 + P23 r . The orientation of the corresponding viewing direction is deter-

mined by 0 and )= 2-7r/2.

3

A

nr/2-(cl

1

7r/2-c 2

B

Fig.8.20. Two spherical triangles of interest for deriving the matching constraints.

�



- 192 -

Standard relations of trigonometry for right-angled spherical triangles[55] are applied

to the triangles of figure Fig.8.20 to produce

tan62 otP12

tan( 7/2-S ) cotIb23

sin1l2 cosc 1

sin'4 2 3 cosot 2

= cos(tr/2-O)

= cos( r/2-0)

= sins 2

= cosg 2

The angles 0 and ,2 can be extracted from the first two equations above.

tan6 2

sinO

= /tan4l 2 ot 23

-= V/cot 2 cottP2 3

The ,above relations

012 + ± 2 3 > r/2. The

E 2 . E 3 are given by

imply the necessary constrajnts that 4112, ik23<7r/2;

predicted lengths of the silhouette edges corresponding to E 1,

sinS 2= l 1M sin 2

1 S = 2.11 cos0 = 1 21

3 = 1 3 1 COS(3 = 3\1

These predicted silhouette edge lengths is

silhouette edges i

( - cotb 1 2 cotIt 2 3 )1/2

COS 2

sin' 23

must be tested against the measured

Although the above system has not been implemented, there are indications that

this type of system has a potential for success.

8.3.1. Discussion

A formal application of the Silhouette-Slice theorems to a problem of object

recognition was presented in this section, thereby illustrating the use of the

transforms and of the theorems in reasoning about silhouettes, and in applying the

intuition to practical recognition problems. As object position and orientation are usu-

ally unknown a-priori in recognition tasks, the Silhouette-Slice theorem for the CT

seems the most useful one for recognition, since th. CT is independent of origin

(8.7)

(8.8)

i 1S = 13,t COSaI

(8.9)
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location. In addition, many applications to recognition are based on qualitative rela-

tions between silhouette shapes and object shapes. These relations are also obtained

most easily with the CT. The theories developed for the CT are hence the most impor-

tant for applications in object recognition.

8.4. Summary

In this chapter, several applications of the theoretical results of this thesis have

been suggested. Examples shown in the section on silhouette construction are close to

actual implementations of the Silhouette-Slice theorems to problems in computer

graphics. Other examples presented in this chapter are of a more conceptual value.

This chapter has suggested the wide applicability of the Silhouette-Slice theorems as

reasoning tools in problems of computer graphics and computer vision, and their

potential for developing new algorithms in these domains.

_ ___
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Chapter 9
Summary

9.1. Contributions

In this thesis. a new formalism for relating the shapes of objects to the shapes of

their silhouettes has been proposed. Three representations of 3-D object surfaces and

the equivalent representations of 2-D curves have been defined. It has been shown

that the representations of a 2-D silhouette curve are simply related to the representa-

tions of the corresponding 3-D object surface. More specifically, object surfaces have

been represented by scalar, vector and tensor functions on the Gaussian sphere, and

curves by scalar and vector functions on the Gaussian circle. It has been demonstrated

that a slice of the Gaussian sphere perpendicular to the viewing direction is a Gaussian

circle for the silhouette. Furthermore, the property functions on the Gaussian circle

of a silhouette are related by a projection to the property function of the object on the

slice corresponding to the silhouette.

The relations between an opaque object, its silhouette and their transforms is con-

ceptually similar to the relations between an absorbing object, its line-integral projec-

tion and their Fourier transforms. which are formalized in the Projection-Slice

theorem of computerized tomography. These similarities have prompted the use of the

name of Silhouette-Slice theorems for the new relations presented in this thesis.

The theory relating property circles of silhouettes to slices of property spheres of

objects provides substantial insight into qualitative and quantitative relations between

silhouette shapes and object shapes. This insight is useful when reasoning about par-

ticular problems involving silhouettes, and provides straightforward explanations of

known results. Applications of the theories to three basic problems have been con-

sidered, namely silhouette synthesis, reconstruction from silhouettes and recognition

from silhouettes. The theories have been demonstrated in this thesis for convex

objects and orthographic projections only; in addition, difficult issues remain to be

solved before discrete versions of the continuous transforms and Silhouette-Slice

theorems can be developed. As a consequence, it has not been possible to develop

direct implementations of the theory into general numerical algorithms for solving the

- 194 -
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three basic problems. However, methods based on continuous functions have been

proposed for applying the results to each of the three problems. Mixed continuous-

space / discrete-space algorithms have been proposed and demonstrated for the syn-

thesis of silhouettes of complex curved surfaces such as a torus and superquadrics. A

general strategy has been proposed for reconstructing the shape of a convex 3-D object

from silhouette observation. The method consists of first constructing the circular

transform of each silhouette, then combining these into the spherical transform of the

object. Finally, the object shape is obtained by evaluating the inverse 3-D transform.

In the context of recognition from silhouettes, several quantitative and qualitative

relations between object features and silhouette features have been proposed. These

relations are typically exploited in recognition algorithms as constraints on pairings of

silhouette features with object features. An example of the use of constraints on edges

has been proposed in a strategy for recognizing polyhedral objects from their

silhouettes.

The spherical transforms of 3-D surfaces presented in this thesis can be inter-

preted as compact representations of the set of all silhouettes of the object. In addi-

tion, these transforms have potential applications for representing surfaces indepen-

dently of viewpoint. In particular, the 3-D Curvature Transform is an intrinsic form

for surfaces, which specifies surface curvature as a function of normal orientation.

Compared to most characterizations of surfaces in computer vision [39] and in

differential geometry [47], the originality of the Curvature Transform is two-fold.

First, curvature is completely described by an invariant tensor of curvature, as

opposed to two tensors in classical differential geometry, and a partial description by

one or two scalar invariants in machine vision. Second, the curvature is described

with a canonic parameterization, as opposed to generic parameterizations in differential

geometry, and to image plane descriptions generally used in machine vision.

The key contribution of this thesis is a new basic theory for analyzing

silhouettes. The theory provides useful insight in many questions of relations between

silhouette shapes and object shapes, and also in analyzing complex curved surfaces. A

number of straightforward applications have been proposed or suggested. It is shown

in the next section that there is substantial room for additional work on the theory

and on its applications, and that this work is promising.

__ _ ��_ __ ___
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9.2. Future Research

There are several directions in which the present work can be pursued. Most

promising areas are a careful analysis of the sampling questions, and an investigation

of extensions to non-convex objects. These two areas are now discussed with more

detail.

At this time, to the best knowledge of the author, there is no theory comparable

to the Shannon sampling theory for the discrete representation of functions defined on

non-Euclidean manifolds such as the sphere. This problem has several facets. First,

sets of sample points must be defined on the domain of the function. It has been

shown that regular samplings of the sphere are impossible for practical numbers of

samples. Irregular samplings have been proposed, but they have a number of disad-

vantages. The second issue is the definition of sample values; a sample value could be

the value of the continuous function at the sample point, or a weighted average of the

function values in a neighborhood of the sample point. The third issue is the choice of

interpolation algorithms, i.e. algorithms for estimating the value of the continuous

function from the sample values, at points other than the sample points. The fourth

issue is the characterization of a class of functions for which sampling followed by

interpolation leaves the function unchanged. These four issues are tightly coupled,

and their solution is likely to involve complex arguments. A precise formulation of

the sampling questions would permit the development of algorithms for synthesizing

silhouettes. applicable to shapes specified both analytically or numerically. l he

development of numerical algorithms for shape reconstruction from silhouettes using

the circular and spherical transform would also be greatly simplified by solutions of

the sampling question.

Extensions of the theory to cover non-convex objects are essential for direct

applications of the theories to real-world objects. These extensions include principally

the definition of the transforms for non-convex objects in 2-D and in 3-D, and the

analysis of the occlusion problem. One method for defining the Gaussian mapping and

therefore the spherical transforms for non-convex objects consists of separating the

object surface into several patches such that each part has a well-defined Gaussian

image. A different method is to consider several Riemann "sheets" on the Gaussian

sphere. The same methods are applicable to Gaussian circles of silhouette curves.
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When relating Gaussian circles of silhouettes to slices of the Gaussian sphere of the

object, different silhouette parts or sheets on the Gaussian circle must be related to

their counterparts on the Gaussian sphere of the object. This correspondence is readily

preserved in silhouette synthesis, but may raise difficult issues in reconstruction from

silhouettes. Indeed, when several sheets are defined on the Gaussian circles of

different silhouettes, care must be exercised in preserving a consistent pairing of the

sheets when combining the circles as slices on the Gaussian sphere of the object.

In addition to issues involving multiplicity of the Gaussian image, silhouette

analysis is more complex for non-convex objects due to the possibility of occlusions.

When applying the silhouette construction method with the silhouette generator to

non-convex objects, a superset of the silhouette is obtained instead of the silhouette

itself. Indeed. some of the points generated by this method may correspond to

occluded object surface patches so that they do not appear in the silhouette. The set of

points generated by the silhouette construction method for convex objects is hence a

set of candidate silhouette points when applied to a non-convex object. This set must

then be pruned for occluded points. In the context of reconstruction from silhouettes,

the occlusions imply that less information may be obtained from each silhouette. As a

consequence, a larger set of viewing directions may be required to reconstruct the com-

plete shape of a non-convex object. The question of which non-convex objects can be

reconstructed from the set of all their silhouettes has not been answered yet. These

objects have been called "tangible objects"; for each point on the surface of a tangible

object, there must be at least one tangent line which does not intersect the surface [61].

Convex objects are a subset of tangible objects, and some non-convex objects are also

tangible objects. It is easy to construct non-tangible objects by considering a long flexi-

ble cylinder and tying "knots" in this object. A simpler and more striking example is

that a torus is not a tangible object, whereas a toroidal object with a square section is.

In addition to the extensions to discrete transforms and to non-convex objects,

there is clear potential for extending the theories presented in this thesis in two other

directions. One extension would be to consider property spheres of third and higher

order terms of Taylor expansions of surface equations, and to relate these to

corresponding property circles of silhouettes. A different extension is to define

transforms on hyperspheres Sn for n-dimensional hypersurfaces in (n+l)-dimensional

�_ ___
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space. These two extensions seem conceptually straightforward, would involve tedi-

ous algebra, and may not be very useful.

Aside from extensions of the theories developed in this thesis, there is a large

potential for applications. Once sampling issues are resolved, algorithms for numerical

synthesis of silhouettes and numerical reconstruction of 3-D shapes from silhouettes

can be developed. The mixed analylical/numerical silhouette synthesis method used

in this thesis to generate examples could be extended to more surface types by deriving

a table of transforms for many known surface patch equations. This project could be

implemented on a system for symbolic algebra such as MACSYMA.

The theory presented in this thesis is rich in potential applications in the areas of

computer graphics and computer vision. The work presented here provides new

insights in the geometry of surfaces which could be useful in understanding

differential geometry. This thesis has provided a new basic theory and provides ample

room for future research.





Appendix 1
Examples of Transforms

In this appendix, the three transforms are analytically determined for a number

of curves and surfaces. Specifically, the Support Transform, Vector Support

Transform and Curvature Transform are evaluated for conics, superconics, torus

patches, quadrics, and superquadrics.

In each case, the curve or surface is first described by parametric equations for its

Cartesian coordinates. With this form, a normal vector is determined at each point,

then compared to the unit vector expressed in terms of the canonical normal angles.

This comparison provides relations between the generic parameters and the canonical

angles, from which canonical parametric equations can be determined, parameterized

with the polar angle 4, of the normal orientation for a curve, and with the geographi-

cal coordinates (,rT) of the normal for a surface. The transformations in (5.1),

(5.11), (5.19) are then applied to the equations of a curve to determine its three circu-

lar transforms. Similarly, the three transforms of a surface are obtained using equa-

tions (5.29), (5.36), (5.45).

A1.l. Transforms of Planar Curves

A1.I.1. Conics

Conics are curves described by quadratic implicit equations for the Cartesian

coordinates of their points. The general form of this equation in the Oxz plane is

A x2 + 2B xz + C 2 + 2D x + 2E z + F = 0 (AI.1)

When the quadratic form in the left-hand side is not degenerate, the linear terms can

be eliminated by a translation of axes, and the mixed second-order term by a rotation

of axes. As a result, each non-degenerate quadratic curve can be described by an equa-

tion of the type

2 2

a cin an appropriate system (Axes.2)

in an appropriate system of axes. When both signs are positive, the above equation
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describes an ellipse with half-diameters a and c along the Ox and Oz axes respec-

lively; see Fig.Al.1. A set of parametric equations for the ellipse in (AI.2) is given by

x a cost

sint
(A 1.3)

Al.l.l.l. Normal Vector

A vector t tangent to the ellipse is obtained as the first derivative of the coordi-

nate vector,

t = t =
-a sint

c cost
(A1.4)

A'normal vector is then obtained by noting that, in 2-D, (r z -t x )r is a vectorperpen-

dicular to (t t z )T.

cost

sint
(Al.5)

To preserve the similarity with the case of quadratic surfaces in 3-D, the above nor-

mal vector will be scaled by ac.

(I/a)

(1/c)

cost

sint
(A1.6)

C
x

a

Fig.Al.1. Ellipse with semi-axes a =4, c =2.

I_ i .l I :
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A1.1.1.2. Canonical Pararleterization

The normal vector in (Al.6) is compared with the unit vector in terms of the

polar normal angle ,

( 1/a ) cost

(l1/c ) sint
(A1.7)

cos4,

sin¢

Using the identity cos2 t + sine = 1, it it easy to determine that

In l = (a 2COS2 0 + c 2 sin 2 )- 1/2 (A 1.8)

and therefore that the relation between t and qJ is given by

cost

sint = Ifl
a cos

c sinq4
(A1.9)

The equations of the ellipse in terms of the normal orientation are hence given by

a
IK= Il

C

2cosq,

2sinip

(Al.10)

A1.1.1.3. Circular Transforms

The three transforms of the ellipse are determined by applying the transforma-

tions in (5.1). (5.11). (5.19) to the canonic equation (AI.10). The ST and VST are

given by

p = - , = (a cos 2 + c sin2 0)1/ 2 = n n l-1

a 2cos2 q, + c 2 sin24r
(c2 -a 2 ) sinicosq

- I p-
(c 2 _ a 2) sinimcosi,

In order to determine the CT, the derivative X, must be evaluated

X,= I la 2 c 2
-sings

costI

1 =

(Al. 1)

(Al.12)

(A1.13)
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The CT function is then obtained as

p(q) = Sait = (ac )2 1 3 =
(ac )2

(a 2 cos2 1J + c 2 sin24,)3/2

A1.1.2. Superconics

Superconics are a class of curves which includes conics, and which are described

in centered axes by implicit equations such as

a

I In

+I I =1 (A 1. 15)

When both signs are positive and n is a real number in (1,Ao), the curve specified by

(A 1.15) is smooth and strictly convex. It can also be described by the parametric equa-

tions

a I cost I sign (cost )

b I sint I sign (sint )

with s = 2/n. Special cases include an ellipse for s = I. a rectangle in the limit for

s -O and a rhombus for s -*2; see Fig.A1.2.

The circular transforms of the superconic are first derived for the first quadrant

of the variable t so that

a
x = b

CosS t

sin s t
O0t r/2 (A1.17)

A1.1.2.1. Normal Vector

A tangent vector is determined by

t = t =
-as cos s- t sint

bs sin -t cost
(A1.18)

The normal vector is then obtained as

I=
bs sins -lt cost

as cosS-lt sint
(A1.19)

(A1.14)

x
O0t <27r (AI.16)
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2

x

n -1

x

n =4.5

x

n=2

x

n -oo0

Fig.A 1.2. Examples of superconics with half diameters a =4, b =2.

A simpler form is obtained by scaling the above vector by ab cos s- i t sins -it

(A1.20)
( /a )os 2 - s t

( 1/b )sin 2- t
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A 1.1.2.2. Canonical Parameterization

The normal vector in (A1.20) is compared to the unit normal in terms of the

polar angle tp to determine the relation between t and 4.

( 1/a )cos2-S t

( 1/b )sin 2-s t
(A1.21)=I I cosinsinip

Using the trigonometric identity cos2t + sin2 t = 1, it is easy to determine I 1 I then

x in terms of ip.

I1 = N - 1/(k +l)

k

X= N k+l
a k + lCOS k J

b k +'sin k 0

(A1.22)

(A1.23)

with k = s /(2-s ) = 1/(n -1) and

N = (a cos0t)k + 1 + (b sin0)k +1 (A1 .24)

A1.1.2.3. Circular Transforms

It is straightforward to determine the VST of the superconic by applying the

transformation in (5.11 ) to (A 1.23).

k (a COsr)k +1 + (b sin0O)k +l

sinpcos0i (-a k +lcost -1 + b k +lsinepk -1
(A1.25)

,1
The first component of the above equation is also equal to the ST function

k

p=N k+l

1

[(a cosp)k + + (b sintp)k +1] = N k +1

An expression for the ST valid in the four quadrants of the normal angle q4 is given by

1 1

p = [la cos 4 lk+1 + lb sinai k +l]k + = N k + (A1.27)

where

N = lacos Ilk + Ibsinl k +l 

(A1.26)

(A1.28)
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The corresponding expression for the VST is

simnpcos0 ( -a k +1 I cost k -l + b k + I si I k - )

The CT of the superconic is determined by first evaluating the derivative xq,

then evaluating the CT function with (5.19). The derivative is given in the first qua-

drant by

2k+1 _Cosk -1 sink A
, = k (ab )k +1 N k +1 (A1.30)

sink - C cosk qJ

The CT function, i.e. the radius of curvature, is given by the following expression

valid in the four quadrants.

p() = k (ab )k +1 I cosq sin4[ -I
P)=2k +1 (A1.31)

I acos lk++ I b sing lk +1 k + .

Polar diagrams of the transform functions are illustrated in Fig.AI.3. for a superconic

with n =4.5.

-I
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Superconic Support Transform

t-component of VST Curvature Transform

Fig.A 1.3. Transforms of a superconic with n =4.5

:_
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A1.2. Transforms of 3-D Surfaces

A 1.2.1. Torus

The torus is an axisymetric surface obtained by rotating a circle of radius r

around an axis in its plane. The surface generated by the circle is simple when the dis-

tance R from the center of the circle to the axis is larger than r . Consider a system of

axes where 0z is along the axis of the cone and Ox is in the plane of the generating

cirle and passes through the center of the circle, as illustrated in Fig.Al.4. Parametric

equations for the circle are given, in the Oxz plane, by

x R + r cost (A.32)

r sinrl

where r is the polar angle of the normal in the Oxz plane. Equations for the torus

itself are easily determined as

(R + r cos-t cos5

= (R +r cost) sins (A1.33)

r sin-r

where (,rl) are the geographical coordinate angles for the normal vector. The identity

of the parameters (,rT) as canonical angles in the above equations is easily verified by

y

Fig.A1.4. Torus generated by Revolution of a Circle
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evaluating a surface normal

cos6 cos-t

n = xU x. = r ( R + r cos ) sine cosTr (A1.34)

sinrk

A1.2.1.1. Spherical Transforms

The VST of the torus is easily determined by applying the transformation in

(5.36) to the parametric equations of the torus in (A1.33).

R cosr + r
S = R x -R = 0 (A1.35)

-R sinrt

The scalar ST is identical to the first component of the above equation, namely

p = R cosrT + r (A1.36)

In order to determine the CT of the torus with (5.45), it is useful to first evaluate the

derivatives xg and x7

-sine

ix = (R +r cosr ) cosS

.Cos~ s 0 (A1.37)
--cos5 sinr?

x = r -sine sinr?
cosTr

The components of the CT are then determined to be

x' f _ R + r cosft
rll = COST COST 

cosr) cos~
(A1.38)

r 12 = x-'1l = 0

r 22 = x'l 1= r

Some particular features of the transforms of the torus can be observed in the above

equations, and it can be shown that these observations are also valid for all axisym-

metric objects. Specifically, the h component of the VST and the r 12 component of the

CT vanish for axisymmetric objects, the n and v components of the VST are identical
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to the n , t components of the VST of the generating curve, here the circle of radius r.

Finally, the r 22 component of the 3-D CT is identical to the 2-D CT of the generating

curve and the r component is equal to the distance of the points of the curve to the

rotation axis, divided by the cosine of r1.

A1.2.2. Quadratic Surfaces

Quadratic surfaces are sets of points in 3-D defined by an quadratic implicit equa-

tion in Cartesian coordinates. When the quadratic form is not degenerated, the linear

terms in the quadratic equation can be eliminated by a translation of axes and the

mixed second degree terms can be eliminated by a rotation of axes. As a result, each

generic quadratic surface can be expressed, in an appropriate system of axes, by an

equation of the form

2 2 2

+ x + Y + = 1 (A1.39)
a b 

When the signs in (A 1.39) are all positive, the surface is an ellipsoid with semi-axes a,

b, c, as illustrated in Fig.A1.5. A set of parametric equations for this ellipsoid is

given by

a cosu cost'

= b sinu cosv (A1.40)

c sinv

A1.2.2.1. Canonical Parameterization

In order to determine the spherical functions of the ellipsoid, the parametric

equations in (A1.40) will be converted into equations in terms of the normal angles

(5,r). For this purpose, a normal vector to the surface is first evaluated. A scaled

normal to the surface determined by (A 1.40) is easily obtained as

(1/a )cosu cost

n = x Xx. = (l/b )sinu cost (A1.41)
abc cosv x (1 /c )sinv

where the particular scale factor was chosen to simplify the final expression. This

expression is compared with the expression of the normal unit vector as a function of

the parameters , 7r, specifically
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x

Fig.A 1.5. Ellipsoid with semi-axes a =4, b =3, c =2.

(a )osu cosu cos6 cosyr
(/b )sinu cos' = I'I sine cos7t (A1.42)

( 1/c )sinv sinrl

Using the identity cos2u cos 2' + sin 2u cos2v + sin2 v = 1 and the above equation, it

is easy to show that

I I a 2 cos26cos 2rl + b 2 sin2 cos 2 + c 2sin 2 r -l/2

and to determine a relation between the parameter sets (u ,v ) and (,r1), namely

a cosfcos7

b sinfcosrl (A1.43)

c sin

The parametric equations can then be expressed in terms of (S,r), as

a 2cos6cos

x= I I b 2sinfcosrl (A1.44)

c 2sinr

,7
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A1.2.2.2. Spherical Transforms

The VST of the ellipsoid is easily derived by applying the transformation in

(5.36) to equation (A 1.44), producing

= R3 -R=

2 ?r 2a cos26cos2Ti + b 2 sin 2cosrT + c 2sin2 T7

I~ n I (b 2 - a 2) cosrsingcos6

(C 2 - a 2Cos2 6 - b 2 sin 26) sinrTcos-n

The first component in the above equation is also equal to the scalar ST function

p (,rl). Its expression can be simplified as

p = n = a2 cos2 cos', + b sin2os2 in 2 = -1 (A1.46)

Using the above relationship, the expression of the VST can be rewritten as

1
s= -

P (c2

p-

(b 2 - a2) cos-Tsingcosg

- a 2cos2 -b 2 sin 2 ) sinr) cosr7

The CT of the ellipsoid will be determined with equation (5.45). For this pur-

pose, the partial derivatives of x(,rn) are first evaluated

(b2 -a 2) cos2rsinScos¢

p 3

a 2cos cos7r

b sin cos-7

c 2sinr

+1_
P

-a 2sincosr7

b 2cos6cosr1

0

-a 2sin6 ( b 2cos 2 r + c 2 sin2T )

b 2 cos ( a 2 cos 2'r + c 2 sin 2 T )

(a 2 _ b 2 ) c ' sincossinrTcos-

(A1.45)

(A1.47)

_ cost 7

p 3
(A1.48)
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XI = -sinrlcos
-a 2cos2 6 - b 2 sin 2 + c 2

p 3

a

b +1
P

-a 2cosfsinr?

-b 2sin sin

C -cos7

-a 2cos sinr

-b 2 sinfsinr/

( a 2 cos26 + b 2sin2 6

(A1.49)

) costr

The components r 11, r 12, r 2 2 of the symmetric 2x2 CT tensor R are then

xtl 1 ( bf2c ,2sif.
r~l =-13 ( b .c )cos 2 sins + a2 2sinsin + a 2b 2 COS2 T')

cosrl p

obtained as

(A1.50)

(A1.51)r 12 = x = 3 (a 2 b 2) sindcostsinry7.2= r)l 

r -= X' 1= C 3 (a 2 cos 2 + b 2sin 2 )
P

(A 1.52)

A1.2.3. Superquadrics

Superquadrics are generalizations of quadrics to a class of higher order surfaces

[58]. A subclass of superquadrics has implicit equations similar to (A1.39). except that

the exponents, equal to 2 in the case of a quadric, are replaced by a parameter n in the

case of a superquadric. In particular, the superellipsoid generalizes the ellipsoid and is

defined by the following explicit equation

I I I In I In
_X-I + I + Il _1 = (A1.53)
a L b C 

For n fixed to a real value in (1,oo), the surface described by the above equation is

smooth and strictly convex. The limiting cases correspond to an octahedron for n -- 1

and a parallelepiped for n -- oo, as illustrated in Fig.Al.6. The ellipsoid displayed in

Fig.A1.5 is a particular case of a superellipsoid corresponding to n =2. The part of the

superellipsoid surface in the first octant can be parameterized as

3
C2

P3

.sy
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x

V v

n=1 n=1.2

' 

x

n =4.5 n =oo

Fig.A 1.6. Super-ellipsoids with semi-axes a =4, b =3, c =2,
for n = 1, 1.2, 4.5, co.

x a coss u coss v

y = b sins u cosS v (A1.54)

c sin s v

where s = 2/n. The derivation of the transforms of the superellipsoid is relatively

tedious. It is helpful to first read the simpler case of the ellipsoid, or the derivation of

x

x
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the 2-D transforms of superconics.

A1.2.3.1. Canonical Parameterization

The spherical transforms of the superellipsoid are now evaluated. As a first step,

the parametric equations in (A1.54) are transformed into a form parameterized with

the normal orientation angles. For this purpose, the normal orientation is evaluated.

bc sins -lu cosu sins - v coss +lv

n' = U X = , = ac sinu cosS-lu sin-l v cos s +lv

ab sins -lu cos -lu sini' cos2s -v

(A1.55)

A simpler expression of the normal orientation is obtained

by abc (sinu cosu sin,x ) -lcos2S -1 v. The scaled normal

the unit normal vector expressed in terms of (,r).

by scaling the

vector is then

above vector

compared to

(1/a )os 2- u Cos-

n = (1/b )sin - s u cos -

(1/c )sin 2 - s v

V cost cos7r

= InIt sinS cosr7

sinrT

Using the identity cosu cos2 v + sin2 u cos2 v + sin2 v = 1 and the above equation, it

is easy to show that

2-s
2 2

It = (a cos6cos7r) 2- + (b sinscosT) 2-s + (c sinr) 2-s (A.57)

and

s

= I 2 - sn i

2 s s

a 2-s Cos 2-s g COS 2-s r
2 s s

b 2-s sin 2-S S COS 2-s r
2 s

C 2-s sin 2-s )

As several manipulations of the above equation will be necessary to obtain the spheri-

cal functions of the superquadric, it is helpful to simplify it by introducing the

parameter k = s /2-s = 1/(n -1) and

(A 1.56)

(A1.58)
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N = I l - ( +1) = ( a coscosr )k + ( b sinfcosr )k + +( c sinr )k +1

(A 1.59)

The parametric equations can then be rewritten as

k a k +lCosk Cos k rl

x = N k 1 b k +lsink S Cosk ~ (A1.60)

c k +sin k rl

Al .2.3.2. Spherical Transf orms

The expression of the VST of the superellipsoid is easily derived by applying the

transformation in (5.36) to the above parametric equation, giving

n cosicos-Q sinfcosrl sin7 x (,r)

s = h = -sine cost 0 (,rn) (A1.61)

v -cosgsinr1 -sinsin7r cos7l z (,r1)

k (a cosfcos7)) k +1 + (b sinfcos))" + + (c sin7) +1
N k + ( bk +lsink -1 _ a +cosA -16 ) sinecoscosl T1

( c +lsin -} - a +lcos t +l'cosi -17} _ b l+lsinl +lcosk -1 ) sinqrcos-7

The first component in the above equation also specifies the scalar ST function p (6,nr).

Its expression can be simplified as

p = n = (acosecos-) +l + (bsinecosrl)k + +(c sinr)k + k +

(A1.62)

Comparing the above expression of p with the expression of N in (A1.59), it is clear

that N = pk 1, and therefore that

pi +1

= p sinfcosfcosa - ( b + lsin'k -a A +lc o s ' -1 )

sin7)cos) ( c k +lsin -l a +cok +Il cos - - b +sin cos -7 )

(A1.63)
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The third spherical function, the CT, is now evaluated for points in the first

octant of the superellipsoid. In order to derive the components of the CT tensor with

(5.45), it is necessary to evaluate the partial derivatives of x(,r). Considering the

expression of this vector in (A1.60), it is useful to first evaluate

-p = N k+ = , ( a cos{cos)t + ( b sincos)+ + ( c sin7) + '

21 +1

= kN + cos +3 ( a +singcos - b +sin' cos )

k
k +p-t = N

-~ O
= a ( a coscos ) +1 + ( bsinfcos)L' + ( c sin )t +1l

&nI 

k
k +1

(A1.64)

+1

2k +1

= kN k +1 cost +1'r ( a' +lcos +lesin-ncos' rT + b +il sinsincos% -_ ck +lsinX nr)cos-r )

(A 1.65)

The derivatives -x = aXI/6s and x-' = C/Cr/ are then evaluated as

a k +Cosk f Cosk r

bk +lsink Cosk 

ck +1 sin k r

+ kp - k

-a k +1sin cosk -1lcosk I

b k + 1sink -1cos cosk Ti

0

_k cos r
p2k +1

-a k lsingcosk -16 ( bk +lsink -lcosk + 1T7 + ck +1 sink +Ii )

b +'sink -cosg ( a k +1coSk -- lcosk +1t + c sink + i )

ck +lsinjcos{sink TiCOSt ( ak +ICosk -1 - bk + sink -16 )

(A 1.66)

a + cosk Scos cos r

Ck + sin cos c~+1 ksn~ r

_ kc k + sink -177Cosk -1
p2k +1
P

+ kp - k

-a k + cosk sinr/coSk - r

-b k + 1sink 6sinrTcosk -r 

C k + 1 sink -1 ircosr

-ak + cosk ¢sinrc

-b s + 'sink Ssin-r
( a k +coSk + 1 + bk +'sink +1 )cosr)

(A1.67)

(p-k 

.4

_X7,=IOr/
p-k|

I

-

X6 5
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From the partial derivatives above, it is easy to determine the components r l, r 12,

r 22 Of the CT tensor R.

(A1.68)-O ltr =11 cosT

k (sinecoscos") -'
2 +1

(ab coS)) + + (c sinr) i(a sin3- 6 + b C +lCOS3 k ) 

r 12 = lX7' 1 E

_ kc k + sin cossink 71cos k-l r
p 2k +1

+1coSk -1 - bk +1sink-¢ |ak

r22 = XI 1~

kc k + sin k -1 rcosk -1 t
p2k +1
P

a k +1COSk +1c + b k +1sink

Outside the first octant, some of the trigonometric functions take negative values.

As fractional powers are undefined for negative numbers, it is necessary to separate

the magnitude and sign of the trigonometric functions. The following parametric

equations specify the surface points of the superellipsoid in the eight octants.

k

x = t+1

a k +1 I COSCOS7 I k sign (cosfcosr7)

b k +1 I sinfcosT I k sign (sin{cosrT)

c k +1 I sin71 Ik sign (sinr7)

(A1.71)

N = I a cosfcos7l Ik +1 + I b sinfcosrl Ik +1 + I c sin7 Ik + 1

The ST is given by the following expression valid in the eight octants

1

p '- I a coscosr} Ik +1 4-I b sin[cosr Ik +1 - I c sir?7 +I1 k +1

(A1.72)

(A1.73)

(A1.69)

(A1.70)

+1.l

where

I



- 218-

The VST is given by the following vector equation valid in the eight octants.

p +1

= p sin{cos{ I cost Ik sign (cosr) ( b + I sin I - 1 _ ak +1 I cosf I - )

sin7}cos [ c; +1 I sintl' -- (a I cosl I ) + I cos t k -1 - (b I sin I) + I osl -1 |

(A1.74)

It can be observed by comparing the previous relations with the corresponding rela-

tions in the first octant. that integer powers and k th powers of the trigonometric

functions retain their signs, and that trigonometric functions raised to the powers

k -1 and k +1 are taken in absolute value. This conjecture also produces valid

answers when applied to the expressions for the CT components in (A1.68), (A1.69),

(A1.70).

The spherical functions in (A1.73), (A1.74), (A1.68), (A1.69), (A1.70) can be

used to determine the circular functions of silhouettes of superellipsoids in ortho-

graphic projections. For example, Fig.A1.7 displays a silhouette of the superquadric

with a =4, b =3, c =2. n =4.5, and the three corresponding circular functions.

In addition to the three spherical functions presented in the text, it is also possible

to determine the EGI function for the superellipsoid with (5.56).

G(g,) = rllr 2 2-rf 1

k ( abc )k +1 I sincosfsinrcos2? Ik -1
3k +1

a cos cosrp k 1 + I b sincosr7 1k1 + I csin I k+

(A 1.75)

For s 2 and therefore k > 1, the EGI is continuous over the whole sphere. For s > 2,

k -1 <0 and the EGI has discontinuities along the equator 77=0 and along the meridi-

ans =-T/2,0,r/2,r on the Gaussian Sphere. These discontinuities account for the

fact that the surface expansions around the corresponding points contain only terms of

order larger than 2. For s -- co, k -+0, the EGI vanishes almost everywhere because of

the factor k 2 in the numerator of (A1.75); impulses remain at the six discontinuity

points (,r) = (.,-r/2), (0,-7r/2), (0,0), (0,7r/2), (0,w7), (.,7r/2). The strengths
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Silhouette Support Transform

t-component of VST Curvature Transform

Fig.A1.7. Silhouette of Super-ellipsoid and corresponding circular functions
for 0 = 300, = 40 ° .

of these impulses can be evaluated as 4ab for the poles (.,-7r/2), (.,w7/2), 4bc for the

points (0,0), (0,7r) and 4ac for the points (0,-7r/2), (O,rr/2). These values

correspond exactly to the areas of the faces of the parallelepiped which is the limiting

case of the superellipsoid for s --- oo, see Fig.A 1.6.
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Appendix 2
Parameterizing Curves and Surfaces

with Normal Orientation

This appendix addresses the issue of converting parametric equations in terms of

generic parameters into equations parameterized in terms of normal orientation. The

problem is first addressed in the case of planar curves, then in the case of surfaces in

3-D.

A2.1. Planar Curves

Consider a curve specified by parametric equations

x(t)
t= (t ) ( (A2.1)

2 (t)

where t is a generic parameter. The problem addressed here is the conversion of this

form into an equation (q0) for the same curve, in terms of the polar angle qI of the

normal orientation. A relation between t/ and t can be obtained by considering the

orientation of the tangent vector ~X (t ). The relation is given by

0 = atan ) = (t ) (A2.2)
(t)

where dots indicate derivatives with respect to t . The inverse function of qj(t ) is for-

mally written as t (), and is inserted into (A2.1) to obtain the desired result, namely

x = X(t (p))= X(J) (A2.3)

For a strictly convex planar object, the inverse t (4) is well defined and unique every-

where. However. it is possible to explicitly determine the inverse function t () only

in particular cases. In other cases, there is no closed-form inverse of (A2.2) but

derivatives of x () can be determined using the formal inverse t () and the relation

between derivatives of direct and inverse functions.

- 220 -



- 221 -

dt (¢) _ 1 (A2.4)
dt d ¢(t )/dt

To illustrate the use of derivatives of the formal inverse of q(t ), an expression for the

radius of curvature of a curve is determined in terms of a generic parametric equation

such as (A2. I). The radius of curvature can be determined by

dx dx c dt d x 1
P= I = I-I -¢ -d | dt j di j dt d J./dt

O(t )=atan |

do_ z -xz
-:~ , dt x2+ 2

dt

( ) + 2 )/2
P = ( +2 )3/2 (A2.5)

Z - Z

A2.2. 3-D Surfaces

Consider a surface specified by the parametric equations

x( ,\ )
x = (u ,) = ( ,v) (A2.6)

Z (u ,' )

The problem addressed in this section is the conversion of parametric equations similar

to the above form, to a set of equations x(~,rn) for the same surface, where the angles

( ,r?) characterize normal orientation.

First, a relation between the generic parameters (u ,v) and the angles (,-t) is

obtained by comparing the normal vector n = x Xx,. with the normal vector

expressed in terms of (,ri).

� · ,,
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n=

n = n =

n z

Yu 1-. - Yt. u

zu - XU

xu y,. -xi. Yu

Explicit expressions for the angles and r can be derived from the above equations as

atan '
nlx

7 = atan
nz

(A2.8)

= r(u , )
( n2 + n )/

The formal inverses of the above equations will be denoted by

I = u (,rT)
v = ()

(A2.9)

For a strictly convex object, the above inverse functions are well defined everywhere,

and can be inserted in (A2.6) to obtain the desired parametric equations

(A2. 10)

In many instances, it is not possible to find explicit forms for the inverse equations

u (,r), v (,rl), but the expression in terms of the formal inverses can be used to

determine derivatives of x(s,r}), using the relation between derivatives of direct and

inverse functions,

-1

(A2. 1)

av

ar

= InI

cosg cosT7

sin{ cost7

sin-r

(A2.7)

x= (,r), (ur)) = (^rn)

= (u , )
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The derivatives of x with respect to the angular coordinates are given by

-1
_ au a _ all a T

x xu - au au xu (A2.12)
---4 _ u ; _x ,.

n c arl ca 'be a __ ai,

The derivatives in the second matrix can be readily evaluated from (A2.8),

- nyn nx ny nxny nx,

"u nx 2 + ny 2

-' _ ny,.nx -ny nx,.

' 22nx2 + ny 2

- _ nz u (nx 2 + ny 2 ) -nz (nx nxu + nyny (A2.13)

auL ((nx 2 + ny 2 + n 2 n + ny2 )+

nz,. (nx 2 + ny 2 ) - nz (nx nx,. + nyny,. )

( nX 2 + ny + n 2 ) ( nx 2 + ny 2 )

where subscripts in the components of the normal vector have been replaced by

postfixes to avoid confusion with partial derivatives; for example, n, has been

replaced by nx .

An example of the use of the above formulas is the derivation of the radius of

curvature tensor R from generic parametric equations. The relation between partial

derivatives and components of this tensor is given by

Xt r 1cosr 1 t +r 12cosrll (A2.4)
(A2.14)

XIr r 12 +r 22lTI

The unit vectors 1, 1 can easily be determined in terms of components of the normal

in (A2.7),

-nY /nx'V -nx nz /n'xy n

= nx, /n,,, -- -n, n, /n n (A2.15)

O nx,, /n

where n 2 32 + nf2 +and n = nl 2 + nF2.X Y X 
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The components of the tensor can then be determined from the derivatives in (A2.12),

as

cosT
-_ -_ (A2.16)

r 12 = xTlE

r 22 = X} 1)

It is also possible to evaluate the tensor R from generic parametric equations by

first evaluating the tensors of the first and second fundamental forms, then applying

an appropriate transformation to these tensors. This method was presented in[62] and

is briefly reviewed in Appendix 4.

I
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Appendix 3
Duality between Slices and Silhouettes,

Euler's Theorem and its Dual.

In this appendix, the duality between slices and silhouettes of quadratic forms is

reviewed, and an application of this analysis to curvatures of slices and silhouettes is

developed. Silhouettes and slices are first derived for ellipses in 2-D and for quadratic

surfaces in 3-D. In both cases, it is shown that silhouettes can be obtained in tangen-

tial space (dual space) by exactly the same operation that produces slices in point

space. The expressions for slices and silhouettes in the two examples are exploited to

formulate two different derivations of Euler's theorem of differential geometry and of

its dual.

Throughout this appendix. the vector and matrix notation used in the equations

of geometric objects emphasize the duality between equations for curves and surfaces

in point space and their correspondents in tangential space. The formulation also

clarifies the proposed duality between silhouettes and slices of quadratic forms.

A3.1. Slices and Silhouettes of an Ellipse in 2-D

In this section, the slice of an ellipse by an axis through the center is determiLed

in terms of the polar orientation angle o of the axis; then, the orthographic silhouette

of the ellipse on the same axis is also evaluated. The problem is first solved for CX=O,

so that the axis is horizontal, then extended to different values of (4 by combining the

previous result with rotations of the coordinate frame.

An ellipse centered at the origin of the Oyz plane can be defined by the following

implicit equation in point space.

Y al a 2 1 = 1 (A3.1)
a712 Q2 2 1 Z

The equation for the tangents of the ellipse in dual space is derived by first considering

the equation of the tangent at the point PO(y o,z o) of the ellipse.
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z l a 1 2 o =1 (A3.2)I[ I I a l l a l I I ° Oa 1, a 22 z 0

The tangential coordinates of a line, also named dual coordinates, are the coefficients

, X-. of the equation of the line written as x + ., y = 1. The coordinates of the

line in (A3.2) are hence given by

IAN 1 a1 1 a 1 ,2 Y~O (A3.3)

z a2 a 2 2 Zo

Conversely, a line with tangential coordinates (.,X k) is tangent to the ellipse iff the

point Po with coordinates

Yo a 11 2 a 1 (A3.4)
o0 a 12 a 22 AZ

is on the ellipse. The equation of the ellipse in tangential space, which is the equation

specifying all the tangents to the ellipse, is obtained by requiring the coordinates of Po

in (A3.4) to satisfy the equation of the ellipse in (A3.1).

[ hg a 11 a 12 all a12 al a (A325)

x2xa22. a 12 a 2 a2 a 12 a22

X A a1 1 a1 2a 1 (A3.6)

The explicit tangential equation of an ellipse is hence a quadratic form with a kernel

equal to the inverse of the kernel of the quadratic form describing the ellipse in point

space.

The slice of the ellipse by the horizontal Oy axis and the silhouette on the same

axis are now determined. As seen in Fig.A3.1, both slice and silhouette consist of two

points symmetric with the origin, which will be specified by the absolute value of

their y-coordinates, YsUi,ce and ,si . First. the slice of the ellipse is determined as the

points for which z =0, namely

a 11| a 12 Yslice A37

YsZice a12 a22
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Y

Fig.A3. 1. Slice and Silhouette of an Ellipse on the Oy Axis.

An alternative expression for the half-width Yslice is given by

l_ l = | aal l a (A3.8)

¥2 Y0ace12 a2 2 0

The silhouette on the Oy axis is now determined as the intersection of the Ov

axis with the vertical tangents to the ellipse, see Fig.A3.1. For these tangents, KX =0

and X. =ksi is determined by

a 11 12(A3.10)
XVsils

The coordinates yil of the silhouette points are given by yil = l/Asil , so that

alla12 1
2s |1 0 L a2 lo (A3.11)

The projections and slices on an axis with a polar angle a are now determined by

first evaluating the equation of the ellipse in a set of axes Oy ,x obtained by rotating

the axes Oyz by an angle a; see Fig.A3.2.
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-a I

Y

Fig.A3.2. Slice and Silhouette of an Ellipse on a Rotated Axis.

The coordinate transformation between the two systems of axes is given by

V Cosa -sine Y A312)
I - since cos Lc

An equation for the ellipse in the rotated axes is obtained by inserting (A3.12) into

(A3.1), which produces

cosa sin | all a12 Coso sin Y13

-sYinaCosa a 12 a 22 -sinc cos a 12 a22 -sin os

The equation of the ellipse in the rotated axes has the same form as (A3.1), but the

2x2 matrix is now the product of the three matrices in the above equation. Slices and

silhouettes on the O-Y axis can be obtained by applying equations (A3.8) and (A3.11)

in the rotated axes. resulting in

Ysr cosez sine all a12 Cosa
= cosaKsn as11c a1 2 1 | c |(A3.14)

2 a 1 2 a22 since
Yslice

2 = cosa i as2i COs (A3.15)Ysi2=z cose s1 a12a 22 Sin

It is useful to consider a particular case where the principal axes of the ellispe are

oriented along the coordinate axes. Let d 1 and d 2 be the half diameters along the Oy
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and 0: axes respectively. The 2x2 matrix of the ellipse is in this case

all a 12 |/d 1 0
I (A3.16)

a 12 a 22 0 l/d 2

The expressions for the abscissas of the slice and the silhouette are given in this case

by

a = cos2 + sin2! (A3.17)2 d 2 c-s dYsZice 1 2

ys 2 =d coscx+ d2 sin2 a (A3.18)

A3.2. Slices and Silhouettes of 3-D Quadrics

In this section, the slice of a quadric by a plane and its orthographic silhouette are

evaluated. The expressions of these curves are derived with the same strategy that

was used to determine slices and silhouettes of ellipses. First, the slice and silhouette

on a particular plane, here the Oxy plane, are evaluated, then the result for a general

plane is obtained by combining the previous result with transformations of axes. Only

the first step is discussed here.

In order to show a different facet of quadratic equations in point space and in

tangential space. general systems of axes will be considered, as opposed to axes with an

origin at the center of the figure used in the discussion of ellipses. In order to describe

quadrics in general axes, it is advantageous to use homogeneous coordinates (x ,y,z ,t )

for points in 3-D space. Any quadratic surface can be expressed in point space by an

implicit equation of the form

a l l a1 2 a 13 a 14

a 12 a 22 a 2 3 a 2 4

a 13 a 2 3 a 3 3 a3 4

a 14 a2 4 a3 4 a4 4

x

Y
' 0 (A3.19)

t

The equation of the above quadric in tangential space is obtained by first considering

the equation of the plane tangent to the quadric at the point Po(x oY oz ot ), namely

xy7t
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The tangential coordinates of the

X

X
.=

all a12 a 13

a 12 a22 2 3

a 1 3 a 23 a 3 3

a 14 a 24 a 3 4

tangent plane at

all

a 12

a 13

a 14

a 12

a 22

a 23

a 24

a 13

a 23

a 33

a 34

Conversely, a plane with tangential coordinates (k, X,. Kz K ) is tangent to the quadric

if the coordinates (x oYo o t o) obtained by inverting (A3.21) satisfy the equation of

the quadric in (A3.19). Therefore, the set of planes tangent to the quadric is charac-

terized by the equation

KXKX. , Xt

It will be useful

equation, namely

a 11

a 12

a 13

a 14

a 12

a 22

a 23

a 24

a 13

23

a 33

a 34

a 14

a 24

a 34

a 4 4

in the sequel to explicitly consider

All A 12

A 12 A 2 2

A 13 A ,23

A 14 A 2 4

.4

A

A

A

13 A 14

23 A 2 4

33 A 3 4

34 A 4 4

a1 1 l

a 12

a 13

a 14

-1

the

a 12

a 22

a 2 3

a 2 4

X,

x, =0 O (A3.22)

inverse matrix in the above

a 13 a 14

a 23 a 2 4

a 3 3 a3 4

a3 4 a 4 4

-1

(A3.23)

The slice of the quadric by the Oxy plane is first considered. Points in this plane

are characterized by z =0, so that the intersection of the quadric and the plane is the

set of points satisfying

Xo

Yo
7o

to

=-- O0 (A3.20)

a 14

a 24

a 34

a 4 4

P 0 are

a 14

a 2 4

a 34

a 44

given by

xo

Yo

to

(A3.21)

Fvz I
-

I i
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all a 12 a 13 a 14

a 12 a22 a23 a24

a 1 3 a23 a 3 3 a 3 4

al,1 a2 4 a 3 4 a 4 4

x

0 = (A3.24)

t
t

This equation can be rewritten as an equation for homogeneous coordinates (x ,v ,t ) of

points in the Oxy plane.

a 11 a12 a 14 x

x vt| a12 a 2 a24 Y = (A3.25)

a 14 a2 4 a 4 4 It

The above equation shows that the slice is a quadratic curve in 2-D, also called a conic.

The silhouette of the quadric in the Oxy plane is now evaluated. For that

matter, it is useful to first consider the silhouette generating planes which are in this

case, the planes with A: =0. For the quadric in (A3.19), the tangential coordinates of

these planes satisfy

Al I A1 A2 A3 A14

A 12 A 2, 23 A 24

A 13 A 2 3 A 33 A 34

A 14 A 24 A 34 A 44

xx

0)O

h,
= 0 (A3.26)

It is easy to verify that the trace of a vertical plane ( , ,z =O,Kn ) in the Oxy

plane is a line with coordinates (X ,X. ,k t ). The silhouette of the quadric is hence a

curve with tangential equation

A 11 A 12 A 14 kx

IXA, XX | A 12 A2 2 A 24 ) =0 (A3.27)

A14 A 24 A 4 4 Kt

which is the tangential equation of a conic.

xr y Ot

X K Y. O 

-
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The point equation of the conic is then obtained as

X y t

All

A, 2
A 12
A 14

A 12

A 22

A 24

A 14

A 24

A 44

x

= 0

t
(A3.28)

In summary, the slice of a quadratic surface by the Oxy plane is a conic; The

matrix of its equation in point space is obtained by removing the third column and

third row in the matrix of the quadric. The orthographic silhouette of a quadratic

surface on the Oxy plane is also a conic; the matrix of its equation in tangential space

is obtained by removing the third column and row of the matrix of the tangential

equation of the quadric. The matrix of the silhouette in point space is obtained from

the matrix of the quadric in point space by first inverting this matrix, then removing

the third row and column and finally inverting the resulting matrix.

A particular case is now considered, namely the case of a paraboloid with equa-

tion

x = -- 1/(ay2 +2byz +cz )= (y

The above equation can be written as a quadratic

homogeneous coordinates (x , ,z ,t ).

|a b| | Y (A3.29)
form similar to for thec

form similar to (A3.19) for the

0

1

K yz t

00 1 x

abO y
bc O 
000 t

The tangential equation of the paraboloid is

0

0

0

1

I x A xzt

001

ABO
BCO
000

= 0 (A3.30)

.x

,k

ht

= 0 (A3.31)I
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where

A B a b -1 (A3.32)
BC= bc

The slice of this paraboloid by the Oxy plane is given by

001 x
Xyti | Oa o y| =0 (A3.33)

1 00

which is equivalent to

x =-1/' 1b I | by 2 (A3.34)

The silhouette of the paraboloid is now determined. - From the discussion on

silhouettes of general quadrics, it is known that its equation is quadratic; the matrix of

this equation is obtained by suppressing the third row and third column in the matrix

of equation (A3.3 1), then inverting the resulting 3x3 matrix.

0 0 1 x

I x yt 0 A 1 0 y =0 (A3.35)
1 0 t

which is equivalent to

x -/2
a b I (A3.36)

bc l'0

When the paraboloid in (A3.29) is sliced by or projected on a plane Oxt making

an angle c with the Oxy plane, both the slice and the silhouette are parabolas; see

Fig.A3.3. The equations of these parabolas can be obtained by first applying a rotation

around Ox, similar to that in (A3.12). The equation of the slice is then

x = -12 cosa sinc b c sin (A3.37)
b} iab
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x x

Slice Silhouette

Fig.A3.3. Slice and Silhouette of the Paraboloid

The equation of the silhouette is given by

x ---1/ t2
x =a b coscx (A3.38)

cos c sinc b c sina

A3.3. Euler's Theorem and its Dual

Euler's theorem in differential geometry relates the curvature of normal slices of

a surface to the principal curvatures of the surface itself. At a point of the surface

with principal curvatures k , k 2 the curvature kice of a normal slice making an

angle ax with the first principal direction is given by

kszice = k cos2 ox + k 2sin2 a (A3.39)

The dual of Euler's theorem relates the curvature of orthographic silhouettes of a

surface to the principal curvatures at corresponding points of the surface. When a

point of the surface with curvatures k , k 2 is on the silhouette generator, the curva-

ture ki l at the corresponding point of the silhouette on a plane making an angle cx

with the first principal direction is given by

I= 1 COs2 + 1 sin ~a (A3.40)
ksi l k k1

aI 1
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An equivalent formulation of the dual of Euler's theorem in terms of radii of curva-

ture is given by

PsiZ = plc os 2c + p 2sin 2a (A3.41)

Our proofs of these two theorems will be based on the relation between curva-

tures and coefficients of quadratic terms in the Taylor expansion of Monge parameteri-

zations. Our analysis is done for one point on the surface, which is chosen as the ori-

gin of the system of axes; the Ox axis is chosen along the normal of the surface.

Planar curves are also considered in a system of axes centered at the point of interest

and with Ox along the normal. The expansion for a curve is given by

x = -1 /2 k y 2 + O (y 3 ) (A3.42)

where k is the curvature at (0,0). The equation for a surface is given by

k 1 1 k 12 y
x 1/2 Y | k 12 k i + ((y,z ) 3 ) (A3.43)

where K = kij is defined as the tensor of curvature of the surface at (0,0). Finally, it

is easy to see that second order expansions of both slices and silhouettes depend only

on the second order expansion of the surface at the corresponding point.

The proposed theorems will be obtained in two different ways. First, the results

of section A3.2 are applied to the second order term in (A3.43), then, the curvature of

the slice and of the silhouett are obtained with (A3.42). The second proof is obtained

by considering the two operations of slicing and projecting in a plane parallel to and

close to the tangent plane, say the plane x =-E. The slice of (A3.43) in this plane is

an ellipse so that the results derived in section A3.1 can be applied. This last analysis

of curvatures in terms of a section by a plane parallel to the tangent plane is well

known. The ellipse in question is usually referred to as the Dupin indicatrix.

A3.3.1. Proof by Operations on Quadrics

The second order expansion of the surface at (0,0) in (A3.43) corresponds to a

paraboloid to which equations (A3.37), (A3.38) can be applied.
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The slice by a plane Oxt at an angle ( with Oxy is the curve specified by

x =-l/2 - Cosa sinej k
]k 1 2 cosa

k 22 since

Comparing this expression with (A3.42) reveals that the curvature kslice of the slice is

ksiice - Cosa sine k1

k 12 COS

k 22 sina

This expression reduces to (A3.39) when k 12=0. The expansion of the orthographic

silhouette of the surface on the Oxt plane is obtained with (A3.38),

X = -1/2

cosa sin e

1
k l

k 12

k 12 | COSQ|

k 22 sin

The curvature of the silhouette is obtained by comparison with (A3.42),

· i k k 12 cosa

sina k 1 k 22 since

This expression can be rewritted for Psi = I /ksiz

tensor R = -1

Psi = CS O sine r

in terms of the radius of curvature

r' 12 cosa

r 22 sinae

The above form reduces to (A3.40) when r 12=0.

A3.3.2. Proof by Operations on Dupin's Indicatrix

The slice of a surface by a plane parallel to the tangent plane at the origin is a

quadratic form when the slice plane is close to the tangent plane. A curve with the

same shape is also obtained by slicing only the second order of the expansion in

(A3.43) at any distance from the tangent

x = -/2, the slice is the Dupin indicatrix

plane. Considering the section plane

|yr z) k 1l (A3.49)
k121 I2 Yk 93 z 

t 2 (A3.44)

(A3.45)

(A3.46)

(A3.47)

(A3.48)

k~i = osa

= 1
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The expressions obtained in section A3.1 for slices and silhouettes of an ellipse are now

applied to Dupin's indicatrix. The slice by x = -1/2 of the second order expansion of a

curve such as in (A3.42) is given by ky 2 = 1, which indicates that half diameters d in

the plane x = -1/2 are related to curvatures k by d 2 = k -1. This relation between

half diameters and curvatures, combined with (A3.14) and (A3.15) produces the same

expressions for the curvatures as in (A3.45) and (A3.47).

A number of additional properties of Dupin's indicatrix can be easily shown.

First, the surface of the ellipse is given by

S = 7rd d = rk - 2 k 2 = rK - 2 (A3.50)

where Kg is the Gaussian curvature of the surface. It is interesting to note that diam-

eters of the ellipse are related to curvatures of slices, and that the area of the ellipse is

related to the Gaussian curvature. A further property of the silhouette curvature can

be easily demonstrated by reasoning on Dupin's indicatrix. This property, due to

Koenderink [43]., relates the silhouette curvature ki , the curvature krad of a slice

parallel to the viewing direction and the Gaussian curvature kg. The relation can be

obtained by considering the slice Yrad of Dupin's indicatrix in the direction with orien-

tation (+rr/2) perpendicular to the silhouette axis with orientation c. The expres-

sion for Yrad is obtained with (A3.17),

1 1 . r 1
1 -- sina + -cos s-c (A3.51)

The product Yrad Ysil can readily be evaluated, and the result transposed to curva-

tures.

Yrad Ysit = d ld 2 (A3.52)

Therefore,

krad ksi = Kg (A3.53)
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A3.4. Summary

In this appendix, we have first shown that silhouettes of quadratic curves and

surfaces can be evaluated in tangential space in the same way that slices are evaluated

in point space. Second, we have exploited the relations between curvatures and qua-

dratic forms to derive expressions for curvatures of slices and silhouettes of surfaces.

These two expressions can be considered as duals of one another. Finally, we have

shown that the concept of the Dupin indicatrix, proposed initially for the representa-

tion of curvatures of slices of a surface, can also be exploited as a representation of

silhouette curvature, radial curvature. Gaussian curvature and of their relations.

44



Appendix 4
Representations of Surface Curvature

In this appendix, several descriptions of surface curvature are reviewed and com-

pared, including the classical method of differential geometry [471, representations

proposed in computer vision [44, 40, 63], and the representation proposed in this thesis.

The various representations will be compared by relating them to the classical

representation of differential geometry in terms of the two fundamental tensors.

Features of representations of surface curvature investigated in this appendix

include expressions for curvatures of slices and silhouettes of the surface, parameteri-

zation of the representation, consistency of the representation, and recovery of the glo-

bal shape of the surface from the description of its local curvature.

A4.1. Representation of Surface Curvature by Two Fundamental Tensors

This section reviews the classical definition of surface curvature; further material

is found in any textbook of differential geometry.

Consider a surface and a specification of the points of this surface by

parametric equations

x= (u ,~' ) (A4.1)

The lines u =cst, v = cst define a coordinate chart on this surface, as pictured on

Fig.A4.1. In general, this chart is not orthogonal, its spacing is different in u and v,

and its local shape varies along the surface. At each point, the metric implied by this

chart defines the expression for the length ds of a small arc specified by its increments

(du ,dv ).

ds 2 = d'd = du dv ) .. - .UX du (A4.2)
.x. x x, .xv dv

The above expression is referred to as the first fundamental form, and the 2x2 matrix

on the right hand side, as the tensor of the first fundamental form. This matrix is
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Fig.A4. 1. Coordinate Charts Defined by the Parameterization

denoted by C and its components by E, F, G, so that

X .X u

G= L 
Xu X,.

X .X, E F

x,. x, F G
(A4.3)

Denoting the 2-vector of the arc differentials (du dv )T by a, the first fundamental

form can be written in compact notation as

ds 2 = T a (A4.4)

The curvature of the

from its tangent plane, and

surface is related to the rate of deviation of the surface

can be described by the form

-/2(X - + -X.. 1

-X,,ln
-x-d R*Idd In = du- d· dn dvn))

i. n V x. .1 n,

du

dv

(A4.5)

where In is the unit normal vector. The above form is referred to as the second fun-

damental form, and the 2x2 matrix on the right hand side as the tensor of the second

fundamental form. This matrix is denoted by D and its components by e, f , g, so

that the second fundamental form can be written as

- --- ---- ------
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- -d 'i= d 1 dn = g dv (A4.6)

or, in compact form, as

-dXd1 n = aT a D (A4.7)

It can be shown that the tensor D is also related to projections of the second deriva-

tives of equations of the surface onto the unit normal

mD_ = / g _ X.* (A4.8)

Transformations of the matrices D. 9 in changes of parameterization are now

investigated. The resulting expressions justify referring to these matrices as tensors,

and characterize the types of these tensors.

Consider a different parameterization (u 1,v l) of the surface discussed above,

where the old parameters (u ,v ) are related to the new parameters (u l,v ) by

(A4.9)
v = v(u 1,V )

The fundamental tensor G 1 is given, in the new parameterization, by

C = JT J (A4.10)

where J is the Jacobian matrix of the transformation (A4.9),

au OU
aE- u 1 v 1

do i a'' (A4.11)

Su 1t t D

Similarly, the tensor D is modified as

~D = J B J (A4.12)

Matrices which transform as in (A4.10) and (A4.12) in coordinate transformations are

twice covariant tensors. This justifies referring to G and D as tensors.
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A4.1.1. Curvatures of Slices and Silhouettes

When the surface is sliced by a plane perpendicular to the surface at some point, a

curve for which the principal normal is identical to the normal to the surface is

obtained. It is interesting to relate the curvature of these curves to the two tensors of

the surface. Curvatures of normal slices and their dependence on orientation of the

slice completely characterize the local shape of the surface at a given point. For a

curve oriented locally along ad and with a principal normal along the normal i to

the surface, the curvature is given by

du dv d
ef

f g dv _ T (A 1 2

"szice - ddJ _ -tsice · jE F du a r1 e T a J

F G d,

Both tensors 5 and C contribute to determine the curvature of slices of the surface,

and hence of the surface itself. This is due to the fact that D determines the deviation

of the surface from its tangent plane, relative to the parameterization in (u ,v ). At

the same time, the metric implied on the surface by this parameterization is described

by C. In order to determine the shape of the surface independently of the parameteri-

zation and the curvature Kslice Of its slices, it is hence necessary to combine the infor-

mation contained in both tensors.

The dependence of the curvatures of slices of a surface on characteristics of the

surface is formalized in Euler's theorem. which is analyzed in detail in Appendix 3.

The theorem states that the expression of the curvature in (A4.13) has a maximum

value K1 and a minimum value K2, and that these extrema correspond to orientations

E which are 900 apart. The extrema of (A4.13) are investigated in the next section,

during the discussion of curvature invariants.

It will be shown in a later section that the curvature of a silhouette of the surface

E in a plane parallel to the section plane corresponding to ET can be related to the two

tensors at the corresponding point of the silhouette generator, by the expression
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du d) |F G di,
Ksi[ - - 1 

duEF e f d
F G f g F G dvJ

(A4.14)
-- - 1-

In summary, given the two fundamental tensors and an orientation defined in the

local parameterization of the surface, it is easy to determine the curvature of the slice

or the silhouette of the surface along the given direction. Note however that, when

the orientation is specified with respect to a global system of axes, it may be difficult to

describe this orientation with the local parameterization.

A4.1.2. Consistency and Inversion of the Representations

It is well known in differential geometry that the six components of the tensors

A, D are not independent; they are related by a series of relations known as the

Mainardi-Codazzi relations. Furthermore, it has been shown (Bonnet's theorem) that

given any set of six functions (E,F ,G ,e ,f ,g ) which satisfy the Mainardi-Codazzi

relations, it is possible to synthesize a surface for which the two fundamental tensors

have the given forms. The reconstructed surface is unique up to a solid translation

and rotation. The Mainardi-Codazzi relations are hence necessary and sufficient con-

sistency relations between the components of G amd D. These relations can be found

in any textbook of differential geometry; their form is relatively obscure for the non-

expert.

A4.1.3. Parameterization

When the surface shape is defined by the tensors C and D, these tensors are refer-

enced to the values of the parameters (u ,v ) at the corresponding surface points. If

this representation is used as a model for a known surface in a recognition system,

matching with a measured surface may be extremely complicated if the measured sur-

face cannot be defined in the same parameterization. In order to relate parameteriza-

tions of the model and of measured surfaces, it is necessary to define "canonical"

parameterizations. Examples of proposed parameterizations are Monge
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parameterizations [40], parameterizations along lines of curvature [63], and coordinates

on the Gaussian sphere [44]. The advantages of each of these description modes is that

the Monge descriptions are easily obtained from image measurements, the lines of cur-

vature are intrinsic to the surface itself, and representations with the Gaussian sphere

are invariant with viewing direction.

It is possible to use any of the above three parameterizations to define surfaces

with the two fundamental tensors. When lines of curvature are used, it turns out

that the tensor is diagonal. In that case, the shape of the surface is determined by

the five functions E,F ,G ,e ,g [63]. The redundancy of the representation is reduced,

but not eliminated.

A4.2. Definition of Curvature by the Shape Matrix and its Invariants

Since the intrinsic curvature of a surface is expressed in the combination if the

tensors 5 and C, it is tempting to develop combinations of these tensors, in order to

describe curvature by a single form. An example of this type of combination is given

by the "Shape Matrix" B [64]

_= tl-l t(A4.15)

It is easy to derive the rule for the transformation of 3 in changes of parameteriza-

tion, from the rules for G and 15:

B = 1 '51 = ( CJ)-1(jT J) = J-'-1 J

31 = F'1J (A4.16)

The above transformation rule determines that 3 is a once covariant, once contravari-

ant tensor. It is easy to show that for this type of tensor, the determinant and the

trace are invariant in coordinate transformations

tr (,1) = tr (J-1J) = tr (JJ-'B) = tr (.)

det(B1) = det(J-lBJ) = detJ- 1 detB detJ = detB4 (A4.17)
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As a result. the eigenvalues of 13 are also invariant in changes of parameterizations.

The relation between the eigenvalues of 3 and the principal curvatures is now deter-

mined. The principal curvatures K1, K2 are defined as the extrema of normal curva-

tures

, in Aer 8
K1,2=max MaE i~

It is clear that the right hand side of the above expression does not depend on scale fac-

tors in a. Therefore, the extrema are also obtained for vectors i with a fixed scale.

min
K 1, 2 = max T' constraint: ET C its = 1

The above constrained optimization can be solved by introducing a Lagrange multiplier

for the constraint,

min
K1.2 = maxIs Etr C t - 1 (A4.20)

The stationary points of the above expression can be evaluated by equating its deriva-

tive with respect to dT to 0.

2 iD -2 X C E = (A4.21)

-- 1
The above expression is left-multiplied by the matrix G , which is nonsingular, to

yield

i -Ir-1-Xi) aS (A4.22)

The stationary points of the curvature in (A4.18) are hence obtained when E is an

eigenvector of . It can be verified that these points are true extrema. Let the nor-

malized eigenvectors of , be a l, a 2, and the corresponding eigenvalues be K, K2. The

extrema of the curvature are given by

a1T 2 r a1,2aJb2Cdl,2

a12 C xl,2 a1 2

The tensor has hence the remarkable characteristic that its eigenvalues are the prin-

cipal curvatures. As a consequence, the trace of is equal to twice the mean

(A4.19)

a2 5 a1, 2
K1,2 a - 1

1, 2 i 1,2
= l1,2 (A4.23)

(A4.18)

I I



- 246 -

curvature and the determinant of 3 is equal to the Gaussian curvature of the surface.

These properties show that 3 is closely related to intrinsic curvature properties of the

surface. However, it will be shown in the next section that curvatures of slices and

silhouettes of the surface with generic orientations cannot easily be determined with

only the tensor 3.

A4.2.1. Curvatures of Slices and Silhouettes

The curvature of a slice of the surface oriented along the vector i on the surface

is given by

K -= = (A4.24)slice E CE E S E a,

It is clear from the above expression, that when a slice is defined by its contravariant

vector .s, both and G must be known to determine its curvature.

The curvature of a silhouette of the surface can be obtained by applying to the

above expression. the duality between the curvature of a slice and the curvature of a

silhouette on a plane parallel to the slice. This duality is demonstrated in Appendix 3,

and it is shown that the radius of curvature of the silhouette depends on the principal

radii of curvature of the surface by the same expression that determines the curvature

of the slice in terms of the principal curvatures. The dependence of the curvature of

the slice on the principal curvatures is explicitly obtained by decomposing in

(A4.24) into its diagonal factorization

K1 0
/tsT GL LJ0 K L (A4.25)

Kslice -

where L is the matrix formed by the two normalized eigenvectors 1a, I 2 of 1. The

duality argument determines that the curvature of the silhouette is given by

Ksil 1 0 (A426
ET L 1/K 1 0 (A4.26)

0 1/KJ
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The three factors in the d- nominator of the right hand side are easily recognized as the
-- 1

diagonal factorization of 3 so that

KsiZ - 1 - - (A4.27)

A4.2.2. Consistency, Completeness and Reconstruction

A number of representations of surfaces based on the shape matrix or on its

invariants have been proposed in the computer vision literature.

First, the extended Gaussian imaget44 represents a surface shape by only one

invariant, the Gaussian curvature, parameterized with the normal orientation of the

surface. It can be shown that this representation is complete for a closed convex sur-

face, and that its consistency can be expressed globally by three scalar constraints.

These constraints are easily formulated when the extended Gaussian image is specified

as a distribution on the Gaussian image of the surface, specifying the inverse of the

Gaussian curvature of the object. The constraint is then equivalent to requiring the

center of mass of the distribution to be at the center of the sphere. The inversion of

the extended Gaussian image is laborious [45]. Because of the consistency constraints,

it is not possible to modify the value of the extended Gaussian image at one point only

and therefore to assess the effect of point values on the global surface shape, but there

are strong indications that the global shape of the surface is affected by any local

change of the Gaussian curvature function. Whether or not the above conjecture is

true, there are no simple relations for determining the local shape of the surface from

only the Gaussian curvature function, and as a consequence, no simple relations for

evaluating the curvatures of slices and silhouettes of the surface. Aside from the

disadvantages discussed above, the extended Gaussian image has a number of desirable

characteristics, such as its invariance with rotations and the ease of computation of

this representation from experimental range maps or needle maps.

In other work, Besl and Jain have proposed a representation of surface shapes by

the two invariants of the tensor , namely the mean curvature Km = /2(K1 + K2) and

the Gaussian curvature Kg = KK 2 [40]. The parameterization proposed for indexing

the values of the invariants are image plane coordinates, a choice equivalent to a

__ ___
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Monge parameterization of the surface with a base plane perpendicular to the viewing

direction. Since this representation specifies more information than the extended Gaus-

sian image does, it is likely that it is complete and redundant, so that consistency con-

straints must be satisfied by the two invariants. However, the parameterization is

different than in the extended Gaussian image, and the uniqueness and consistency

issues have not been carefully addressed in this case. Although the mean and Gaus-

sian curvatures determine the local aspect of the surface shape, they do not determine

the orientation of this shape with respect to a global reference, so that this representa-

tion does not provide simple expressions for the curvatures of slices and silhouettes of

the surface. To the best knowledge of the author, there is no algorithm for recon-

structing the surface shape, given the two invariants as functions of coordinates in the

image plane.

A4.3. Representations Proposed in this Thesis

The Curvature Transform (CT) introduced in this thesis specifies a single tensor

representing the local curvature of the surface, as a function of normal orientations.

The parameterization of this representation is identical to the one used in the extended

Gaussian image, but the function represented is more complex. As defined in Chapters

3 and 5, the characteristic represented by the CT is the inverse of the "tensor of curva-

ture" of the surface, expressed by its components in axes parallel to the local axes on

the Gaussian sphere. The curvature tensor K can be defined in terms of second deriva-

tives of local Monge parameterizations of the surface

8 2x /y, 2 a82 x /3yZ aZ1
K | 82X/ayl a.7 1 32X /a 2 (A4.28)

-2 x /CYi C8zz x / Cz z 2

where xz is along the normal, YZ parallel to the corresponding parallel on the Gaussian

sphere, and z1 parallel to the meridian of the Gaussian sphere. Comparing this expres-

sion with (A4.8), it can be shown that the tensor K is equal at each point of the sur-

face to the tensor for a Monge parameterization in local axes at the point. In order

to define K at a given point Po, a change of parameters (u ,v ) (u* ,v*) must be

found such that. at Po,
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K = j*T Dj* (A4.29)

G = *Trj* = 122 (A4.30)

Indeed, the metric of the local Monge parameterization at Po is Euclidean, so that the

metric tensor must be the unit matrix I22,. It is important to note that the parameteri-

zation by (u ,v* ) applies only to the point Po and that. although the tangent vectors

x-U, x., are along the local directions 1f, 1,. the parameters (u* ,) are not directly

related to the orientation angles s, r 7 themselves. Assuming that J* is regular, equa-

tion (A4.30), can be modified to

j* j*T = - (A4.31)

Any matrix J satisfying the above equation is the Jacobian of a parameter change

which leads to a Euclidean metric around Po. A solution of this equation will be

written formally as

J* = -1/2

The solution of (A4.31) is ambiguous since a product of J* by any orthonormal 2x2

matrix is also solution of the equation. The ambiguity is resolved by requiring the

vector XU to be horizontal. The expression for the tensor of radius of curvature is

written formally as

fK = DG-1/2~ -l,'2 (A4.32)

_= T 1/2D-1 1/2 (A4.33)

Explicit expressions for obtaining the components of K in terms of the components of

C and D were determined in[62]

[ez,.2 -2f z z. +g, 2]

Z

[e,. (Gz -Fz,. )+ f(Ez,.2 GU2 )-gz (-Fzu +E. )]
k 12= ' Z VEG~- ~F (A4.34)

[e (Gzu -Fz,. )2+2f (Gz, -Fz,. )(-Fzu +EZ,. )+g (-F u +Ez,. )2]
k 2= Z (EG -F 2 )

-
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where , Z, denote partial derivatives of z. It turns out that the tensor K is invari-

ant in changes of the parameterization (u ,v ), and that its eigenvalues are identical to

the eigenvalues of 0. It is interesting to note the similarities and differences between

the tensors defined in (A4.32) and 0 defined in (A4.15). Major differences between

K and 0 are that K is symmetric while B is not, in general; as a consequence, K has

three independent components while has four components. Furthermore, R is

related to local axes on the Gaussian sphere while 0 is related to local axes determined

by the parameterization.

A4.3.1. Curvatures of Slices and Silhouettes

It has been shown during the demonstration of the Silhouette-Slice theorems that

the radius of curvature of the silhouette is simlpy related to the radius of curvature

tensor R, which is the inverse of K, by

Psi = cosx sinJ R |Sinc (A4.35)

where ct directly characterizes the orientation of the projection plane in the local axes.

Similarly, the curvature of a slice of the surface is given by

ksice = cos sinsinc - in (A4.36)

The above expressions emphasize that the shape of slices and silhouettes of the surface

are easily determined from only the tensor R specified by the CT.

A4.3.2. Consistency, Completeness and Reconstruction

In Chapter 5, simple first order differential equations were determined for

parametric equations of a surface, given its CT. The existence of these equations

implies the completeness of the CT. In addition, consistency relations for the CT were

derived simply by requiring equality of the mixed derivatives of the parametric equa-

tions in terms of the CT. These relations are equivalent to the Mainardi-Codazzi equa-

tions for the representation with the two fundamental tensors, but they are much

simpler.

�I ___�I __
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A4.4. Discussion

When comparing the various representations of surfaces reviewed in this appen-

dix, it appears that the Curvature Transform has a number of advantages for describ-

ing surface curvature. The CT has only three independent components, while preserv-

ing completeness both locally and globally. It is easy to determine the shape of slices

and silhouettes of a surface defined by its CT. Finally, the consistency relations and

the reconstruction of the surface shape are straightforward for the CT representation.

An additional advantage of the CT is the existence of closed-form relations with the

other two representations proposed in this thesis, namely the Support Transform and

the Vector Support Transform. The major disadvantage of the CT is its limitation to

convex objects.

When choosing a representation for a particular application involving descriptions

of surface shapes, several factors must be considered. An aspect which was not dis-

cussed in this appendix is the estimation of the representation from experimental

measurements and the robustness of these estimates. Experiments with the new

representation must be performed before it can be compared with other representations

based on this criterion.

__





Appendix 5
Curvature of the Projection of a 3-D Curve

In this appendix, the radius of curvature of the projection of a 3-D curve is com-

puted in terms of the radius of curvature at the corresponding points of the 3-D curve

and the orientation of the viewing direction relative to the local Frenet trihedron.

Consider a point O on the curve C, and the system of axes Oxyz oriented along

the principal normal n =x, the tangent t =y and the binormal b=z at 0; see

Fig.AS.1. Including terms up to the second order, the curve can be described around

O by the equations

1 2

(A5.1)
YV S

= O

where p is the radius of curvature at 0. The viewing direction v is defined in the

axes Oxyz by its latitude 0 and longitude -. A rotated system of axes OXR YR zR is

also considered, such that OXR is along the viewing direction v and OyR is on the

Oxy plane, see Fig.AS.1. The projection operation is trivial in the rotated axes, as it

corresponds to retaining the YR and ZR coordinates and discarding X R .

Fig.AS. 1. Curve C, local axes Oxyz and rotated axes OXR R ZR .
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The transformation between the two systems of axes Oxyz, OXR YR ZR is given by

cos cosO -sinfcosO

sins
-cos sinO

cost

sin sinO

singO 

0 Y
cosO z

For points in the Oxy plane, the projection is obtained by merely applying (A5.2) to

the x, coordinates of each point, then discarding the XR coordinate in the rotated

frame.

YR

ZR

sin6 cos | x

-cosfsinO sin'sinO y
(A5.3)

Applying the above transformation to the parametric equations of the curve in (A5.1),

produces parametric equations for the projected curve

-Sin 
2p,

cos sine S
2po

+ cost s

(A5.4)

+ sinfsinG s

The radius of curvature is now evaluated at the origin, using the standard expression

( + eR )3/2y R( C<

YR-R YR-R

where the dots stand for derivatives with respect to the parameter of the curve, here

s. The derivatives in the above expression are evaluated at the origin as

YR (0)= cOS{, R (0)= sinsin0, PYR (O) =
Po

-, R () = cossin0PO
(A5.6)

As a consequence, the radius of curvature of the projection of the curve around O is

given by

(cos2f + sin 2 f sin20)3/2
sinG O

(1 - sin 2 s CoS20)3/2
sinG PO (A5.7)

This result is consistent with that obtained in section 7.4.2.

'4

XR

YR

-R

(A5.2)

YR =

ZR -

Ps =

1} _ .

P . - .



Appendix 6
Evaluation of two Differentials in Chapter 5

In this appendix, the differentials of local coordinates of a curve and of a surface

are evaluated in terms of global angle differentials, providing the expansions of equa-

tions (5.13) and (5.41) in the text.

The case of a curve is addressed first; it is illustrated in Fig.5.3 in the text. In

fixed local axes, an expression for the differential d X(t) in the neighborhood of Po is

obtained by the chain rule

d xt (p) = d X d d d s (A6. 1)
dz dmzz d ip

where m-, is the gradient of the local Monge equation defined in section 3.2.4. The

first two derivatives in the right-hand-side of (5.13) are obtained for the particular

curve shape at Po from (5.12). The last derivative in (5.13) depends on the relation

between the local gradient and the global orientation angle, a relation discussed in sec-

tion 3.2.4.

Each of the factors in (5.13) is now evaluated.

Parametric equations for the curve C around Po are easily obtained from (5.12),

namely

=i 1 + (--1/zp olZ )+O(zl 3)

O
= 1 z +O(z 2 )

z1 l T-I z + +O(£l2) (A6.2)
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The first derivative of the above equation with respect to the parameter z1 is given by

dx l

dz_

dz l

dzI

0
I + (Zz)

(A6.3)d z l /dz = 1Z +O ( )

The derivative dzl /dmzz is now evaluated. In the neighborhood of Po, the local

gradient mzl on the curve C is given by

mZ = 3x / zi = -po z 1 + ( 2) (A6.4)

It follows that

zz = -- Pomnz + O (nz) (A6.5)

so that

= Po +0 (mL1)
dmzz

(A6.6)

Finally, the local gradient is related to the global orientation angle 40 by (3.61)

so that

mz1 = -( - 0 ) + ( ( -0 )2)

dm=
d,., =-1 +o( - o)

(A6.7)

(A6.8)

The derivatives obtained above are inserted in equation (5.13) to obtain the differential

d X in local axes

dxz 0
d - I (-po) (-l1 ) d + O (-tPo) = Po d + (- 0o)

d xZ = Po z d + O (p-po)

which is the result exploited in the text, in equation (5.14).

(A6.9)
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Differentials of coordinates of a surface are now investigated in a local reference

frame around the point Po; This frame is illustrated in Fig.5.7 in the text. An expres-

sion for the differential in the local axes Pox, yl z is obtained by the chain rule

D (z ) Dz1 Dmf1d = D D (A6.10)
DZ7 DMt De

where expressions such as Dx, /DZ, denote Jacobian matrices, Mz = (my/ mzl ) is

the 2-vector of local gradients, and d is the vector of normalized global angle

differentials d = ( cosld ¢ d r} )T . The first two Jacobian matrices on the right

hand side of (A6.10) are obtained for the particular surface shape around Po from

(5.39). The lasi Jacobian matrix in (A6.10) is a relation between local slopes and glo-

bal orientation angles which can be derived from relations obtained in section 3.2.4.

Each of the factors in (A6.10) is now evaluated in sequence.

Parametric equations for the surface around P o are given by

XI 0 0 1 o
Y v j= 1 0 -'/2 0 K Z | o + ((yzl ) 3)

1 ° + O 1 y +°((Yz )))0 0

= 1 0Y + O(y ,zz)2)

XZ = 132 7 + O(Z) (A6.1 1)

where 132 is a 3x2 matrix whose columns are the canonic vectors i, e 3. 132 is also the

matrix of the injective transformation from the local tangent plane PoYl z into 3-

space referenced by P l yj zl. The Jacobian matrix of the above expression is given

by

�
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00
= 1 0 +0

01

= 132 + O (z1
2 )

The Jacobian matrix
DzI

is now evaluated. The local
Dmz

gradient ffIz on the sur-

face £ in the neighborhood of PO can be obtained fruin (5.39) :

mlj r 1l rO2 Y +
= - r 2 +2 0( 

mzI r 12 r22 iI

= -
ffl, = -RO z, + 0(z1

2)

This equation is inverted to produce

lr 0

z I| r 2

0
r 12

r 22

z = -Ro + o (mz)

The desired Jacobian matrix is then obtained by differentiation.

- Iz

am'z

Dzz

Drff z

o o

o o
r1 2 2 2

+0o(m 2 )

= -Ro + 0(mZZ)

axl

aY,

OYz

Oey

a)xl

ay,
c~ z
6O1

a 71

(A6.12)

(A6.13)

(A6.14)

ZI~IZI

(A6.15)
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Finally, the local gradients are related to the global angles by (3.61) from which

the following form is derived for the last Jacobian matrix in equation (A6.10).

mir amyl

cosr1 c 1 0 r

a~m., Dm. 1, 0 1

- -I 2 2 + ((t-to)2) (A6.16)
De

where 122 is the 2x2 unit matrix. The expressions obtained above for the Jacobian

matrices are inserted in equation (A6.10) and produce an expression for the differential

d XI in local coordinates, valid to first order around Po. The expression is exact at Po,

and since Po is generic, applies to all regular points in appropriate local axes.

dx 1 0 0 rll r2 cosnd

r12 r22 d 
ddy = 10 r1

d-xl = 132 R d (A6.17)

A differential for the surface in global coordinates is obtained by applying the coordi-

nate transformation in (3.10) to the above differentials

dx cosfcosr -sine -cosfsinr 0 0 r l r1 2 |cosnd 
dy= sincos cost -sinsinr 1 0 r1 2 r 22 d 
dz sinr 0 cosri 0 1

d = R3 -G 132 d 

which is the result exploited in the text, in equation (5.42).
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