IEEE TRANSACTION ON INFORMATION THEORY, VOL. 47, NO. 4, MAY 2001 1423

Quantization Index Modulation: A Class of Provably
Good Methods for Digital Watermarking and
Information Embedding

Brian Chen Member, IEEEand Gregory W. WornellSenior Member, IEEE

Abstract—We consider the problem of embedding one signal does. In some applications these degradations are the result of

(e.g., a digital watermark), within another “host” signal to form  penign processing and transmission; in other cases they result
a third, “composite” signal. The embedding is designed to achieve from deliberate attacks.

efficient tradeoffs among the three conflicting goals of maximizing S | of th licati late t iaht notificati
information-embedding rate, minimizing distortion between the everal of these applications relate to copyright notimcation

host signal and composite signal, and maximizing the robustness @nd enforcement for audio, video, and images that are dis-
of the embedding. tributed in digital formats. In these cases, the embedded signal

~ We introduce new classes of embedding methods, termed quan-either notifies a recipient of any copyright or licensing restric-
tization index modulation (QIM) and distortion-compensated i or inhibits or deters unauthorized copying. For example,

QIM (DC-QIM), and develop convenient realizations in the form . . . e -
of what we refer to as dither modulation. Using deterministic this embedded signal could be a digital “fingerprint” that

models to evaluate digital watermarking methods, we show that Uniquely identifies the original purchaser of the copyrighted
QIM is “provably good” against arbitrary bounded and fully  work. If illicit copies of the work were made, all copies would
informed attacks, which arise in several copyright applications, carry this fingerprint, thus identifying the owner of the copy
and in particular, it achieves provably better rate distortion—ro- from which all illicit copies were made. In another example
bustness tradeoffs than currently popular spread-spectrum and . . - .
low-bit(s) modulation methods. Furthermore, we show that for the embeddeq S'Q”a' CO_UId either enable or disable copylng
some important classes of probabilistic models, DC-QIM is op- By some duplication device that checks the embedded signal
timal (capacity-achieving) and regular QIM is near-optimal. These before proceeding with duplication. Such a system has been
include both additive white Gaussian noise (AWGN) channels, proposed for allowing a copy-once feature in digital video disc
which may be good models for hybrid transmission applications acqrders [2]. Alternatively, a standards-compliant player could

such as digital audio broadcasting, and mean-square-error-con- .
strained attack channels that model private-key watermarking Cneck the watermark before deciding whether or not to play

applications. the disc [3]. o o _

Index Terms—Dbata hiding, digital audio broadcasting, dither Other gppllcatlons include aL'JtomaFed monitoring of alrplay
modulation, digital watermarking, hybrid transmission, in- of advertisements on commercial radio broadcasts. Advertisers
formation embedding, quantization index modulation (QIM), can embed a digital watermark within their ads and count the
steganography. number of times the watermark occurs during a given broad-
cast period, thus ensuring that their ads are played as often as
promised. In other applications, the embedded signal may be
used for authentication of—or detection of tampering with—the
host signal. For example, a digital signature could be embedded
in a military map. A number of other national security appli-

NUMBER of applications have emerged recently [1] thatations are described in [4] and include covert communication,

require the design of systems for embedding one signabmetimes called “steganography” or low probability of detec-
sometimes called an “embedded signal” or “watermark,” withition communication, and so-called traitor tracing, a version of
another signal, called a “host signal.” The embedding must tee digital fingerprinting application described above used for
done such that the embedded signal is “hidden,” i.e., causestrazing the source of leaked information.
serious degradation to its host. At the same time, the embeddin®ne final application for which the digital watermarking
must be robust to common degradations of the watermarke@&thods developed in this paper are well-suited is the back-
signal—the watermark must survive whenever the host signvedrd-compatible upgrading of an existing communication

system, an example of which is the so-called hybrid in-band
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next-generation digital receivers can decode the digital signal s y A
embedded within the analog signal, which may be all or part * > sxm) > Channel 7= DEC > m
of a digital audio signal, an enhancement signal used to refine n=ys

the analog signal, or simply supplemental information such as m
station identification or traffic information. More generally,rig 1. General information-embedding problem model. A messagis
the host signal in these hybrid transmission systems could dabedded in the host-signal vectousing some embedding functistix, m).
some other type of analog signal such as video [7], or everﬁgert_urbatipn vecton corrupts the composite signal The decoder extracts
- . . an estimaten of m from the noisy channel outpyt

digital waveform—for example, a digital pager signal could be
embedded within a digital cellular telephone signal.

In general, designers of information embedding systems fiownal attack models in Section VIII. Finally, Section 1X con-
these kinds of applications seek to achieve high embedding raEss some concluding remarks.
with high levels of robustness and low levels of embedding-in-
duced distortion. However, in general, these three goals are con- Il. PROBLEM MODEL
flicting. Thus, in this paper we characterize methods in terms . . . .
of the efficiency with which they trade off rate, distortion, and Two mathematlcally equwale_nt models for the information-
robustness. For instance, for any minimum embedding rate ?épbeddmg problem are useful in our development.
guirement and maximum acceptable level of embedding distor- ) ) . .
tion, the more efficient an embedding method is, the higher the Distortion-Constrained Multiplexing Model
robustness that can be achieved. The information-embedding problem is naturally and gener-

A great many information-embedding algorithms have beafly described by Fig. 1. In this figure, there is a host-signal
proposed [1] in this still emerging field. Some of the earliestectorx € RY into which we wish to embed some informa-
proposed methods [8], [9], [7] employ a quantize-and-replatien m:.1 We wish to embed at a rate &, bits per dimension
strategy: after first quantizing the host signal, these systefff®st-signal sample) so we can thinksafas an integer in the
change the quantization value to embed information. A simpget{1, 2, ..., 2Vfn},
example of such a system is the so-called low-bit(s) modulationAn embedding function maps the host sighahd embedded
(LBM), where the least significant bit(s) in the quantization oihformationm to a composite signal € R subject to some
the host signal are replaced by a binary representation of the efistortion constraint. Various distortion measures may be of in-
bedded signal. More recently, additive spread-spectrum-basexest, an example of which is the squared-error distortion
methods, which embed information by linearly combining the
host signal with a small pseudo-noise signal that is modulated D(s, x) = i||s — x|? (1)
by the embedded signal, have received considerable attention in N
the literature as an alternative to LBM-type methods [10]—[13(]).

: : its expectatiorD, = E[D(s,x)]. The composite signalis
In_ .thls paper, we show that_both LBM-type strat_egles anscl{ijected to various common signal processing manipulations
additive spread spectrum are, in genenalt good choices for

most information embedding and digital watermarking a I|S-UCh as lossy compression, addition of random noise, and
; . 9 9 9 appi, ampling, as well as deliberate attempts to remove the
cations. As an alternative, this paper introduces a new class

information-embedding strategies we refer to as “ uantizatie bedded information. These manipulations occur in some
: I 9 gie: q .%Hannel, which produces an output sigpat RY . For future
index modulation” (QIM) that is, in general, preferable and in : ! : .
o . . convenience, we define a perturbation vector to be the differ-
many specific scenarios optimal. We further develop comput

) C . ) &hcen € RY, as shown in Fig. 1; we consider cases of both

tionally eﬁ|C|e[1t_|mplementat|_ons:’ of QIM in the form of Whatsignal-independent and signal-dependent perturbation vectors
we refer to as “dither modulation.” We evaluate both specific re: this paper
alizations of uncoded and coded QIM, and the asymptotic per- i

- oo . : A r extracts—i.e., forms an estiméteof—the em-
formanceI|m|tsofcodedQIMusmgmformatlon-theoretlcanal[-J decoder extracts—i.e., forms an estimateof—the e

ysis. Other emerging information-theoretic results on the digit Fdded informatiom: based on the channel outputie focus
watermarking problem are developed in, e.g., [14]-{20]. Snmarlly on the “host-blind” case of interest in most applica-

> . . tions, wherex is not available to the decoder, in contrast to the
The specific organization of the paper is as follows. In Se

tion I, we develop two useful equivalent models for the in?linown-host" case, where the decoder can separately observe
formaiion-embeddpi)n roblem Ir? Section Ill, we classify tra, (See, e.g,, [14] [17] for information-theoretic treatments of

L g prot ) o .. some aspects of the known-host case.) Our interest is in de-
ditional approaches to this problem, and in the process idep-

. . . . : oders that produce reliable estimates whenever the channel is
tc'gssso?fee%g;?éiihorﬁ(é?ggsgsgﬁgcstgi%'?/tg:\?;sséhigu 9 too severe, where reliable means either that m deter-

o 9 ' CVEIops p ﬁnnistically or thatPr[/ # m] < e for sufficiently smalle. In
realizations that are compared to corresponding implementa-

tions of traditional approaches. Next, Section VI establishes
conditions under which different forms of QIM are optimal in 1The vecto is any convenient representation of all or part of the host signal.

aninformation-theoretic sense. We then evaluate the method¥'¢fe case of a hostimage, it could be a vector of pixel values or discrete cosine
transform (DCT) coefficients, for example. In the case of a host audio waveform,

this pap?r in the context OT Gaussian models for uninten.tio'}ﬁi vector could be a vector of samples, spectral parameters, or linear prediction
attacks in Section VII, and in the context of some general intetbeding (LPC) coefficients, for example.
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such cases, the tolerable severity of the channel degradationsis.

measure of the robustness of an information-embedding system e
m — ENC

> DEC (—»m

»@—>| Channel
B. Equivalent Super-Channel Model T
X

An alternative representation of the model of Fig. 1is o ______
shown in Fig. 2. The two models are equivalent since any Super-channel
embedding functios(x, m) can be written as the sum of the
host signalx and a host-dependent distortion sigeék, m), Fig. 2. Equivalent super-channel model for information embedding. The
i.e.,s(x, m) = x + e(x, m), simply by defining the distortion composite signal is the sum of the host signal, which is the state of the
] bl - bl ’

) A ] super-channel, and a host-dependent distortion signal.
signal to bee(x, m) = s(x, m) — x. Thus, one can vieve

as the input to a super-channel that consists Of_ the_ cascadg osy interference nonrejecting methods have the general
of an adder and the true channel. The host signas a oherty that the host signal is effectively a source of interfer-

state of this super-channel that is known at the encoder. TEch in the system, and generally resuit from system designs

measure of distortionD(s, x) between the composite andy,,t 4o not allow the encoder in Fig. 2 to sufficiently exploit
host signals maps onto a host-dependent measure of the RiSwledge of the host signal

P(e, x) = D(x + e, x) of the distortion signa¢. For example,

i / The simplest of such methods have purely additive embed-
squared-error distortion (1) equals the powee of

ding functions of the form
1 2 1 2
NHS_XH = NHeH . s(x, m) = x+ w(m) 2

Therefore, one can view information-embedding problems aherew(m) is typically a pseudo-noise sequence. Such em-
power-limited communication over a super-channel with a statedding methods are often referred to as additive spread-spec-
that is known at the encodeAs we will develop, this view will trum methods, and some of the earliest examples are described
be convenient for determining achievable rate distortion—robu#i-[24], [25], [10], [26], [11], [12]. Typically,w(m) takes the
ness tradeoffs of various information-embedding and -decodifaym

methods.
w(m) = a(m)v 3)

C. Channel Models " . _ g anln) |
L ... wherev is a unit-energy spreading vector is a scalar
In general, the channel model is either a charactenzatlonf%ction of the message.

the degradgtions that can aptually occurto the compositg signal,t is often convenient to view additive spread-spectrum as per-
or glternanvely, a description of the class of degradanons ltl9rbation of a projection. In particular, substituting (3) into (2)
which the embedder and decoder must be robust, i.e., the sys using that has unit energy, we obtain
is designed to work against all degradations described by this ’
particular model. The latter viewpoint is particularly useful in s =x+a(m)v (4)
the context of intentional attacks.

We consider both probabilistic and deterministic chann@ihich when projected onte we obtain
models. In the probabilistic case, we specify the channel
input—output relationship in terms of the conditional proba-
bility law py)s. Implicitly, this specification also describes thgyperey is the corresponding projection of the host signal, i.e.,
conditional probability law of the perturbation vectors against
which the system must be robust since z=x"v. (6)

s=s'v=i+a(m) (5)

Pnjs(n[s) = pyjs(s +nls). Finally, substituting (5) back into (4) yields the composite signal

N : . reconstruction from projections
In the deterministic case, the channel input—output relationship prol

is described most generally in terms of the set of possible out- s=x+(5—)v. 7)
puts P{y|s} for every given input, or equivalently, in terms
of the set of desired tolerable perturbation vec®{s|s} for From (2), we see that for this class of embedding methods,

every given input. the host signat acts as additive interference that inhibits the de-
coder’s ability to estimate:. Consequently, even in the absence
IIl. CLASSES OFEMBEDDING METHODS of any channel perturbatioris = 0), one can usually embed

. only a small amount of information. Thus, these methods are
An extremely large number of embedding methods have been L : . . .
useful primarily when either the host signal is available at the

roposed in the literature [22], [23], [1]. Broadly, for our pur- : i )
prop o [ ] [23], [1] .y P ecoder (as assumed in, e.g., [26]) or when the host-signal in-
poses these can be divided into two classes: 1) host-interfer- : .
. . .~ terference is much smaller than the channel interference.
ence nonrejecting methods and 2) host-interference rejecting
methods. 3Technically, spread-spectrum systems (2) for which (3) applies are classified
as amplitude-modulation additive spread-spectrum methods, but since there is
2Coxet al.have also recognized that one may view watermarking as comms risk of confusion in this paper, we will use the term “additive spread-spec-
nications with side information known at the encoder [21]. trum” to specifically mean those systems based on amplitude modulation.
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Information embedding systems can achieve host-interfer- o X
. . . X
ence rejection when knowledge of the host signal at the en- 0O
coder is adequately exploited in system design. Examples in- //\\ ©
clude LBM and, more generally, quantize-and-replace systems. /%. \ x
In LBM systems, the least significant bit(s) in the binary rep- ?\;ﬂ \
X | \

resentation of a host sample are simply replaced with message |
bits. A class of quantize-and-replace systems that we refer to | \
as generalized LBM systems implement a vector generalization !
of this embedding strategy. Generalized LBM embedding func-

tions are of the form o

s=q(x) +d(m) ®)
Fig.3. QIM forinformation embedding. The points marked witls and(O’s
Whereq(~) represents the coarse quantizer that determines te@®ng to two different quantizers, each with its associated index. The minimum
most significant bits, and is determined only by the (modu- iStanCcedum:, measures the robustness to perturbations, and the sizes of the
L . . 2 uantization cells, one of which is shown in the figure, determine the distortion.
lated) least significant bits. A defining characteristic of generak-;,, = 1, the host signal is quantized to the nearestf m = 2, the host
ized LBM systems is that the embedding never alters the meghal is quantized to the nearest
significant bits of the host signal, which is expressed in terms of

the constraint of any other function. For example, one might desire at the very

a(s) = q(x) 9) least that the ranges be nonintersecting. Otherwise, even in the
' absence of any perturbations, there will be some valuegam
Without loss of generality, we may assume that good genergihich one will not be able to uniquely determine In fact, itis

ized LBM quantizers are unbiased, i.e., precisely the nonintersection property that leads to host-signal
interference rejection.
Elq(x) —x] = 0. (10) The nonintersection property along with the approximate-

_ . identity property (12), which suggests that the ranges of each
One example of a generalized LBM system is that developgglihe functions “cover” the space of possible (or at least highly

in [7], where LBM is effectively applied to a pseudorandomyohaple) host-signal values suggests that the functions be
projection of the form (6). Thus, the embedding is of the forgiscontinuous. Quantizers are just such a class of discontinuous,
(7) wheres is now of the form approximate-identity functions. Then, “QIM” refers to embed-
. ding information by first modulating an index or sequence of
v =a@) +dm) (11) indi?:es with the eni/bedded informa?ion and then qugntizing the
with ¢(-) a uniform, scalar quantization function of step sixe host signal with the associated quantizer or sequence of quan-
andd(m) a perturbation value. It is convenient to think of thidiZers. _ _ _ _ .
class of generalized LBM systems as “spread LBM” systems. Fig. 3illustrates this QIM information-embedding technique.
While generalized LBM systems are host-interference r#l this example, one bit is to be embedded so that {1, 2}.
jecting, they are unnecessarily constrained in a way that makg¥!S, we require two quantizers, and their corresponding sets
them generally inefficient and vulnerable to various classes @f reconstruction points ilR" are represented in Fig. 3 with
attacks, which in turn limits the range of applications for whick's andO's. If = 1, the host signal is quantized with the
they can be used. Avoiding these constraints in the process*gfluantizer, i.e.s is chosen to be the closest toc. If m = 2,
developing optimal information-embedding systems naturafyiS quantized with theD)-quantizer.
gives rise to a new and general class of host-interference®s x varies, the composite signal valsearies from onex
rejecting embedding methods called QIM, which we develdint (n = 1) to another or from on&) point (m = 2) to an-

=57

in the sequel. other, but it never varies betweerxgoint and a0 point. Thus,
even with an infinite energy host signal, one can determine
IV. QUANTIZATION INDEX MODULATION if channel perturbations are not too severe. khgoints and))

) o points are both quantizer reconstruction points and signal con-
To develop the QIM concept, we begin by viewing the embedse|jation points, and we may view design of QIM systems as

ding functions(x, m) as an ensemble of functionsxafindexed  he simultaneous design of an ensemble of source codes (quan-
by m. We denote the functions in this ensembles@s 1) 10 izers) and channel codes (signal constellations).

emphasize this view. If_the embedding-induced distortion is to Conveniently, properties of the quantizer ensemble can be re-
be small, each function in the ensemble must be close to anidgfiaq directly to the performance parameters of rate, distortion,
tity function in some sense so that and robustness. For example, the number of quantizers in the
ensemble determines the information-embedding Kate The

sizes and shapes of the quantization cells determine the embed-

that the points in the range of one function ir.] thg ensembleionesetof points, rather than one individual point, exists for each value of
should be far away in some sense from the points in the range

s(x; m) = x, Y m. (12)
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error. Finally, for many classes of channels, the minimum digere(-) is the Gaussia®-function
tance

L[ e
) = — dt. 18
Ainin 2 min  min Is(xs;5 ¢) — s(x;5 J)|| (13) Q@) V2 /x ¢ (18)

(2,9): a7 (%i,%5)

between the sets of reconstruction points of different quantizexs Distortion-Compensated QIM
in the ensemble effectively determines the robustness of the em-.. . L o
beddingg Distortion compensation is a type of postquantization pro-
oL . : cessing that can improve the achievable rate distortion—robust-
Itis important to emphasize that, in contrast to the case wheré . . .
: . . - ) ness tradeoffs of QIM methods. To see this, we begin by noting
the host signat is known at the receiver, the minimum-distanc . . . .
. ) at for a fixed rate and a given quantizer ensemble, scatitig
decoder needs to choose from all reconstruction points of the_ . : > 5
. . : . quantizers by < 1increasegZ . by afactor ofl/«*, thereby
quantizers, not just those corresponding to the actual host signa

. S . =~ .Jincreasing the robustness of the embedding. However, the em-
x. In particular, the minimum-distance decoder makes deC'S'Qtr)]gdding—induced distortion also increases by a factar/of
according to the rufe Adding back a fractionl — « of the quantization error to the

N . ) quantization value removes, or compensates for, this additional
m(y) = arg minmin |ly — s(x; m)||. (14)

" distortion. The resulting embedding function is

If, which is often the case, the quantize(x; m) mapx to the s(x, m) = q(x; m, AJa) + (1 — a)[x — q(x; m, A/a)]
nearest reconstruction point, then (14) can be rewritten as (19)

m(y) = arg;flin”y —s(y; m)|- (15)  where q(x; m. A/a) is the mth quantizer of an ensemble
whose reconstruction points have been scaled by that two
(While the minimum-distance decoder is especially conveniemdconstruction points separated by a distaf\ceefore scaling
to implement and analyze, a variety of other potentially usefale separated by a distandg« after scaling. The first term in
decoders are discussed in [27].) (19) represents normal QIM embedding. We refer to the second
Intuitively, the minimum distance measures the size of pertuerm as the distortion—compensation term.
bation vectors that can be tolerated by the system. For exampleThe quantization error added back is a source of interfer-

if channel perturbations are bounded accordirig to ence to the decoder. Typically, the probability density functions
(pdfs) of the quantization error for all quantizers in the QIM en-
lly —s||* = [In]|* < No2. (16) semble are similar. Therefore, the distortion compensation term

o _ _ in (19) is effectively statistically independent of and can be
then the minimum-distance decoder is guaranteed to not mak&ted as independent noise. Thus, decreasleads to greater

an error as long as minimum distance, but for a fixed embedding-induced distor-
P2 tion, the distortion—compensation interference at the decoder in-
min o g (17) creases. One optimality criterion for choosimgs to maximize
4No} the following “SNR” at the decision device:
In the case of a classical additive white Gaussian noise (AWGN) 42 /o d2

(1-aPZ +02  (1-a)D;+a3

channel with a noise variance®f, at high signal-to-noise ratio SNR(a) =
(SNR) the minimum distance also characterizes the error prob-

ability of the minimum-distance decoder [28], where this SNR is defined as the ratio between the squared
minimum distance between quantizers and the total interfer-
Prfriv £ m] ~ Q< @) ence energy _from both distortion_—compens_ation in_terference

402 and channel interference. Heré, is the minimum distance

when« = 1 and is a characteristic of the particular quantizer
5When the host signal is known at the decoder, as is the case in some aPisemble. One can eas”y verify that the optimal scaling
cations of interest, then the more natural minimum distance is parameter that maximizes this SNR is
lmin(x) 2 mi P i) —s(x; )
doin(x) £ min_ s ) = s(x; J)] DNR

dwin = min  min ||s(x; 1) — s(x; j)]|.
% (i3): id

(20)

where DNR is the (embedding-induced) distortion-to-noise
ratio Ds/o2.

As we will see, suitably coded versions of this distortion-
compensated QIM with precisely the parameter setting (20) also
have important asymptotic optimality properties. Before devel-

oping these properties, let us first investigate some constraints
We refer to this as the bounded perturbation channel and will revisit this
deterministic channel in Section VIII-B1. 8If a reconstruction point is &, it is “scaled” bya by moving it toq/«.

SAlternatively, if the host signak is known at the decoder

m(Y, x) = argmin ||y — s(x; m)]|.
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that are useful to impose on QIM systems to facilitate imple-  This constraint ensures that the two corresponding

mentation. L-dimensional dithered quantizers are the maximum
possible distance from each other. For example, a
V. DITHER MODULATION: AN IMPLEMENTATION OF QIM pseudorandom sequence &fA;/4 and its negative

satisfy this constraint. One could alternatively choose
d[k, 0] pseudorandomly with a uniform distribution over

[—Ar/2, Ay /2].20 Also, the two dither sequences need
not be the same for each lengthblock.

A key aspect of the design of QIM systems involves the
choice of practical quantizer ensembles for such systems,
which we now explore. In the process, we obtain additional
insights into the design, performance evaluation, and imple-__ ] ) ] i ) )
mentation of QIM embedding methods, particularly those of iii) Th_e ith bloc_k ofx is quantized with the dithered quantizer
low complexity. A convenient structure to consider is that  USing the dither sequenei, z;].
of so-called dithered quantizers [29], [30], which have the A detailed assessment of the complexity of this QIM realiza-
property that the quantization cells and reconstruction poir{gn is developed in [15], [27].
of any given quantizer in the ensemble are shifted versions OfThe minimum-distance properties of coded binary dither
the quantization cells and reconstruction points of any othgjodulation are readily deduced. In particular, any two distinct
qguantizer in the ensemble. In nonwatermarking contexts, thgded bit sequences differ in at least places, wherely is
shifts typically correspond to pseudorandom vectors callgge minimum Hamming distance of the error-correction code.
dither vectors. For information-embedding purposes, the dithesr each of thesdy; blocks, the reconstruction points of the
vector can be modulated with the embedded signal, i.e., ea@responding quantizers are shifted relative to each other by

possible embedded signal maps uniquely onto a different dithep, /2 in the kth dimension. Thus, the square of the minimum
vectord(m). The host signal is quantized with the resultingjistance (13) over alN dimensions is

dithered quantizer to form the composite signal. Specifically,

we start with some base quantizgt-), and the embedding ) LA
function is pin =i Z <7>
k=1
s(x; m) = q(x + d(m)) — d(m). = (k) L s az
Ay, ) itk k
We call this type of information embedding “dither modula- 1 )
tion.” We discuss several low-complexity realizations of such =Y IR > AR (22)
T k

dither-modulation methods in the sequel.

where to obtain the second equality we have used (21), and
where, in the third liney. is the gain of the error-correction
code

A. Coded Binary Dither Modulation with Uniform Scalar
Quantization

Coded binary dither modulation with uniform, scalar quanti- A
zation is one such realizationVe assume that/N < R,,, < 1. Ye = dr(ku/ke). (23)

The dither vectors in a coded binary dither modulation system ) ) ) ) ) ) )
are constructed as follows. In the high signal-to-distortion ratio (SDR) regime of primary

interest for high-fidelity applications, the quantization cells are

i) The NR,, information bits{b1, b2, ..., b g, } repre- sufficiently small that the host signal can be modeled as uni-
senting the embedded messageare error-correction formly distributed within each cell. In this case, the expected
coded using a ratg; /k. code to obtain a coded bit se-squared-error distortion of a uniform, scalar quantizer with step

quence{zi, z2, ..., zy/L}, Where size Ay, is the familiar
1 1 Ay/2 A2
L= 5 (ku/k.). (21) _/’ 2 do = 2k (24)
m Ay —AL/2 12

(In the uncoded case; = b; andk,/k. = 1.) We di- Thys, the overall average expected distortion (1) is
vide the host signal into V/ L nonoverlapping blocks of

length L and embed théh coded bitz; in theith block, D. — 1 A2 25
as described below. *T12L zk: ke (25)

i) Two length-. dither sequenced[k, 0] and d[k, 1] and n . . . o
one lengthZ sequence of uniform, scalar quantizergomb'”'ng (22) and (25) yields the “distortion-normalized

squared minimum distance

with step sizesAq, ..., Ay are constructed with the
constraint o 2o 3 06
ks, 1] = {d[k, 0] + Ar/2, d[k, 0] <0 1 I norm D, R,
’ dlk, 0] — Ax/2, d[k,01>0 ’ o 10A uniform distribution for the dither sequence implies that the quantization

error is statistically independent of the host signal and leads to fewer “false
9By scalar quantization, we mean that the high-dimensional base quantizentours,” both of which are generally desirable properties from a perceptual
q(-) is the Cartesian product of scalar quantizers. viewpoint [29].
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Fig. 5. Transform dither modulation with nonuniform quantization step sizes.

y

Fig. 4. Dither modulation with uniform quantization step sizes.

a quantity that can be used to characterize the achievable perfor-
mance of QIM realizations more generally, as we will develop.

B. Spread-Transform Dither Modulation

One special class of coded binary dither modulation methods
is what we refer to as spread-transform dither modulation
(STDM). We now develop its properties and quantify its
advantages over other forms of dither modulation, over additive
spread-spectrum methods, and over spread LBM.

To introduce STDM, we begin by observing that the dis-
tortion-normalized squared minimum distance (26) of binary
dither modulation with uniform scalar quantization does not de-
pend on the sequencaky, i.e., on the distribution of the dis-
tortion across samples within the lengthblock. Thus, one is
free to choose any distribution without sacrificidf, ..., so the

Ay’s can be chosen to optimize other characteristics of the epiy. 6. Transform dither modulation with quantization of only a single
bedding_ transform component. The quantization step size for the component of the host

To understand this property, consider Figs. 4—6, each ofwhis(:'ﬂnal orthogonal t is zero.

show the reconstruction points of two quantizers for embedding

one bitin a block of two samples. For each of the three systemsWhile the three systems corresponding to Figs. 4—-6 have the
the minimum distance-4/+/2—and the average squared-errosame minimum distance, timimberof perturbation vectors of
distortion—A? /12 per sample—are identical. Thus, the robustminimum length that cause decoding errors is higher for the case
ness against bounded perturbations is the same in each cab€ig. 4 than for the case of Fig. 6. (For intermediate cases
However, the quantization differs in each case. In Fig. 4, whesach as the one shown in Fig. 5, where quantization step sizes
scalar quantization is applied to each sample separately, thalifferent dimensions are different but nonzero, the number
quantization step sizes are the same for both samples. In Figef perturbation vectors of minimum length that cause decoding
and 6, the samples are first pretransformed and the resulting eors is the same as in Fig. 4, but these vectors are not orthog-
efficients quantized unevenly. In particular, a unitary transforomal.) Thus, for probabilistic channels, such as additive noise
(coordinate rotation) is applied to the pair of samples befoohannels, the@robability of error is generally different in each
gquantization; the first transform coefficient is the component ahse. For example, suppos@® ait is embedded and the com-
the host signal in the direction ef depicted. In Fig. 5, the step posite signal is the point labeled withs in Figs. 4 and 6. If the
size for quantizing the first transform coefficient is larger thachannel output lies in the decision region defined by the dashed
that used to quantize the second transform coefficient, whibbx in Fig. 4 and defined by the two dashed lines in Fig. 6, then
lies in the direction orthogonal te. Finally, in the extreme case the decoder will correctly determine tha &it was embedded.

of Fig. 6, the step size for the first coefficient is larger still, antf the perturbation vector places the channel output outside the
that for the second coefficient is zero, i.e., all embedding occutscision region, however, the decoder will make an error with
in the first coefficient. In this case, the reconstruction points beery high probability. (There is some possibility that the channel
come reconstruction lines, so to embed hit, the host signal output is outside the decision region but is still closer ta a

is quantized to the nearest point on a line labeled with @0 point other thars than to the closegD. These events, however,
embed al bit, the host signal is quantized to the nearest poiate very unlikely for many perturbation probability distributions
on a line labeled with &). that are of practical interest.) Since the decision region of Fig. 6
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contains the decision region of Fig. 4, it follows that the probavhere A = /12LD; so that the expected distortion in both
bility of a correct decision in the case of nonuniform quantizasases is the same, and where we have used the faci(that
tion step sizes is higher. andd(2) are chosen such thpt(1) — d(2)| = A/2.

The unitary transform in the case of Fig. 6 not only facilitates The decoder in both cases makes a decision basegd the
a comparison of Figs. 4 and 6, but also serves to spread any @nojection of the channel outpybntov. In the case of additive
bedding-induced distortion over frequency and time/space whepread spectruny, = a(m)+&+n, while in the case of STDM,
a peak distortion constraint is imposed, for example. Although= s(z, m) + 7, wheren is the projection of the perturbation
the distortion is concentrated in only one transform coefficientectorn onto v. We let P(-) be some measure of energy. For
if the energy ofv is spread over space/time and frequency—f@xample P(z) = x? in the case of a deterministic variahleor
example, ifv is chosen pseudorandomly—then the distortiof*(z) = var z whenz is random. The energy of the interference
will also be spread. or “noise” is P(& + =) for additive spread spectrum, but only

As we will see in subsequent sections of this paper, dithe{7) for STDM, i.e., the host-signal interference for STDM is
modulation methods have considerable performance advantarg®. Thus, the SNR at the decision device is
over previously proposed additive spread-spectrum and spread ALD
LBM methods in a variety of contexts. However, much effort has SNRsg = ————
already been invested in optimizing both additive spread-spec- P(z +n)
trum and spread LBM systems, for example, by exploiting pefor additive spread spectrum and
ceptual properties of the human visual and auditory systems or
designing receiver front-ends to mitigate effects of geometric SNRsrpy = 3LDs
and other distortions. An additional advantage of STDM specifi- P(n)
cally over 9th_er form.s.of dither modulationis that one can easi}gr STDM, where the
convert existing additive spread-spectrum and spread LBM sys-
tems into STDM systems while retaining the other optimized o .
components of the system. In particular, it suffices to replace th (a(1) —a(2)) and P <(£f{1§2) [8(Z1, 1) — 3(@2, 2)|>
addition step of additive spread spectrum, i.e., (5), or the quan-
tize-and-replace step of spread LBM, i.e., (11), with the ditherédie given by (28) and (29). Thus, the advantage of STDM over

“signal” energies

quantization step of STDM, i.e., additive spread spectrum is
SNRstpm 3 P(Z 4 1)

SNR Advantage of STDMn this section, we quantify the which is typically very large since the channel perturbations
performance gain of STDM over additive spread spectrum agge usually much smaller than the host sigihaf the channel
spread LBM from an SNR perspective that applies to a brogtputy is to be of reasonable quality. For example, if the host-
range of contexts. We focus our analysis on the representaignal-to-channel-noise ratio is 30 dB andnd# are uncor-
case of embedding one bit in a lengthblock x using a unit- related, then the SNR advantage (30) of STDM over additive
length spreading vector. Because, as (5), (11), and (27) respread spectrum is 28.8 dB.
flect, in each case the embedding occurs entirely in the projec- SNR advantage of STDM over spread LBEpread-trans-
tion of x ontov, a one-dimensional problem results. In additiorform dither modulation methods also have an SNR advantage
because all of the embedding-induced distortion occurs onlyadner spread LBM methods. As we show in Appendix A, the
the direction ofv, the distortion in each case also has the sanféstortion-normalized squared minimum distance (26) of LBM
temporal/spatial distribution and frequency distribution. Thuis 7/4 ~ 2.43 dB worse than that of dither modulation in the
one would expect that any perceptual effects due to time/sp&eése of coded binary embedding with uniform, scalar quantiza-
masking or frequency masking are the same in each case. Thég#. Thus, for a fixed rate and embedding-induced distortion,
fore, squared-error distortion and SNR-type measures are mie squared-minimum distance, and hence the SNR at the deci-
meaningful measures of distortion when comparing these esien device, for spread LBM will be 2.43 dB worse than that of
bedding methods than one might expect in other more gene®dIDM, i.e.}?
contexts where squared-error distortion may fail to capture cer- SNRs

. TDM
tain perceptual effects. SNRsiont

SNR avantage of STDM over additive spread spec- LBM
trum: Considering the case of additive spread-spectrum fir§this SNR advantage is illustrated in Fig. 7, where the quantizer
sincea(m) = £/ LD;s in (5), we have reconstruction points and embedding intervals for both spread

- ; ~2.43 dB (31)

1INote that while the high SDR approximation (30) predicts that STDM is
la(1) — a(2)]* = 4LD;. (28)  worse than additive spread spectrum by a factalr/sf = 1.25 dB wheni & 0
(as would be the case, for example, if the host signiadhd very little energy in
the direction ofv), in fact, if one choosed(m) = +A /4 then itis straightfor-
ward to verify that STDM performs as well as additive spread spectrum in this
low SDR regime.
: N A 2 _ A2/4 — 12Appendix A also shows that fav/-ary embedding the SNR gain grows to
(;{17151012) |5(21, 1) — 5(Z2, 2)| A“/4 =3LDq (29) 2 (3 dB) ASM — o

For STDM (27)
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' ...00 .01 ’ ...10 .11 ‘ and a memoryless channel with known pdf

| | |
pyls(Y|S) = prls(yz|sz)
=1

AT Generalized LBM

wherey; ands; are theith components of ands, respectivelys3

! ! Then, the super-channel is also memoryless and has probability
| ,L i ,L law
i | | |
T . Bylex(¥le, X) = py(ylx +e) = [ oy wile: + )
=1
A N
STDM = [12vic.=Wilei, =)
=1

Fig. 7. Spread-transform dither modulation versus spread LBM. The
embedding interval boundaries of spread LBM, which are shown with solifhe capacity [31] of this super-channel is the reliable informa-

lines, are the same for botk points and®) points. In contrast, in the case of 4; ~~_ ; ; ; ; ;
STDM, the x -point embedding intervals, shown by solid lines, differ from th tion-embedding ratéz,, that is asymptotically achievable with

O-point embedding intervals, shown by dashed lines. An SNR advantagj@ﬂg signal lengthsV.
7/4 = 2.43 dB for STDM results. In nonwatermarking contexts, Gel'fand and Pinsker [32] and

Heegard and El Gamal [33] have determined the capacity of
é&lch a channel in the case of a random state veatdth inde-
pendent and identically distributed (i.i.d.) components when the
SH_coder sees the entire state vector before choosing the channel
Bpute. In this case, the capacity is

LBM and STDM are shown, with the same embedding-induc
squared-error distortion for both cases.

The preceding analysis establishes some important adv;
tages of QIM methods over common information-embeddirl
methods. In fact, it turns out that QIM methods are asymptoti-

cally optimal in many key scenarios of interest. To develop these ¢= pax (s y) = I(u; @) (32)
results, we next examine information embedding within an in-
formation-theoretic framework. wherel(-; -) denotes mutual information andis an auxiliary

random variable. Sincg, cj» = Pu|zPeju, WE CaN think ofu
in (32) as being generated framand, in turnge from » andz.
While the mapping from: to « is, in general, probabilistic, from
This section explores the best possible rate-distortion-robuggnvexity properties of mutual information, one can deduce that
ness performance that one could hope to achieve with any infgfe maximizing distribution in (32) always has the property that
mation-embedding system. Our analysis leads to insights abe a deterministic function ofu, =) [32].
some properties and characteristics of good information-em-n the case of watermarking, the maximization (32) is subject
bedding methods, i.e., methods that achieve performance clgsa distortion constraink[¢?] < D;. A formal proof of the ex-
to the information-theoretic limits. In particular, a canonicaension of (32) to include this constraint is developed in [20].
“hidden QIM” structure emerges for information embeddin@ther researchers [18], [19], [16] are working on extending or
that consists of 1) preprocessing of the host signal, 2) QIM ellave extended these results to the case where the channel law
bedding, and 3) postprocessing of the quantized host signalto is not fixed but rather is chosen by an attacker subject to a
form the composite signal. One incurs no loss of optimalitfistortion constraint. A related information-theoretic formula-
by restricting one’s attention to this simple structure. We als@n can be found in [14].
derive sufficient conditions under which only distortion com- As we shall see in the next section, one way to interpret (32)
pensation postprocessing is required. As we develop in S@gthatl(u; %) is the total number of bits per host-signal sample
tions VIl and VIII, these conditions are satisfied in several inthat can be transmitted through the channel, Bad z) is the
portant cases of practical interest. number of bits per sample that are allocated to the host signal
The difference between the two is the number of bits per host-
A. Communication over Channels with Side Information  signal sample that can be allocated to the embedded information

VI. INFORMATION-THEORETIC OPTIMALITY OF QIM

The super-channel model of Section II-B and Fig. 2 facilitate8- ) i i i
our analysis, i.e., we view information embedding as the trans-1) Hidden QIM: As we show in this subsection, one can
mission of a host-dependent distortion sigaaiver a super- achieve the capacity (32) by a type of “hidden” QIM, i.e., QIM
channel with side information or statehat is known at the en- that occurs in a domain represented by the auxiliary random

coder. In this section, we also restrict our attention to a squard@/iable«. One moves into and out of this domain with pre-
error distortion constraint and postquantization processing.

13extension of results in this section to the case where the channel is only
block-wise memoryless is straightforward by lettipgands; be thesth blocks,
ci? < Dy rather tharith scalar components, gfands. In this case, information rates are
im1 measured in bits per block, rather than bits per sample.
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up is close tol.1s Thus, the probability of erraPr[/n # m] is
small, and we can indeed achieve the capacity (32) with QIM in
the u-domain.

The remaining challenge, therefore, is to determine the right
pre-processing and postprocessing given a particular channel
(attack)p,|s. As mentioned above, for a number of important
— cases, it turns out that the only processing required is postquan-
X > & — pylu) =y — > m tization distortion compensation. We discuss these cases in the
next subsection.

2) Optimality of Distortion-Compensated QIM&/hen
distortion-compensated QIM (DC-QIM) as introduced in Sec-
tion IV-A is viewed as an instance of hidden QIM, we obtain
thatu is a quantized version akx. We show in this section
T e2(y,, X,) < D, that suitably coded versions DC-QIM can achieve capacity
k whenever the maximizing distributiop, .|, in (32) is of a

form such that the postprocessing is linear, i.e., when, without

Fig. 8. Capacity-achieving “hidden QIM.” One embeds by choosing kpss of generality¢ is generated according to
codewordu, that is jointly distortion-typical withx from themth quantizer's
codebook. The distortion function i (u«, 2). The decoder finds a codeword
that is jointly typical withy. If this codeword is in théth subset, them. = :.

11111

1
N

e=u— Qr. (33)

To see that DC-QIM can achieve capacity when the maxi-

To develop this optimality of hidden QIM, we begin bymizing pdfin (32) satisfies (33), we show that one can construct
adding an interpretation in terms of quantization (sourd ensemble of random DC-QIM codebooks that satisfy (33).
coding) to the proof of the achievability of capacity by Gel'fandfirst, we observe that quantizingis equivalent to quantizing
and Pinsker [32], the result of which is summarized as fofxx With a scaled version of the quantizer and scaling back the
lows. Fig. 8 shows an ensemble &¥ %~ quantizers, where result, i.e.,
R, = I{u; y) — I(u; x) — 2¢, where each source codeword 1
(quantizer reconstruction vecto) is randomly drawn from q0s m, Afa) = —q(ax; m, A) (34)
the i.i.d. distributionp,, which is the marginal distribution
corresponding to the host-signal distributipn and the max- Whereq(-; -, -) is as defined following (19). Then, rearranging
imizing conditional distributionp,, .|, from (32). Although termsinthe DC-QIM embedding function (19) and substituting
the source codebooks are, therefore, random, both the encddéy into the result, we obtain

and decoder, of course, know the codebooks. Each codebook —alcm. A N
contains 2N[/(wim)+<l codewords so there argNl(uiy)—<l st m) =q(x; m, Afe)+(1 - a)lx—ab; m, Afa)]

codewords total. =aq(x; m, Afa) +(1— a)x

QIM embedding in thisa-domain corresponds to finding a =q(ax; m, A)+ (1 — a)x. (35)
vectorug in themth quantizer's codebook that is jointly distor- _
tion-typical withx and generating We construct our random DC-QIM codebooks by choosing

the codewords ofy(-; m, A) from the i.i.d. distributionp,,
the one implied by the maximizing pdf in (32) together with
the host pdfp,.. (Equivalently, we choose the codewords of
By distortion-typical, we mean that, andx are jointly typical a(:; 7, &/«) in (19) from the distribution of./«.) Our quan-
and||e(ug, x)||? < N(Ds+¢), i.e., the functione(u, z) is the tizersq(-; m, A) choose a codeword, that is jointly distor-
distortion function in thex-domain. Since thenth quantizer's tion-typical withax. The decoder looks for a codeword in all
codebook contains more thaiZ(42) codewords, the proba- Of the codebooks that is jointly typical with the channel output.
bility that there is nou, that is jointly distortion-typical with Then, following the achievability argument of Section VI-Al,
x is smalli+ Thus, the selection of a codeword from theh ~We can achieve a ra{u; y) — I(u; x). From (35), we see that
guantizer is the quantization part of QIM, and the generation of
e, and, therefores = x + ¢, from the codeword; andx is the

postquantization processing. _ _ Sinces(x, m) = x + e, we see that = up — ax. Thus, if
The decoder finds a that is jointly typical with the channel the maximizing distribution in (32) satisfies (33), our DC-QIM

outputy and declaresn = ¢ if this u is in the:th quantizer's codebooks can also have this distribution and, hence, achieve
codebook. Because the total number of codewarisless than capacity (32).

21.\r1(u;-y)7 the probability that au other thanu is jointly typical  Ag 4 final comment, it is worth emphasizing that QIM sys-
withy is small. Also, the probability thatis jointly typical with e mg are optimal in other important scenarios as well. As one ex-
ample, in the noise-free cage= s), which arises, for example,

e(ug, x) = [e(uo,1, x1) ~~ e(ug, n, zn)]".

s(x, m) = x + [q(ax; m, A) — ax] = x+ (ug — ax).

14This principle is, of course, one of the main ideas behind the rate-distortion!These principles are, of course, two of the main ideas behind the classical
theorem [31, Ch. 13]. channel coding theorem [31, Ch. 8].
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when a discrete-valued composite signal is transmitted oveRamarkably, the capacity is independent of the signal variance
digital channel with no errors, QIM is optimal even without dise2 and, in fact, as we shall discuss later in this section, is the

tortion compensation, and achieves capacity [27] same as in the case when the host sign@ known at the
decoder. Note that this implies that an infinite energy host
Choise-free = max H(ylz). (36)  signal causes no decrease in capacity in this Gaussian case, i.e.,

I

good information-embedding systems ceompletelyreject
As a second example, and as shown in [27], QIM is optimabst-signal interference in the Gaussian case.
even when the host signal is also available at the decodeBased on our earlier results, to establish the optimality of
achieving the capacity DC-QIM for this channel, it suffices to verify that (33) is sat-
isfied. This follows from the proof [34] of (38). In particular, as

Chnown = max I(e; ylz) (37)  shown in [34], the pdf that maximizes (32) is indeed one im-
plied by (33), for some parametes, wherew is chosen as a
determined by Heegard and El Gamal [33]. function ofz so thate ~ A(0, D) and so that the pairand
We next examine some key scenarios when the optimaliiye independent. To see this, note that for a fixed value ah
condition (33) is met. achievable raté(u; y) — I(u; x) is [34]

VIl. GAUSSIAN CHANNELS

Dy(Ds+ 02 +02) )

R(a) = L log <

9 2 201 — )2 2 2,52

In this section, we examine the ultimate performance limits 2 Dsoi(1 = a)? + o (Ds + a?o)

of information-embedding methods when both the host signahighich can also be written in terms of the DNR and the host SNR
white and Gaussian, the channel is an AWGN channel, and (8N\R, = 02 /02)

host and channel noise are independent of one another. Exten-

sions to colored host and/or colored channel cases are developgg,) — 1 log, < DNR(1+DNR+SNR;) ) '
in [15], [27]. Our main result of the section is that DC-QIM 2 DNR SNR;(1—a)>+(DNR+a?SNR;)
is optimal for this class of channels, and that, in addition, the (39)

optimum distortion-compensation parametes also given by

(20), which maximized SNR in uncoded DC-QIM systems. This rate is maximized by setting (cf. (20))
In general, the embedding strategies optimized for Gaussian DNR

channel models can be expected to be good designs for a va- Oloap = DNR+ 1

riety of applications in which one primarily requires robustness

against unintentional attack&And while Gaussian host modelsfrom which we conclude that the rate (38) is achievable. To es-

are not always accurate, the better the host-signal interferetaalish that (38) is also the maximum achievable rate, it suffices

rejection properties of an information-embedding system, th@show that it is the capacity whenis known at the decoder,

smaller the role we might expect the host-signal model to plajnce one obviously cannot do better in the host-blind case.

(40)

in determining the ultimate performance of such systems. To develop the known-host capacity, first recall that the
capacity is given by (37). Again, the maximization is subject
A. Capacities and the Optimality of DC-QIM to a distortion constraint, which in the case of white noise is

Specializing the formulation of Section VI-A to the Gaussiaf[¢’] < Ds. Because subtracting a known constant from-
scenario of interest, with the zero-mean, variangevariables d0es not change mutual information, we can equivalently write

x; denoting elements of th& -dimensional host-signal vector
C =maxI(e; y — z|z).

x, and, similarly, the zero-mean, varianeg-variablesn; de- P
noting elements of the corresponding noise vectahe distor- ) ) .
tion constraint can be expressed as Noting thaty — x = ¢ + n, we immediately conclude that
in the case of an AWGN channel the known-host capacity is
N ) indeed given by (38), where the maximizing distributjQp, is
N Z e; < D a zero-mean Gaussian distribution with variadge
i=1 In the known-host case, additive spread spectrum is optimal,

with the corresponding constraint gm, .|, in (32) being and optimal additive spread-spectrum systems superimpose
E[e?] < D.. We see that squared-error distortion-constraineg€ro-mean i.i.d. Gaussian sequences with varidigcento the
Gaussian information embedding is equivalent to power-coRost signal. However, it is important to note that QIM is also
strained communication over a Gaussian channel with Gausspaiimal in this case as well—as discussed in [15], quantizers
side information known at the encoder, a case for which Cogth optimal QIM systems have reconstruction sequenges
[34] has determined the capacity to be, expressed in termscpsen ii.d. from a zero-mean Gaussian distribution with

the (embedding induced) DNR variances? + Ds. Hence, yet another attractive property of
QIM methods is that they are optimal in more general Gaussian
Clianse = 1 log,(1 + DNR), DNR = % (38) broadcast scenarios, where some intended recipients of the

2 o2 embedded information know the host signal and some do not.

18indeed, these models can even apply to optimal, i.e., rate-distortion AS 2 final Commem'. several of the m_ethOd.S we have dis-
achieving [31], lossy compression of a Gaussian source, as discussed in [2jussed can be optimal in the small host-signal interference sce-
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nario (x — 0). In fact, the capacity (38) is rather immediate Thus, the available embedded digital rate in bits per second
in this scenario: Fig. 2 reduces to the classical communicatidapends only on the bandwidth of the host signal and the toler-
problem considered in, e.g., [33];~ ¢, so that the capacity is able degradation in received host-signal quality, and is approx-
the usual mutual information between= s andy maximized imately 1/3 b/s for every hertz of bandwidth and every decibel
over allp.(-) such thatE[e?] < Ds. In the AWGN channel drop in received host SNR. It is worth noting that, as developed
case, specifically, (38) results. Examining (39) in the associated15], [27], these results carry over to the case of colored host
regime(SNR, — 0), we see that distortion-compensated QIMwnd/or colored channel cases as well.
with any «, includinga = 1 (regular QIM), is optimal in this  Additional insights into the performance limits of such sys-
small host interference scenario. As one might expect, additiseans when the digital signal is specifically information for re-
spread-spectrum systems can be capacity-achieving in this lifining the analog signal, as arises in applications involving the
as well, which we will see more explicitly in Section VII-C4. upgrading of analog infrastructure, are developed in [20].
2) Coded Digital Host SignalsWhen the host signal is a

B. Capacities for Hybrid Transmission coded digital signal, an alternative measure of the received host-

In this section, we consider scenarios corresponding $tgnal quality is the capacity of the corresponding host digital
applications in which information embedding is part of &hannel. Forexample, inthe case of white noise and a white host
hybrid transmission scheme. We investigate two classes Signali’ if there were no embedding, the capacity corresponding
such schemes: analog—digital and digital-digital transmissid@.a host digital signal power ef2 and a noise variance of?
In the former class, the host is an analog signal, as arisesWeuld be

for example, the digital audio broadcasting application. In the 1.

latter class, the host signal is itself a digital signal, which has Ro = 2 logy (1 + SNR;).

I[?f“é%tlolls] for broadcast transmission and related applicatioag, o y4ing an additional digital signal within the host digital
In both cases, one is generally most concerned with tﬁ'é]nal drops the host digital capacity to

quality of thereceivedsignals, i.e., the channel output, rather R, = 1 log <1 n SNR, )

than the channel input (composite signal). 2 7 14 DNR

1) Analog Host Signals:n this subsection, we determinegye to the drop in received host SNRIof DNR. Unlike in the
how reliable embedding at a given rate impacts the quality Wigse of an analog host signal, if one must actually lower the rate
which an analog host signal is received and can be decoded Wthhe coded host digital signal as a result of the embedding, then
its conventional receiver from a noisy channel. one may have to redesign both the digital encoder that generates

In general, the effect of the embedding is to create an adgiis coded digital host signal and the corresponding decoder.
tional noise source DNR times as strong as the channel noiggys, depending on the designed noise margin of the original
and, therefore, the received signal quality drops by a factor@bitm host signal, backward compatibility may or may not be
(14 DNR) or possible.

However, even when digital—digital transmission cannot be
backward-compatible, using information embedding for simul-

For example, in the scenario analyzed in Section VII-A, of@neous transmission of two digital signals is potentially attrac-
timum DC-QIM results in an embedding-induced distortion thaive from the point of view of complexity and privacy. In partic-
looks like white noise with varianc®,. With no embedding, ular, the decoder for the host signal need not decode (nor know
one would have had a received host SNR of SNR o2 /o2, how to decode) the embedded signal, and vice versa.

Due to the additional interference from the embedding-inducedAs discussed further in [27], this is qualitatively different be-

distortion, however, the received host SNR drops to havior from the superposition coding and successive cancella-
tion decoding one might otherwise use for simultaneous trans-

101og, (1 + DNR) dB. (41)

2
9o _ SNR, mission of two digital signals, where one of the receivers needs
Ds+o0}  1+DNR to decode both messages to receive its own.
a drop ofl + DNR. Interestingly, the information-embedding approach is equally

Since the capacity in bits per dimension (bits per host-sigr@fﬁcignt._ To see this, we note that the embedded digital channel
sample) is given by (38), and there are two independent hokte is given by (38)
signal samples per second for every hertz of host-signal band- 1
width [28], the capacity in bits per second per hertz (b/s/Hz) is Ry = 3 log,(1 + DNR)
C = log,(1 + DNR) b/s/Hz (42) so that the combined rate of the two channels is

1
Taking the ratio between (41) and (42), we see that the “value” Ryt Be =5 logy(1+ DNR + SNR;).

in embedded rate of each decibel drop in received host-signal . : 5
quality is %mce the associated expended powdpdjst o7, we conclude

that this digital-over-digital transmission strategy is indeed ef-
log,(1 + DNR 1
= 101%2‘ 1 DN)R = E 10g2 10 ~ 0.3322 b/s/Hz/dB 17As is well known [31], white Gaussian coded signals are capacity-achieving
0310( + ) for transmission over AWGN channels, so this is a good model for the host signal
(43) inthis case.
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ficient: the combined rat&; + R» is as large as the achievableRgrqv of spread-transform QIM by appropriately modifying
rate using aingledigital signal with this same total power.  (44) to obtain

1 14+ Lst - DNR+SN
C. Gaps to Capacity Rsrqma 2 T log, <LST -DNR ISTS?DNRJFJQNR?)
In Section VII-A, we saw that DC-QIM is a capacity- 1
achieving strategy. In this section, for comparison, we eval- > log,(Lst - DNR). (45)
uate the degree to which specific strategies such as regular 2Lsr

QIM (i.e., without distortion compensation), coded additive To upper-bound the gap between QIM and capacity we first
spread-spectrum, uncoded STDM, and uncoded generalizedognize from (45) that the minimum DNR required for QIM
LBM can each approach capacity—and hence the performanoeachieve a raté& asymptotically with largeV is
of DC-QIM—when suitably optimized. We quantify the perfor-
mance of these systems in terms of the additional DNR required DNRgm <
to achieve the same rate as a capacity-achieving system. ST

1) Regular QIM Gap to CapacityAs we now show, the per- which is minimized af.st =1/(2R In 2).1 However,Lgp > 1
formance of the best QIM methods without distortion comperwven in the limit of largeV to haveN/Lst < N. Thus, if one
sation can approach the Gaussian capacity at high rates angkis
within 4.3 dB of capacity at low rates, indicating that the QIM 1
class is large enough to include very good embedding functions Lgt = max {—, 1} 47
and decoders. 2RIn 2

To develop a lower bound on the achievable rate of QliMhen (46) remains a valid upper bound on the required DNR
without distortion compensation, we begin by specializing (399r a QIM method to achieve a rafe. From (38) we see that
to the casex = 1, resulting in the minimum DNR required for a capacity-achieving method to
1+ DNR+ SNRx> s achieve a raté? is DNR,, = 22% — 1, which when combined

22LSTR

(46)

with (46) yields the following upper bound between QIM and

1
RQIM Z 5 1Og2 <DNR

DNR + SNR, the Gaussian capacity:
where to achieve this bound we choose reconstruction points DNRgmm 22LsT R
from the pdf implied by (33)¢ The right-hand side of (44) is DNRop: — Lerqmi(ZR—1)° )

generally not the capacity of QIM, however—i.e., QIM systems

can achieve a rate greater than the lower bound (44). Indeed, [ expression is plotied in Fig. 9, wheligr is given by (47).
right-hand side of (44) actually approachesc in the limit of We now examine the asymptotic limits of (48) atlow and high
low DNR. rates. Equation (47) implidssrqm = 1/(2R In 2) inthe limit

A tighter lower bound is obtained by developing a diff Small, soin this limit (48) approaches

ferent lower bound on the capacity of a particular subclass DNRgm 92LsTR
of QIM methods we refer to as “spread-transform QIM.” = SR _
s L DNRqpe ~ Lsr(2 1)
In spread-transform QIM, which is a generalization of
STDM as developed in Section V-B, the host-signal vector 2V 2(2R In 2)
x = [z1---zn]¥ is projected ontaV/Lgr orthonormal vec- o 2R _ 1
torsvy, ..., vy, € RY to obtain transformed host-signal 9R In 2
sampleszy, ..., Tn/re, Which are quantized using QIM. =Cpr_1 % askR — 0.

Because projection onto the vectarsrepresents a change of . .
orthonormal basis, the transformed host-signal samples ars, the gap is at most a factor e{approximately 4.3 dB)

the transformed noise samples, . .., 7, .., Which are the in the limit of low rates. In the limit of largeR, (47) implies
projections of the original noise vector= [n; ---ny]% onto Lst = 150 (48) approaches

the orthonormal vectors;, are still independent, zero-mean, DNRg 92R

Gaussian random variables with the same variance as the DNRup. TprR_1 I, ask — oc.

original host signal and noise samples, respectively. However,

if the distortion per original host-signal samplelis, then the Thus, QIM asymptotically achieves capacity at high embedding
distortion per transformed host-signal samplé.ds-Ds. Thus, rates.

we obtain a “spreading gain” disy in terms of DNR, but the ~ As we described in Section VII-B, in hybrid transmission ap-
number of bits embedded per original host-signal sample piications one may be concerned about the degradation to the
only 1/ Lgy times the number of bits embedded per transformééceived host signal, which {§ + DNR) rather than DNR. The
host-signal sample. Thus, one can determine an achievable rafg . ..

N < N < N
(% + 0.5) ~ round (rNT> - (% - 0.5)
18The pdf of the reconstruction points= s in this case is\'(0, Ds + o2), 5 5 5

which is not the same as the well-known rate-distortion optimal pdf [31] fasne can, indeed, approach this optimum spreadingfainin the limit of large
quantizing Gaussian random variables, whichig0, o2 — Ds). N even thoughV/ Lsrqmnu need be a positive integer less than or equé¥'to
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worst case digital rate of 1 b/s/Hz using QIM requires at most 1.6
dB more drop in analog channel quality than the approximately
3-dB drop required for DC-QIM (Section VII-B1).
2) Uncoded STDM Gap to Capacitythe results above can 10

> ' ! 1 20 ! f !
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Fig. 9. DNR gap between spread-transform QIM and Gaussian capagifyy 10. Received host SNR gép + DNR) between spread-transform QIM
(achieved by DC-QIM). The maximum gap is a factordf 4.3 dB). and capacity (achieved by DC-QIM).
gap in DNR (48) is larger than the gap(ih+DNR), which has 10° —
a corresponding upper bound :
. [
2RLg
1+ DNRomt _ 1+ 3 o !
14+ DNRype — 22rR 10°f :
This gap is plotted in Fig. 10 as a function 2R, the rate in a® :
b/s/Hz. Again,Lgr is given by (47) since minimizing DN&gw 4
also minimizesl + DNRqmny. Thus, for example, at the (near) 10
[
[
[
|

0 14 5 10 15

be compared to the achievable performance of uncoded binary DNR _ (dB)
STDM with uniform scalar quantization as a minimal-com- o
plexity realization of QIM. Fig. 11. Uncoded STDM gap to Gaussian capacity. The solid curve shows

The gap between uncoded STDM and capacity can eagny bit-error probability for uncoded STDM as a function of rate-normalized
i - ; .- distortion-to-noise ratio (DNR,.., ). The dashed curve is the minimum required
be quan“ﬂ_ed _fOI’ low rat_e$Rm < 1)_’_ which are typlcgl in DNR,.:m for reliable information embedding for any embedding method.
many applications, at a given probability of error. A straightfor-
ward union bound on the bit-error probability of uncoded bina

r
; . N . |¥ m i R, ~
STDM with uniform scalar quantization is (see Fig. 6) or low embedding rateg,,,, 2* 1 ~ 2R, In 2 so the

minimum required DNR,,,, for arbitrarily low probability of

2 error is
Py<20 /28 ).

n

DNRporm > 2 In 2~ 1.4 dB (50)

This bound is reasonably tight for low error probabili-The probability of erro’, of STDM is plotted as a function of
ties, and from (26) we can write this probability of erroDNR.,., in Fig. 11. The required DNR,,,, for a givenP, can
in terms of the rate-normalized distortion-to-noise ratibe compared to (50) to determine the gap to capacity. For ex-
DNR,orm = DNR/R,, ample, at an error probability dH—¢, uncoded STDM is about
13.6 dB from capacity. One can reduce this gap by atleast 9.3 dB
3-DNR 3 through channel coding, vector quantization, and nondithered
by =20 <\/ T) =20 <\/ ZDNRmrm> - (49) guantization. The remaining gap (at most 4.3 dB) is the gap be-
" tween QIM and capacity and can be closed with distortion com-

A capacity-achieving method can achieve arbitrarily low protRensation. As shown in [15], [27], itis fairly easily to close the
ability of error as long a®,, < Cgauee, Which using (38) can gap betwe_en uncoded STDM (Wlth unlf(_)rm scalar quantizers)
be expressed as a_nd ca_\pacny by abogt 6 dB using practical channel codes and
distortion compensation.
DNR 3) Uncoded Spread LBM Gap to Capacitfhe gap to ca-

2R, _ | z 1. pacity for uncoded binary spread LBM based on uniform, scalar
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guantization also follows readily from the results of Appendia uniform distribution over the intervél-A/2, A/2]. In this
A, which shows that the distortion-normalized minimum discase

tance for this form of spread LBM is a factor of4 ~ 2.43 dB

worse than that of STDM (26). Thus, the LBM counterpart to s=qlz+d)—d=z+e

(49) is that the bit-error probability of uncoded spread LBM is
where the quantization erraris uniformly distributed over the

/— interval [-A /2, A/2] and statistically independent af[29].
B~2Q < %DNR’“O““> ’ (51) Thus, th[e ac/hieva/bl]e rafée; ¢ + n) is slightly lower than the
case where is Gaussian. The entropy power inequality can be

Thus, the gap to capacity of uncoded binary spread LBM at @8ed to show that the decrease in achievable rate is bounded by
error probability ofl0~¢ is about 16 dB, 2.4 dB more than the36]
13.6-dB gap of uncoded binary STDM. Furthermore, as also
discussed in Appendix A, faid-ary implementations the gap
widens by an additional 0.6 dB &4 — cc.

4) Coded Additive Spread-Spectrum Gap to Capackgr
additive spread spectrum, where= = + w(m), the distortion

1 1+ DNR
C auss, known — R ith < = logy ————. 54
Gauss, ain S 5 1082 7 ook Y

This gap approaches the upper limit %)ﬂOgQ & ~ 0.2546
. - . . . — b/dimension as the DNR gets large. For any finite DNR, the gap
signal in Fig. 2 is not a function of the host signefz, m) = is smaller. By subtracting the upper bound on the gap (54) from

w(m). Thus,y = s +n = e + = + n. The distortion constraint . . .
is(stil)l E[¢?] = Ds so thatin the Gaussian case considered hnge capacity (38), one obtains a lower bound on the achievable
° tg of this type of dither modulation

the achievable rate of an additive spread-spectrum method is'h
well-known [31] Gaussian channel capacity, treating bo#md 1 6
n as interference sourcés Raitn 2 5 logy <1 + DNR) . (55)

Rss = 1 log, <1+ 2Ds 2) _ 1 log, <1+ﬂ> Thus, dither modulation with uniform scalar quantization in this
2 ozt 2 SNR, +1 case is at moste/6 ~ 1.53 dB from capacity.
(52)
. . . . _ VIII. | NTENTIONAL ATTACKS
where, again, SNRis the ratio between the host-signal variance .
and the channel-noise variance. Comparing (52) to (38), we se&Ve now turn our attention from AWGN channel models for

that the gap to capacity of additive spread spectrum is unintentional attacks, to some alternative models for intentional
attacks. Intentional, distortion-constrained attacks may be en-

DNRss SNR, + 1 (53) countered in copyright, authentication, and covert communica-

DNRgpt tion applications. In these kinds of applications, attackers gen-

o ) ) erally attempt to remove or alter the embedded information, and
which is typically large, since SNRmust be large so that tace a distortion constraint on their signal manipulations so that
channel noise will not excessively degrade signal quality.  the integrity of the host signal is not compromised.

In fact, in the high signal-to-distortion rastio (SDR) limit Ap attacker’s ability to prevent reliable watermark decoding
whereo? /D; > 1, the achievable rate of additive spread-spegrepends on the amount of knowledge that the attacker has
trum (52) clearly approaches zero, again reflecting the inabilify gt the embedding and decoding processes. To limit such
of additive spread-spectrum methods to reject host-sign@owledge, some digital watermarking systems use keys, pa-
interference “ke_ other methods. . rameters that allow appropriate parties to embed and/or decode

At the opposite extreme, when SNNR— 0 the host inter- the embedded signal. The locations of the modulated bits
ference is small so the gap (53) disappears, and, indeed, addiq the pseudo-noise vectors in an additive spread-spectrum
tive spread spectrum is an optimum embedding strategy for thigq generalized LBM systems are examples of keys. If only
case, along with both DC-QIM and QIM as discussed at the epgtain parties privately share the keys to both embed and
of Section VII-A. decode information, and no one else can do either of these

The other scenario in which additive spread spectrum canfj@, functions, then the watermarking system is a private-key
optimal is when the host is known at the decoder, which alggstem. Alternatively, if some parties possess keys that allow
corresponds to a noninterfering host situation. them to either embed or decode, but not both, then the system

5) Known-Host CaseAs discussed at the end of Secis g public-key system since these keys can be made available
tion VII-A, both capacity-achieving QIM and capacity-achieg the public for use in one of these two functions without
ving additive spread-spectrum methods exist when the hegjowing the public to perform the other function. However, in
signal is known at the decoder. Although QIM realizations i§ome scenarios it may be desirable to allow everyone to embed
the form of coded dither modulation with uniform, scalar quanyng decode watermarks without the use of keys. For example,
tization are not optimal in this case, for AWGN channels ong 3 copyright ownership notification system, everyone could
can achieve performance withire/6 ~ 1.53 dB of capacity emped the ASCII representation of a copyright notice such as,
as we show below. We consider the case of dither signals W‘i?hroperty of ...” in their copyrightable works. Such a system

20This rate is also the capacity wheris non-Gaussian, but still independent!S gnalo_gous to the_ system currently used_ to p_Iace COpYr'ght
of s, and a correlation detector is used for decoding [35]. notices in (hardcopies of) books, a system in which there is no
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need for a central authority to store, register, or maintain segapacity in this high-fidelity limit. The capacity-achieving dis-

arate keys—there are none—or watermarks—all watermaikstion-compensation parameter is [16]

are English messages—for each user. The widespread use of DNRu:tac

such a universally accessible “no-key” system requires only Chigh-fidelity = Waacl

standardization of the decoder so that everyone will agree on attack +

the decoded watermark, and hence, the owner of the copyright.
We analyze both private-key and no-key systems in the $&- Attacks on No-Key Systems

quel, and establish the attractiveness of QIM in both cases.  In contrast to the scenario above, in no-key systems an at-

tacker has full knowledge of the embedding and decoding pro-
A. Attacks on Private-Key Systems cesses, including all codebooks. For this case, some determin-

Although the attacker does not know the key in a private-ké%tic models we develop in this section are better for character-
scenario, he or she may know the basic algorithm used to emi¥&89 the associated worst case in-the-clear (i.e., fully informed)
the watermark. In [16], Moulin and O'Sullivan model such &ttacks. With these models, we show that QIM methods in gen-
scenario by assuming that the attacker knows the codebook @@.l, and dither modulation in partiCUlar, are robust and achieve
tribution, but not the actual codebook. As we now develop, eRrovably better rate distortion—robustness tradeoffs than both
ploiting results of Moulin and O’Sullivan in this private-keyadditive spread-spectrum and generalized LBM techniques.
scenario, we determine that DC-QIM methods are optimal (ca-We consider two models for such attackers: 1) a bounded

pacity-achieving) against squared-error distortion-constrainegrturbation channel model in which the squared-error distor-
attackers. tion between the channel input and channel output is bounded

Moulin and O'Sullivan have derived both the Capacityand 2) a bounded host-distortion channel model in which the
achieving distribution and an explicit expression for the cgguared-error distortion between the host signal and channel
pacity (32) in the case where the host is white and Gaussian &tput is bounded. In each case, we develop conditions under
the attacker faces an expected perturbation energy constréifitch error-free decoding is possible with various implementa-

E[||n||?] < ¢2. In this case, the capacity is [16] tions of QIM and DC-QIM, and quantify their advantages over
’ the corresponding realizations of additive spread spectrum and
I T DNRattack generalized LBM.
CGauss, private — 5 1082 I+—— i
2 I 1) Bounded Perturbation Channelfhe bounded perturba-
_ SNR,, attack + DNRygiack tion channel is one in which the attacker can perturb the com-

B posite signal in any way it desires (based on its full knowledge

of the composite signal and the embedding algorithm), provided
where DNR.ac = Ds/o2 is the distortion-to-perturbation the energy in the perturbation vector does not exceed a pre-
ratio and SNR. .iacx = 02/02 is the host-signal-to-perturba-scribed level, i.e., (16), which reflects a requirement that the

B SNRac,attack +DNR -1

tion ratio. The maximizing distribution is such that [16] attacker not excessively degrade the original composite signal.
Thus, this channel model imposes only a maximum distottion
€ = U — OGauss, private® or minimum SNR constraint between the channel input and
output.
with e ~ A(0, D) statistically independent of and pBinary dither modulation with uniform scalar quantiza-
DNRutack tip_n: One can compine the_ guaranteed error—free_decodiqg con-
(Gaus, private =GR - (56) dition (17) for a minimum-distance decoder (15) with the distor-

tion-normalized minimum distance (26) of binary dither modu-
Since this distribution satisfies the condition (33), we can infégition with uniform scalar quantization to compactly express its
from our analysis in Section VI-A2 that DC-QIM can be usedchievable performance as
to achieve capacity against these attacks. Moreover, (56) gives
o p Iy g I Y ( )glv (dﬁlin/DS)DS_ 3/4 DS

the optimal distortion-compensation parameter. = = >1 (57)
Moulin and O’Sullivan have also considered the case of host ANay NEp of
signals that are not necessarily Gaussian but that have zgfoequivalently, its achievable rate as
mean, finite variance, as well as bounded and continuous pdfs.
In the limit of small D, (high SDR) and»2, a limit of interest sup R, = e % (58)
in high-fidelity applications, the capacity approaches AN of
L One can view the achievable rate (58) as the deterministic coun-
Chigh-fidelity = 5 1082 (1 + DNRagtack) terpart to the more conventional notions of achievable rates and

and the capacity-achieving distribution is such that capacities of random channels discussed in Sections VI and VII.
21Some types of distortion, such as geometric distortions, can be large in

€ — U — (thigh-fidelity £ terms of squared error, yet still be small perceptually. However, in some cases,

these distortions can be mitigated either by preprocessing at the decoder or by

where againc ~ ./\/(0 Ds) is statistically independent of embedding information in parameters of the host signal that are less affected
L ?

. C e . L in terms of squared error) by these distortions. For example, a simple delay or
[16]. Since this distribution satisfies the condition (33), we Caé'hift may cause large squared error, but the magnitude of the discrete Fourier

again conclude that distortion-compensated QIM can achiawsform coefficients are relatively unaffected.
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Additive spread spectrumThe nonzero minimum dis- TABLE |

tance of QIM methods offers quantifiable robustness to pe _ATTACKER'S DISTORTION PENALTIES. THE DISTORTION PENALTY IS THE
DDITIONAL DISTORTION THAT AN ATTACKER MUST INCUR TO SUCCESSFULLY

turbations, even when th.e. host signal is not known at tf@wvove A WATERMARK. A DISTORTION PENALTY LESS THANO dB INDICATES
decoder. In contrast, additive spread-spectrum methods off@rat THE ATTACKER CAN ACTUALLY IMPROVE THE SIGNAL QUALITY AND

relatively little robustness if the host signal is not known at the REMOVE THE WATERMARK SIMULTANEOUSLY
decoder. As discussed in Section lll, these methods have linea Embedding Distortion Penalty
embedding functions of the form Method (Dy/Dy)
dl?lol'm
s(x, m) = x+ w(m) (59) Regular QIM 1+ Tk 0dB
) . o Binary Dith. Mod. 3/4
wherew(m) is a pseudo-noise vector. From the definition of | /uni. scalar quant. 243dB2 14y yp->0dB
minimum distance (13) DC-QIM “=dB
Additive o0 dB
pin = min  min ||x; + w(%) —x; — w(j)|| spread-spectrum
(2, 9): i#5 (xi,%5) LBM <0dB
= min |Ix; +w(i) — (% + w(i) — w(j)) — w()| Binary LBM -2.43 dB
(4, 4): i#d w/uni. scalar quant. ’
=0
i.e., the minimum distance is zero. the expectation is taken with respectig. The ratio between

Thus, although these methods may be effective when thy and the expected embedding-induced distorianis the
host signal is known at the decoder, when the host signal is mligtortion penalty that the attacker must pay to remove the wa-
known, they offer no guaranteed robustness to perturbatioreymark and, hence, is a figure of merit measuring the robust-
i.e., no achievable rate expression analogous to (58) exists fiess—distortion tradeoff at a given rate. Distortion penalties for
additive spread spectrum. As is evident from (59), in an addititkee primary methods of interest are derived below and summa-
spread-spectrum system,is an additive interference, whichrized in Table | for the high SDR regime of primary interest.
is often much larger thamv due to the distortion constraint. As this table reflects, among these methods considered, only
In contrast, the quantization that occurs with QIM provide®IM methods (including binary dither modulation with uniform
immunity against this host-signal interference, as discussedsitalar quantization) are robust enough such that the attacker
Section V22 must degrade the host-signal quality to remove the watermark.

Generalized LBM: As shown in Appendix A, the distor- Regular QIM: We first consider the robustness of regular
tion-normalized minimum distance of generalized binary LBMDIM. For any distortion measure, as long as each reconstruc-
with uniform scalar quantization is about 2.43 dB worse thdion points lies at the minimum-distortion point of its respective
that of the corresponding dither-modulation strategy. Therefogyantization cell, the QIM distortion penalty is greater than or
its achievable rate-distortion-robustness performance is a@sgual tol since any outpug that an attacker generates must nec-
about 2.43 dB worse than (57). Again, as also developed in tbgsarily lie away from this minimum-distortion point. Equality
appendix, forM -ary implementations, the gap grows to 3 dBccurs only if each quantization cell has at least two minimum-
for large M. distortion points, one of which lies in the incorrect decoder de-

2) Bounded Host-Distortion Channels an alternative to cision region. For expected squared-error distortion, the min-
the bounded perturbation channel, some attackers may warlkum-distortion point of each quantization cell is its centroid,
with distortion constraint between the channel output and thed one can express this distortion penalty in terms of the dis-
host signal, rather than the channel input, since this distortitartion-normalized minimum distance and the signal length
is the most direct measure of degradation to the host signal. Bsrwe show below.

example, if attackers have partial knowledge of the host signal,We useR to denote the quantization cell containirgand
which may be in the form of a probability distribution, so tha, (x|R) to denote the conditional pdf of given thatx € R.
they can calculate this distortion, then it may be appropriate Agjain, for sufficiently small quantization cells, this pdf can
bound the expected distortidd, = E[D(y, x)], where this ex- often be approximated as uniform ov&, for example. Since
pectation is taken over the conditional probability dengity?® s is the centroid ofR
We refer to this as the bounded host-distortion channel.

For this channel, we measure robustness to attacks by the

. . . s — X)px(x|R) dx = 0.

minimum expected distortio, for a successful attack, where /R( Ip<(x|R) (60)
22Another way to understand this host-signal interference rejection is to con- . .

sider, for example, that a quantized random variable has finite entropy whilé4s0, the expected squared error per letter embedding-induced

continuous random variable has infinite entropy. distortion givenx cRis
23Note that if the attacker has full knowledge of the host signal, he or she can

trivially remove the embedded information by setting= X, soDy = 0. We 1

restrict our attention to the more realistic scenario in which an attacker has only _ - w12

partial knowledge of the host, in the form of a conditional pdf. Ds|7?. N /R HS XH pX(X|R) dx. (61)
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The most general attack can always be representgd-as an expression whose counterpart for the bounded perturbation
s 4+ n, wheren may be a function of. The resulting distortion channel was (57). Thus, the corresponding achievable rates are

is given by
1
Dy = [ Iy~ xpu(x{R) dx 3 (D, )"
N 2y
) R sup R, N <Ds 1) .
= N/RH(S — x)+n|*p(x|R) dx Distortion-compensated QIMAnN in-the-clear attacker of

a DC-QIM system knows the quantizers and can determine the

- i/ lIs — x||2px(x|R) dx+i||n||2/ p<(x|R)dx  watermarkn after observing the composite sigsalf the quan-
NJr N R tization cells are contiguous so that the distortion-compensation

2 termin (19) does not moweout of the cell containing, then an
Ty /7?(5 — X)px(x|R) dx attacker can recover the original host signal with the following
|| ”2 attack:
_ n s —aq(s;m, Ala
- DS|R+ N y = ](- — / )

where we have used (61), the fact thgix| R ) is a pdf and, thus,
integrates to one, and (60) to obtain the last line. For a successful

attack,||n|| > dpin/2 SO l-a
2 =X

_s—aq(x;m, Ala)

min

Dyir 2 Dgr + AN where the final line follows simply by inverting (19). Thus, the

Averaging both sides of this expression over all quantizati(5"rlita‘0ker'S distortion pe_naltpy/Ds is T deci.bels. We see
cellsR yields D, > D, + d2,,_ /4N so that our figure of merit that although DC-QIM is optimal against both independent ad-

min

for QIM methods is ditiv_e Gaussian n_oise _attacks and squqred—_er_ror_—distortion-con—
D 2. /D 2 strained attacks in private-key scenarios, it is in some sense
AL L/* = ] 4 Zmorm (62) “maximally suboptimal” against in-the-clear attacks. Regular
D, — 4N 4N

QIM, on the other hand, is almost as good as DC-QIM against
Thus, for any QIM method of nonzero distortion-normalizegdditive Gaussian noise attacks (Section VII) and also resistant
minimum distancel..:, the attacker’s distortion penalty is al-tg in-the-clear attacks as discussed above. Thus, regular QIM
ways greater thah (0 dB), indicating that to remove the watermethods may offer an attractive compromise when one requires
mark, the attacker must degrade the host-signal quality beygidistance to both intentional attacks and unintentional attacks
the initial distortion caused by the embedding of the watermaik. 5 no-key system.

Binary dither modulation with uniform, scalar quantiza-  Additive spread spectrumSince the embedding function
tion: In this case, (26) gives,...,, in (62). Moreover, due to the of an additive spread-spectrum system is (2), the resulting dis-
uniformity of the quantizers, the bound (62) is met with equalityyrtion is D, = ||w]||2/N > 0. An attacker with full knowledge
so that the attacker’s distortion penalty specializes to of the embedding and decoding processes can decode the mes-

Dy 14 3/4 (63) sagem, and hence, reproduce the corresponding pseudo-noise
D, e NR,,’ vectorw. Therefore, the attacker can completely remove the
Because the Hamming distanég of a block code cannot ex- watermark by subtractingg from s to obtain the original host
ceed the number of coded bidéR,,, (k. /k.) signal, i._e.,y =s—w(m) =x. Hencg, the resulting distortion
e dy penalty isD, /Ds = 0/D, = —co decibels.

NR = VR oofb) <1 Because the additive spread-spectrum embedding function
] ™ mATel T o combines the host signaland watermarkw(m) in a simple
where the first equality follows from the definition (23) of.  |inear way, anyone that can extract the watermark, can easily re-
Thus, an upper bound for the distortion penalty (63) in this caggyye it. Thus, these methods are not suitable for universally ac-
cessible no-key digital watermarking applications. By contrast,
the advantage of QIM is that it effectively hides the host signal
K NR,, — 4 ~ e even when the embedded informatianis known.
. / - Generalized LBM: Recall that the embedding function of

Although this penalty may seem modest, it is larger than that Oggeneralized LBM system can be written as (8) with having
Me property (9). Good generalized LBM systems also have the

perty that the reconstruction points @f-) are at the cen-

as we show below. Larger distortion penalties are not possi

because in-the-clear attackers can concentrate all their distor Uds of the quantization cells, as we shall assume. One attack

in the m|_n|mum-d|stancg dlrgctmn IN-t_j|mens!onal Space.  ipat completely removes information abeuts to output these
As a final note, (63) implies that binary dither mOdU|at'°'?econstruction points, i.ey, = q(s) = q(x). Sincey is at a

with uniform, scalar quantization can defeat any attacker as IoHﬁ’nimum distortion point of the quantization cel, /D, <
y s =

as 1 = 0dB, with equality only if boths andy are minimum
14 3/4 Dy o1 distortion points. Thus, an attacker can remove the watermark
e NR,,) D, without causing additional distortion to the host signal. This
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result applies regardless of whether error-correction codingD€-QIM is as efficient as any single digital transmission, and
used. Thus, in contrast to dither modulation, error-correctidhus as good as the alternative superposition coding and succes-
coding does not improve LBM in this context. sive cancellation-decoding approach.

When, in addition, it is the least significant bit of a uniform, Many important directions for further research remain. At
scalar quantizer that is modulated, the results in Appendix@ae end of the spectrum, further insights into the fundamental
imply further that principles and structure of information embedding and digital

- watermarking systems will come from the development of still
Dy=— Z AZ better general attack models. Those emerging from game-theo-
48L k retic formulations and arbitrarily varying channel models appear
while to be an important starting point in this respect.
D, = L Z A2 At the same time, many of the results in this paper have im-
12L = portant implications for practical applications, and the most ef-
) fective implementations of QIM and DC-QIM embedding sys-
Thus, Dy /Ds = 4/7 ~ —2.43 dB. Again, when many 1essiems for these applications will take into account, in detail, the
significant bits are modulated, the results of the appendix cafeific types of geometric distortions and other attacks that typ-
be used to establish that the penalty grows-8dB. ically arise. For example, in image watermarking applications,
embedders and decoders ultimately need to be robust to a wide
IX. CONCLUDING REMARKS range of often surprisingly challenging attacks, ranging from

We have seen that QIM methods are provably better than &§aling and rotation, to cropping and column replacement. A
ditive spread spectrum and generalized LBM against bound@@at deal of future work is needed in this area to enable the use
perturbation and in-the-clear attacks and are near-optimal ffrQIM techniques in watermarking applications, and indeed
Gaussian channels, for which DC-QIM is optimal. Furthermor&)ese represent some especially interesting design challenges.
dither modulation is a practical implementation of QIM that
exhibits many of the attractive performance properties of QIM. APPENDIX A
The convenient structure of dither modulation, which is easily LBM DISTORTION-NORMALIZED MINIMUM DISTANCE

combined with error-correction coding, allows the system de- |, yp;q appendix we calculate the distortion-normalized min-

signer to achieve different rate distortion—robustness tradeqﬁilm distance of binary LBM with uniform, scalar quantiza-
by tuning parameters such as the quantization step size. Algg, \ve assume that the host signal and émbedded signal are
one can conveniently upgrade previously developed additigfatistically independent

spread-spectrum and spread LBM systems to spread—transfom\gmce the embedding function of any good generalized LBM

dither-modulation systems by replacing the respective additiﬂﬂathod can be written as (8) with (10), the expected distortion
and quantize-and-replace steps with a dithered quantizaqgn ’

step.

In the course of our investigation, a number of rather 1
intriguing results have emerged. For example, the informa-N
tion-embedding capacity in the Gaussian case does not depend _ iE _ d 2
at all on whether the host signal is available during decoding, N llaG) = d(m)II']
and DC-QIM is optimal in both scenarios, and achieves perfect 1

N

Eflls —x|1%]

2 T 2
rejection of host-signal interference, even in the high-SDR  Ellat) =l +2(a(x) — )" d(m) + [[d{m)]]"]
regime. 1 1

Also somewhat surprisingly, the optimal embedding strategy = - Ellla(x) — x|1*] + NE[Hd(m)HQ] (64)

for Gaussian channels and for typical attacks in private-key sys-

tems, DC-QIM is “maximally suboptimal” against in-the-cleawhere we have used (10) and the independenceanidm to
attacks. On the other hand, regular QIM, which has performanaietain the final line.

within 4.3 dB of DC-QIM in the Gaussian case, performs better We analyze coded binary LBM with uniform scalar quantiza-
than any other currently known method against in-the-clear &tn, an LBM system in which each in a sequence of coded bits
tacks, which arise in copyright notification applications wheris repeated. times and embedded in a lengthblock with a
no-key architectures are used, for example. In particular, unligequence of uniform, scalar quantizers.

additive spread-spectrum and generalized LBM methods, QIMThe embedding is accomplished by modulating the least sig-
and dither-modulation methods force an attacker to pay a disficant bit of each quantizer. Thgh uniform, scalar quantizer
tortion penalty. Thus, QIM emerges as a universally good erns-illustrated in Fig. 12. The coarse quantizg(-) has a step
bedding strategy against a wide variety of intentional and unisize of Ay, and thekth least significant bit adjustment element
tentional attacks. dy equals+A, /4.

For hybrid transmission strategies, using DC-QIM for digital- Comparing this scheme to coded binary dither modulation
over-analog transmission (in, for example, digital audio broad4th uniform scalar quantization as described in Section V-A,
casting applications) allows embedding rates of about 1/3 b/s/ite see that this scheme has the same minimum distance, i.e.,
for every decibel drop in analog signal quality. In digital-over(22). Restricting attention to the high SDR regime in which
digital transmission (in broadcast applications, for examplean be modeled as uniformly distributed within each ced]©f,
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(1]

Fig. 12. Low-bit modulation with a uniform, scalar quantizer. The quantizer

has a step size ok, /2, and the least significant bit (Isb) is modulated. All

reconstruction points marked with-ahave an Isb ofi. Points marked with &

[2

have an Isb ol. This process is equivalent to first quantizing using a quantizer

with a step size of\,, whose reconstruction points are marked wit, and
adding+A, /4.

(3]

as was used to develop (24) in Section V-A, the firstterm in (64) (4l

IS

1 1
zzk:E[HQ(l’k) —al*] = ﬁz’;ﬁi (65)

(5]

the same as the expected distortion (25) of the corresponding;
dither modulation system. The second term in (64), however, is

1 1
dez:ﬁZAz. (66)
k k

Thus, the overall expected distortion is

1 1 7
S Al = —
<12L * 16L> 2 A% 48L

k
and the distortion-normalized squared minimum distance is

12~
dIQIOI‘Hl = 7Rncl °

s —

(71

(8]

9]

(10]

(11]

By comparing with (26), we see that binary coded LBM with [12]
uniform scalar quantization is worse than the corresponding

dither modulation system by

5 7 ~ 2.43dB

27 4 (67)

(13]

(14]

Also, note that the result (67) is invariant to the actual dis-
tribution of theA’s, and invariant to any preprocessing of the [15]
host signal by a unitary transformation. Thus, the gap between

STDM and spread LBM is also given by (67).

In other variants of LBM, the gap can be worse. For in-
stance, in the case df/-ary coded implementations of dither [16]
modulation and LBM based on uniform scalar quantizatiory;7
where theM > 2 sets of reconstruction points together form a
regular lattice, then the minimum distances of the two scheme38]
remain equal (but generally different from the binary case), and

the first term in (64) remains (65). However, & gets large,

(19]

dy. becomes effectively uniformly distributed over the range
(—Ax/2, Ay), so the second term in (64) changes from (66) topq;

1 1
E;E[dk]: m;Ai

the same as (65). Thus, the gap (67) grows to a factar(8f
dB) in this largeA limit.

[21]

(22]
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