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ABSTRACT

Properties, discrimination, and practical applications of
chaotic maps of the unit interval are considered. We fo-
cus on a specific class of piecewise linear, one-dimensional
maps, members of which give rise to finite-state Markov
chains. Properties of maps in this class are presented; these
properties suggest the value of these maps for generating
random variables and processes. Algorithms are introduced
for discriminating among these maps based on noisy obser-
vations, and preliminary experimental results are presented
which illustrate the behavior of these algorithms. We briefly
speculate on the use of these maps and discrimination al-
gorithms for communication applications.

1. INTRODUCTION

Chaotic systems have received much attention in the math-
ematics and physics communities in the last two decades;
and they are receiving increasing attention in various engi-
neering disciplines as well. Traditionally, researchers have
focused on causes of chaos, universal properties shared by
chaotic systems, as well as topological and ergodic proper-
ties of chaotic systems. To date, few practical engineering
applications of chaotic systems have emerged.

This paper, in part, considers the practical value of
chaotic systems. The paper shows how the distinguishing
properties of a particular class of chaotic systems may ren-
der them useful for certain engineering applications, includ-
ing secure communication.

A discussion of the conditions a system must satisfy to be
considered chaotic is beyond the scope of the paper and is
available in a number of references on the topic [3]. Of inter-
est here is a single property of chaotic systems—the ability
of these deterministic systems to generate waveforms with
stochastic aspects. In addition, the paper only considers
one-dimensional, discrete-time systems, or “maps”, of the
unit interval onto itself, and it focuses on a particular class
of these maps.

The next section introduces this class of chaotic maps
and discusses useful properties of maps in this class. Sec-
tion 3 discusses optimal and suboptimal algorithms for dis-
criminating among these maps based on noisy observations.
Section 3 also presents preliminary experimental results ob-
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tained with these discrimination algorithms. Finally, Sec-
tion 4 briefly considers two communication scenarios involv-
ing these maps and discrimination algorithms.

Throughout the paper, the term “orbit” denotes the
infinite sequence of points {z(i)} which satisfy z(n) =
f(z(n— 1)) for some chaotic map f(-), and the term “orbit
segment” denotes a finite, consecutive set of orbit points
(i.e., a piece of an orbit).

2. MARKOV MAPS

2.1. Fundamentals

In this paper, we focus on one class of chaotic maps
of the unit interval—piecewise linear, chaotic, Markov
maps—which for notational convenience we refer to as sim-
ply “Markov maps”. Our interest in these maps arises
from their many interesting properties which render them
amenable to analysis and potentially useful for practical ap-
plications. We highlight several of these properties and their
practical relevance in this section and the next. In addition,
although Markov maps represent only a small subset of the
chaotic maps of the unit interval, they closely approximate
the dynamics of a much larger set of chaotic maps. In fact,
for each map in this larger set, there exists a sequence of
Markov maps which converges uniformly to it [2, 5] .

The technical requirements a map f(-) must satisfy to be
considered a Markov map are provided in [1]. The funda-
mental requirement is that one can divide the unit inter-
val into a finite set of nonoverlapping subintervals {I;}, for
which the following two conditions hold:

1. Endpoints get mapped to endpoints. In other words,
each endpoint of a subinterval is mapped by f(-) to an end-
point of a (possibly the same) subinterval.

2. Fach subinterval is mapped “onto” a union of subin-
tervals. That is, for each subinterval I;, if some point in
I; gets mapped to subinterval Ix, then all points (except
possibly the endpoints) in Iz are mapped to by points in
I;.

For a Markov map, a set of nonoverlapping subintervals
which divide the unit interval and satisfy the above condi-
tions is called a “Markov partition”. A Markov map gener-
ally has an infinite number of Markov partitions, and two
different Markov maps may have the same set of Markov
partitions [7].

Figure 1 depicts two Markov maps. A Markov parti-
tion for the map on the left is given by any division of the
unit interval into 2N equal length subintervals, where N
is any positive integer. Similarly, a Markov partition for
the map on the right is given by any division of the unit
interval into 4N equal length subintervals. For example,
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Figure 1: Two Markov Maps

the partition given by the four equal length subintervals
{[0,.25),[.25, .5),[.5,.75),[.75,1]} is a Markov partition for
each map.

A distinguishing property of Markov maps is that they
give rise to Markov chains [1, 4]. In particular, each ele-
ment I; of a Markov partition for a Markov map f(-) cor-
responds to a state S; in a Markov chain corresponding
to that partition. The transition probability from state
S; to state Sk equals the fraction of points in the par-
tition element (subinterval) I; that are mapped to the
partition element (subinterval) Ix. For the Markov maps
shown in Figure 1, with the Markov partition given by
{[0,.25),[.25,.5),[.5,.75),[.75,1]}, the transition matrices
are given by

a. b.
5 5 0 0 25 .25 .25 .25
0 0 5 5 25 .25 .25 .25
b5 5 0 0 25 .25 .25 .25
0 0 5 .5 25 .25 .25 .25

The dynamics of the Markov chain arise as follows. If
z(n), the orbit point at time n (ie., z(n) = f(z(n - 1)) =
f™(x(0))), is in partition element I;, then the Markov chain
is said to be in state S; at time n. For almost all initial
conditions z(0), the state sequence that arises as a result
of this mapping between orbit points and states is a first-
order Markov process with transition probabilities defined
as above.

2.2. Properties

Markov maps have many interesting, potentially useful
properties. For example, as noted in [4], given the tran-
sition matrix for any finite-state Markov chain, one can
construct a Markov map which gives rise to that Markov
chain. That is, one can construct a Markov map which
has a Markov partition for which the corresponding Markov
chain has the same transition matrix as the desired transi-
tion matrix. Thus, Markov maps are useful generators of
arbitrary, finite-state Markov chains.

A well-known result in ergodic theory is that every er-
godic, finite-state Markov chain has a unique, invariant
state probability vector. Similarly, under fairly mild con-
ditions, a Markov map has an invariant probability density
function, and if it exists, this density function is piecewise
constant. As one might expect, a close relation exists be-
tween the invariant probability density function of a Markov
map and the invariant probability vectors of Markov chains
it gives rise to. A potentially useful result is that given any
valid, piecewise constant, probability density function (with
a finite number of pieces), one can easily construct a Markov
map that has this function as its invariant density function
[7). For each of the two Markov maps shown in Figure 1,
the invariant density is simply the constant value 1 over
the unit interval. The two Markov maps shown on the left
in Figure 2 have nontrivial invariant density functions. The
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Figure 2: Markov Maps with Nontrivial Invariant Densities

invariant density for the top map equals 4 over the subinter-
val [4,.6) and .25 elsewhere, whereas the invariant density
for the bottom map equals 4 over the subinterval [.0,.2) and
.25 elsewhere. The 500-point orbit segment shown to the
right' of each map graphically indicates the concentration
of orbit points in the appropriate subinterval with invari-
ant density equal to 4. This relation between piecewise
constant, invariant probability densities and Markov maps
suggests that these simple maps may be useful generators of
random variables with density functions that approximate
arbitrary probability density functions.

3. DISCRIMINATING AMONG MARKOV
MAPS

3.1. Problem Scenario

The close relation between Markov maps and Markov chains
allows one to derive simple, computationally efficient algo-
rithms for discriminating among these maps based on noisy
observations. This section discusses discrimination algo-
rithms for two special cases of the following, general dis-
crimination scenario.

One is given M known Markov maps, {£:(-)}¥,, and
a sequence of N observations Y = {y(i)}{il, where each
observation satisfies

y(n) = hi(z(n)) +v(n), 1<n<N. (1)

In this equation, X = {z(:)}/, is an orbit segment from
one of the Markov maps fx(-) (i.e., z(n) = fr(z(n—1))) and
{v(i)}f“;1 is a white-noise sequence with known statistics,
which is assumed to be independent of the initial condition
£(0) and the chosen map fx(-). Also, hi(-) is a memory-
less transformation possibly dependent on the map fi(-)-
In Section 3.2, we consider the case in which hi(-) is a
quantizer, and in Section 3.3, the case in which hi(-) is the
identity operator.

The discrimination task is to use the observations Y to
determine which of the M maps generated the unobserved
orbit segment X which gave rise to these observations.
A fundamental result from estimation theory is that for
equally likely maps, the optimal discrimination rule (in a
minimum probability of error or maximum likelihood sense)
is to choose that map among the M, with the largest likeli-
hood p(Y|fx(-)), where p(Y|fx(-)) is the probability density

111-142



of the observations Y, given that the map fx(-) generated
the orbit segment X giving rise to these observations.

3.2. Quantized orbit points

A computationally efficient implementation of the optimal
discrimination rule exists when each of the M transforma-
tions kx(-) is a quantizer which associates a single, unique
value with each element of a Markov partition for fi(-).

That is, if If denotes the j'" partition element for map
fi(:) and Hf denotes the value associated with this par-
tition element by Ax(-), then hx(z) = H} for all z € If.
(Typical values of H. ," include the midpoint or either end-

point of IJ") With the M quantizers chosen this way, the
discrimination problem reduces to that of discriminating
among M hidden Markov models (HMMs). As a result,
one can use the “forward” portion of the computationally
efficient “forward-backward” algorithm (6] to calculate the
exact values of the M likelihoods p(Y|fx(-)) used in the
optimal discrimination rule.

Specifically, for each map fi(-), the partition elements
{Ir }JTQI correspond to the “unobserved” states in the hid-
den Markov model associated with that map, where Ti
denotes the number of partition elements for the Markov
partition associated with the map. For the discrimination
scenario introduced in Section 3.1, the output at time n,
o¥(n), associated with IJ'-‘ is given by

of(n) = HY +v(n). (2)

In other words, if fi(-) generated the orbit segment X =
{z(1)}X, and z(n) € IJ"‘, then y(n), the observation at time
n, 1s given by

y(n) = hx(z(n)) + v(n) = 05 (n) = H} +v(n).  (3)

With this observation equation, p(y(n)iz(n) € IF, fx(})),
which is the probability density of the observation y(n)
conditioned on the map fi(-) having generated the orbit

segment and z(n) being in partition element I;‘, is given by

py(n)lz(n) € If, fu(-) = po(v(n) = y(n) — H}) (4

where py(-) is the density function associated with the
white-noise sequence.
Next, define the “forward variable” of(n) as

a¥(n) =p(y(1), ¥(2),- -, y(n), z(n) € I} fx ().  (5)

Thus, a%(n) is the joint probability density of the observa-
tions through time n and z(n) € I¥, conditioned on map
fx(-) having generated the orbit segment X = {z:}I,.
Note that a¥(n) can also be expressed

a¥(m) = p(¥(1),¥(2),- -, y(n)lz(n) € I}, fx(-))
xp(z(r) € IF| fi())- (6)

Finally, let {s:"j}}“,‘ﬂ denote the state transition proba-
bilities associated with fx(-), where sf’j denotes the proba-
bility that z(n) € I¥ given that z(n — 1) € IF. With these
definitions and notational conventions, an efficient imple-
mentation of the optimal discrimination rule is the follow-
ing:

1. For each map fx(-), compute a*(n) as a function of n

for j = 1,---,Tx by using the following recursion:
af()) = py(DI=(1) € I}, f1()
xp(z(1) € I}|fx(")) Q)

a;(n+l) =

T
Z af(n)sﬁj]
xp(y(n +1)|z(n +1) € I}, fx(")) (8)

2. For each map, compute the likelihood p(Y|fx(-)) by
exploiting the relation given by

Ty
p(Y1fi()) = Y a5 (N). (9)

i=1

3. Choose the map fi(-) for which p(Y|fx(-)) is largest.

Note that the above discrimination rule requires speci-
fication of initial state probabilities p(z(1) € I¥|fi(+)) for
each map.

3.3. Unquantized orbit points
When each of the M transformations hi(-) is the identity
operator, the discrimination problem is that of discriminat-
ing among M Markov maps based on noisy observations of
unquantized orbit points. In general, for the case of un-
quantized orbit points, optimal discrimination among the
M Markov maps is not computationally feasible because the
initial condition z(0) is unknown and the maps are chaotic.
However, if the Markov maps each allow arbitrarily fine
Markov partitions, we can perform robust, computation-
ally efficient, suboptimal discrimination by modeling the
dynamics of each map as a hidden Markov model and ap-
plying the discrimination rule outlined in Section 3.2.
Specifically, we first find a “sufficiently fine” Markov par-
tition for each map. (A discussion of how to quantify the
nebulous term “sufficiently fine” is available in [7] as is a
discussion of the conditions under which a Markov map al-
lows arbitrarily fine Markov partitions.) Having found these
Markov partitions, we apply the same discrimination rule
as outlined in Section 3.2, with one important modification.
In particular, we replace the expression for the output at
time n, o5(n), given by (2) with the following

of(n) = u;(n) + v(n),

(10)

where u;‘(n) is a uniform random variable independent of
v(n) with region of support over I Jk Thus, the observation
y(n) given by (3) is now the sum of two independent random
variables with conditional density function p(y(n)|z(n) €
IF, fx(+)) given by the convolution of the density functions
for u5(n) and v(n).

This HMM-based approach to discrimination is useful
even for maps which are not Markov maps, but instead
belong to the class of chaotic maps for which there are uni-
formly converging sequences of Markov maps. For each of
these maps, one would first find an approximating Markov
map and then apply the above approach to these approx-
imating maps. In addition, one can use the HMM-based
modeling approach to derive computationally efficient algo-
rithms for performing “approximate” Maximum Likelihood
and Bayesian state estimation with Markov maps and with
chaotic maps that are well-approximated by Markov maps

(7]
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Figure 3: Discrimination Results with Markov Maps
Shown in Figure 1

3.4. Computer Experiments

Figure 3 depicts preliminary results for discriminating be-
tween the Markov maps shown in Figure 1. Gaussian white
noise was used for the white-noise sequence {v(i)}/L, in (1)
when generating the observations Y. The results with quan-
tized orbit points were obtained by using the left endpoint
of each partition element as the value associated with that
partition element by the quantizer. In addition, the ratio
used to determine the signal-to-noise ratio (SNR) was that
of the variance of the orbit generated by each map divided
by the variance of the white-noise. Since each map in Figure
1 has a uniform invariant density, the variance of the orbit
generated by each map (with unquantized orbit points) is
the same as that of a uniform random variable with region
of support over the unit interval. (In general, the variance of
an orbit segment with quantized points differs slightly from
the variance of an orbit segment with unquantized points.)

The results shown in the left two graphs were obtained
by applying the optimal discrimination rule to quantized or-
bit points. The results shown in the right two graphs were
obtained by applying the suboptimal discrimination rule to
unquantized orbit points. Each plotted result represents the
fraction of correct discrimination decisions for 200 indepen-
dent trials, with each map being the correct map for 100
trials. In light of the small number of trials used, the plot-
ted results should not be interpreted as probabilities, but as
qualitative indicators of the behavior of the discrimination
algorithms on the two maps used in the experiments.

The curves in the top graphs are parameterized by the
number of noise-corrupted observation points used for dis-
crimination, and all results in these graphs were obtained
with a Markov partition consisting of 20 equally sized subin-
tervals. In contrast, the curves in the bottom figures are
parameterized by the number of equally sized subintervals
comprising the Markov partition, and all results were ob-
tained with 20 noise-corrupted observations points. Not
surprisingly, discrimination performance improves as the
number of observations increases for a given signal-to-noise
ratio (SNR). What is surprising is the comparable perfor-
mance achieved with both quantized and unquantized orbit
points. Also, the results suggest that discrimination perfor-
mance is relatively insensitive to the size of the Markov par-
tition. Asshown in [7], this is not a universal result and with
some Markov maps there is a strong correlation between

discrimination performance and the size of the Markov par-
tition.

4. POTENTIAL APPLICATIONS

In light of their various properties, Markov maps and
chaotic maps well-approximated by them may be useful for
secure M-ary communication applications. For example,
one could associate a unique Markov map to each of the M
signals. To transmit a signal, one would transmit a (possi-
bly quantized) fixed-length orbit segment of the correspond-
ing map. A different orbit segment would be used each
time that signal was transmitted. Assuming an additive,
white-noise channel, one would apply the discrimination al-
gorithms discussed in Section 3 at the receiver to decide
which signal was sent. Note that for a stream of transmitted
signals (i.e., orbit segments), at the receiver one would not
need to determine the exact starting and ending locations of
each orbit segment, but would only need to isolate a “suffi-
ciently large” subsegment of each segment. This might offer
the approach an advantage over traditional direct-sequence
spread spectrum techniques, since they require knowledge,
at the receiver, of the precise starting and ending locations
of each transmitted signal.

Alternatively, instead of transmitting fixed-length orbit
segments, one could transmit variable-length orbit seg-
ments. In this case, at the receiver one would need to
determine the signal corresponding to each transmitted or-
bit segment as before. However, one would also now need
to determine the approximate transition locations among
transmitted orbit segments. If the orbit points were prop-
erly quantized, one could model the problem of determining
these transitions as one of detecting instants of changes be-
tween random processes, with each process being an HMM.
Because of its recursive structure, the “forward algorithm”
could be incorporated in a computationally efficient thresh-
olding scheme for detecting these instants of changes.

REFERENCES

[1] A. Boyarsky and M. Scarowsky, “On a Class of Trans-
formations Which Have Unique Absolutely Continu-
ous Invariant Measures,” Transactions of the Ameri-
can Mathematical Society, Vol. 255, November 1979,
Pp- 243-262.

[2] A. Boyarsky, “A Matrix Method for Estimating the Li-
apunov Exponent of One-Dimensional Systems,” Jour-
nal of Statistical Physics, Vol. 50, 1988, pp. 213-229.

[3] R. Devaney, An Introduction to Chaotic Dynamical
Systems. Redwood City: Addison-Wesley, 1989.

[4] R. Kalman, “Nonlinear aspects of sampled-data con-
trol systems,” in Proceedings of the Symposium on
Nonlinear Circuit Analysis, Polytechnic Institute of
Brooklyn, 25-27 April 1956, pp. 273-313.

[5] A. Kosyakin and E. Sandler, IZV Matematika, Vol. 3,
No. 118, 1972, pp. 32-40.

[6] L. Rabiner, “A Tutorial on Hidden Markov Models and
Selected Applications,” Proceedings of the IEEE, Vol.
77, No. 2, February 1989, pp. 257-286.

[7] M. Richard, Ph.D. Thesis, in preparation.

111-144



