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Abstract—We consider the problem of embedding one signal
(e.g., a digital watermark), within another “host” signal to form
a third, “composite” signal. The embedding is designed to achieve
efficient tradeoffs among the three conflicting goals of maximizing
information-embedding rate, minimizing distortion between the
host signal and composite signal, and maximizing the robustness
of the embedding.

We introduce new classes of embedding methods, termed quan-
tization index modulation (QIM) and distortion-compensated
QIM (DC-QIM), and develop convenient realizations in the form
of what we refer to as dither modulation. Using deterministic
models to evaluate digital watermarking methods, we show that
QIM is “provably good” against arbitrary bounded and fully
informed attacks, which arise in several copyright applications,
and in particular, it achieves provably better rate distortion–ro-
bustness tradeoffs than currently popular spread-spectrum and
low-bit(s) modulation methods. Furthermore, we show that for
some important classes of probabilistic models, DC-QIM is op-
timal (capacity-achieving) and regular QIM is near-optimal. These
include both additive white Gaussian noise (AWGN) channels,
which may be good models for hybrid transmission applications
such as digital audio broadcasting, and mean-square-error-con-
strained attack channels that model private-key watermarking
applications.

Index Terms—Data hiding, digital audio broadcasting, dither
modulation, digital watermarking, hybrid transmission, in-
formation embedding, quantization index modulation (QIM),
steganography.

I. INTRODUCTION

A NUMBER of applications have emerged recently [1] that
require the design of systems for embedding one signal,

sometimes called an “embedded signal” or “watermark,” within
another signal, called a “host signal.” The embedding must be
done such that the embedded signal is “hidden,” i.e., causes no
serious degradation to its host. At the same time, the embedding
must be robust to common degradations of the watermarked
signal—the watermark must survive whenever the host signal
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does. In some applications these degradations are the result of
benign processing and transmission; in other cases they result
from deliberate attacks.

Several of these applications relate to copyright notification
and enforcement for audio, video, and images that are dis-
tributed in digital formats. In these cases, the embedded signal
either notifies a recipient of any copyright or licensing restric-
tions or inhibits or deters unauthorized copying. For example,
this embedded signal could be a digital “fingerprint” that
uniquely identifies the original purchaser of the copyrighted
work. If illicit copies of the work were made, all copies would
carry this fingerprint, thus identifying the owner of the copy
from which all illicit copies were made. In another example,
the embedded signal could either enable or disable copying
by some duplication device that checks the embedded signal
before proceeding with duplication. Such a system has been
proposed for allowing a copy-once feature in digital video disc
recorders [2]. Alternatively, a standards-compliant player could
check the watermark before deciding whether or not to play
the disc [3].

Other applications include automated monitoring of airplay
of advertisements on commercial radio broadcasts. Advertisers
can embed a digital watermark within their ads and count the
number of times the watermark occurs during a given broad-
cast period, thus ensuring that their ads are played as often as
promised. In other applications, the embedded signal may be
used for authentication of—or detection of tampering with—the
host signal. For example, a digital signature could be embedded
in a military map. A number of other national security appli-
cations are described in [4] and include covert communication,
sometimes called “steganography” or low probability of detec-
tion communication, and so-called traitor tracing, a version of
the digital fingerprinting application described above used for
tracing the source of leaked information.

One final application for which the digital watermarking
methods developed in this paper are well-suited is the back-
ward-compatible upgrading of an existing communication
system, an example of which is the so-called hybrid in-band
on-channel digital audio broadcasting [5], [6]. In this appli-
cation, one would like to simultaneously transmit a digital
signal with existing analog (AM and/or FM) commercial
broadcast radio without interfering with conventional analog
reception. Thus, the analog signal is the host signal and the
digital signal is the watermark. Since the embedding does
not degrade the host signal too much, conventional analog
receivers can demodulate the analog host signal. In addition,
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next-generation digital receivers can decode the digital signal
embedded within the analog signal, which may be all or part
of a digital audio signal, an enhancement signal used to refine
the analog signal, or simply supplemental information such as
station identification or traffic information. More generally,
the host signal in these hybrid transmission systems could be
some other type of analog signal such as video [7], or even a
digital waveform—for example, a digital pager signal could be
embedded within a digital cellular telephone signal.

In general, designers of information embedding systems for
these kinds of applications seek to achieve high embedding rates
with high levels of robustness and low levels of embedding-in-
duced distortion. However, in general, these three goals are con-
flicting. Thus, in this paper we characterize methods in terms
of the efficiency with which they trade off rate, distortion, and
robustness. For instance, for any minimum embedding rate re-
quirement and maximum acceptable level of embedding distor-
tion, the more efficient an embedding method is, the higher the
robustness that can be achieved.

A great many information-embedding algorithms have been
proposed [1] in this still emerging field. Some of the earliest
proposed methods [8], [9], [7] employ a quantize-and-replace
strategy: after first quantizing the host signal, these systems
change the quantization value to embed information. A simple
example of such a system is the so-called low-bit(s) modulation
(LBM), where the least significant bit(s) in the quantization of
the host signal are replaced by a binary representation of the em-
bedded signal. More recently, additive spread-spectrum-based
methods, which embed information by linearly combining the
host signal with a small pseudo-noise signal that is modulated
by the embedded signal, have received considerable attention in
the literature as an alternative to LBM-type methods [10]–[13].

In this paper, we show that both LBM-type strategies and
additive spread spectrum are, in general,not good choices for
most information embedding and digital watermarking appli-
cations. As an alternative, this paper introduces a new class of
information-embedding strategies we refer to as “quantization
index modulation” (QIM) that is, in general, preferable and in
many specific scenarios optimal. We further develop computa-
tionally efficient implementations of QIM in the form of what
we refer to as “dither modulation.” We evaluate both specific re-
alizations of uncoded and coded QIM, and the asymptotic per-
formance limits of coded QIM using information-theoretic anal-
ysis. Other emerging information-theoretic results on the digital
watermarking problem are developed in, e.g., [14]–[20].

The specific organization of the paper is as follows. In Sec-
tion II, we develop two useful equivalent models for the in-
formation-embedding problem. In Section III, we classify tra-
ditional approaches to this problem, and in the process iden-
tify some of their shortcomings. Section IV introduces the QIM
class of embedding methods, and Section V develops practical
realizations that are compared to corresponding implementa-
tions of traditional approaches. Next, Section VI establishes
conditions under which different forms of QIM are optimal in
an information-theoretic sense. We then evaluate the methods of
this paper in the context of Gaussian models for unintentional
attacks in Section VII, and in the context of some general inten-

Fig. 1. General information-embedding problem model. A messagem is
embedded in the host-signal vectorusing some embedding function( ; m).
A perturbation vector corrupts the composite signal. The decoder extracts
an estimatêm of m from the noisy channel output.

tional attack models in Section VIII. Finally, Section IX con-
tains some concluding remarks.

II. PROBLEM MODEL

Two mathematically equivalent models for the information-
embedding problem are useful in our development.

A. Distortion-Constrained Multiplexing Model

The information-embedding problem is naturally and gener-
ally described by Fig. 1. In this figure, there is a host-signal
vector into which we wish to embed some informa-
tion .1 We wish to embed at a rate of bits per dimension
(host-signal sample) so we can think ofas an integer in the
set .

An embedding function maps the host signaland embedded
information to a composite signal subject to some
distortion constraint. Various distortion measures may be of in-
terest, an example of which is the squared-error distortion

(1)

or its expectation . The composite signal is
subjected to various common signal processing manipulations
such as lossy compression, addition of random noise, and
resampling, as well as deliberate attempts to remove the
embedded information. These manipulations occur in some
channel, which produces an output signal . For future
convenience, we define a perturbation vector to be the differ-
ence , as shown in Fig. 1; we consider cases of both
signal-independent and signal-dependent perturbation vectors
in this paper.

A decoder extracts—i.e., forms an estimateof—the em-
bedded information based on the channel output. We focus
primarily on the “host-blind” case of interest in most applica-
tions, where is not available to the decoder, in contrast to the
“known-host” case, where the decoder can separately observe
. (See, e.g., [14] [17] for information-theoretic treatments of

some aspects of the known-host case.) Our interest is in de-
coders that produce reliable estimates whenever the channel is
not too severe, where reliable means either that deter-
ministically or that for sufficiently small . In

1The vector is any convenient representation of all or part of the host signal.
In the case of a host image, it could be a vector of pixel values or discrete cosine
transform (DCT) coefficients, for example. In the case of a host audio waveform,
this vector could be a vector of samples, spectral parameters, or linear prediction
coding (LPC) coefficients, for example.
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such cases, the tolerable severity of the channel degradations is a
measure of the robustness of an information-embedding system.

B. Equivalent Super-Channel Model

An alternative representation of the model of Fig. 1 is
shown in Fig. 2. The two models are equivalent since any
embedding function can be written as the sum of the
host signal and a host-dependent distortion signal ,
i.e., , simply by defining the distortion
signal to be . Thus, one can view
as the input to a super-channel that consists of the cascade
of an adder and the true channel. The host signalis a
state of this super-channel that is known at the encoder. The
measure of distortion between the composite and
host signals maps onto a host-dependent measure of the size

of the distortion signal . For example,
squared-error distortion (1) equals the power of

Therefore, one can view information-embedding problems as
power-limited communication over a super-channel with a state
that is known at the encoder.2 As we will develop, this view will
be convenient for determining achievable rate distortion–robust-
ness tradeoffs of various information-embedding and -decoding
methods.

C. Channel Models

In general, the channel model is either a characterization of
the degradations that can actually occur to the composite signal,
or alternatively, a description of the class of degradations to
which the embedder and decoder must be robust, i.e., the system
is designed to work against all degradations described by this
particular model. The latter viewpoint is particularly useful in
the context of intentional attacks.

We consider both probabilistic and deterministic channel
models. In the probabilistic case, we specify the channel
input–output relationship in terms of the conditional proba-
bility law . Implicitly, this specification also describes the
conditional probability law of the perturbation vectors against
which the system must be robust since

In the deterministic case, the channel input–output relationship
is described most generally in terms of the set of possible out-
puts for every given input, or equivalently, in terms
of the set of desired tolerable perturbation vectors for
every given input.

III. CLASSES OFEMBEDDING METHODS

An extremely large number of embedding methods have been
proposed in the literature [22], [23], [1]. Broadly, for our pur-
poses these can be divided into two classes: 1) host-interfer-
ence nonrejecting methods and 2) host-interference rejecting
methods.

2Coxet al.have also recognized that one may view watermarking as commu-
nications with side information known at the encoder [21].

Fig. 2. Equivalent super-channel model for information embedding. The
composite signal is the sum of the host signal, which is the state of the
super-channel, and a host-dependent distortion signal.

Host-interference nonrejecting methods have the general
property that the host signal is effectively a source of interfer-
ence in the system, and generally result from system designs
that do not allow the encoder in Fig. 2 to sufficiently exploit
knowledge of the host signal.

The simplest of such methods have purely additive embed-
ding functions of the form

(2)

where is typically a pseudo-noise sequence. Such em-
bedding methods are often referred to as additive spread-spec-
trum methods, and some of the earliest examples are described
in [24], [25], [10], [26], [11], [12]. Typically, takes the
form

(3)

where is a unit-energy spreading vector and is a scalar
function of the message.3

It is often convenient to view additive spread-spectrum as per-
turbation of a projection. In particular, substituting (3) into (2)
and using that has unit energy, we obtain

(4)

which when projected onto we obtain

(5)

where is the corresponding projection of the host signal, i.e.,

(6)

Finally, substituting (5) back into (4) yields the composite signal
reconstruction from projections

(7)

From (2), we see that for this class of embedding methods,
the host signal acts as additive interference that inhibits the de-
coder’s ability to estimate . Consequently, even in the absence
of any channel perturbations , one can usually embed
only a small amount of information. Thus, these methods are
useful primarily when either the host signal is available at the
decoder (as assumed in, e.g., [26]) or when the host-signal in-
terference is much smaller than the channel interference.

3Technically, spread-spectrum systems (2) for which (3) applies are classified
as amplitude-modulation additive spread-spectrum methods, but since there is
no risk of confusion in this paper, we will use the term “additive spread-spec-
trum” to specifically mean those systems based on amplitude modulation.
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Information embedding systems can achieve host-interfer-
ence rejection when knowledge of the host signal at the en-
coder is adequately exploited in system design. Examples in-
clude LBM and, more generally, quantize-and-replace systems.
In LBM systems, the least significant bit(s) in the binary rep-
resentation of a host sample are simply replaced with message
bits. A class of quantize-and-replace systems that we refer to
as generalized LBM systems implement a vector generalization
of this embedding strategy. Generalized LBM embedding func-
tions are of the form

(8)

where represents the coarse quantizer that determines the
most significant bits, and is determined only by the (modu-
lated) least significant bits. A defining characteristic of general-
ized LBM systems is that the embedding never alters the most
significant bits of the host signal, which is expressed in terms of
the constraint

(9)

Without loss of generality, we may assume that good general-
ized LBM quantizers are unbiased, i.e.,

(10)

One example of a generalized LBM system is that developed
in [7], where LBM is effectively applied to a pseudorandom
projection of the form (6). Thus, the embedding is of the form
(7) where is now of the form

(11)

with a uniform, scalar quantization function of step size
and a perturbation value. It is convenient to think of this
class of generalized LBM systems as “spread LBM” systems.

While generalized LBM systems are host-interference re-
jecting, they are unnecessarily constrained in a way that makes
them generally inefficient and vulnerable to various classes of
attacks, which in turn limits the range of applications for which
they can be used. Avoiding these constraints in the process of
developing optimal information-embedding systems naturally
gives rise to a new and general class of host-interference
rejecting embedding methods called QIM, which we develop
in the sequel.

IV. QUANTIZATION INDEX MODULATION

To develop the QIM concept, we begin by viewing the embed-
ding function as an ensemble of functions of, indexed
by . We denote the functions in this ensemble as to
emphasize this view. If the embedding-induced distortion is to
be small, each function in the ensemble must be close to an iden-
tity function in some sense so that

(12)

That the system needs to be robust to perturbations suggests
that the points in the range of one function in the ensemble
should be far away in some sense from the points in the range

Fig. 3. QIM for information embedding. The points marked with�’s and
’s
belong to two different quantizers, each with its associated index. The minimum
distanced measures the robustness to perturbations, and the sizes of the
quantization cells, one of which is shown in the figure, determine the distortion.
If m = 1, the host signal is quantized to the nearest�. If m = 2, the host
signal is quantized to the nearest
.

of any other function. For example, one might desire at the very
least that the ranges be nonintersecting. Otherwise, even in the
absence of any perturbations, there will be some values offrom
which one will not be able to uniquely determine. In fact, it is
precisely the nonintersection property that leads to host-signal
interference rejection.

The nonintersection property along with the approximate-
identity property (12), which suggests that the ranges of each
of the functions “cover” the space of possible (or at least highly
probable) host-signal values, suggests that the functions be
discontinuous. Quantizers are just such a class of discontinuous,
approximate-identity functions. Then, “QIM” refers to embed-
ding information by first modulating an index or sequence of
indices with the embedded information and then quantizing the
host signal with the associated quantizer or sequence of quan-
tizers.

Fig. 3 illustrates this QIM information-embedding technique.
In this example, one bit is to be embedded so that .
Thus, we require two quantizers, and their corresponding sets
of reconstruction points in are represented in Fig. 3 with

’s and ’s. If , the host signal is quantized with the
-quantizer, i.e., is chosen to be the closest to . If ,
is quantized with the -quantizer.
As varies, the composite signal valuevaries from one

point ( ) to another or from one point to an-
other, but it never varies between apoint and a point. Thus,
even with an infinite energy host signal, one can determine
if channel perturbations are not too severe. Thepoints and
points are both quantizer reconstruction points and signal con-
stellation points,4 and we may view design of QIM systems as
the simultaneous design of an ensemble of source codes (quan-
tizers) and channel codes (signal constellations).

Conveniently, properties of the quantizer ensemble can be re-
lated directly to the performance parameters of rate, distortion,
and robustness. For example, the number of quantizers in the
ensemble determines the information-embedding rate. The
sizes and shapes of the quantization cells determine the embed-
ding-induced distortion, all of which arises from quantization

4Onesetof points, rather than one individual point, exists for each value of
m.
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error. Finally, for many classes of channels, the minimum dis-
tance

(13)

between the sets of reconstruction points of different quantizers
in the ensemble effectively determines the robustness of the em-
bedding.5

It is important to emphasize that, in contrast to the case where
the host signal is known at the receiver, the minimum-distance
decoder needs to choose from all reconstruction points of the
quantizers, not just those corresponding to the actual host signal

. In particular, the minimum-distance decoder makes decisions
according to the rule6

(14)

If, which is often the case, the quantizers map to the
nearest reconstruction point, then (14) can be rewritten as

(15)

(While the minimum-distance decoder is especially convenient
to implement and analyze, a variety of other potentially useful
decoders are discussed in [27].)

Intuitively, the minimum distance measures the size of pertur-
bation vectors that can be tolerated by the system. For example,
if channel perturbations are bounded according to7

(16)

then the minimum-distance decoder is guaranteed to not make
an error as long as

(17)

In the case of a classical additive white Gaussian noise (AWGN)
channel with a noise variance of , at high signal-to-noise ratio
(SNR) the minimum distance also characterizes the error prob-
ability of the minimum-distance decoder [28],

5When the host signal is known at the decoder, as is the case in some appli-
cations of interest, then the more natural minimum distance is

d (x) = min ks(x; i)� s(x; j)k

or

d = min min ks(x; i)� s(x; j)k:

6Alternatively, if the host signalx is known at the decoder

m̂( ; x) = argmin k � s(x; m)k:

7We refer to this as the bounded perturbation channel and will revisit this
deterministic channel in Section VIII-B1.

where is the Gaussian -function

(18)

A. Distortion-Compensated QIM

Distortion compensation is a type of postquantization pro-
cessing that can improve the achievable rate distortion–robust-
ness tradeoffs of QIM methods. To see this, we begin by noting
that for a fixed rate and a given quantizer ensemble, scaling8 all
quantizers by increases by a factor of , thereby
increasing the robustness of the embedding. However, the em-
bedding-induced distortion also increases by a factor of .
Adding back a fraction of the quantization error to the
quantization value removes, or compensates for, this additional
distortion. The resulting embedding function is

(19)

where is the th quantizer of an ensemble
whose reconstruction points have been scaled byso that two
reconstruction points separated by a distancebefore scaling
are separated by a distance after scaling. The first term in
(19) represents normal QIM embedding. We refer to the second
term as the distortion–compensation term.

The quantization error added back is a source of interfer-
ence to the decoder. Typically, the probability density functions
(pdfs) of the quantization error for all quantizers in the QIM en-
semble are similar. Therefore, the distortion compensation term
in (19) is effectively statistically independent of and can be
treated as independent noise. Thus, decreasingleads to greater
minimum distance, but for a fixed embedding-induced distor-
tion, the distortion–compensation interference at the decoder in-
creases. One optimality criterion for choosingis to maximize
the following “SNR” at the decision device:

SNR

where this SNR is defined as the ratio between the squared
minimum distance between quantizers and the total interfer-
ence energy from both distortion–compensation interference
and channel interference. Here, is the minimum distance
when and is a characteristic of the particular quantizer
ensemble. One can easily verify that the optimal scaling
parameter that maximizes this SNR is

DNR
DNR

(20)

where DNR is the (embedding-induced) distortion-to-noise
ratio .

As we will see, suitably coded versions of this distortion-
compensated QIM with precisely the parameter setting (20) also
have important asymptotic optimality properties. Before devel-
oping these properties, let us first investigate some constraints

8If a reconstruction point is atq, it is “scaled” by� by moving it toq=�.
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that are useful to impose on QIM systems to facilitate imple-
mentation.

V. DITHER MODULATION: AN IMPLEMENTATION OF QIM

A key aspect of the design of QIM systems involves the
choice of practical quantizer ensembles for such systems,
which we now explore. In the process, we obtain additional
insights into the design, performance evaluation, and imple-
mentation of QIM embedding methods, particularly those of
low complexity. A convenient structure to consider is that
of so-called dithered quantizers [29], [30], which have the
property that the quantization cells and reconstruction points
of any given quantizer in the ensemble are shifted versions of
the quantization cells and reconstruction points of any other
quantizer in the ensemble. In nonwatermarking contexts, the
shifts typically correspond to pseudorandom vectors called
dither vectors. For information-embedding purposes, the dither
vector can be modulated with the embedded signal, i.e., each
possible embedded signal maps uniquely onto a different dither
vector . The host signal is quantized with the resulting
dithered quantizer to form the composite signal. Specifically,
we start with some base quantizer , and the embedding
function is

We call this type of information embedding “dither modula-
tion.” We discuss several low-complexity realizations of such
dither-modulation methods in the sequel.

A. Coded Binary Dither Modulation with Uniform Scalar
Quantization

Coded binary dither modulation with uniform, scalar quanti-
zation is one such realization.9 We assume that .
The dither vectors in a coded binary dither modulation system
are constructed as follows.

i) The information bits repre-
senting the embedded messageare error-correction
coded using a rate- code to obtain a coded bit se-
quence , where

(21)

(In the uncoded case, and .) We di-
vide the host signal into nonoverlapping blocks of
length and embed theth coded bit in the th block,
as described below.

ii) Two length- dither sequences and and
one length- sequence of uniform, scalar quantizers
with step sizes are constructed with the
constraint

9By scalar quantization, we mean that the high-dimensional base quantizer
q(�) is the Cartesian product of scalar quantizers.

This constraint ensures that the two corresponding
-dimensional dithered quantizers are the maximum

possible distance from each other. For example, a
pseudorandom sequence of and its negative
satisfy this constraint. One could alternatively choose

pseudorandomly with a uniform distribution over
.10 Also, the two dither sequences need

not be the same for each length-block.

iii) The th block of is quantized with the dithered quantizer
using the dither sequence .

A detailed assessment of the complexity of this QIM realiza-
tion is developed in [15], [27].

The minimum-distance properties of coded binary dither
modulation are readily deduced. In particular, any two distinct
coded bit sequences differ in at least places, where is
the minimum Hamming distance of the error-correction code.
For each of these blocks, the reconstruction points of the
corresponding quantizers are shifted relative to each other by

in the th dimension. Thus, the square of the minimum
distance (13) over all dimensions is

(22)

where to obtain the second equality we have used (21), and
where, in the third line, is the gain of the error-correction
code

(23)

In the high signal-to-distortion ratio (SDR) regime of primary
interest for high-fidelity applications, the quantization cells are
sufficiently small that the host signal can be modeled as uni-
formly distributed within each cell. In this case, the expected
squared-error distortion of a uniform, scalar quantizer with step
size is the familiar

(24)

Thus, the overall average expected distortion (1) is

(25)

Combining (22) and (25) yields the “distortion-normalized”
squared minimum distance

(26)

10A uniform distribution for the dither sequence implies that the quantization
error is statistically independent of the host signal and leads to fewer “false
contours,” both of which are generally desirable properties from a perceptual
viewpoint [29].
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Fig. 4. Dither modulation with uniform quantization step sizes.

a quantity that can be used to characterize the achievable perfor-
mance of QIM realizations more generally, as we will develop.

B. Spread-Transform Dither Modulation

One special class of coded binary dither modulation methods
is what we refer to as spread-transform dither modulation
(STDM). We now develop its properties and quantify its
advantages over other forms of dither modulation, over additive
spread-spectrum methods, and over spread LBM.

To introduce STDM, we begin by observing that the dis-
tortion-normalized squared minimum distance (26) of binary
dither modulation with uniform scalar quantization does not de-
pend on the sequence , i.e., on the distribution of the dis-
tortion across samples within the length-block. Thus, one is
free to choose any distribution without sacrificing , so the

’s can be chosen to optimize other characteristics of the em-
bedding.

To understand this property, consider Figs. 4–6, each of which
show the reconstruction points of two quantizers for embedding
one bit in a block of two samples. For each of the three systems,
the minimum distance— —and the average squared-error
distortion— per sample—are identical. Thus, the robust-
ness against bounded perturbations is the same in each case.
However, the quantization differs in each case. In Fig. 4, where
scalar quantization is applied to each sample separately, the
quantization step sizes are the same for both samples. In Figs. 5
and 6, the samples are first pretransformed and the resulting co-
efficients quantized unevenly. In particular, a unitary transform
(coordinate rotation) is applied to the pair of samples before
quantization; the first transform coefficient is the component of
the host signal in the direction ofdepicted. In Fig. 5, the step
size for quantizing the first transform coefficient is larger than
that used to quantize the second transform coefficient, which
lies in the direction orthogonal to. Finally, in the extreme case
of Fig. 6, the step size for the first coefficient is larger still, and
that for the second coefficient is zero, i.e., all embedding occurs
in the first coefficient. In this case, the reconstruction points be-
come reconstruction lines, so to embed abit, the host signal
is quantized to the nearest point on a line labeled with a. To
embed a bit, the host signal is quantized to the nearest point
on a line labeled with a .

Fig. 5. Transform dither modulation with nonuniform quantization step sizes.

Fig. 6. Transform dither modulation with quantization of only a single
transform component. The quantization step size for the component of the host
signal orthogonal tov is zero.

While the three systems corresponding to Figs. 4–6 have the
same minimum distance, thenumberof perturbation vectors of
minimum length that cause decoding errors is higher for the case
of Fig. 4 than for the case of Fig. 6. (For intermediate cases
such as the one shown in Fig. 5, where quantization step sizes
in different dimensions are different but nonzero, the number
of perturbation vectors of minimum length that cause decoding
errors is the same as in Fig. 4, but these vectors are not orthog-
onal.) Thus, for probabilistic channels, such as additive noise
channels, theprobability of error is generally different in each
case. For example, suppose abit is embedded and the com-
posite signal is the point labeled with in Figs. 4 and 6. If the
channel output lies in the decision region defined by the dashed
box in Fig. 4 and defined by the two dashed lines in Fig. 6, then
the decoder will correctly determine that abit was embedded.
If the perturbation vector places the channel output outside the
decision region, however, the decoder will make an error with
very high probability. (There is some possibility that the channel
output is outside the decision region but is still closer to a
point other than than to the closest . These events, however,
are very unlikely for many perturbation probability distributions
that are of practical interest.) Since the decision region of Fig. 6
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contains the decision region of Fig. 4, it follows that the proba-
bility of a correct decision in the case of nonuniform quantiza-
tion step sizes is higher.

The unitary transform in the case of Fig. 6 not only facilitates
a comparison of Figs. 4 and 6, but also serves to spread any em-
bedding-induced distortion over frequency and time/space when
a peak distortion constraint is imposed, for example. Although
the distortion is concentrated in only one transform coefficient,
if the energy of is spread over space/time and frequency—for
example, if is chosen pseudorandomly—then the distortion
will also be spread.

As we will see in subsequent sections of this paper, dither-
modulation methods have considerable performance advantages
over previously proposed additive spread-spectrum and spread
LBM methods in a variety of contexts. However, much effort has
already been invested in optimizing both additive spread-spec-
trum and spread LBM systems, for example, by exploiting per-
ceptual properties of the human visual and auditory systems or
designing receiver front-ends to mitigate effects of geometric
and other distortions. An additional advantage of STDM specifi-
cally over other forms of dither modulation is that one can easily
convert existing additive spread-spectrum and spread LBM sys-
tems into STDM systems while retaining the other optimized
components of the system. In particular, it suffices to replace the
addition step of additive spread spectrum, i.e., (5), or the quan-
tize-and-replace step of spread LBM, i.e., (11), with the dithered
quantization step of STDM, i.e.,

(27)

SNR Advantage of STDM:In this section, we quantify the
performance gain of STDM over additive spread spectrum and
spread LBM from an SNR perspective that applies to a broad
range of contexts. We focus our analysis on the representative
case of embedding one bit in a length-block using a unit-
length spreading vector. Because, as (5), (11), and (27) re-
flect, in each case the embedding occurs entirely in the projec-
tion of onto , a one-dimensional problem results. In addition,
because all of the embedding-induced distortion occurs only in
the direction of , the distortion in each case also has the same
temporal/spatial distribution and frequency distribution. Thus,
one would expect that any perceptual effects due to time/space
masking or frequency masking are the same in each case. There-
fore, squared-error distortion and SNR-type measures are more
meaningful measures of distortion when comparing these em-
bedding methods than one might expect in other more general
contexts where squared-error distortion may fail to capture cer-
tain perceptual effects.

SNR avantage of STDM over additive spread spec-
trum: Considering the case of additive spread-spectrum first,
since in (5), we have

(28)

For STDM (27)

(29)

where so that the expected distortion in both
cases is the same, and where we have used the fact that
and are chosen such that .

The decoder in both cases makes a decision based on, the
projection of the channel outputonto . In the case of additive
spread spectrum, , while in the case of STDM,

, where is the projection of the perturbation
vector onto . We let be some measure of energy. For
example, in the case of a deterministic variable, or

when is random. The energy of the interference
or “noise” is for additive spread spectrum, but only

for STDM, i.e., the host-signal interference for STDM is
zero. Thus, the SNR at the decision device is

SNR

for additive spread spectrum and

SNR

for STDM, where the “signal” energies

and

are given by (28) and (29). Thus, the advantage of STDM over
additive spread spectrum is

SNR
SNR

(30)

which is typically very large since the channel perturbations
are usually much smaller than the host signalif the channel
output is to be of reasonable quality. For example, if the host-
signal-to-channel-noise ratio is 30 dB andand are uncor-
related, then the SNR advantage (30) of STDM over additive
spread spectrum is 28.8 dB.11

SNR advantage of STDM over spread LBM:Spread-trans-
form dither modulation methods also have an SNR advantage
over spread LBM methods. As we show in Appendix A, the
distortion-normalized squared minimum distance (26) of LBM
is 2.43 dB worse than that of dither modulation in the
case of coded binary embedding with uniform, scalar quantiza-
tion. Thus, for a fixed rate and embedding-induced distortion,
the squared-minimum distance, and hence the SNR at the deci-
sion device, for spread LBM will be 2.43 dB worse than that of
STDM, i.e.,12

SNR
SNR

2.43 dB (31)

This SNR advantage is illustrated in Fig. 7, where the quantizer
reconstruction points and embedding intervals for both spread

11Note that while the high SDR approximation (30) predicts that STDM is
worse than additive spread spectrum by a factor of4=3 = 1.25 dB when~x � 0
(as would be the case, for example, if the host signalhad very little energy in
the direction ofv), in fact, if one choosesd(m) = ��=4 then it is straightfor-
ward to verify that STDM performs as well as additive spread spectrum in this
low SDR regime.

12Appendix A also shows that forM -ary embedding the SNR gain grows to
2 (3 dB) asM ! 1.
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Fig. 7. Spread-transform dither modulation versus spread LBM. The
embedding interval boundaries of spread LBM, which are shown with solid
lines, are the same for both� points and
 points. In contrast, in the case of
STDM, the�-point embedding intervals, shown by solid lines, differ from the

-point embedding intervals, shown by dashed lines. An SNR advantage of
7=4 = 2.43 dB for STDM results.

LBM and STDM are shown, with the same embedding-induced
squared-error distortion for both cases.

The preceding analysis establishes some important advan-
tages of QIM methods over common information-embedding
methods. In fact, it turns out that QIM methods are asymptoti-
cally optimal in many key scenarios of interest. To develop these
results, we next examine information embedding within an in-
formation-theoretic framework.

VI. I NFORMATION-THEORETICOPTIMALITY OF QIM

This section explores the best possible rate-distortion-robust-
ness performance that one could hope to achieve with any infor-
mation-embedding system. Our analysis leads to insights about
some properties and characteristics of good information-em-
bedding methods, i.e., methods that achieve performance close
to the information-theoretic limits. In particular, a canonical
“hidden QIM” structure emerges for information embedding
that consists of 1) preprocessing of the host signal, 2) QIM em-
bedding, and 3) postprocessing of the quantized host signal to
form the composite signal. One incurs no loss of optimality
by restricting one’s attention to this simple structure. We also
derive sufficient conditions under which only distortion com-
pensation postprocessing is required. As we develop in Sec-
tions VII and VIII, these conditions are satisfied in several im-
portant cases of practical interest.

A. Communication over Channels with Side Information

The super-channel model of Section II-B and Fig. 2 facilitates
our analysis, i.e., we view information embedding as the trans-
mission of a host-dependent distortion signalover a super-
channel with side information or statethat is known at the en-
coder. In this section, we also restrict our attention to a squared-
error distortion constraint

and a memoryless channel with known pdf

where and are the th components of and , respectively.13

Then, the super-channel is also memoryless and has probability
law

The capacity [31] of this super-channel is the reliable informa-
tion-embedding rate that is asymptotically achievable with
long signal lengths .

In nonwatermarking contexts, Gel’fand and Pinsker [32] and
Heegard and El Gamal [33] have determined the capacity of
such a channel in the case of a random state vectorwith inde-
pendent and identically distributed (i.i.d.) components when the
encoder sees the entire state vector before choosing the channel
input . In this case, the capacity is

(32)

where denotes mutual information andis an auxiliary
random variable. Since we can think of
in (32) as being generated from, and, in turn, from and .
While the mapping from to is, in general, probabilistic, from
convexity properties of mutual information, one can deduce that
the maximizing distribution in (32) always has the property that

is a deterministic function of [32].
In the case of watermarking, the maximization (32) is subject

to a distortion constraint . A formal proof of the ex-
tension of (32) to include this constraint is developed in [20].
Other researchers [18], [19], [16] are working on extending or
have extended these results to the case where the channel law

is not fixed but rather is chosen by an attacker subject to a
distortion constraint. A related information-theoretic formula-
tion can be found in [14].

As we shall see in the next section, one way to interpret (32)
is that is the total number of bits per host-signal sample
that can be transmitted through the channel, and is the
number of bits per sample that are allocated to the host signal.
The difference between the two is the number of bits per host-
signal sample that can be allocated to the embedded information

.
1) Hidden QIM: As we show in this subsection, one can

achieve the capacity (32) by a type of “hidden” QIM, i.e., QIM
that occurs in a domain represented by the auxiliary random
variable . One moves into and out of this domain with pre-
and postquantization processing.

13Extension of results in this section to the case where the channel is only
block-wise memoryless is straightforward by lettingy ands be theith blocks,
rather thanith scalar components, ofy ands. In this case, information rates are
measured in bits per block, rather than bits per sample.
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Fig. 8. Capacity-achieving “hidden QIM.” One embeds by choosing a
codewordu that is jointly distortion-typical with from themth quantizer’s
codebook. The distortion function ise (u; x). The decoder finds a codeword
that is jointly typical with . If this codeword is in theith subset, then̂m = i.

To develop this optimality of hidden QIM, we begin by
adding an interpretation in terms of quantization (source
coding) to the proof of the achievability of capacity by Gel’fand
and Pinsker [32], the result of which is summarized as fol-
lows. Fig. 8 shows an ensemble of quantizers, where

, where each source codeword
(quantizer reconstruction vector) is randomly drawn from
the i.i.d. distribution , which is the marginal distribution
corresponding to the host-signal distribution and the max-
imizing conditional distribution from (32). Although
the source codebooks are, therefore, random, both the encoder
and decoder, of course, know the codebooks. Each codebook
contains codewords so there are
codewords total.

QIM embedding in this -domain corresponds to finding a
vector in the th quantizer’s codebook that is jointly distor-
tion-typical with and generating

By distortion-typical, we mean that and are jointly typical
and , i.e., the function is the
distortion function in the -domain. Since the th quantizer’s
codebook contains more than codewords, the proba-
bility that there is no that is jointly distortion-typical with

is small.14 Thus, the selection of a codeword from theth
quantizer is the quantization part of QIM, and the generation of
, and, therefore, , from the codeword and is the

postquantization processing.
The decoder finds a that is jointly typical with the channel

output and declares if this is in the th quantizer’s
codebook. Because the total number of codewords,is less than

, the probability that a other than is jointly typical
with is small. Also, the probability thatis jointly typical with

14This principle is, of course, one of the main ideas behind the rate-distortion
theorem [31, Ch. 13].

is close to .15 Thus, the probability of error is
small, and we can indeed achieve the capacity (32) with QIM in
the -domain.

The remaining challenge, therefore, is to determine the right
pre-processing and postprocessing given a particular channel
(attack) . As mentioned above, for a number of important
cases, it turns out that the only processing required is postquan-
tization distortion compensation. We discuss these cases in the
next subsection.

2) Optimality of Distortion-Compensated QIM:When
distortion-compensated QIM (DC-QIM) as introduced in Sec-
tion IV-A is viewed as an instance of hidden QIM, we obtain
that is a quantized version of . We show in this section
that suitably coded versions DC-QIM can achieve capacity
whenever the maximizing distribution in (32) is of a
form such that the postprocessing is linear, i.e., when, without
loss of generality, is generated according to

(33)

To see that DC-QIM can achieve capacity when the maxi-
mizing pdf in (32) satisfies (33), we show that one can construct
an ensemble of random DC-QIM codebooks that satisfy (33).
First, we observe that quantizingis equivalent to quantizing

with a scaled version of the quantizer and scaling back the
result, i.e.,

(34)

where is as defined following (19). Then, rearranging
terms in the DC-QIM embedding function (19) and substituting
(34) into the result, we obtain

(35)

We construct our random DC-QIM codebooks by choosing
the codewords of from the i.i.d. distribution ,
the one implied by the maximizing pdf in (32) together with
the host pdf . (Equivalently, we choose the codewords of

in (19) from the distribution of .) Our quan-
tizers choose a codeword that is jointly distor-
tion-typical with . The decoder looks for a codeword in all
of the codebooks that is jointly typical with the channel output.
Then, following the achievability argument of Section VI-A1,
we can achieve a rate . From (35), we see that

Since , we see that . Thus, if
the maximizing distribution in (32) satisfies (33), our DC-QIM
codebooks can also have this distribution and, hence, achieve
capacity (32).

As a final comment, it is worth emphasizing that QIM sys-
tems are optimal in other important scenarios as well. As one ex-
ample, in the noise-free case , which arises, for example,

15These principles are, of course, two of the main ideas behind the classical
channel coding theorem [31, Ch. 8].
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when a discrete-valued composite signal is transmitted over a
digital channel with no errors, QIM is optimal even without dis-
tortion compensation, and achieves capacity [27]

(36)

As a second example, and as shown in [27], QIM is optimal
even when the host signal is also available at the decoder
achieving the capacity

(37)

determined by Heegard and El Gamal [33].
We next examine some key scenarios when the optimality

condition (33) is met.

VII. GAUSSIAN CHANNELS

In this section, we examine the ultimate performance limits
of information-embedding methods when both the host signal is
white and Gaussian, the channel is an AWGN channel, and the
host and channel noise are independent of one another. Exten-
sions to colored host and/or colored channel cases are developed
in [15], [27]. Our main result of the section is that DC-QIM
is optimal for this class of channels, and that, in addition, the
optimum distortion-compensation parameteris also given by
(20), which maximized SNR in uncoded DC-QIM systems.

In general, the embedding strategies optimized for Gaussian
channel models can be expected to be good designs for a va-
riety of applications in which one primarily requires robustness
against unintentional attacks.16 And while Gaussian host models
are not always accurate, the better the host-signal interference
rejection properties of an information-embedding system, the
smaller the role we might expect the host-signal model to play
in determining the ultimate performance of such systems.

A. Capacities and the Optimality of DC-QIM

Specializing the formulation of Section VI-A to the Gaussian
scenario of interest, with the zero-mean, variance-variables

denoting elements of the -dimensional host-signal vector
, and, similarly, the zero-mean, variance-variables de-

noting elements of the corresponding noise vector, the distor-
tion constraint can be expressed as

with the corresponding constraint on in (32) being
. We see that squared-error distortion-constrained,

Gaussian information embedding is equivalent to power-con-
strained communication over a Gaussian channel with Gaussian
side information known at the encoder, a case for which Costa
[34] has determined the capacity to be, expressed in terms of
the (embedding induced) DNR

DNR DNR (38)

16Indeed, these models can even apply to optimal, i.e., rate-distortion
achieving [31], lossy compression of a Gaussian source, as discussed in [27].

Remarkably, the capacity is independent of the signal variance
and, in fact, as we shall discuss later in this section, is the

same as in the case when the host signalis known at the
decoder. Note that this implies that an infinite energy host
signal causes no decrease in capacity in this Gaussian case, i.e.,
good information-embedding systems cancompletelyreject
host-signal interference in the Gaussian case.

Based on our earlier results, to establish the optimality of
DC-QIM for this channel, it suffices to verify that (33) is sat-
isfied. This follows from the proof [34] of (38). In particular, as
shown in [34], the pdf that maximizes (32) is indeed one im-
plied by (33), for some parameter, where is chosen as a
function of so that and so that the pairand
are independent. To see this, note that for a fixed value of, an
achievable rate is [34]

which can also be written in terms of the DNR and the host SNR
(SNR )

DNR DNR SNR
DNR SNR DNR SNR

(39)

This rate is maximized by setting (cf. (20))

DNR
DNR

(40)

from which we conclude that the rate (38) is achievable. To es-
tablish that (38) is also the maximum achievable rate, it suffices
to show that it is the capacity whenis known at the decoder,
since one obviously cannot do better in the host-blind case.

To develop the known-host capacity, first recall that the
capacity is given by (37). Again, the maximization is subject
to a distortion constraint, which in the case of white noise is

. Because subtracting a known constant from
does not change mutual information, we can equivalently write

Noting that , we immediately conclude that
in the case of an AWGN channel the known-host capacity is
indeed given by (38), where the maximizing distribution is
a zero-mean Gaussian distribution with variance.

In the known-host case, additive spread spectrum is optimal,
and optimal additive spread-spectrum systems superimpose
zero-mean i.i.d. Gaussian sequences with varianceonto the
host signal. However, it is important to note that QIM is also
optimal in this case as well—as discussed in [15], quantizers
of optimal QIM systems have reconstruction sequences
chosen i.i.d. from a zero-mean Gaussian distribution with
variance . Hence, yet another attractive property of
QIM methods is that they are optimal in more general Gaussian
broadcast scenarios, where some intended recipients of the
embedded information know the host signal and some do not.

As a final comment, several of the methods we have dis-
cussed can be optimal in the small host-signal interference sce-
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nario . In fact, the capacity (38) is rather immediate
in this scenario: Fig. 2 reduces to the classical communication
problem considered in, e.g., [31], , so that the capacity is
the usual mutual information between and maximized
over all such that . In the AWGN channel
case, specifically, (38) results. Examining (39) in the associated
regime SNR , we see that distortion-compensated QIM
with any , including (regular QIM), is optimal in this
small host interference scenario. As one might expect, additive
spread-spectrum systems can be capacity-achieving in this limit
as well, which we will see more explicitly in Section VII-C4.

B. Capacities for Hybrid Transmission

In this section, we consider scenarios corresponding to
applications in which information embedding is part of a
hybrid transmission scheme. We investigate two classes of
such schemes: analog–digital and digital–digital transmission.
In the former class, the host is an analog signal, as arises in,
for example, the digital audio broadcasting application. In the
latter class, the host signal is itself a digital signal, which has
implications for broadcast transmission and related applications
[31, Ch. 14].

In both cases, one is generally most concerned with the
quality of thereceivedsignals, i.e., the channel output, rather
than the channel input (composite signal).

1) Analog Host Signals:In this subsection, we determine
how reliable embedding at a given rate impacts the quality with
which an analog host signal is received and can be decoded with
its conventional receiver from a noisy channel.

In general, the effect of the embedding is to create an addi-
tional noise source DNR times as strong as the channel noise,
and, therefore, the received signal quality drops by a factor of

DNR or

DNR dB (41)

For example, in the scenario analyzed in Section VII-A, op-
timum DC-QIM results in an embedding-induced distortion that
looks like white noise with variance . With no embedding,
one would have had a received host SNR of SNR .
Due to the additional interference from the embedding-induced
distortion, however, the received host SNR drops to

SNR
DNR

a drop of DNR.
Since the capacity in bits per dimension (bits per host-signal

sample) is given by (38), and there are two independent host-
signal samples per second for every hertz of host-signal band-
width [28], the capacity in bits per second per hertz (b/s/Hz) is

DNR b/s/Hz (42)

Taking the ratio between (41) and (42), we see that the “value”
in embedded rate of each decibel drop in received host-signal
quality is

DNR
DNR

0.3322 b/s/Hz/dB

(43)

Thus, the available embedded digital rate in bits per second
depends only on the bandwidth of the host signal and the toler-
able degradation in received host-signal quality, and is approx-
imately 1/3 b/s for every hertz of bandwidth and every decibel
drop in received host SNR. It is worth noting that, as developed
in [15], [27], these results carry over to the case of colored host
and/or colored channel cases as well.

Additional insights into the performance limits of such sys-
tems when the digital signal is specifically information for re-
fining the analog signal, as arises in applications involving the
upgrading of analog infrastructure, are developed in [20].

2) Coded Digital Host Signals:When the host signal is a
coded digital signal, an alternative measure of the received host-
signal quality is the capacity of the corresponding host digital
channel. For example, in the case of white noise and a white host
signal,17 if there were no embedding, the capacity corresponding
to a host digital signal power of and a noise variance of
would be

SNR

Embedding an additional digital signal within the host digital
signal drops the host digital capacity to

SNR
DNR

due to the drop in received host SNR of DNR. Unlike in the
case of an analog host signal, if one must actually lower the rate
of the coded host digital signal as a result of the embedding, then
one may have to redesign both the digital encoder that generates
this coded digital host signal and the corresponding decoder.
Thus, depending on the designed noise margin of the original
digital host signal, backward compatibility may or may not be
possible.

However, even when digital–digital transmission cannot be
backward-compatible, using information embedding for simul-
taneous transmission of two digital signals is potentially attrac-
tive from the point of view of complexity and privacy. In partic-
ular, the decoder for the host signal need not decode (nor know
how to decode) the embedded signal, and vice versa.

As discussed further in [27], this is qualitatively different be-
havior from the superposition coding and successive cancella-
tion decoding one might otherwise use for simultaneous trans-
mission of two digital signals, where one of the receivers needs
to decode both messages to receive its own.

Interestingly, the information-embedding approach is equally
efficient. To see this, we note that the embedded digital channel
rate is given by (38)

DNR

so that the combined rate of the two channels is

DNR SNR

Since the associated expended power is , we conclude
that this digital-over-digital transmission strategy is indeed ef-

17As is well known [31], white Gaussian coded signals are capacity-achieving
for transmission over AWGN channels, so this is a good model for the host signal
in this case.



CHEN AND WORNELL: QUANTIZATION INDEX MODULATION 1435

ficient: the combined rate is as large as the achievable
rate using asingledigital signal with this same total power.

C. Gaps to Capacity

In Section VII-A, we saw that DC-QIM is a capacity-
achieving strategy. In this section, for comparison, we eval-
uate the degree to which specific strategies such as regular
QIM (i.e., without distortion compensation), coded additive
spread-spectrum, uncoded STDM, and uncoded generalized
LBM can each approach capacity—and hence the performance
of DC-QIM—when suitably optimized. We quantify the perfor-
mance of these systems in terms of the additional DNR required
to achieve the same rate as a capacity-achieving system.

1) Regular QIM Gap to Capacity:As we now show, the per-
formance of the best QIM methods without distortion compen-
sation can approach the Gaussian capacity at high rates and is
within 4.3 dB of capacity at low rates, indicating that the QIM
class is large enough to include very good embedding functions
and decoders.

To develop a lower bound on the achievable rate of QIM
without distortion compensation, we begin by specializing (39)
to the case , resulting in

DNR
DNR SNR

DNR SNR
(44)

where to achieve this bound we choose reconstruction points
from the pdf implied by (33).18 The right-hand side of (44) is
generally not the capacity of QIM, however—i.e., QIM systems
can achieve a rate greater than the lower bound (44). Indeed, the
right-hand side of (44) actually approaches in the limit of
low DNR.

A tighter lower bound is obtained by developing a dif-
ferent lower bound on the capacity of a particular subclass
of QIM methods we refer to as “spread-transform QIM.”
In spread-transform QIM, which is a generalization of
STDM as developed in Section V-B, the host-signal vector

is projected onto orthonormal vec-
tors to obtain transformed host-signal
samples which are quantized using QIM.
Because projection onto the vectorsrepresents a change of
orthonormal basis, the transformed host-signal samples and
the transformed noise samples , which are the
projections of the original noise vector onto
the orthonormal vectors , are still independent, zero-mean,
Gaussian random variables with the same variance as the
original host signal and noise samples, respectively. However,
if the distortion per original host-signal sample is, then the
distortion per transformed host-signal sample is . Thus,
we obtain a “spreading gain” of in terms of DNR, but the
number of bits embedded per original host-signal sample is
only times the number of bits embedded per transformed
host-signal sample. Thus, one can determine an achievable rate

18The pdf of the reconstruction pointsu = s in this case isN (0; D +� ),
which is not the same as the well-known rate-distortion optimal pdf [31] for
quantizing Gaussian random variables, which isN (0; � �D ).

of spread-transform QIM by appropriately modifying
(44) to obtain

DNR
DNR SNR

DNR SNR

DNR (45)

To upper-bound the gap between QIM and capacity we first
recognize from (45) that the minimum DNR required for QIM
to achieve a rate asymptotically with large is

DNR (46)

which is minimized at .19 However,
even in the limit of large to have . Thus, if one
sets

(47)

then (46) remains a valid upper bound on the required DNR
for a QIM method to achieve a rate. From (38) we see that
the minimum DNR required for a capacity-achieving method to
achieve a rate is , which when combined
with (46) yields the following upper bound between QIM and
the Gaussian capacity:

DNR
DNR

(48)

This expression is plotted in Fig. 9, where is given by (47).
We now examine the asymptotic limits of (48) at low and high

rates. Equation (47) implies in the limit
of small , so in this limit (48) approaches

DNR
DNR

as

Thus, the gap is at most a factor of(approximately 4.3 dB)
in the limit of low rates. In the limit of large , (47) implies

so (48) approaches

DNR
DNR

as

Thus, QIM asymptotically achieves capacity at high embedding
rates.

As we described in Section VII-B, in hybrid transmission ap-
plications one may be concerned about the degradation to the
received host signal, which is DNR rather than DNR. The

19Note that since

N

+ 0:5
�

N

round
�

N

� 0:5

one can, indeed, approach this optimum spreading gainL in the limit of large
N even thoughN=L need be a positive integer less than or equal toN .
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Fig. 9. DNR gap between spread-transform QIM and Gaussian capacity
(achieved by DC-QIM). The maximum gap is a factor ofe (� 4.3 dB).

gap in DNR (48) is larger than the gap in DNR , which has
a corresponding upper bound

DNR
DNR

This gap is plotted in Fig. 10 as a function of , the rate in
b/s/Hz. Again, is given by (47) since minimizing DNR
also minimizes DNR . Thus, for example, at the (near)
worst case digital rate of 1 b/s/Hz using QIM requires at most 1.6
dB more drop in analog channel quality than the approximately
3-dB drop required for DC-QIM (Section VII-B1).

2) Uncoded STDM Gap to Capacity:The results above can
be compared to the achievable performance of uncoded binary
STDM with uniform scalar quantization as a minimal-com-
plexity realization of QIM.

The gap between uncoded STDM and capacity can easily
be quantified for low rates , which are typical in
many applications, at a given probability of error. A straightfor-
ward union bound on the bit-error probability of uncoded binary
STDM with uniform scalar quantization is (see Fig. 6)

This bound is reasonably tight for low error probabili-
ties, and from (26) we can write this probability of error
in terms of the rate-normalized distortion-to-noise ratio
DNR DNR

DNR
DNR (49)

A capacity-achieving method can achieve arbitrarily low prob-
ability of error as long as , which using (38) can
be expressed as

DNR

Fig. 10. Received host SNR gap(1 + DNR) between spread-transform QIM
and capacity (achieved by DC-QIM).

Fig. 11. Uncoded STDM gap to Gaussian capacity. The solid curve shows
the bit-error probability for uncoded STDM as a function of rate-normalized
distortion-to-noise ratio (DNR ). The dashed curve is the minimum required
DNR for reliable information embedding for any embedding method.

For low embedding rates , so the
minimum required DNR for arbitrarily low probability of
error is

DNR 1.4 dB (50)

The probability of error of STDM is plotted as a function of
DNR in Fig. 11. The required DNR for a given can
be compared to (50) to determine the gap to capacity. For ex-
ample, at an error probability of , uncoded STDM is about
13.6 dB from capacity. One can reduce this gap by at least 9.3 dB
through channel coding, vector quantization, and nondithered
quantization. The remaining gap (at most 4.3 dB) is the gap be-
tween QIM and capacity and can be closed with distortion com-
pensation. As shown in [15], [27], it is fairly easily to close the
gap between uncoded STDM (with uniform scalar quantizers)
and capacity by about 6 dB using practical channel codes and
distortion compensation.

3) Uncoded Spread LBM Gap to Capacity:The gap to ca-
pacity for uncoded binary spread LBM based on uniform, scalar
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quantization also follows readily from the results of Appendix
A, which shows that the distortion-normalized minimum dis-
tance for this form of spread LBM is a factor of 2.43 dB
worse than that of STDM (26). Thus, the LBM counterpart to
(49) is that the bit-error probability of uncoded spread LBM is

DNR (51)

Thus, the gap to capacity of uncoded binary spread LBM at an
error probability of is about 16 dB, 2.4 dB more than the
13.6-dB gap of uncoded binary STDM. Furthermore, as also
discussed in Appendix A, for -ary implementations the gap
widens by an additional 0.6 dB as .

4) Coded Additive Spread-Spectrum Gap to Capacity:For
additive spread spectrum, where , the distortion
signal in Fig. 2 is not a function of the host signal:

. Thus, . The distortion constraint
is still so that in the Gaussian case considered here,
the achievable rate of an additive spread-spectrum method is the
well-known [31] Gaussian channel capacity, treating bothand

as interference sources20

DNR
SNR

(52)

where, again, SNRis the ratio between the host-signal variance
and the channel-noise variance. Comparing (52) to (38), we see
that the gap to capacity of additive spread spectrum is

DNR
DNR

SNR (53)

which is typically large, since SNRmust be large so that
channel noise will not excessively degrade signal quality.

In fact, in the high signal-to-distortion rastio (SDR) limit
where , the achievable rate of additive spread-spec-
trum (52) clearly approaches zero, again reflecting the inability
of additive spread-spectrum methods to reject host-signal
interference like other methods.

At the opposite extreme, when SNR the host inter-
ference is small so the gap (53) disappears, and, indeed, addi-
tive spread spectrum is an optimum embedding strategy for this
case, along with both DC-QIM and QIM as discussed at the end
of Section VII-A.

The other scenario in which additive spread spectrum can be
optimal is when the host is known at the decoder, which also
corresponds to a noninterfering host situation.

5) Known-Host Case:As discussed at the end of Sec-
tion VII-A, both capacity-achieving QIM and capacity-achie-
ving additive spread-spectrum methods exist when the host
signal is known at the decoder. Although QIM realizations in
the form of coded dither modulation with uniform, scalar quan-
tization are not optimal in this case, for AWGN channels one
can achieve performance within 1.53 dB of capacity
as we show below. We consider the case of dither signals with

20This rate is also the capacity whenn is non-Gaussian, but still independent
of s, and a correlation detector is used for decoding [35].

a uniform distribution over the interval . In this
case

where the quantization erroris uniformly distributed over the
interval and statistically independent of [29].
Thus, the achievable rate is slightly lower than the
case where is Gaussian. The entropy power inequality can be
used to show that the decrease in achievable rate is bounded by
[36]

DNR
DNR

(54)

This gap approaches the upper limit of 0.2546
b/dimension as the DNR gets large. For any finite DNR, the gap
is smaller. By subtracting the upper bound on the gap (54) from
the capacity (38), one obtains a lower bound on the achievable
rate of this type of dither modulation

DNR (55)

Thus, dither modulation with uniform scalar quantization in this
case is at most 1.53 dB from capacity.

VIII. I NTENTIONAL ATTACKS

We now turn our attention from AWGN channel models for
unintentional attacks, to some alternative models for intentional
attacks. Intentional, distortion-constrained attacks may be en-
countered in copyright, authentication, and covert communica-
tion applications. In these kinds of applications, attackers gen-
erally attempt to remove or alter the embedded information, and
face a distortion constraint on their signal manipulations so that
the integrity of the host signal is not compromised.

An attacker’s ability to prevent reliable watermark decoding
depends on the amount of knowledge that the attacker has
about the embedding and decoding processes. To limit such
knowledge, some digital watermarking systems use keys, pa-
rameters that allow appropriate parties to embed and/or decode
the embedded signal. The locations of the modulated bits
and the pseudo-noise vectors in an additive spread-spectrum
and generalized LBM systems are examples of keys. If only
certain parties privately share the keys to both embed and
decode information, and no one else can do either of these
two functions, then the watermarking system is a private-key
system. Alternatively, if some parties possess keys that allow
them to either embed or decode, but not both, then the system
is a public-key system since these keys can be made available
to the public for use in one of these two functions without
allowing the public to perform the other function. However, in
some scenarios it may be desirable to allow everyone to embed
and decode watermarks without the use of keys. For example,
in a copyright ownership notification system, everyone could
embed the ASCII representation of a copyright notice such as,
“Property of …” in their copyrightable works. Such a system
is analogous to the system currently used to place copyright
notices in (hardcopies of) books, a system in which there is no
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need for a central authority to store, register, or maintain sep-
arate keys—there are none—or watermarks—all watermarks
are English messages—for each user. The widespread use of
such a universally accessible “no-key” system requires only
standardization of the decoder so that everyone will agree on
the decoded watermark, and hence, the owner of the copyright.

We analyze both private-key and no-key systems in the se-
quel, and establish the attractiveness of QIM in both cases.

A. Attacks on Private-Key Systems

Although the attacker does not know the key in a private-key
scenario, he or she may know the basic algorithm used to embed
the watermark. In [16], Moulin and O’Sullivan model such a
scenario by assuming that the attacker knows the codebook dis-
tribution, but not the actual codebook. As we now develop, ex-
ploiting results of Moulin and O’Sullivan in this private-key
scenario, we determine that DC-QIM methods are optimal (ca-
pacity-achieving) against squared-error distortion-constrained
attackers.

Moulin and O’Sullivan have derived both the capacity-
achieving distribution and an explicit expression for the ca-
pacity (32) in the case where the host is white and Gaussian and
the attacker faces an expected perturbation energy constraint

. In this case, the capacity is [16]

DNR

SNR DNR
SNR DNR

where DNR is the distortion-to-perturbation
ratio and SNR is the host-signal-to-perturba-
tion ratio. The maximizing distribution is such that [16]

with statistically independent of and

DNR
DNR

(56)

Since this distribution satisfies the condition (33), we can infer
from our analysis in Section VI-A2 that DC-QIM can be used
to achieve capacity against these attacks. Moreover, (56) gives
the optimal distortion-compensation parameter.

Moulin and O’Sullivan have also considered the case of host
signals that are not necessarily Gaussian but that have zero
mean, finite variance, as well as bounded and continuous pdfs.
In the limit of small (high SDR) and , a limit of interest
in high-fidelity applications, the capacity approaches

- DNR

and the capacity-achieving distribution is such that

-

where, again, is statistically independent of
[16]. Since this distribution satisfies the condition (33), we can
again conclude that distortion-compensated QIM can achieve

capacity in this high-fidelity limit. The capacity-achieving dis-
tortion-compensation parameter is [16]

-
DNR

DNR

B. Attacks on No-Key Systems

In contrast to the scenario above, in no-key systems an at-
tacker has full knowledge of the embedding and decoding pro-
cesses, including all codebooks. For this case, some determin-
istic models we develop in this section are better for character-
izing the associated worst case in-the-clear (i.e., fully informed)
attacks. With these models, we show that QIM methods in gen-
eral, and dither modulation in particular, are robust and achieve
provably better rate distortion–robustness tradeoffs than both
additive spread-spectrum and generalized LBM techniques.

We consider two models for such attackers: 1) a bounded
perturbation channel model in which the squared-error distor-
tion between the channel input and channel output is bounded
and 2) a bounded host-distortion channel model in which the
squared-error distortion between the host signal and channel
output is bounded. In each case, we develop conditions under
which error-free decoding is possible with various implementa-
tions of QIM and DC-QIM, and quantify their advantages over
the corresponding realizations of additive spread spectrum and
generalized LBM.

1) Bounded Perturbation Channel:The bounded perturba-
tion channel is one in which the attacker can perturb the com-
posite signal in any way it desires (based on its full knowledge
of the composite signal and the embedding algorithm), provided
the energy in the perturbation vector does not exceed a pre-
scribed level, i.e., (16), which reflects a requirement that the
attacker not excessively degrade the original composite signal.
Thus, this channel model imposes only a maximum distortion21

or minimum SNR constraint between the channel input and
output.

Binary dither modulation with uniform scalar quantiza-
tion: One can combine the guaranteed error-free decoding con-
dition (17) for a minimum-distance decoder (15) with the distor-
tion-normalized minimum distance (26) of binary dither modu-
lation with uniform scalar quantization to compactly express its
achievable performance as

(57)

or, equivalently, its achievable rate as

(58)

One can view the achievable rate (58) as the deterministic coun-
terpart to the more conventional notions of achievable rates and
capacities of random channels discussed in Sections VI and VII.

21Some types of distortion, such as geometric distortions, can be large in
terms of squared error, yet still be small perceptually. However, in some cases,
these distortions can be mitigated either by preprocessing at the decoder or by
embedding information in parameters of the host signal that are less affected
(in terms of squared error) by these distortions. For example, a simple delay or
shift may cause large squared error, but the magnitude of the discrete Fourier
transform coefficients are relatively unaffected.



CHEN AND WORNELL: QUANTIZATION INDEX MODULATION 1439

Additive spread spectrum:The nonzero minimum dis-
tance of QIM methods offers quantifiable robustness to per-
turbations, even when the host signal is not known at the
decoder. In contrast, additive spread-spectrum methods offer
relatively little robustness if the host signal is not known at the
decoder. As discussed in Section III, these methods have linear
embedding functions of the form

(59)

where is a pseudo-noise vector. From the definition of
minimum distance (13)

i.e., the minimum distance is zero.
Thus, although these methods may be effective when the

host signal is known at the decoder, when the host signal is not
known, they offer no guaranteed robustness to perturbations,
i.e., no achievable rate expression analogous to (58) exists for
additive spread spectrum. As is evident from (59), in an additive
spread-spectrum system,is an additive interference, which
is often much larger than due to the distortion constraint.
In contrast, the quantization that occurs with QIM provides
immunity against this host-signal interference, as discussed in
Section IV.22

Generalized LBM:As shown in Appendix A, the distor-
tion-normalized minimum distance of generalized binary LBM
with uniform scalar quantization is about 2.43 dB worse than
that of the corresponding dither-modulation strategy. Therefore,
its achievable rate-distortion-robustness performance is also
about 2.43 dB worse than (57). Again, as also developed in the
appendix, for -ary implementations, the gap grows to 3 dB
for large .

2) Bounded Host-Distortion Channel:As an alternative to
the bounded perturbation channel, some attackers may work
with distortion constraint between the channel output and the
host signal, rather than the channel input, since this distortion
is the most direct measure of degradation to the host signal. For
example, if attackers have partial knowledge of the host signal,
which may be in the form of a probability distribution, so that
they can calculate this distortion, then it may be appropriate to
bound the expected distortion , where this ex-
pectation is taken over the conditional probability density.23

We refer to this as the bounded host-distortion channel.
For this channel, we measure robustness to attacks by the

minimum expected distortion for a successful attack, where

22Another way to understand this host-signal interference rejection is to con-
sider, for example, that a quantized random variable has finite entropy while a
continuous random variable has infinite entropy.

23Note that if the attacker has full knowledge of the host signal, he or she can
trivially remove the embedded information by setting= , soD = 0. We
restrict our attention to the more realistic scenario in which an attacker has only
partial knowledge of the host, in the form of a conditional pdf.

TABLE I
ATTACKER’S DISTORTION PENALTIES. THE DISTORTION PENALTY IS THE

ADDITIONAL DISTORTION THAT AN ATTACKER MUST INCUR TOSUCCESSFULLY

REMOVE A WATERMARK. A DISTORTIONPENALTY LESS THAN0 dB INDICATES

THAT THE ATTACKER CAN ACTUALLY IMPROVE THESIGNAL QUALITY AND

REMOVE THE WATERMARK SIMULTANEOUSLY

the expectation is taken with respect to . The ratio between
and the expected embedding-induced distortionis the

distortion penalty that the attacker must pay to remove the wa-
termark and, hence, is a figure of merit measuring the robust-
ness–distortion tradeoff at a given rate. Distortion penalties for
the primary methods of interest are derived below and summa-
rized in Table I for the high SDR regime of primary interest.
As this table reflects, among these methods considered, only
QIM methods (including binary dither modulation with uniform
scalar quantization) are robust enough such that the attacker
must degrade the host-signal quality to remove the watermark.

Regular QIM: We first consider the robustness of regular
QIM. For any distortion measure, as long as each reconstruc-
tion point lies at the minimum-distortion point of its respective
quantization cell, the QIM distortion penalty is greater than or
equal to since any output that an attacker generates must nec-
essarily lie away from this minimum-distortion point. Equality
occurs only if each quantization cell has at least two minimum-
distortion points, one of which lies in the incorrect decoder de-
cision region. For expected squared-error distortion, the min-
imum-distortion point of each quantization cell is its centroid,
and one can express this distortion penalty in terms of the dis-
tortion-normalized minimum distance and the signal length,
as we show below.

We use to denote the quantization cell containingand
to denote the conditional pdf of given that .

Again, for sufficiently small quantization cells, this pdf can
often be approximated as uniform over, for example. Since

is the centroid of

(60)

Also, the expected squared error per letter embedding-induced
distortion given is

(61)
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The most general attack can always be represented as
, where may be a function of. The resulting distortion

is

where we have used (61), the fact that is a pdf and, thus,
integrates to one, and (60) to obtain the last line. For a successful
attack, so

Averaging both sides of this expression over all quantization
cells yields so that our figure of merit
for QIM methods is

(62)

Thus, for any QIM method of nonzero distortion-normalized
minimum distance , the attacker’s distortion penalty is al-
ways greater than (0 dB), indicating that to remove the water-
mark, the attacker must degrade the host-signal quality beyond
the initial distortion caused by the embedding of the watermark.

Binary dither modulation with uniform, scalar quantiza-
tion: In this case, (26) gives in (62). Moreover, due to the
uniformity of the quantizers, the bound (62) is met with equality
so that the attacker’s distortion penalty specializes to

(63)

Because the Hamming distance of a block code cannot ex-
ceed the number of coded bits

where the first equality follows from the definition (23) of.
Thus, an upper bound for the distortion penalty (63) in this case
is

2.43 dB

Although this penalty may seem modest, it is larger than that ob-
tainable by either additive spread spectrum or generalized LBM,
as we show below. Larger distortion penalties are not possible
because in-the-clear attackers can concentrate all their distortion
in the minimum-distance direction in -dimensional space.

As a final note, (63) implies that binary dither modulation
with uniform, scalar quantization can defeat any attacker as long
as

an expression whose counterpart for the bounded perturbation
channel was (57). Thus, the corresponding achievable rates are
given by

Distortion-compensated QIM:An in-the-clear attacker of
a DC-QIM system knows the quantizers and can determine the
watermark after observing the composite signal. If the quan-
tization cells are contiguous so that the distortion-compensation
term in (19) does not moveout of the cell containing, then an
attacker can recover the original host signal with the following
attack:

where the final line follows simply by inverting (19). Thus, the
attacker’s distortion penalty is decibels. We see
that although DC-QIM is optimal against both independent ad-
ditive Gaussian noise attacks and squared-error-distortion-con-
strained attacks in private-key scenarios, it is in some sense
“maximally suboptimal” against in-the-clear attacks. Regular
QIM, on the other hand, is almost as good as DC-QIM against
additive Gaussian noise attacks (Section VII) and also resistant
to in-the-clear attacks as discussed above. Thus, regular QIM
methods may offer an attractive compromise when one requires
resistance to both intentional attacks and unintentional attacks
in a no-key system.

Additive spread spectrum:Since the embedding function
of an additive spread-spectrum system is (2), the resulting dis-
tortion is . An attacker with full knowledge
of the embedding and decoding processes can decode the mes-
sage , and hence, reproduce the corresponding pseudo-noise
vector . Therefore, the attacker can completely remove the
watermark by subtracting from to obtain the original host
signal, i.e., . Hence, the resulting distortion
penalty is decibels.

Because the additive spread-spectrum embedding function
combines the host signaland watermark in a simple
linear way, anyone that can extract the watermark, can easily re-
move it. Thus, these methods are not suitable for universally ac-
cessible no-key digital watermarking applications. By contrast,
the advantage of QIM is that it effectively hides the host signal
even when the embedded informationis known.

Generalized LBM:Recall that the embedding function of
a generalized LBM system can be written as (8) with having
the property (9). Good generalized LBM systems also have the
property that the reconstruction points of are at the cen-
troids of the quantization cells, as we shall assume. One attack
that completely removes information aboutis to output these
reconstruction points, i.e., . Since is at a
minimum distortion point of the quantization cell,

0 dB, with equality only if both and are minimum
distortion points. Thus, an attacker can remove the watermark
without causing additional distortion to the host signal. This
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result applies regardless of whether error-correction coding is
used. Thus, in contrast to dither modulation, error-correction
coding does not improve LBM in this context.

When, in addition, it is the least significant bit of a uniform,
scalar quantizer that is modulated, the results in Appendix A
imply further that

while

Thus, 2.43 dB. Again, when many less
significant bits are modulated, the results of the appendix can
be used to establish that the penalty grows to3 dB.

IX. CONCLUDING REMARKS

We have seen that QIM methods are provably better than ad-
ditive spread spectrum and generalized LBM against bounded
perturbation and in-the-clear attacks and are near-optimal for
Gaussian channels, for which DC-QIM is optimal. Furthermore,
dither modulation is a practical implementation of QIM that
exhibits many of the attractive performance properties of QIM.
The convenient structure of dither modulation, which is easily
combined with error-correction coding, allows the system de-
signer to achieve different rate distortion–robustness tradeoffs
by tuning parameters such as the quantization step size. Also,
one can conveniently upgrade previously developed additive
spread-spectrum and spread LBM systems to spread-transform
dither-modulation systems by replacing the respective addition
and quantize-and-replace steps with a dithered quantization
step.

In the course of our investigation, a number of rather
intriguing results have emerged. For example, the informa-
tion-embedding capacity in the Gaussian case does not depend
at all on whether the host signal is available during decoding,
and DC-QIM is optimal in both scenarios, and achieves perfect
rejection of host-signal interference, even in the high-SDR
regime.

Also somewhat surprisingly, the optimal embedding strategy
for Gaussian channels and for typical attacks in private-key sys-
tems, DC-QIM is “maximally suboptimal” against in-the-clear
attacks. On the other hand, regular QIM, which has performance
within 4.3 dB of DC-QIM in the Gaussian case, performs better
than any other currently known method against in-the-clear at-
tacks, which arise in copyright notification applications where
no-key architectures are used, for example. In particular, unlike
additive spread-spectrum and generalized LBM methods, QIM
and dither-modulation methods force an attacker to pay a dis-
tortion penalty. Thus, QIM emerges as a universally good em-
bedding strategy against a wide variety of intentional and unin-
tentional attacks.

For hybrid transmission strategies, using DC-QIM for digital-
over-analog transmission (in, for example, digital audio broad-
casting applications) allows embedding rates of about 1/3 b/s/Hz
for every decibel drop in analog signal quality. In digital-over-
digital transmission (in broadcast applications, for example),

DC-QIM is as efficient as any single digital transmission, and
thus as good as the alternative superposition coding and succes-
sive cancellation-decoding approach.

Many important directions for further research remain. At
one end of the spectrum, further insights into the fundamental
principles and structure of information embedding and digital
watermarking systems will come from the development of still
better general attack models. Those emerging from game-theo-
retic formulations and arbitrarily varying channel models appear
to be an important starting point in this respect.

At the same time, many of the results in this paper have im-
portant implications for practical applications, and the most ef-
fective implementations of QIM and DC-QIM embedding sys-
tems for these applications will take into account, in detail, the
specific types of geometric distortions and other attacks that typ-
ically arise. For example, in image watermarking applications,
embedders and decoders ultimately need to be robust to a wide
range of often surprisingly challenging attacks, ranging from
scaling and rotation, to cropping and column replacement. A
great deal of future work is needed in this area to enable the use
of QIM techniques in watermarking applications, and indeed
these represent some especially interesting design challenges.

APPENDIX A
LBM DISTORTION-NORMALIZED MINIMUM DISTANCE

In this appendix we calculate the distortion-normalized min-
imum distance of binary LBM with uniform, scalar quantiza-
tion. We assume that the host signal and embedded signal are
statistically independent.

Since the embedding function of any good generalized LBM
method can be written as (8) with (10), the expected distortion
is

(64)

where we have used (10) and the independence ofand to
obtain the final line.

We analyze coded binary LBM with uniform scalar quantiza-
tion, an LBM system in which each in a sequence of coded bits
is repeated times and embedded in a length-block with a
sequence of uniform, scalar quantizers.

The embedding is accomplished by modulating the least sig-
nificant bit of each quantizer. Theth uniform, scalar quantizer
is illustrated in Fig. 12. The coarse quantizer has a step
size of , and the th least significant bit adjustment element

equals .
Comparing this scheme to coded binary dither modulation

with uniform scalar quantization as described in Section V-A,
we see that this scheme has the same minimum distance, i.e.,
(22). Restricting attention to the high SDR regime in which
can be modeled as uniformly distributed within each cell of,
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Fig. 12. Low-bit modulation with a uniform, scalar quantizer. The quantizer
has a step size of� =2, and the least significant bit (lsb) is modulated. All
reconstruction points marked with a� have an lsb of0. Points marked with a

have an lsb of1. This process is equivalent to first quantizing using a quantizer
with a step size of� , whose reconstruction points are marked with a�, and
adding�� =4.

as was used to develop (24) in Section V-A, the first term in (64)
is

(65)

the same as the expected distortion (25) of the corresponding
dither modulation system. The second term in (64), however, is

(66)

Thus, the overall expected distortion is

and the distortion-normalized squared minimum distance is

By comparing with (26), we see that binary coded LBM with
uniform scalar quantization is worse than the corresponding
dither modulation system by

2.43 dB (67)

Also, note that the result (67) is invariant to the actual dis-
tribution of the ’s, and invariant to any preprocessing of the
host signal by a unitary transformation. Thus, the gap between
STDM and spread LBM is also given by (67).

In other variants of LBM, the gap can be worse. For in-
stance, in the case of -ary coded implementations of dither
modulation and LBM based on uniform scalar quantization
where the sets of reconstruction points together form a
regular lattice, then the minimum distances of the two schemes
remain equal (but generally different from the binary case), and
the first term in (64) remains (65). However, as gets large,

becomes effectively uniformly distributed over the range
, so the second term in (64) changes from (66) to

the same as (65). Thus, the gap (67) grows to a factor of(3
dB) in this large limit.
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