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ABSTRACT

Copyright notification and enforcement, authentication, covert communication, and hybrid transmission are examples
of emerging multimedia applications for digital watermarking methods, methods for embedding one signal (e.g., the
digital watermark) within another “host” signal to form a third, “composite” signal. The embedding is designed to
achieve efficient trade-offs among the three conflicting goals of maximizing information-embedding rate, minimizing
distortion between the host signal and composite signal, and maximizing the robustness of the embedding.

Quantization index modulation (QIM) methods are a class of watermarking methods that achieve provably good
rate-distortion-robustness performance. Indeed, QIM methods exist that achieve performance within a few dB of
capacity in the case of a (possibly colored) Gaussian host signal and an additive (possibly colored) Gaussian noise
channel. Also, QIM methods can achieve capacity with a type of postprocessing called distortion compensation. This
capacity is independent of host signal statistics, and thus, contrary to popular belief, the information-embedding
capacity when the host signal is not available at the decoder is the same as the case when the host signal is available
at the decoder.

A low-complexity realization of QIM called dither modulation has previously been proven to be better than both
linear methods of spread spectrum and nonlinear methods of low-bit(s) modulation against square-error distortion-
constrained intentional attacks. We introduce a new form of dither modulation called spread-transform dither
modulation that retains these favorable performance characteristics while achieving better performance against other
attacks such as JPEG compression.

Keywords: digital watermarking, dither modulation, quantization index modulation, capacity, spread transform,
information embedding

1. INTRODUCTION

Digital watermarking and information embedding systems have a number of important multimedia applications.1

These systems embed one signal, sometimes called an “embedded signal” or “watermark”, within another signal,
called a “host signal”. The embedding must be done such that the embedded signal causes no serious degradation
to its host. At the same time, the embedding must be robust to common degradations to the composite host
and watermark signal, which in some applications result from deliberate attacks. Ideally, whenever the host signal
survives these degradations, the watermark also survives.

Many of these applications relate to copyright notification and enforcement for multimedia content such as audio,
video, and images that are distributed in digital formats. For example, the watermark may (1) notify a recipient of
any copyright or licensing restrictions (copyright notification), (2) identify the original purchaser of the copyrighted
work for future tracing of the source of illicit copies (digital fingerprinting), (3) identify the creator of the work
(so that a web crawler can search for this watermark, for example), or (4) allow a standards-compliant player or
duplication device to determine whether or not to duplicate or play the host signal (in a DVD copyright protection
system,2,3 for example). Other applications include (1) authentication, where the watermark may be a digital
signature embedded within the host signal, (2) covert communication, where the watermark is embedded in such
a way that it is difficult for an adversary to detect its presence, (3) hybrid transmission4,5 of two different signals
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Figure 1. General information-embedding problem model. A message m is embedded in the host signal vector
x using some embedding function s(x, m). A perturbation vector n corrupts the composite signal s. The decoder
extracts an estimate m̂ of m from the noisy channel output y.

over the same channel in the same bandwidth, which may be used for backwards-compatible upgrading of existing
analog communication systems, and (4) automated monitoring of airplay of advertisements, where advertisers embed
a digital watermark within their ads and count the number of times the watermark occurs during a given broadcast
period.

A number of information-embedding algorithms have been proposed1 in this still emerging field. One class of
nonlinear methods involves a quantize-and-replace strategy: after first quantizing the host signal, these systems
change the quantization value to embed information. A simple example of such a system is so-called low-bit(s)
modulation (LBM), where the least significant bit(s) in the quantization of the host signal are replaced by a binary
representation of the embedded signal. These methods range from simple replacement of the least significant bit(s) of
the pixels of an image to more sophisticated methods that involve transformation of the host signal before quantization
and adjustment of the quantization step sizes.6 Such methods have been shown to be inherently less efficient than
the quantization index modulation methods discussed in this paper in terms of the amount of embedding-induced
distortion for a given rate and robustness.4,5,7 Linear classes of methods such as spread-spectrum methods embed
information by linearly combining the host signal with a small pseudo-noise signal that is modulated by the embedded
signal. Although these methods have received considerable attention in the literature,8–11 linear methods in general
and spread-spectrum methods in particular are limited by host-signal interference when the host signal is not known
at the decoder, as is typical in many of the applications mentioned above. Intuitively, the host signal in a spread
spectrum system is an additive interference that is often much larger, due to distortion constraints, than the pseudo-
noise signal carrying the embedded information.

In Sec. 2 we formulate a general model of information embedding problems. Quantization index modulation
(QIM) methods, which we review in Sec. 3, reject host-signal interference and, as a result, have very favorable
performance characteristics in terms of their achievable trade-offs among the amount of data embedded (rate), the
degradation to the host signal caused by the embedding, and the robustness of the embedding. Spread-transform
dither modulation (STDM), a low-complexity realization of QIM introduced in Sec. 4, also achieves favorable rate-
distortion-robustness trade-offs. Indeed, an SNR advantage of STDM over spread spectrum is demonstrated in Sec. 5,
and robustness against intentional, distortion-constrained attacks are discussed in Sec. 6. Information-embedding
capacities are discussed in Sec. 7, and one result in this section is that QIM methods are within a few dB of capacity
in the case of a Gaussian host signal and an additive Gaussian noise channel. Furthermore, distortion-compensated
QIM, a postprocessing enhancement of QIM, achieves capacity. These results apply even when the host signal and/or
channel noise are colored. In fact, the capacity does not depend on the host signal statistics, and thus, the capacity
in this case is the same regardless of whether or not the host signal is available during watermark decoding. Finally,
simulation results are reported in Sec. 8.

2. PROBLEM MODEL

Although information-embedding applications described in Sec. 1 are quite diverse, the simple problem model of
Fig. 1 captures most of their fundamental features. We wish to embed some digital information or watermark m in
some host signal vector x ∈ �N . This host signal could be a vector of pixel values or Discrete Cosine Transform
(DCT) coefficients from an image, for example. Alternatively, the host signal could be a vector of samples or
transform coefficients, such as Discrete Fourier Transform (DFT) or linear prediction coding coefficients, from an
audio or speech signal. We wish to embed at a rate of Rm bits per dimension (bits per host signal sample) so we can
think of m as an integer, where

m ∈ {1, 2, . . . , 2NRm
}

. (1)
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An embedding function maps the host signal x and embedded information m to a composite signal s ∈ �N . The
embedding should not unacceptably degrade the host signal, so we have some distortion measure D(s, x) between
the composite and host signals. For example, one might choose the square-error distortion measure

D(s, x) =
1
N

‖s− x‖2. (2)

In some cases we may measure the expected distortion Ds = E[D(s, x)]. The composite signal s is subjected to various
common signal processing manipulations such as lossy compression, addition of random noise, and resampling, as
well as deliberate attempts to remove the embedded information. These manipulations occur in some channel, which
produces an output signal y ∈ �N . For convenience, we define a perturbation vector n ∈ �N to be the difference
y−s. Thus, this model is sufficiently general to include both random and deterministic, and both signal-independent
and signal-dependent, perturbation vectors. The decoder forms an estimate m̂ of the embedded information m based
on the channel output y. The robustness of the overall embedding-decoding method is characterized by the class of
perturbation vectors over which the estimate m̂ is reliable, where reliable means either that m̂ = m deterministically
or that Pr[m̂ �= m] < ε. In general, one can specify this class of tolerable perturbation vectors in terms of a set of
possible outputs P{y|s} for any given input in the deterministic case or in terms of a conditional probability law
py|s(y|s) in the probabilistic case. In some special cases, several examples of which appear later in this paper, one
can conveniently characterize the size of this tolerable class of perturbations, and hence the robustness, with a single
parameter.

One desires the embedding system to have high rate, low distortion, and high robustness, but in general these
three goals tend to conflict. Thus, the performance of an information embedding system is characterized in terms of
its achievable rate-distortion-robustness trade-offs.

3. QUANTIZATION INDEX MODULATION METHODS
One class of embedding methods that achieves very good, and in some cases optimal, rate-distortion-robustness
trade-offs are so-called quantization index modulation (QIM) methods.4,5,7 In this section, we review the basic
principles behind this class of methods.

One can view the embedding function s(x, m) as an ensemble of functions of x, each function in the ensemble
indexed by m. We denote the functions as s(x;m) to emphasize this view. If the embedding-induced distortion is to
be small, then each function must be an approximate identity function in some sense so that s(x;m) ≈ x for all m.
If these approximate identities are quantizers, then the embedding method is a QIM method.

Thus, quantization index modulation refers to embedding information by first modulating an index or sequence of
indices with the embedded information and then quantizing the host signal with the associated quantizer or sequence
of quantizers. Fig. 2 illustrates QIM in the case where one bit is to be embedded so that m ∈ {1, 2}. Thus, we require
two quantizers, and their corresponding sets of reconstruction points in �N are represented in Fig. 2 with ×’s and
◦’s. If m = 1, for example, the host signal is quantized with the ×-quantizer, i.e., s is chosen to be the × closest to x.
If m = 2, x is quantized with the ◦-quantizer. The sets of reconstruction points are non-intersecting as no × point is
the same as any ◦ point. This non-intersection property leads to host-signal interference rejection. As x varies, the
composite signal value s varies from one × point (m = 1) to another or from one ◦ point (m = 2) to another, but it
never varies between a × point and a ◦ point. Thus, even with an infinite energy host signal, one can determine m
if channel perturbations are not too severe. The × points and ◦ points are both quantizer reconstruction points for
x and signal constellation points for communicating m. (One set of points, rather than one individual point, exists
for each possible value of m.) Thus, we may view design of QIM systems as the simultaneous design of an ensemble
of quantizers (or source codes) and signal constellations (or channel codes).

The structure of QIM systems is convenient from an engineering perspective since properties of the quantizer
ensemble can be connected to the performance parameters of rate, distortion, and robustness. For example, the
number of quantizers in the ensemble determines the number of possible values of m, or equivalently, the rate. The
sizes and shapes of the quantization cells, one of which is represented by the dashed polygon in Fig. 2, determines
the amount of embedding-induced distortion, all of which arises from quantization error. Finally, for many classes of
channels the minimum distance dmin between the sets of reconstruction points of different quantizers in the ensemble
determines the robustness of the embedding. We define the minimum distance to be

dmin
∆= min

(i,j):i�=j
min

(xi,xj)
‖s(xi; i)− s(xj ; j)‖. (3)
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Figure 2. Quantization index modulation for information embedding. The points marked with ×’s and ◦’s belong
to two different quantizers, each with its associated index. The minimum distance dmin measures the robustness to
perturbations, and the sizes of the quantization cells, one of which is shown in the figure, determine the distortion.
If m = 1, the host signal is quantized to the nearest ×. If m = 2, the host signal is quantized to the nearest ◦.

Intuitively, the minimum distance measures the size of perturbation vectors that can be tolerated by the system.
For example, as long as the length of the perturbation vector is less than half the minimum distance,

dmin > 2‖n‖, (4)

then a minimum distance decoder will not make an error. In the case of an additive white Gaussian noise channel
with a noise variance of σ2

n, at high signal-to-noise ratio the minimum distance also characterizes the error probability
of the minimum distance decoder,12

Pr[m̂ �= m] ∼ Q

(√
d2min

4σ2
n

)
.

The minimum distance decoder to which we refer simply chooses the reconstruction point closest to the received
vector, i.e.,

m̂(y) = argmin
m

min
x

‖y − s(x;m)‖. (5)

If, which is often the case, the quantizers s(x;m) map x to the nearest reconstruction point, then (5) can be rewritten
as

m̂(y) = argmin
m

‖y − s(y;m)‖. (6)

4. SPREAD-TRANSFORM DITHER MODULATION

Dithered quantizers13 are quantizer ensembles where the quantization cells and reconstruction points of any given
quantizer in the ensemble are shifted versions of the quantization cells and reconstruction points of any other quantizer
in the ensemble. Dither modulation systems7 embed information by modulating the amount of the shift, which is
called the dither vector, by the embedded signal, i.e., each possible embedded signal maps uniquely onto a different
dither vector d(m). The host signal is quantized with the resulting dithered quantizer to form the composite signal.
Specifically, we start with some base quantizer q(·), and the embedding function is s(x;m) = q(x + d(m))− d(m).

A simple example of dither modulation that will be of interest in this paper is called binary spread-transform
dither modulation (STDM) with uniform, scalar quantization of step size ∆. We assume that 1/N ≤ Rm ≤ 1.
Specifically, STDM involves the following steps:
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Figure 3. Spread-transform dither modulation. Information is embedded in the projection of a block x of the host
signal onto u, which is typically a pseudorandom vector. Components of x orthogonal to u are added back to the
signal after dithered quantization to form the corresponding block of the composite signal s.

• The NRm information bits {b1, b2, . . . , bNRm} representing the embedded message m are error correction coded
using a rate-ku/kc code to obtain a coded bit sequence

{
z1, z2, . . . , zN/L

}
, where

L =
1

Rm
(ku/kc).

• A spreading vector u ∈ �L is chosen along with two sequences d(·, 0) and d(·, 1) of N/L dither values satisfying
the constraint

d(i, 1) =
{

d(i, 0) + ∆/2, d(i, 1) < 0
d(i, 0)−∆/2, d(i, 1) ≥ 0

for 1 ≤ i ≤ N/L. For example, one could choose d(i, 0) pseudorandomly with a uniform distribution over
[−∆/2,∆/2].∗

• The projection of the i-th length-L subvector of x onto u is quantized with a dithered quantizer using dither
value d(i, zi).

A block diagram of this embedding process is shown in Fig. 3.

STDM has a number of advantages over earlier forms7 of dither modulation. One advantage is that the STDM
signal constellation has fewer “nearest neighbors”,4 which usually results in a lower probability of decoding error.
Another advantage is that one can easily convert existing amplitude-modulation spread spectrum (AM-SS) systems,
a class of previously proposed spread spectrum methods that have embedding functions of the form

s(x, m) = x+ a(m)u,

into spread-transform dither modulation systems by replacing addition with quantization. This property is useful
if one has already invested considerable effort in optimizing a spread spectrum system, for example, by exploiting
perceptual properties of the human visual and auditory systems or designing receiver front-ends to mitigate effects
of geometric distortion. Specifically, the AM-SS embedding function can be re-written in the form

s(x, m) = (x̃ + a(m))u + (x − x̃u),

where x̃ = xTu. We see that AM-SS is equivalent to adding a value a(m) to the projection x̃ of the host signal onto
the spreading vector u. Thus, if one has designed a good spread spectrum system, for example, by designing a u
that has good perceptual distortion properties, but would like to gain the advantages of dither modulation, one can
do so simply by replacing the addition step of AM-SS,

s̃ = x̃ + a(m), (7)

by the quantization step of STDM,
s̃ = q(x̃ + d(m)) − d(m). (8)

∗A uniform distribution for the dither sequence implies that the quantization error is statistically independent of the host
signal and leads to fewer “false contours”, both of which are generally desirable properties from a perceptual viewpoint.13
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5. SNR ADVANTAGE OF STDM OVER AM SPREAD SPECTRUM
The close coupling of STDM and AM spread spectrum allows a direct comparison that results in a provable robustness
advantage of STDM in terms of a “signal-to-noise ratio at the decision device”. This performance advantage results
from the host signal interference rejection properties of QIM methods in general.

We consider embedding one bit in a length-L block x using STDM and AM spread spectrum methods with the
same spreading vector u, which is of unit length. Because the embedding occurs entirely in the projections of x onto
u, the problem is reduced to a one-dimensional problem with the embedding functions (7) and (8). For AM-SS (7),
a(m) = ±√

LDs so that
|a(1)− a(2)|2 = 4LDs. (9)

For STDM (8),
min
(x̃1,x̃2)

|s̃(x̃1, 1)− s̃(x̃2, 2)|2 = ∆2/4 = 3LDs, (10)

where ∆ =
√
12LDs so that the expected distortion in both cases is the same, and where we have used the fact that

d(1) and d(2) are chosen such that |d(1) − d(2)| = ∆/2. Because all of the embedding-induced distortion occurs
only in the direction of u, the distortion in both cases also has the same time or spatial distribution and frequency
distribution. Thus, one would expect that any perceptual effects due to time/space masking or frequency masking
are the same in both cases. Therefore, square-error distortion may be a more meaningful measure of distortion when
comparing STDM with AM-SS than one might expect in other more general contexts where square-error distortion
may fail to capture certain perceptual effects.

The decoder in both cases makes a decision based on ỹ , the projection of the channel output y onto u. In the
case of AM-SS,

ỹ = a(m) + x̃ + ñ,

while in the case of STDM,
ỹ = s̃(x̃ , m) + ñ,

where ñ is the projection of the perturbation vector n onto u. We let P (·) be some measure of energy. For example,
P (x) = x2 in the case of a deterministic variable x, or P (x) equals the variance of the random variable x . The energy
of the interference or “noise” is P (x̃ + ñ) for AM-SS, but only P (ñ) for STDM, i.e., the host signal interference for
STDM is zero. Thus, the signal-to-noise ratio at the decision device is

SNRAM−SS =
4LDs

P (x̃ + ñ)

for AM-SS and
SNRSTDM =

3LDs

P (ñ)
for STDM, where the “signal” energies P (a(1)−a(2)) and P

(
min(x̃1,x̃2) |s̃(x̃1, 1)− s̃(x̃2, 2)|

)
are given by (9) and (10).

Thus, the advantage of STDM over AM-SS is

SNRSTDM

SNRAM−SS
=

3
4

P (x̃ + ñ)
P (ñ)

, (11)

which is typically very large since the channel perturbations ñ are usually much smaller than the host signal x̃ if
the channel output ỹ is to be of reasonable quality. For example, if the host signal-to-channel noise ratio is 30 dB
and x̃ and ñ are uncorrelated, then the SNR advantage (11) of STDM over AM spread spectrum is 28.8 dB. On the
other hand, even if the host signal interference were zero, for example, such as would be the case if x̃ were known at
the decoder and thus could be subtracted from ỹ , then STDM would be worse than AM-SS by only 4/3 or 1.25 dB.
(This gap can be eliminated for general QIM methods, which may involve non-dithered vector quantizers, at least in
the case of additive Gaussian noise channels.4 )

6. ROBUSTNESS AGAINST INTENTIONAL ATTACKS
Earlier forms of dither modulation have been shown to achieve provably better rate-distortion-robustness perfor-
mance than spread spectrum and low-bit(s) modulation (LBM) methods against square-error distortion-constrained
attacks.7 It can be shown4 that the spread-transform dither modulation method of Sec. 4 has the same minimum
distance for a given amount of embedding-induced distortion as the earlier form7 of dither modulation, and thus,
STDM methods also exhibit these same performance advantages. We discuss these results below.
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6.1. Bounded Perturbation Attacks
One way to quantify the distortion constraint faced by an attacker is to bound the size of the perturbation vectors,
i.e.,

‖n‖2 ≤ Nσ2
n, (12)

where σ2
n is the maximum perturbation energy per dimension. This bounded perturbation channel model describes

a maximum distortion† or minimum SNR constraint between the channel input and output. When facing these
bounded perturbation attacks, the robustness of a digital watermarking system is conveniently characterized by the
largest σ2

n such that one can deterministically guarantee that m = m̂ for every n satisfying (12).

By calculating the minimum distance (3) of an embedding method in terms of the rate and embedding-induced dis-
tortion, one can use (12) and the error-free decoding condition (4) to determine achievable rate-distortion-robustness
trade-offs of the particular embedding method against bounded perturbation attacks. Such an analysis has been done
for earlier forms of dither modulation7 and can straightforwardly be extended4 to show that STDM with uniform
scalar quantization can achieve the following rate-distortion-robustness trade-offs:

Rm < γc
3
4

Ds

Nσ2
n

, (13)

where γc is the error correction coding gain (the product of the Hamming distance and rate of the error correction
code). This expression gives an achievable set of embedding rates for a given expected distortion Ds and channel
perturbation energy per dimension σ2

n when one wishes to deterministically guarantee error-free decoding with finite
length signals. Thus, one can view (13) as a deterministic counterpart to the conventional, information-theoretic
notion of the capacity14 of a random channel. Spread spectrum methods in contrast offer no such guaranteed
robustness to bounded perturbation attacks because their minimum distance is zero.7 Finally, the achievable
rate-distortion-robustness trade-offs of coded LBM with uniform scalar quantization are 2.43 dB worse than those
of (13).4,7

6.2. Bounded Host-distortion Attacks
Some attackers may work with a distortion constraint between the host signal, rather than the channel input, and
the channel output since this distortion is the most direct measure of degradation to the host signal. For example, if
an attacker has partial knowledge of the host signal, which may be in the form of a probability distribution so that
he or she can calculate this distortion, then it may be appropriate to bound the expected distortion Dy = E[D(y, x)],
where this expectation is taken over the probability density of x given the channel input s. We refer to this channel
model as the bounded host-distortion channel to emphasize that the attacker’s distortion is measured relative to the
the host signal.

For these bounded host-distortion channels, it can be shown4,7 that an in-the-clear attacker, one who knows
everything about the embedding and decoding processes including any keys, can remove spread spectrum and LBM
embedded watermarks and improve the signal quality (Dy ≤ Ds) at the same time. In contrast, to remove a
watermark embedded with QIM methods (including STDM and earlier forms7 of dither modulation), the in-the-
clear attacker’s distortion Dy must be greater than the embedding-induced distortion Ds.

7. RANDOM CHANNELS

Probabilistic channel models are an alternative to the deterministic channel models of Sec. 6, especially in cases
where perturbations may be unbounded. In these cases, an alternative notion of robustness can be developed if
the channel can be modeled as random and memoryless, with some conditional probability density function (pdf)
py|s(y|s) of the channel output y given the channel input s, which in turn determines the conditional pdf pn|s(n|s) of
the channel perturbation. As is well known,14 one can use long channel codes to communicate over such channels
robustly in the sense that the probability of error Pr[m̂ �= m] can approach zero asymptotically with long signal
lengths even if there is no guarantee that m̂ = m with finite signal lengths. In this section we explore the achievable
performance limits of information-embedding methods over these random, memoryless channels.

†Some types of distortion, such as geometric distortions can be large in terms of square error, yet still be small perceptually.
However, in some cases these distortions can be mitigated either by preprocessing at the decoder or by embedding information
in parameters of the host signal that are less affected (in terms of square error) by these distortions. For example, a simple
delay or shift may cause large square error, but the magnitude of the DFT coefficients are relatively unaffected.

c©1999 SPIE. 49



[From Proc. of SPIE: Multimedia Systems and Applications II, vol. 3845]

m

channel

ENC
e s y

x

super-channel

p
y | s

(y | s)⊕ DEC m
∧

p
y | e, x

(y | e,x)

Figure 4. Equivalent super-channel for information embedding. The composite signal is the sum of the host signal,
which is the state of the super-channel, and a host-dependent distortion signal.

Our approach is to consider the host signal to be the state of a channel that is known at the encoder, as illustrated
in Fig. 4. Any embedding function can be written as a sum of the host signal x and a host-dependent distortion
signal e,

s(x, m) = x+ e(x, m),

simply by defining the distortion signal to be e
∆= s− x. Thus, one can interpret the embedding process as mapping

the embedded information m onto a host-dependent distortion signal subject to a distortion constraint such as

1
N

N∑
i=1

e2 ≤ Ds.

This distortion signal is the input to a super-channel that has the host signal as a state. The capacity14 of this super-
channel is the reliable information-embedding rate Rm that is asymptotically achievable with long signal lengths
N .

When the elements of the state vector x are independent and identically distributed (iid) random variables and
the encoder sees the entire state vector before choosing the channel input e, this capacity is15

C = max
pu,e|x(u,e|x)

I(u; y)− I(u; x), (14)

where I(·; ·) denotes mutual information and u is an auxiliary random variable. In the case of watermarking, the
maximization (14) is subject to a distortion constraint E[e2] ≤ Ds.

In the case where the channel is an additive white Gaussian noise (AWGN) channel and the host signal is also
white and Gaussian, the capacity (14) is16

CGauss =
1
2
log2

(
1 +

Ds

σ2
n

)
=

1
2
log2(1 + DNR), (15)

where DNR is the (embedding-induced) distortion-to-noise ratio Ds/σ2
n. One can show5 that (15) also gives the

capacity in the case of colored host signals, colored channel noise, and an appropriate definition of DNR that reflects
the colored nature of the channel noise. Thus, rather remarkably, the capacity is independent of host signal statistics,
implying that an infinite energy host signal causes no decrease in capacity in the Gaussian case and that one can do
just as well when the host signal is not known at the decoder as when the host signal is known at the decoder.

This principle suggests that optimal and near-optimal digital watermarking methods have some sort of host-signal
interference rejection capability. Recall, that QIM methods possess such a capability, and as a result, one can show4

that there exist near capacity-achieving QIM methods, as illustrated in Fig. 5, which shows an upper bound on the
“gap” between QIM and capacity.4 This gap is the additional amount of DNR that the best possible QIM system
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Figure 5. Gap between QIM and Gaussian capacity. The maximum gap is a factor of e, which is approximately
4.3 dB, and approaches 0 dB asymptotically at high rates.

needs to achieve the same rate as a capacity-achieving system. Thus, for example, to embed at a rate of 1 bit per
host signal sample with a QIM system, one would need to accept at most about 1.3 dB more embedding-induced
distortion than would otherwise be necessary using a capacity-achieving system on a channel with a given noise
variance. (Equivalently, for a fixed amount of embedding-induced distortion, one could tolerate at most 1.3 dB more
noise with the capacity-achieving system than with the QIM system.) This gap is at most a factor of e ≈ 4.3 dB
at any finite rate and asymptotically approaches 0 dB at high rates. Furthermore, even at all finite rates this
gap can be eliminated using a type of postprocessing called distortion compensation,4,17 i.e., capacity-achieving
distortion-compensated QIM systems exist.

In contrast, spread spectrum methods do not reject host signal interference. Thus, the achievable rate of a
spread spectrum method is the Gaussian channel capacity, treating both x and n as interference sources. As is
well-known,4,10 when both x and n are white, this capacity is

Css =
1
2
log2

(
1 +

Ds

σ2
x + σ2

n

)
=

1
2
log2

(
1 +

DNR
SNRx + 1

)
, (16)

where SNRx is the ratio between the host signal variance and the channel noise variance. (This rate is also the
capacity when n is non-Gaussian, but still independent of s, and a correlation detector is used for decoding.18 ) By
comparing (16) to (15) we see that the gap to capacity of spread-spectrum is SNRx + 1. Typically, SNRx is very
large since the channel noise is not supposed to degrade signal quality too much. Thus, in these cases the gap to
capacity of spread-spectrum is much larger than the gap to capacity of QIM, which again is never larger than about
4.3 dB.

8. SIMULATION RESULTS

Some simulation results for dither modulation implementations are reported below for both Gaussian and non-
Gaussian channels.

8.1. Gaussian Channel

It can be shown4 that the bit-error probability of uncoded STDM with uniform, scalar quantization is about 10−6

on the AWGN channel at a rate-normalized distortion-to-noise ratio (DNRnorm) of 15 dB, where

DNRnorm
∆=

DNR
Rm

,
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Figure 6. Composite (left) and AWGN channel output (right) images. The composite and channel output images
have peak signal-to-distortion ratios of 34.9 dB and 22.6 dB, respectively. DNR = −12.1 dB, yet all bits were
extracted without error. Rm = 1/512 and DNRnorm = 15.0 dB so the actual bit-error probability is 10−6.
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Figure 7. Achievable robustness-distortion trade-offs of dither modulation on the JPEG channel. Rm = 1/320.
The bit-error rate is less than 5× 10−6.

Thus, one can embed using uncoded STDM for very noisy AWGN channels by choosing sufficiently low rates,

Rm ≤ DNR
DNRnorm

.

This case is illustrated in Fig. 6, where despite the fact that the channel has degraded the composite image by over
12 dB, all 512 embedded bits are recovered without any errors from the 512-by-512 image. The actual bit-error
probability is about 10−6.

8.2. JPEG Channel
The robustness of digital watermarking algorithms to common lossy compression algorithms such as JPEG is of
considerable interest. A natural measure of robustness is the worst tolerable JPEG quality factor (The JPEG quality
factor is a number between 0 and 100, 0 representing the most compression and lowest quality, and 100 representing
the least compression and highest quality.) for a given bit-error rate at a given distortion level and embedding
rate. We experimentally determined achievable rate-distortion-robustness operating points for particular uncoded
implementations of both STDM and an earlier form7 of dither modulation, which we will refer to for convenience as
unspread dither modulation (UDM).

These achievable distortion-robustness trade-offs at an embedding rate of Rm = 1/320 bits per grayscale pixel are
shown in Fig. 7 at various JPEG quality factors (QJPEG). The peak signal-to-distortion ratio (SDR) is defined as the
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Figure 8. Host (left) and composite (right) image. After 25%-quality JPEG compression of the composite image,
all bits were extracted without error. Rm = 1/320. Peak SDR of composite image is 36.5 dB.

ratio between the square of the maximum possible pixel value and the average embedding-induced distortion per pixel.
The host and composite signals, both 512-by-512 images, are shown in Fig. 8. The actual embedding is performed
in the DCT domain using 8-by-8 blocks (f1, f2 ∈ {0, 1/16, . . . , 7/16}) and low frequencies

(√
f2
1 + f2

2 ≤ 1/4
)
, with

1 bit embedded across 5 DCT blocks. STDM is better than UDM by about 5 dB at (100− QJPEG) of 50 and 75.
As mentioned in Sec. 4, one explanation for this performance advantage involves the smaller number of “nearest
neighbors”4 of STDM.

Although no bit errors occurred during the simulations used to generate Fig. 7, we estimate the bit-error rate to
be at most 5 × 10−6. At an embedding rate of 1/320, one can only embed 819 bits in the host signal image, which
is not enough to measure bit-error rates this low. However, one can estimate an upper bound on the bit-error rate
by measuring the bit-error rate ε at an embedding rate five times higher (Rm = 1/64) and calculating the coded
bit-error probability of a rate-1/5 repetition code when the uncoded error probability is ε assuming independent
errors, which can approximately be obtained by embedding the repeated bits in spatially separated places in the
image. This coded bit-error probability is

Prep =
5∑

k=3

(
5
k

)
εk(1− ε)5−k (17)

If ε ≤ 32/4096, then (17) implies Prep ≤ 4.7 × 10−6. Thus, to obtain Fig. 7, we first embedded at a rate of 1/64
adjusting the SDR until ε ≤ 32/4096. Then, we embedded at a rate of 1/320 using a rate-1/5 repetition code to
verify that no bit errors occurred.
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