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Analysis of linear Digital Networks 

Abstract-A framework is presented  for  the  analysis,  representation, 
and  evaluation of digital  fdter  structures. B a d  on the  notation  of 
hear signal-flow  graphs and their  equivalent  matrix  representation,  a 
set of general linear digital  network  properties are reviewed,  including 
precedence telations computability,  TeUegen’s  theorem,  interreciprocity, 
and  network transposition. These properties  are  then  utilized  in de- 
veloping  time  and  frequency  domain  analysis  techniques  and sensitivity 
analysis techniques. These techniques,  in turn, are  applied to the 
comparison of several basic  digital  fdter  structures. 

I. INTRODUCTION w HEN IMPLEMENTING a digital filter on  a general- 
purpose computer,  it is often unnecessary to pay 
close attention  to  the  structure used for  the imple- 

mentation. In contrast, when implementing a fiiter  in special- 
purpose hardware, such factors as speed, cost, wordlength, etc., 
are closely related to  the  network  structure used. Because of 
the increasing practicality of hardware implementations of 
digital filters,  there  has been considerable effort directed over 
the last several years toward  the development  and investigation 
of digital filter structures. As part of this effort, there  has been 
the development of techniques for  analyzing  filter structures 
efficiently  and also the  theoretical investigation of general 
properties of structures. Thus, in addition  to  the development 
of specific classes of structures,  a  set of properties and theorems 
for filter structures has evolved over the last several years. Much 
of this theory has a  counterpart in classical analog network 
theory  and, in fact, in many  instances the application of 
specific results to digital filter structures was motivated by the 
success of similar techniques in analog network  theory. 

In this  paper we suggest a framework for  the analysis and 
representation of digital filter structures, and their evaluation 
with  respect to several considerations. We have found  it con- 
venient to use the  notation of linear signal-flow graphs or  the 
equivalent matrix  representation. This notation serves as the 
basis for  a general network  representation  for digital networks, 
and  through  this representation many of the  theotems and 
methods of signal-flow graphs can be specifically adapted  for 
digital networks. In particular,  in  Section I1 we summarize the 
signal-flow graph  and matrix  notation, and in Section 111 we 
present a  number of general network properties.  Sections IV 
and V are directed toward  a discussion of computer-aided 
analysis of structures. This includes a discussion of the use of 
the  properties developed in  Section 111 for time  and frequency 
domain analysis and  the analysis of sensitivity to coefficient 
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quantization.  A comparison of a  number of structures with re- 
gard to coefficient sensitivity for  one specific filter is also given. 

There are a variety of considerations that must be taken  into 
account in  choosing or comparing structures. In Section VI we 
suggest, as one  such consideration, that of the  amount of 
parallelism inherent in a  structure.  The ideas discussed in that 
section  represent  only an initial, but we feel promising, at- 
tempt  to  quantify  the consideration of parallelism in  structures. 

This paper is intended in part as a  tutorial review and as such 
we have attempted  to cover a broad range of topics. In many 
cases, details that are available through  the references have 
been omitted. In particular, many of these  details can be found 
in [ l l .  

11. SIGNAL-FLOW GRAPH AND MATRIX REPRESENTATION 
OF DIGITAL NETWORKS 

In this  paper we will find it convenient to represent digital 
networks in  terms of linear signal-flow graphs or  the equivalent 
matrix  representation. This is motivated in part  by the prop- 
erties of signal-flow graphs which are conveniently exploited in 
the discussion of digital networks.  Thus, in  this section, we 
first summarize the  notation of signal-flow graphs  and  the 
equivalent matrix  equations  to be used in this  paper. 

A signal-flow graph is a collection of nodes  and  directed 
branches [ 21, [ 31. Associated with  each node is a  node signal 
and associated with  each  branch is a branch signal. For  the 
case of digital networks,  the  node and  branch signals are 
discrete-time signals or their z transforms. 

In representing digital networks with signal-flow graphs, we 
will find  it convenient to distinguish between  source  branches 
and network branches. A network branch originates from  a 
network node  and terminates at a  network node.  The input  to 
the  branch is taken as the signal value at  the  node where the 
branch originates. 

For  the representation of digital filters, we restrict the  net- 
work branches to correspond either  to  a  constant gain (a coef- 
ficient branch)  or  to  a  constant gain in cascade with a  unit de- 
lay (a coefficient-delay branch), and assume also that only one 
network branch of each  kind is permitted between any two 
nodes. The  output of the coefficient branch  from  node j to 
node k will be denoted as Wc,k(n) and the  output of the delay 
branch from  node j to node k will be denoted as wd,k(n). The 
node signal value at node j will be denoted as yj (n) .  The  branch 
outputs are then related to  the branch inputs by 

and 

where fc,k and fd,k are constant real coefficients.  Alternatively, 
we can express the  node values and  branch outputs in terms of 
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f c 4 2  f c 4 5  

Fig. 1. Example of digital network  expressed in signal-flow graph 
notation. 

their z transforms-in which case, ( la )  and ( lb )  are written as 

where 

and 

The  terms Fcjk(z) and F&k(Z) correspond to  the branch 
transmittances of the coefficient  and the coefficient-delay 
branches, respectively. It will generally be convenient to as- 
sume that there is both a  coefficient and a  coefficient-delay 
branch  between  each pair of network nodes, although some of 
the  branch coefficients may be zero. 

Source brunches represent the injection of external signal 
sources into  the  network. They will be assumed to have unity 
transmittance so that  the source branch  output corresponds to 
the value of the  external signals entering the  network  at  that 
point. It will  be assumed that there is at most one source 
branch associated 'with each node in  the  network.  The source 
branch signal value associated with the  kth  node is designated 
as xk(n)  or equivalently X k ( z )  for  its z transform. For con- 
venience, we will assume that a  source  branch connects  to each 
network  node,  although  at Some nodes the source  branch out- 
put may be zero. 

Using the foregoing signal-flow graph notation, linear digital 
networks of any arbitrary configuration can be represented. 
An example of such  a digital network is  given in Fig. 1. It cor- 
responds to a  conventional  second-order  direct form (canonical) 
structure. The input of the  network is via a  source branch 
entering node 1 and the  output is taken as the  node signal 
ys(n) of node 5 .  Coefficients fns, fdu, and fdM are assumed 
to be unity and all other branches not shown are assumed to 
have coefficient values of zero. Nodes 2 and 5 act as both sum- 
ming points and branch  points in the  network.  The branch sig- 
nal wC45(n),  for  example, is obtained  from  the multiplication 
of the  node signal y4(n) by the branch  coefficient fd5. 

The  node signal value at each node in  a network is the sum of 
the branch signals entering the node. Thus 

N 
y k ( z )  = x & ( z )  + 1 wclk(z) + wd,R(z)l I k = 1, 2, * * 9 N 

j = 1  

(4) 

PROCEEDINGS OF THE IEEE, APRIL 1975 

where it is assumed that  there are N nodes in the  network. 
Alternatively,  with the aid of (2) and (3), this can be written 
as 

N 
y & ( z )  = x k ( z )  + [fcjk +fd]k Z - l  1 y j ( z ) ,  

j = 1  

k = l , 2 ; . - , N .  ( 5 )  

As there are N  nodes  in the  network, there are N correspond- 
ing equations and they  constitute a total description of the 
network.  Inputs to  the  network are described by  means of the 
source  branches  and outputs of the  network are obtained as 
the signal values of one or  more of the  network nodes. 

The N equations  in ( 5 )  can be expressed more compactly in 
matrix  form as 

Y ( z )  = X ( z )   + f t c Y ( z )   + f i Y ( z ) z - l  ( 6 )  

where 

Y ( z )  a column vector of the N node signal values Y k ( z )  (k = 

X ( z )  a column vector of the N branch signal values X k ( z )  
(k = 1,  2, * * , N) of the source  branches, 

fc an N X N matrix of coefficients for  network branches 
of the first kind (coefficient  branches), 

fd an N X N matrix of coefficients for  network branches 
of the second kind (coefficient-delay  branches). 

The superscript t in ( 6 )  denotes  the  matrix transpose,  which is 
used for consistency  between the subscript conventions of 
signal-flow graphs and matrices. An element fd]k of matrixfd, 
for  example, corresponds to the coefficient value of the coef- 
ficient-delay branch  from  node j to  node k. If no  such  branch 
exists  in the  network,  then fd,k = 0. As an example,  the  matrix 
representation  for  the digital network  in Fig. 1 is 

1,2,  * a ,N), 

The response of the  node signal values Y ( z )  of a network  due 
to  the signal inputs X ( z )  can be expressed  in terms of a matrix 
inversion as 

where 

T r ( z ) =   [ I - f , f - f ; z - ' ] - '  (8) 

and I is defined as the N X N identity matrix. The N X N 
matrix T ( z )  will be referred to as the transfer function  matrix 
of the  network. An element of t h i s  matrix can be 
identified as the  transfer  function from node j to node k and it 
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characterizes the response of the  network  at  node k due to a 
single source  branch input  at  node j .  That is, with all source 
branch inputs  but Xj(z) set  to  zero, 

In general, if more than  one signal is injected into  the  network 
by means of source  branches, the response at a  particular node 
k can be expressed, using superposition, as 

N 
Yk(Z) = T , k ( z ) x j ( z ) .  (10) 

j = 1  

If the source branch  at a  specific node a is defined as the 
network  input and  a specific node signal at  node b is defined 
to be taken as the  output of the  network,  then  the transfer 
function Tab(z)  is the  system function of the  network.  For 
example, in the  network of Fig. 1,  the system function would 
correspond to T I 5 ( z ) .  

The matrix  equation ( 6 )  can alternatively  be  expressed in the 
time domain. Specifically, the inverse z transform of ( 6 )  cor- 
responds to  the time  domain matrix difference equation 

which is similar in  some  respects to a  state-space  description of 
a digital network [ 4 ] .  It differs,  however, in.a  number of im- 
portant respects. The  number of variables in (1  1) corresponds 
to  the  number of nodes in the  network. This is in  contrast to a 
state-space  description where the  number of variables is equal 
to  the  number of essential states  in'the  network, i.e., the  num- 
ber of network nodes  with one  or  more delay  branches enter- 
ing them. The matrix difference equation  (1 1) has the  property 
that  the coefficients in  the matrices fi and fi correspond  in  a 
one-to-one fashion  with the  branch  transmittances in the flow 
graph. In a  state-space representation, this is not generally 
true. 

111. GENERAL NETWORK PROPERTIES 
In the preceding section, we presented the  representation of 

digital networks in terms of flow  graph  and matrix  notation. 
Based on this representation,  there are a number of network 
properties which we will want to make use  of in the remaining 
section. The  fiist of these is  the  notion of node precedence re- 
lations. As we will see, there is inherent in any given network 
structure an order of precedence  in which node values are com- 
puted. The node precedence  relations  become  particularly  im- 
portant in  Section  VI  where we will discuss parallelism in 
structures. 

A second general property  that we discuss is Tellegen's 
theorem  for digital networks. This simple but elegant theorem 
provides a  useful  framework for developing a number of other 
properties of digital networks. We conclude  this  section  with  a 
discussion of the  notions of reciprocity,  interreciprocity,  and 
network  transposition. These ideas are useful  in computer- 
aided analysis of network  structures and  play  a  particularly im- 
portant role  in the sensitivity analysis of structures as presented 
in  Section V. 

Precedence  Relations for Digital Networks 
The  implementation of a digital network generally cor- 

responds to a  direct  evaluation of the difference equation  (1 1). 
We observe that  (1  1) expresses each node value as a  linear 

. __-_ - - _ _ _  - - - - -- _ - _  - - - - - _ - I  

(C) 
Fig. 2. Algorithmic procedure for generating precedence form of a  net- 

work.  (a) Extracting fmt  node set.  (b) Extracting second  node  set. 
(c) Final representation of network in precedence form (only coef- 
ficient branches are shown). 

combination of the  inputs and  present  and  past values of the 
node values. If  we do  not  order  the  computation of the nodes, 
it is possible that  the  computation of one node value requires 
other node values that have not  yet been computed. Thus there 
is an implied set of precedence  relations associated with  this set 
of N scalar equations and they are solely a  consequence of the 
coefficient branch topology  in the  structure. 

It is of interest  to investigate the implications of these 
precedence .relations. We first note  that  the precedence 
relations  are solely a  consequence of the coefficient  branch 
topology  in the  structure  and  do  not depend at all on  the 
coefficient-delay branches. An algorithmic  procedure for 
laying out a structure in  a form which reveals these'precedence 
relations will be given. The  procedure begins by  searching the 
network  for all nodes which do  not have coefficient  branches 
entering  them. These nodes  are then separated from  the  net- 
work and assigned to node  set { n l  }, as depicted in Fig. 2(a). 
It is apparent  that these node values can be computed  without 
knowledge of any of the  node values in the  network  for  time 
index n .  Their  evaluation may require  only  past  node values 
for time n - 1 due to coefficient-delay  branches, or present 
source input values at time n .  

Next,  the  subnetwork is considered  which contains all nodes 
and  branches in the  network except those  nodes which belong 
to  the  node  set { n l }  and  those  branches which connect these 
nodes. A search is made over this subnetwork  for all nodes 
which do  not have coefficient  branches from  other  nodes in the 
subnetwork  entering  them. These nodes are assigned to  node 
set { n 2 } ,  as indicated  in Fig. 2(b).  It is apparent  that each of 
the nodes in set { n 2 }  must have at least one coefficient  branch 
entering  it which comes from  node  set { n 1 )  when considering 
the overall network, since  otherwise the  node would have been 
contained in set { nl} .  This procedure is repeated, as depicted 
in Fig. 2(c), until  at  the last stage none of the remaining  nodes 
of the final subnetwork have coefficient  branches entering 
them. These nodes are assigned to node set { np} .  The result- 
ing configuration of the  network, as given in Fig. 2(c), is re- 
ferred to as the precedence form of the  network as it  depicts 
all of the precedence requirements of the  network in terms of 
node  evaluations. An example of the precedence  form of the 
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Fig. 3. Precedence  form of network  in Fig. 1. 
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L 

(b) 

Fig. 4. (a) Form of matrix term for matrix representation  in  a com- 
putable  form. (b) General form of IT when  node sets contain  more 
than one  node each and nodes are numbered  according to algorithmic 
procedure. 

network in Fig. 1 is given in Fig. 3. In this figure, we have indi- 
cated the coefficient  branches as solid lines and the coefficient- 
delay  branches as dotted lines to emphasize the  fact  that  the 
precedence  relations  are  a function only of the coefficient 
branch topology. 

If the foregoing algorithmic  procedure  does not proceed to 
completion,  then  the precedence  relations are contradictory 
and the  network is defined as being noncomputable. That is, 
if at some stage all nodes in the remaining subnetwork have 
coefficient  branches entering  them,  then this subnetwork con- 
tains one  or more closed loops  without delay in it and none of 
the nodes can be evaluated without requiring the value of at 
least one  other  node in the  subnetwork. If the algorithm  does 
proceed to  completion  and  produces a network  in  the  form de- 
picted  in Fig. 2(c), then  there are no closed loops  without delay 
in the  network and it is defiied as being computable. Generally, 
computable  networks are the only type of digital networks  that 
are of interest in digital signal processing. It should  be noted 
that if a network is noncomputable,  the  network  equation  (1 1) 
may st i l l  be solvable. However, they are not solvable by com- 
puting successive node values in the  network. 

The  network  property of computability can be represented 
explicitly in terms of the  matrix representation. Specifically, 
the  matrix representation  in (6) or (1  1) for a computable net- 
work can be written in a form  such  that  the  matrix fr is zero 
on  and above the main diagonal [ 51,  as depicted in Fig. 4(a). 
Furthermore,  it can be shown that if a network is noncom- 
putable,  then  the  matrix  representation  cannot be expressed in 
this form [ 11. A procedure for numbering the nodes of a 
computable  network in order  to  obtain a matrix  representation 

I N P U T   O U T P U T  

fc 34 fc35 

Iti 
‘c24  ’c25 

Fig. 5. Network of Fig. 1 with  nodes  numbered according to  precedence 
form  numbering  scheme. 

of this form can be determined with the aid of the precedence 
form of the  network. To obtain this form,  the  network nodes 
can be numbered  from 1 to N consecutively,  first numbering all 
nodes  in set { nl }, then all nodes in sets { n z } ,  { n J } ,  * * , 
{ n f } ,  until all of the  nodes have been numbered. With the 
node  numbers corresponding to the subscripts of the  matrix 
equation, this leads to a form of the  matrix f: given in Fig. 
4(b). If the  network is computable,  then  there is at least one 
node in  each  node set and consequentlyf: is at least of the  form 
given in Fig. 4(a)  and can generally be expressed in a form de- 
picted  in Fig. 4(b). 

If this  numbering  scheme is applied to the  network example 
of Fig. 1, it is apparent  from  the precedence form in Fig. 3 that 
the original node  numbers 2  and  4 must be interchanged. This 
results  in the new node numbering  scheme given in Fig. 5 .  The 
matrix  representation  for this network  then becomes 

+ Z-1 

where f: is now of the  form  such  that  it is zero  on and  above 
the main diagonal. 

If a network is nonrecursive and  computable, i.e., if it has no 
loops  (with  or  without  delay) in its  topology,  then  the  matrix 
representation can be expressed in a form  such  that  both fr and 
f$ are  simultaneously zero  on and above their main diagonals 
[ 1 1, as expressed in Fig. 4(a). The  procedure  for generating 
this form of the  matrix  representation is similar to that  for 
generating the  computable’form of the  matrix, with the excep- 
tion  that  both coefficient  and coefficientdelay branches  are 
used in the  construction of a network  form analogous to that 
of Fig. 2(c). An interesting consequence of this form of the 
matrix  representation is that  it leads to a  transposed transfer 
function  matrix T‘(z) which is lower  triangular.  This  follows 
from (8) since the inverse of a  lower  triangular matrix is lower 
triangular. 
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Tellegen's Theorem for  Digital Networks 
Tellegen's theorem  for analog networks has  played an im- 

portant role in developing and understanding  network prop- 
erties [ 61, [ 7 1 .  Because digital networks, and  more generally 
signal-flow graphs, are not subject to  Kirchhoffs laws, Tellegen's 
theorem in its  most general form does not apply. It does  ap- 
ply,  however,  in  a somewhat restricted form. Tellegen's 
theorem, as it applies to digital networks, provides a  useful 
framework for developing and  interpreting a number of im- 
portant  and useful network properties. In particular, we  will 
utilize Tellegen's theorem to show that  the  matrix of transfer 
functions  for a network and its transpose  are  interreciprocal. 
As  we will see,  this property is useful for computer-aided 
analysis of filter structures. Tellegen's theorem also leads to a 
number of useful  relations which we utilize  in  Section V for 
sensitivity analysis of digital filter structures. While in many 
cases these properties can be developed in alternate ways with- 
out utilizing Tellegen's theorem  directly, Tellegen's theorem is 
appealing  in part because it provides a  unifying basis. 

Several variations of Tellegen's theorem  for signal-flow graphs 
have been proposed, including those by Seviora and  Sablatash 
[ 8 ] ,  Fettweis [ 9 ] ,  Blostein [ l o ] ,  and Lee [ l l ] ,  [ 1 2 ] .  The 
form of the  theorem and its related concepts which are pre- 
sented here is perhaps  most similar to  that proposed by Fett- 
weis, and is stated as follows. 

Tellegen's Theorem: Consider two  networks, each of which 
contains N nodes. For  the first ne'twork, the source  branch sig- 
nals, coefficient  branch signals, coefficient-delay  branch sig- 
nals, and node signals are denoted as x k ( z ) ,  w&), wd,k(Z), 
and Y k ( z ) ,  respectively; for  the second network,  they are de- 
noted asX;(z), w:&), w&), and Y;( z ) ,  respectively. Then 
Tellegen's theorem  states  that 

which follows in a  straightforward manner by substituting (4) 
into  the  identity 

N 
[ y k ( z )  y ; ( z )  - y ; ( z )   y k ( z ) ]  = 0 (13) 

k=l  

Alternatively, Tellegen's theorem can be expressed  in the time 
domain as 

N N  
[Yk(")  (W:,X(n) + wi,k(n))-   y;(n)   (wcjk(n)  

j = 1  k = l  

N 
+ w d , ~ ( n ) ) I  + [Yk(")x;(n)-  y;(n)xk(n)I = 0. ( 1 4 )  

k = l  

Three closely associated concepts which follow directly  from 
Tellegen's theorem are those of reciprocity,  interreciprocity, 
and network  transposition. These concepts have long  histories 
in classical network  theory. They have been developed 
specifically for linear digital networks  through  the  efforts of 
Jackson [ 13 1 and Fettweis [ 91. They are also closely related 
to Mason's theorem  on flow  graph reversal [ 21, [ 31 and  to  the 

adjoint signal-flow graph concepts proposed by Seviora and 
Sablatash [8], Blostein [ l o ] ,  and Lee [ l l ] ,  [ 1 2 ] .  The dis- 
cussion in the  next  two sections  follows most closely the ap- 
proach  taken by Fettweis. 

Reciprocity and Interreciprocity in Digital Networks 
A network is def ied   to  be reciprocal if, for any two signal 

distributions in the  network,  denoted by primed  and unprimed 
variables, it is possible to write [ 91 

N 
[ y k ( z ) x ; ( z )  - y ; ( z ) x k ( z ) l  = 0 (1 5) 

k = l  

For linear  shift-invariant networks,  it follows by substituting 
(1 0) into  (1 5 )  that this is equivalent to  the  condition 

T,k(z) = Tkj(Z) (16) 

for all pairs of nodes j and k in the  network.  That is, the  matrix 
of transfer functions T ( z )  for a  reciprocal network is sym- 
metric, so that  for any  pair of nodes j and k, the transfer  func- 
tion  from j to k is identical to  the transfer function from k to j .  
In practice, digital networks generally do  not have this property. 

A  more important,  but closely related, concept is that of 
interreciprocity between two  networks [ 9 ] .  If two  net- 
works are considered,  each  with N nodes, the first  with signal 
variables x&) and Y k ( z )  and the second  with signal variables 
x;((z) and YL(z) ,  then  the  two  networks are interreciprocal if 

N 
1 [ y k ( z ) x ; ( z )  - y ; ( z ) x k ( z ) l  = 0. (17) 
k = l  

This relation is identical to  that of (1 S), except  that  the primed 
and  unprimed variables in  this case correspond to sets of 
variables in  two  different  networks. By substituting  (10)  into 
(17),  it follows that  for linear  shift-invariant  networks,  this 
condition is equivalent to  the  condition 

Tlk ( Z  = T i j  ( Z  (1 8) 

for all pairs of nodes j and k in the  two networks. That is to 
say, the  transfer  function  matrix of the  unprimed  network is 
equal to  the transpose of the transfer function  matrix of the 
primed network.  The applications of this concept will become 
apparent  shortly. 

Network Transposition 
Another  important  concept  in  network  theory is that of net- 

work transposition [ 91, [ 131. The transposition of a network 
is defined as  the  operation of reversing the direction of all of 
the branches in  the  network.  The resulting network is referred 
to as the transpose network.  In  the  matrix  representation, this 
corresponds to  the  operations 

and 

where the primed  matrices  correspond to those of the trans- 
pose network. 

An important  relationship  between  networks  and  their trans- 
poses is that  they  are interreciprocal. This can be shown  by 
utilizing (19),  together  with Tellegen's theorem (1  2) .  Specifi- 
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cally, for  the original network, time increment n.  As discussed in  Section 111, the  computable 
form of the  matrix  representation is that  form in  which fi is W c j k ( z ) = F c j k ( z )   y j ( z )  (20a) zero on  and above the main diagonal. To perform the  network 

W d j k ( Z )  = F d j k ( Z )   y j ( z )  (20b) analysis, the  initial  conditions y ( -  1) = 0 are chosen and  the 

while, for  the transposed (primed)  network. 
input signals 

Iv. TIME AND FREQUENCY DOMAIN ANALYSIS OF 
DIGITAL NETWORKS 

A  particularly important area of application of digital net- 
work  theory is in the development of general techniques for 
the analysis of arbitrary digital networks.  The need for  such 
techniques can be recognized when one considers the large 
variety of possible structures recently  proposed as candidates 
for fiiter implementation.  Some of these types of structures 
are  illustrated  in  Section VI. With a  computer-aided network 
analysis package, the process of analyzing and comparing such 
structures can be reduced to a much simpler and more manage- 
able  task. 

The general matrix  representation  for digital networks pre- 
sented in Section I1 provides for a  convenient way of uniquely 
expressing networks of any configuration on a computer.  The 
process of describing these networks and analyzing them can 
then  be  interpreted in terms of performing appropriate ma- 
nipulations on  the  computer. 

Frequency  Response  Analysis 
One  approach to obtaining  the frequency  response of an 

arbitrary  network is to perform the  matrix inversion in (8)  at 
each  frequency. In general, this  approach is not very desirable 
as it requires an excessive amount of computation and can be 
prone to numerical errors [ 141. A more desirable approach  for 
computing  the  frequency response can be realized by express- 
ing the  matrix  representation (6) in the  form 

[ I - f ; - f : z - ' ]   Y ( z ) = X ( z )  (21) 

where I is the N X N identity matrix. This  matrix  equation 
corresponds to N simultaneous  linear scalar equations in the N 
unknowns Y i ( z ) ,  i = 1,2 ,  * * * , N .  By assuming that  the source 
branch  inputs are all zero, except  for  that  connected to node 
a, the  solution to this  set of equations provides the  transfer 
functions T, j ( z ) ,  j = 1,  2, * * , N .  The  solution of the N 
simultaneous  linear equations can be  obtained  by a  procedure 
such as Gaussian elimination using complex arithmetic. Gen- 
erally, the matrices fi and f; will be relatively sparse. Various 
techniques were recently  proposed for taking  advantage of 
this  sparsity to minimize the  amount of computation neces- 
sary to solve equations of this type [ 151, [ 161.  Although 
many of these techniques have been developed for  computer- 
aided analysis of conventional analog circuits, many of them 
apply equally well for  the case of digital networks. 

Time  Domain  Analysis 
One  approach  for  computation of the unit-sample response 

is to first express the  time  domain  matrix  representation  (1  1) 
in a computable  form and then solve the N scalar equations 
corresponding to  this  matrix  equation consecutively at each 

for y j ( n )  for j = 1 ,2 ,  * - * , N  consecutively  and for n = 
0, 1,  2, 3,  - consecutively. As this  set of calculations corre- 
sponds  directly to  that which must be performed in  the  actual 
implementation of the  structure, simulation of effects  such as 
limit cycles and overflow can also be incorporated  into this 
procedure  by duplicating on  the  computer  the  actual arithme- 
tic  operations which  would be performed  in the hardware 
implementation of the  network. 

An alternate  approach to  time  domain analysis is to trans- 
form (1  1)  into  the  form 

y ( n )   = A y ( n  - 1) + B x ( n )  (22) 

where 

B = [ I - f i J '  (23) 

and 

This can be accomplished if the  initial  matrix inversion in (23) 
can be performed as it can for  computable  networks since in 
that case det [ I  - f i ]  = 1. The  solution of the  unit sample 
response can then be obtained  by solving (22) successively for 
y ( n )  with  the same initial  conditions and input signals already 
used. As this is no longer the same set of equations as that 
represented  by the  structure,  the simulation of limit cycles or 
overflow effects  cannot be made with  this method. 

Analysis of Transpose  Networks 
The preceding frequency response and  time  response  analyses 

yield the transfer functions  or unit-sample responses, respec- 
tively, from  the  network  input to all points  internal t o  the  net- 
work with a single analysis. In  some cases, it is desired to 
analyze such responses from various points  internal to  the  net- 
work to  the  output.  For example,  in the analysis of the  effects 
of computational  roundoff noise, the roundoff errors  occur  at 
various points within the  network  and can be modeled as an 
injection of white noise sources  at  these  points in  the  network 
[ 131, [ 171, [ 181. To determine  the  effect of these  errors on 
the  network  output,  it is necessary to determine  the  transfer 
functions  from various internal  points of the  network  to  the 
output. With the analysis procedures  described, this would re- 
quire several analyses at each frequency. Alternatively,  this 
can be  performed  with a single analysis at each frequency of 
interest  by exploiting the interreciprocal property of transpose 
networks discussed in Section 111. For example, the  frequency 
response analysis of the transpose network corresponds to  the 
analysis of the N simultaneous linear equations given by 

where the unprimed variables correspond to  those of the 
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original network and the primed variables correspond to those 
of the transpose network. With x;(~) chosen to be unity and 
X&z) chosen to  be zero for j # b ,  the  solution gives all of the 
transfer  functions 

- -  

 TI^ (z) = T;j ( z )  

= Yi(z), j = 1, 2, - * - , N .  

That is, it gives all of the  transfer  functions  from all internal 
points of the  network to  the  output  for a single analysis of the 
transpose network. A similar computational savings can be 
obtained  in a time  domain analysis where the unit-sample re- 
sponses from  more  than  one  internal  point of the  network  to 
the  output are desired. 

v. SENSITIVITY AND DERIVATIVE ANALYSIS OF NETWORKS 
The  implementation of digital  filters is subject to the con- 

straint of finite register length,  the  effects of which manifest 
themselves in two ways. One is the  introduction of error  due 
to arithmetic  roundoff  and  the second is a change in the over- 
all filter  characteristics due  to coefficient quantization. As 
indicated in the previous section,  the analysis of the effects of 
arithmetic  roundoff can  utilize the  properties of transpose 
networks to simultaneously compute  the  transfer  functions 
from all of the  roundoff noise sources to  the  output. 

The  effects of coefficient quantization can also be analyzed 
utilizing many of the ideas introduced in the previous  section. 
The sensitivity of fiiter  characteristics to quantization of the 
coefficients is highly dependent on  the particular structure 
used to represent the fiiter  and consequently, in  evaluating 
filter structures,  it is important  to carry out  an analysis of the 
sensitivities of the  system  function with  respect to  the  branch 
coefficients or  branch  transmittances  in  the  network.  In  this 
section, techniques  for  such a  sensitivity analysis will be dis- 
cussed. In  addition,  two  other  types of analysis,  which are 
sometimes desired in  general computeraided analysis systems, 
are considered. The first of these is the evaluation of the group 
delay associated with  the system function of a network  and  the 
second is the slope of the magnitude of the  frequency response. 

A First-Order Network  Sensitivity  Relation 
A convenient  expression for evaluating the sensitivities of the 

system function, with  respect to  the  branch coefficients,  has 
been  proposed by various authors, including Seviora and 
Sablatash [ 81, Fettweis [ 91, and Lee [ 1  1 1,  [ 121. The proof of 
this  expression is very elegant in  that it involves the use of 
Tellegen’s theorem and the  concepts of interreciprocity and 
network  transposition  [81, [ 91, [ 191. It  is a rather lengthy 
proof, however, and will not be repeated  here. The sensitivity 
expression can be defined by considering the single-input- 
single-output network indicated  in Fig. 6. The system function 
of interest in  this network, H(z) ,  is equal  to  the transfer  func- 
tion T d ( z )  from  node a to  node b :  

H(z)  = Tu&). (26) 

The sensitivity of H(z)  with respect to a branch  transmittance 
Fnm(z)  of a branch  (either a  coefficient or a coefficientdelay 
branch)  from some node n to some node m can be given as 

/-  
_------- - --_ 

F,,Iz) \ 

the  network-the transfer function  from  node a to node n and 
the  transfer  function  from  node m to  node b .  

In some cases, the sensitivities of the magnitude of the sys- 
tem function  with respect to  the  branch coefficients fcnm and 
f d m  may be desired. These sensitivities can be derived with 
the aid of (27) and are given as [ 1 I 

and 

where it has  been assumed that f,,, and fdm are real. The 
sensitivity  relations (27)-(29) are expressed in terms  of  the 
system function and two transfer functions Tu,(z) and Tmb(z) 
in the  network.  The first transfer  function is always one which 
is directed from  the  input of the  network  to  an  internal  point 
of the  network  and  the second transfer  function is always one 
which is directed from  an  internal  point in the  network  to  the 
output.  Thus  the evaluation of network sensitivities is per- 
formed via the  computation of network  transfer  functions  and 
they can be determined  with  only  two analyses of the  network 
at  each  frequency.  The first  set of transfer functions Tu&) is 
obtained from  the analysis of the original network and the 
second set of transfer functions Tmb(z) is obtained  from  the 
analysis of the transpose network as discussed in Section IV. 
The system function Tab(Z) can  be obtained  from  either of the 
two analyses. If the sensitivity of the system function  with 
respect to more  than  one coefficient  in the  network is desired, 
as is often  the case, these sensitivities can all be obtained  from 
the results of the same two  network analyses with essentially 
no  extra cost  in computation. This then  constitutes a highly 
efficient technique  for  the analysis of multiparameter  network 
sensitivities. The  technique is similar to  the  adjoint  network 
approach  by  Director and Rohrer [7]  for evaluating sensitivi- 
ties of analog  networks. 

Higher Order  and Large-Change Network Sensitivities 
In  studying  the  effects of variations of the system function 

H ( z )  due  to variations of coefficients or  branch transmittances, 
we may, in  some cases, desire to know  the  effect of changes in 
H(z) ,  denoted as AH(z), due  to changes AF,,(z) in  a branch 
transmittance Fnm(z) ,  where AFnm(z) may be  more  than an 
incremental change. These  changes can be expressed with the 
aid of the Taylor’s series expansion  in  the form 

= Tan(z)  Tmb(z). (27) U ( z )  = - aH(z) AFnm ( z )  
aFnm (2) 

Thus  the sensitivity of H ( z )  with respect to F m ( z )  can be ex- 
pressed in  terms of the  product of two transfer functions in 
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where H ( z )  = TUb(z),  as denoted in Fig. 6. The higher order 
sensitivities in this  expression can be obtained  with  the aid of 
the first-order network sensitivity relation  in (27) and the 
chain rule for  differentiation. This approach leads to a  general 
expression for  the higher order  network sensitivities, which for 
the  rth-order sensitivity can be given in the  form [ 51 

By applying  this  expression to  the Taylor's series expansion of 
(30), a closed-form solution can be obtained: 

where the  transfer  functions Tun(z) ,   Tmn(z) ,  and T,b(z) are 
evaluated for AFn,(z) = 0. Various forms of equations similar 
to (32) have been widely used in feedback control  theory in- 
volving the use of signal-flow graphs [ 201, [ 2 1 ]. It is some- 
times  referred to as the bilinear theorem. 

An interesting  consequence of the large-change sensitivity re- 
lation (32) can be observed for  the class of nonrecursive  com- 
putable networks. For these structures  it has been observed in 
Section 111 that if F,, ( z )  # 0, then Tmn(z)  = 0. Consequently, 
for  this class of structures, '32) takes  the  form 

&(Z) = TUn(z) Tmb(z )  AFn,(z) 

(33) 

Thus the change in the system function varies linearly with 
respect to a change in a branch  transmittance in  nonrecursive 
computable  networks [ 51. 

Derivative  Analysis of Networks 
Two  other  types of analysis, which  are  sometimes desired in 

general computer-aided analysis systems,  are the evaluation of 
the group  delay of the system function of a network  and  the 
slope of the magnitude of the  frequency response. For these 
analyses, the frequency  response can be  defined as 

= ~ ~ ( ~ i w )  I , i e ( w )  (34) 

where w is the angular frequency and e(o) is the phase. The 
group  delay r is then given by 

and the slope of the  magnitude of the  frequency response is 
given by a I H(eIW) I P o .  General  expressions for these quanti- 
ties can be derived in terms of appropriate system functions in 
the  network  and can be expressed in  the  forms [ 1 I ,  [ 221 

where Re [e] and Im [.] correspond to  the  operations of taking 
the real and the imaginary  parts, respectively. The  double 
sums  in (36) and (37) correspond to  the  operation of summing 
over all possible coefficient-delay  branches  in the  network. 
Alternatively,  this sum may be carried out  only over those 
coefficient-delay  branches which have nonzero coefficient 
values fdnm as all other  terms in the  summation  for which 
fdm = 0 will be zero. Similar analysis techniques for  the 
analysis of group  delay  and the slope of the magnitude of the 
frequency response for analog networks have been  proposed 
by Pine1 and Blostein [ 231, [ 241. 

Some of these general analysis techniques have been  utilized 
in  a digital network analysis package called CADNAP [ 1 1 .  It is 
capable of analyzing networks of arbitrary configuration for 
system functions, unit-sample responses, and  coefficient sensi- 
tivities. This package was used for  the analysis of the  networks 
given in Section VI. 

A  Statistical  Measure of Word Length 
In evaluating  and  comparing  various structures,  an  important 

consideration is the required  word  length. In principle, for  any 
given design, the required word length can be determined 
exactly  by evaluating the  frequency response for successively 
smaller values of coefficient  word length  until  the filter specifi- 
cations are  exceeded. An alternative approach is to base the 
analysis of coefficient errors  on a  statistical  representation. 
One of the first attempts to use a  statistical  measure of coeffi- 
cient  errors for comparison of digital filters was made  by 
Knowles and Olcayto [25] .  More recently, a statistical ap- 
proach  for estimating the coefficient  word length necessary to 
keep the magnitude of the system function of a  digital filter 
within  a prescribed error  bound was proposed by Avenhaus 
[ 261 and  modified by Crochiere [ 271. A similar measure for 
finite  impulse  response  filters  in  direct  form has been  proposed 
by Chan and Rabiner [ 281. The resulting measure of word 
length  by these methods, referred to as  statistical word length, 
is a conservative estimate and  can generally predict the neces- 
sary  coefficient  word length  to within  a  couple of bits. This 
measure is generally more efficient to compute  than  the  actual 
word length.  Consequently, it is useful in  studies where 
general  comparisons of coefficient sensitivity properties of 
structures  are desired but where exact values are unnecessary. 
Such a  comparison is presented in  Section VI. 

A  second  application of statistical word length is as an aid in 
optimizing the design of a digital filter for minimum  coefficient 
word length. The statistical  word length is useful  in  this appli- 
cation because it is a more convenient function to minimize 
than  the  actual word length which is a  nonlinear  integer func- 
tion of the filter design parameters. Improvements of one  to 
three  bits have been observed using this approach [27],   [29].  
To define the statistical word  length, assume that  it is of 

interest to design a  filter for which the magnitude of the ideal 
system function is HI(o) with a given tolerance function 
6(o). When the filter  coefficients  are specified to  infinite 
precision, the magnitude of the system function will be de- 
noted as IHo(w) I .  The magnitude  error  incurred when finite 
precision coefficients  are actually used will be denoted by 
AI H(w) I so that  the  true magnitude  response I H(o)l will be 

IH(o)l = A l H ( o ) l +  lHo(o) l .  
The filter  must  be designed in such a way that IH(w)l ap- 
proximates the ideal  transfer function  to within the allowed 
error  deviation. 
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For a given filter structure,  the  error AI H(o)I can be ex- 
pressed in  terms of a linear first-order approximation: 

where the values ci( i  = 1, 2, * * * , m) represent the ideal infinite 
precision values for  the filter. Now let Q define  the  quantiza- 
tion  step size for  rounding of the coefficients  and assume that 
the  quantization  errors Aci have a uniform probability of 
lying between  -Q/2  and  Q/2.  The statistical errors  in  the co- 
efficients then have zero  mean  and variance u i C i  = Q2  /12. 
Assuming that  the  errors Aci are independent,  the variance of 
AIH(o)l  is 

where 

(39) 

Assuming that A I H(o) I has approximately a Gaussian distri- 
bution  with variance given by  (39), we can choose a value 
X U A I H ( ~ )  I such  that 

P[ IAIH(u)II  GxoAlH(w)ll =Y 

01 

We will be assured with probability y that 

I A I W W ) I I G ~ ( ~ ) -  I I H o ( ~ ) l - H z ( ~ ) l  
if we choose Q so that  at all frequencies of interest 

Then  with q(o) denoting  the maximum allowable quantiza- 
tion  step size as  a function of frequency, 

m(mJ) - I I H O ( 0 ) I  - HI(0)O 
do) = . (43) 

The coefficient word length of the  filter can  be  defined  as 

W =  1 +iM- iL (44) 

where 2”  is the value of the most significant bit and 2iL the 
least significant bit  (the sign bit is not  counted  in  (44)); iM is 
dictated  by  the  magnitude of the coefficients and iL by the 
coefficient step size. In  particular, using (43), iL is approxi- 
mated as 

and the  statistical word length W is given by 

W =  1 + i M  

To compute  the statistical  word length,  it is necessary to 
compute  the  function S(w) as  given by (40). This can be done 
using the techniques discussed previously in this section. 

For  the case of equiripple  filters, it is generally possible to 
make use of the fact that q ( o )  will usually be a  minimum at 
those frequencies for which (6(w) - 1 1  Ho(w)l - HAW) 1 )  is a 
minimum, i.e., the frequencies at which the ripples  occur. In 
this case, it is generally sufficient to evaluate (43) only at  those 
frequencies in order to evaluate (46). 

VI. DIGITAL FILTER STRUCTURES  AND 
SENSITIVITY COMPARISONS 

The choice of a  filter structure is an  important consideration 
in  the design of a digital filter. This  choice  directly affects  the 
word-length requirements  for  the signals and  coefficients  in the 
filter  and determines  its characteristics  such as roundoff noise, 
limit cycle behavior, and  dynamic range. In response to this 
problem, many  types of structures were recently  proposed by 
various authors as candidates for filter implementation. Some 
of these structures  are examined in this  section with regard to 
coefficient sensitivity for  the case of a specific bandpass  filter 
example used by Avenhaus [26].  The comparison is made on 
the basis of statistical word length  and  the  number of required 
multiplies and adds. In Section VII, a further comparison will 
be  made on  the basis of parallelism and serialism. The results 
should not be taken as final or conclusive for all examples or 
applications but,  rather,  they should  be used to gain insight 
into  the  types of structures  that appear to be desirable and 
look promising for  further investigation. 

The  Structures 
The filter  specifications used for  the comparison are given in 

Fig. 7. Six different  structures were synthesized for  this ex- 
ample. No attempt will be  made to explain the details for 
synthesis of each of these  different types of structures as these 
details are readily available in the references. Further examples 
also can be found in [ 11 and [30].  

The  fiist  three  types of structures which were examined are 
the well-known direct-form I1 structure,  the cascade-form 
structure  (with second-order  direct-form I1 sections),  and the 
parallel-form structure, given inFigs. 8 ,9 ,  and 10, respectively. 
These structures correspond to representations of the system 
function as a ratio of polynomials,  a product of ratios of 
second-order  polynomials,  and  a  partial-fraction  expansion, 
respectively. They were  perhaps the first classes of structures 
to be considered  in digital signal processing. Their  properties 
have been studied extensively and are well known [ 191, [30]- 
[ 321. Another way of expressing system functions is by means 
of continued-fraction expansions. Mitra and  Sherwood [ 331, 
[34] have proposed several classes of structures which can be 
realized by this approach. Fig. 11 gives one such structure. 

A  major  category of structures which have received attention 
recently are the ladder or  lattice  structures. Unlike the previ- 
ous categories, these structures are not synthesized by repre- 
senting the system function in terms of some factorization  or 
expansion. Instead,  the mechanisms  behind the synthesis 
procedures for these structures are closely related to  the  con- 
ventional two-port  network  procedures used in analog circuit 
theory. As a  consequence, these  structures are  composed of 
building blocks  which take  the  form of two-input,  two-output 
networks. An example of this class of structures is given in 
Fig. 12. It is synthesized  according to procedures suggested by 
Gray  and Markel [ 351. 
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k l  
OUT 

L : 0005656462366 
C, 02855823838 C1 : 0 4 4 5 7 1 4 2 3 1 7  C, : 0 196901665 C,O. 05515388641 
c2 : 0 4 5 , 2 5 9  755 C, : .' 09869455 c8 -0 W99665157 Cl i  -0.7304169706 

C, - 0  9W6060616 c6 : -0313078613 c) i .0%95353354 t i l  : -09705899009 

Fig. 9. Cascade-form (direct-form I1 sections) structure (Example 2). 

W 
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Wp~~o.4111111 H w s , = 0 . 3 8 4 7 0 1 5  T 

wp2;0 .4666667  'II W s 2 ' 0 . 4 9 4 4 4 4 4  7 

Fig. 7. Filter design specifications for eighth-order bandpass example. 
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C I  = 0.2034508401 
C2 0.2855823838 

Q = -0.9116860616 
C3 a 09026252904 

Cg = 0.4457342317 
c, = -0.9457352763 
Cg i -0.913078673 

k : 010000 

c s  * 0.182701196 

d : 0.07220910762 

clg = 0.196901665 
cp : -0.2052671178 

CII  = -0.2413054652 

c12 : -0.9695353354 

cl, 0.5515388641 
CIS i -0,1965294023 

c Is  = 0.298888793 
e16 : -0.9705899009 

I l l  c9- 

Fig. 10. Parallel-form structure (Example 3). 

h = 0 .005656462366  

c l  = 1.479757145 c:, z -  I 387818861 

c3 ;-4.548129731 c4 : 3.990834175 

c5 = 4.352241828 c6 :-3.801090558 

c 7  ' -6 .802822262 cg  = 5 .978059098  

cg  = 4 094876357  C10~-3,801090558 

c l I  ; -4  026604318 cI2: 3.990834175 

c I3= -o  7833447265 cI4:- 1.387818861 

Fig. 8. Direct-form I1 structure (Example  1). 
c15: I 2 3 2 0 0 7 4 4 2  

0.1736820909 
- 1  2.7837888 

STAGE 3 c 7  ' 
cg = 

0.4649449432 
-1.606209516 

-0.2767502193 
7.610142205 

Another class of structures synthesized  in  a manner similar 
to that of classical analog structures  are  the wave digital  filters 
of Fettweis [ 3 6 ] ,  [ 371. This class of structures recently re- 
ceived considerable attention [ 381 -[41].  The synthesis proce- 
dure  is similar to  that of classical analog circuits; in  fact,  at 
present, the easiest way to  design them is via the design of 
appropriate analog prototype  structures.  The digital structures 
are obtained by converting  these analog designs to correspond- 
ing digital designs. The resulting  digital structures are discrete 
simulations of the wave-flow diagrams of the analog structures. 
As such, digital structures designed in this way exhibit proper- 
ties similar to their analog counterparts.  Just as there  are 
many ways to synthesize analog structures,  there are also many 

STAGE 5 5:; 1 3.939247317 
-0.4301416747 

---- 
STAGE 6 

'213 : -0.9905202523 
CI, = 0.6779657016 

~ ~. 

STAGE 7 
CIS = -21.82668197 

c16 = -0.4193825017 

'17 
.. - .- . 

CI7 i 0.2481853405 
STAGE * CIg i 04028556869 
. . ... . . ~ .  

Fig. 11.  Continued-fraction  expansion structure type  1B  (Example 4). 
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STAGE I STAGE 2 STAGE 3 STAGE 4 S - A X  5 STALE 6 S - A G E  7 5 'AX 8 

C 1  = 07033447265 Cg : 0.005656462366 C17 : 0.8446320267 

C, : 0 9843741951 
c2 : -0  1085428229 cI0 : 0.0002916124024 

C4:  - 0  1920962931 

t i l  : -0OC1699657657 

c3 : 0 9936376827 
CI2 : -006900454614 

c 6 :  -0  1090252997 
c13 : 02031623313 

c7 :  09914182038 

Cl, : 001061747099 

Cg = - 0 1964790194 
C,) : -0.01641846145 
CI6 = - 1.031107912 

Fig. 12. Ladder structure by Gray and Markel [ 351 (Example 5). 

%T';E STALE 2 STuGE 3 STAGE 4 STAGE 5 

ru -  
'SEE TEXT 

I N  

I i 3,194961 C, : 0007805575210 Cg : -0.3698270573 

C I  = 006502370945 C6 : 00574957160 CI0  i -0  1915370541 

C p  : 02235692269 c, : .O 1915378541 C , ,  0 1915370541 

C, i 0 1626985222 
C, i 05009204606 Ca : 00003565321277 

Fig. 13. One type of wave digital fdter (Example 6).  

TABLE I 

Statistical  Word 
Length (bits) No. of No. of Multiply 

Example  Network  Description  Passband W, Stopband W, iM Multiplies  Adds  Product 

Bit X 

1 dirmt-form I1 20.86  10.85 2 16  16  334 
2 cascade  (direct-form 11) 11.33 5.76 0 13 16  147 
3 parallel  form 10.12 7.95 -1 18 16  182 
4 continued-fraction 1B 22.6 1 14.46 4 18 16 408 
5 ladder 13.97 10.81 0 17 32  238 

6 wave digital  filter 11.3Sa  5.67 -la 12/11a 31 136/125 
(Gray and  Markel [ 351 ) 

(Fettweis [ 361,  [37]) 

aSee text. 

ways to synthesize the wave digital filters. An example is  given 
in Fig. 13. 

Comparisons of the Structures 
Comparisons of these structures have been made  on  the basis 

of statistical word  length and  the  number of additions  and 
multiplications  required. The results  are tabulated  in Table I. 
The  statistical word  lengths were evaluated  according to (46), 
with x = 2 (e.g., y = 0.95). This measure  represents  a conserva- 
tive estimate of the coefficient word length  (for fixed-point 
arithmetic) necessary to meet the  filter specifications  in Fig. 7. 

Separate evaluations of the  statistical  word lengths were 
made  for  the passband and  stopband specifications in order to 
obtain a more general picture of the sensitivity  characteristics 
of each type of structure. Obviously, the largest of the  two 
word-length estimates  must  be chosen to meet the specifica- 
tions  at all  frequencies. 

The  statistical word lengths are generally conservative esti- 
mates of the necessary word length  (for coefficient  rounding) 
by  approximately 2 bits. For  example,  the cascade (direct- 
form 11) structure of Example 2 requires  10-bit  coefficients to 
meet the specifications  in Fig. 7, whereas the statistical word 
length  predicts  11.33  bits. These word lengths do  not include 
the  extra  bit required for representing the sign. One  exception 
to this occurs  for  the case of the wave digital  filters. For this 
class of structures,  the statistical  word length  for meeting the 
passband constraints appears, from observations, t o  be  conser- 
vative by  approximately 4 bits. For example, the  actual word 
length required for  the wave digital  filter to meet the passband 
requirements was 7 bits, whereas the  statistical word length 
was 11.35 bits. This can be  attributed  to  the special pseudo- 

passive and pseudolossless properties of these  structures which 
are  inherited  from  their analog counterparts 1401, [41 I .  

The value of iM for each structure (see Table I) corresponds 
to the power of 2 represented by  the  most significant bit in 
the binary  representation of the coefficients. It is chosen 
such  that  the largest coefficient  magntiude (except  the scale 
factor) in the  structure  is  within  the range 2" and 2"*'. 

The  number of multiplications  and additions required for each 
structure are tabulated in Table I. It should be emphasized that 
these numbers are for  the specific bandpass  elliptic  filter dis- 
cussed and are not necessarily representative for  arbitrary sys- 
tem  functions. Also indicated  in Table I is the bit-multiplier 
product  for each structure.  It represents  a  rough  measure of 
the  total  amount of computation which must be performed 
in each structure. 

The comparisons of the  structures in this  section have been 
made primarily on  the basis of coefficient sensitivity and  the 
number of multiplies  and  adds. These attributes are clearly 
important in the choice of a structure, particularly since they 
vary so widely from  one structure  to  another, as can be seen 
in Table I. Of equal  importance in the choice of a structure 
are the issues of roundoff noise,  limit  cycle  effects, and  dynamic 
range. Although  these  characteristics have not been  considered 
in this  comparison, the  authors feel that  it is important  to men- 
tion them in order  that these  results  may be viewed in a proper 
perspective to  the overall issues of filter structure design. 

VII. PARALLELISM AND SERIALISM IN STRUCTURES 
In the previous section we carried out a  comparison of some 

structures based on coefficient  sensitivity.  There  are,  however, 
many other considerations to be taken  into  account in choosing 
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a filter  structure. In this  section we suggest one  such  additional 
consideration, that of the  potential parallelism inherent in the 
structure. In some  applications it is  of interest to implement  a 
digital filter at  extremely high sampling rates,  requiring 
pardel  computation; in such cases, a structure must be chosen 
which permits the required degree of parallelism. These con- 
siderations  are similar in  some  respects to those of computation 
structures  for multiprocessor design [421-1441. 

Our approach to discussing parallelism in structures is 
through  the  notion of precedence, as presented  in  Section 111. 
The  precedence form of a structure reveals the  order in which 
nodes  must be evaluated and,  consequently,  the smaller the 
number of precedence levels, the higher the degree of parallel- 
ism in the  structure. By beginning from the  node prece- 
dence  relations, it is possible to develop a  coefficient prece- 
dence graph which specifies the  number of multiplier  prece- 
dence levels. One of the major fundamental  operations 
generally involved in the  implementation of a digital filter 
structure is that of multiplication. Since the time  needed to 
perform  a multiply is often  much greater than  that needed for 
an addition  or  for  other  operations in the  structure,  the time 
necessary to  compute one  filter cycle can be roughly  approxi- 
mated in  terms of multiplier cycle times (e.g., the time neces- 
sary to  compute a multiply).  For this situation,  the parallel/ 
serial tradeoffs of a structure (e.g., speed/cost  tradeoffs) can be 
roughly approximated in terms of its multiplier  precedence 
relations. To develop the multiplier  precedence  relations, it is 
convenient to draw the  network such that all delay branches 
have unity coefficients and,  consequently,  do  not require 
multiplies. All multiplications necessary for  the  implementation 
of the  structure are then represented  by the coefficient  branches 
in the  structure and  appear  in the precedence form of the  net- 
work, as illustrated in Fig. 14.  This form of network is 
identical to  that in Fig. 2(c) and the precedence  relations for 
coefficients  are interpreted in a manner similar to  that  for 
nodes. 

A precedence graph for  those multiplies which must be per- 
formed in  the  implementation of the  structure can  now be ex- 
tracted from the foregoing coefficient  precedence  relations. It 
must be recognized that some of the coefficients associated 
with the coefficient  sets  in Fig. 14 may not be required to be 
implemented as multiplies,  namely,  those which are unity. 
Consequently, the coefficient  precedence  relations  must be 
modified to account  for these  situations. For example, if a 
coefficient which belongs to coefficient set {c2} is preceded 
only by unity gain coefficients in set {cl}, then  the multiply 
associated with  this  coefficient can be performed  in the same 
time slot as the  multiplies for coefficients  in { c1 }. With these 
situations  taken  into  account,  the procedure leads to a set of 
multiplier  precedence  relations, as depicted  by the multiplier 
precedence graph of Fig. 15. The circles in this graph represent 
the multiplies which must be performed and  the arrows merely 
indicate  the precedence  relations. The multiplies associated 
with set { ml} can all  be performed  simultaneously without 
conflict  in approximately  the same time slot. Once these 
multiplies have been performed, all of the multiplies in  set 
{m2} can be performed  simultaneously  in the  next time slot, 
etc.  Coefficients  in set { m l  } correspond to all  of the coef- 
ficients  in { c1 } which must be implemented as multiplies  plus 
all of the coefficients  in  sets { c2}, { CJ}, - * , { cf-l} which 
are preceded  only by coefficients that  do  not have to be 
implemented as multiplies. Coefficients in set { m2 } cor- 
respond to  those remaining  coefficients in set { c2 } plus  any 
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Fig. 15. Multiplier precedence graph. 

( 4  
Fig. 16. (a)  Example of digital network. (b) Its precedence form. 

(c) Its  multiplier  precedence graph. 

coefficients  in  sets { cg}, { cq}, * . , { ~ f - ~ }  which can be 
moved up  without  conflict in the multiplier  precedence rela- 
tions. By continuing this  procedure, the multiplier prece- 
dence graph  can be generated. 

An example of a network,  its precedence form, and its multi- 
plier precedence  graph  are  illustrated  in Fig. 16. There are five 
levels of serialism with  respect to nodes  in this network  and 
three levels of serialism with  respect to  the multiplies. 

The multiplier  precedence graph is a  useful device for 
analyzing the  tradeoffs between the  number of multipliers M 
used in  the  implementation  and  the  approximate minimum 
computation  time t ,  (in  multiplier cycles) that  it takes to 
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Fig. 17. Minimum multiplier cycle time tm versus number of multiplies 
M for structure in Fig. 16. 

C O M P L E T E L Y   S E R I A L  

Fig. 18. Examples of multiplier  precedence graphs. (a)  Completely 
serial. (b)  Completely parallel. 

compute  one filter  cycle. A useful way to illustrate  this  trade- 
off is to plot t ,  against M. As an example  (in the  network of 
Fig. 16), if M = 1,  then all of the multiplies  must be computed 
serially and consequently t ,  = 5. If M = 2, coefficients c1 and 
c2 can be implemented in the first  multiplier  time slot, c3 and 
c 4  in the second time  slot, and cs in the  third time slot. There- 
fore, t ,  = 3. As this is the  inherent level of serialism in  this 
particular structure,  it is impossible to do  better  than this  by 
using more multipliers in  the  implementation.  The  correspond- 
ing plot of t ,  versus M is given in Fig. 17. 

It is interesting to compare  the t ,  versus M plot  for a  struc- 
ture against other possible structures  that can realize the same 
system function. In particular, two  extremes can be considered. 
A structure will be defined to be completely serial with  respect 
to  its multiplies if every level { m i }  in its multiplier  precedence 
graph contains only one possible multiply, as illustrated  in 
Fig. 18(a).  Alternatively,  a structure will  be defined to be 
completely parallel with respect to  its multiplies if its multi- 
plier precedence  graph contains only one level { m } as indi- 
cated  by Fig. 18(b).  Plots of the t ,  versus M for these two ex- 
tremes  and for  the  network of Fig. 16 are given in Fig. 19. 

For a  completely serial structure,  the t ,  versus M plots 
correspond to  the relation 

t ,  = c  (47) 

where C is the  total  number of multiplies that must be per- 
formed in  the  structure.  For a  completely parallel structure, 
this  relation is 

/ 

r 
t,=Int 

where Int [ . I  corresponds to  the  operation of rounding  up  the 
number in brackets to the  next largest integer. As suggested by 
Fig. 19, many  practical structures may have t ,  versus M plots 
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Fig. 19. Comparison  between t ,  versus M graphs for completely serial 
and completely parallel structures. 
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Fig. 20. Comparisons of t ,  versus M graphs for some circuit  examples 
given in Section VI. 

that lie somewhere  between  these two limits. Fig. 20 presents 
a  comparison of t ,  versus M plots  for a  number of the struc- 
tures discussed in Section VI. 

In some cases it may be possible to increase the  amount of 
parallelism in the  computation of a network by appropriately 
computing different node values (or multiplies)  in the  network 
simultaneously for  different time  indices n ,  i.e., by using pipe- 
line  processing. This can permit a  speedup  in the effective cycle 
time  in the  computation of a structure  at  the expense of intro- 
ducing delay into some of the transfer functions of the  network. 
This can be achieved, for  example, in the  network of Fig. 16 
by performing the multiplies for cl ,  c2, and c4 for time  index 
n + 2  in the same time slot  that multiply c3 is performed  for 
time index n + 1 and multiply cs is performed for time index 
n. This technique appears, at  first,  to violate the preceding 
concepts of inherent serialism and parallelism of a network  but, 
in fact,  it does not. 

An alternate way  of viewing pipelining is that  it is a  tech- 
nique  by which delays are  inserted into  appropriate  paths in 
the  structure in order  to increase its parallelism or reduce its 
serialism. In effect, by using the pipeline scheme  in the ex- 
ample given, the  actual  structure being computed is not  that 
of Fig. 16 but instead the  structure depicted  in Fig. 21(a), 
where the  computations  for all of the multiplies are being 
performed  in the same  time slot  for  time  index n.  It is easy to 
see from Fig. 21(b) and (c)  that  this  form of the  structure has  a 
greater amount of parallelism than  the  structure of Fig. 16 
and that, in fact,  it is completely parallel with  respect to  its 
multiplies. Its system function, however, has an extra delay of 
two  unit delays associated with  it over that  for  the  network in 
Fig. 16. 

As already illustrated, pipelining can be interpreted as a  pro- 
cess by which extra  unit delays are added  in appropriate parts 
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(b) ( 4  
Fig. 21. (a) Pipelined form of network  in Fa. 16. (b) Its  precedence 

form.  (c)  Its  multiplier  precedence graph. 

of a structure  in  order to reduce its  inherent serialism at  the 
expense of introducing  extra delay  in  certain transfer func- 
tions of the  structure. These delays can be inserted  only into 
those  parts of a structure which are not associated with loops 
or feedback paths. Also, if a structure  contains several feed- 
forward paths  in parallel and a unit delay is added in  one of 
these paths,  then a unit delay must also be added in  each of the 
paths which are in parallel with it in order to preserve the feed- 
forward  cancellations  in the  structure. As a  result, nonrecunive 
structures can always be completely pipelined as they contain 
no loops of any  kind. Recursive structures may be only 
partially  pipelined because they  contain loops. Only those 
parts of a recursive structure which are not associated with 
loops may be pipelined. 

VIII. CONCLUSIONS 
We have reviewed the analysis, representation,  and evalua- 

tion of digital fiiter structures. We have centered  the discussion 
around  the  notation of linear signal-flow graphs and  the as- 
sociated matrix  representation. Using this notation, we have 
identified  a number of basic network properties  and have ap- 
plied them to an analysis of filter structures. 

The basic network  properties presented c m  in some sense be 
interpreted as contributing to a network  theory applicable to 
digital filters. In some  instances, the parallel with  analog net- 
works is very strong; in other instances, it is not. However, it is 
our feeling that  just as network’theory  for analog filters  has 
been an important framework for  the analysis and  synthesis of 
fdter  structures, a rich network  theory exists which can 
serve the same purpose for digital filters.  Hopefully, the ideas 
presented  in  this paper represent  a start in this direction. 
In Section VI we have‘presented  a  comparison of a number 

of fi ter structures based on coefficient sensitivity. The de- 
velopment of this  comparison  represents  a  useful  application 
of many of the  theoretical ideas  presented in  the paper. It is 
important  to stress, however, that this  comparison is based on 
only one example. Furthermore,  it is important to keep  in 
mind that coefficient  sensitivity is only  one of many factors 

to be taken  into  account in  comparing structures. In Section 
VI we have tried to address ourselves to  another  factor,  that of 
the degree of parallelism inherent in  a structure. Our discussion 
represents only a  preliminary attempt  to include  this  considera- 
tion in the evaluation of structures. Over the  next several years, 
we anticipate considerable  activity  directed toward a  refine- 
ment  and  quantification of the parameters involved in  com- 
paring digital filter structures. 
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FIR Digital Filter  Design  Techniques  Using 
Weighted  Chebyshev  Approximation 

Znvired Paper 

Abstmef-This p w  discusses l3le wious oppror~hes to designing 
FIR digital flten using the  theory of weighted Chebyaitev appxhna- 
tion. The diffemnt design techniques are explained and canpared on 
the  basis of their capabilities and limitations. The relntionahips be- 
tween mte prtpmetas are briefly discussed for the use of low-pas 
fila Extensions of the theoy to the  problems of magnitude and 
complex approximation are rlso induded, as are some recent rearlts on 
the design of two-dimensiod FIR filters by tnusfomation. 

H 
I. INTRODUCTION 

N THE PAST few years,  powerful computer  optimization 
algorithms have been developed to solve the design problem 
for  finiteduration impulse  response (FIR) digital filters. 

It is the purpose of this paper to review these  techniques  in 
the light of Chebyshev approximation  theory  and to describe 
some of the  extensions of this  theory. 
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FIR digital filters possess certain desirable properties which 
make them  attractive  for digital signal processing applications. 
Among  these  are the ability to have exactly linear phase and 
the absence of stability problems  in  nonrecursive  realizations. 
While long  sequences are  sometimes necessary to achieve sharp 
cutoff  filters, use of the fast Fourier  transform  (FFT) can 
make the realization of such filters computationally competi- 
tive even with  sharp  cutoff  infiniteduration impulse  response 
(IIR) elliptic filters. 

The process of designing and realizing a digital filter to meet 
some desired specifications  consists of five basic steps. 

1) Choose  a design technique  and convert the desired speci- 
fications into a precise mathematical formulation in order  to 
approximate  the ideal filter  shape. 

2) Solve the  approximation  problem to determine  the filter 
coefficients which minimize a  performance  measure. 

3) Choose  a  specific structure  in which the  filter will be 
realized and quantize  the resulting filter coefficients to a  fixed 
word length. 

4) Quantize the digital filter variables, i.e., the  input,  out- 
put, and intermediate variable word lengths. 


