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ABSTRACT

Solitons and the nonlinear evolution equations that support
them arise in the description of a wide range of nonlinear
physical phenomena including shallow water waves, piezo-
electrics, and optical transmission in nonlinear fibers. Al-
though such systems are nonlinear, they are exactly solvable
and possess a class of remarkably robust solutions, known
as solitons, which satisfy a nonlinear form of superposition.
By exploiting the properties of solitons, such nonlinear sys-
tems may be attractive for a variety of signal processing
problems including multiple access communications, private
or low power transmission, and multi-resolution transmis-
sion. We outline a number of modulation techniques using
solitons, and explore some of the properties of such systems
in the presence of additive channel corruption.

1. INTRODUCTION

Many classical signal processing algorithms rely heavily on
the use of linear time-invariant (LTI) models and a Fourier
representation of signals. Recently, a class of nonlinear sys-
tem models has been shown to possess many of the impor-
tant properties of LTI systems. Although nonlinear, these
systems are exactly solvable through a technique known as
“inverse scattering” which can be viewed as a nonlinear ana-
log of the Fourier transform[1]. These systems also admit
a class of eigenfunctions, known as solitons, which satisfy a
form of nonlinear superposition[4, 7].

Solitons and their associated mathematics arise in the
description of many physical phenomena and have recently
been used by the telecommunications industry for long-
distance transmission over nonlinear optical fibers[2]. The
purpose of this paper is to consider exploiting the proper-
ties of solitons in a totally different context. We will address
the use of nonlinear wave equations that support solitary
wave solutions, or solitons, as a means of signal synthesis in
several compelling communications scenarios. Specifically,
we consider using solitons in a multichannel AM and FM-
like modulation, variable-rate pulse amplitude modulation,
and priority or hierarchical multiple access channels. These
represent only a few of the many ways in which solitons can
be exploited for communications and signal processing.
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Figure 1: Nonlinear LC network of Hirota and Suzuki

2. SOLITONS IN A NONLINEAR CIRCUIT

The communication schemes developed in this paper rely
on the properties of the nonlinear transmission line model
shown in Fig. 1. This LC circuit was first shown to support
soliton solutions by Hirota and Suzuki[3] when the capacitor
voltage V' and charge Q are related by

Q(V) = CoVolog(1+ V/Vs), (1)

where V4 is the bias voltage and Cj is a constant. In this
case, the circuit is governed by the equations:
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where V;, is the voltage on the nth capacitor, Vo = Viq, and
L is the inductance. Suzuki et al. have shown that this
circuit is equivalent to the more familiar Toda chain [7].
When Vin (t) in Fig. 1 is of the form

Vin (t) = Vs Q®sech® (-7 + §), (3)

where 7 = t//LCy, it can be shown([3, 7] that (2) has the

solution

Vo (t) = Ve2®sech® (pn — Q7 + 6), (4)

where Q2 = sinh(p). This response corresponds to a single-
pulse traveling-wave solution, parameterized by the wave-
number, p, and is referred to as a soliton solution.

For the purposes of this paper, two of the most impor-
tant properties of these solutions are illustrated in Fig. 2.
First, these solutions have amplitude dependent pulse-width
and velocity, yielding tall narrow solitons which travel faster
than short wide ones. Second, soliton solutions satisfy a
form of nonlinear superposition whereby two solitons pass
through one another leaving each virtually unchanged (ex-
cept for a small phase shift) after their nonlinear imterac-
tion.
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Figure 2: Two lattice solitons in the nonlinear network.
Each horizontal trace shows the voltage across one of the
capacitors.

3. COMMUNICATION WITH SOLITONS

Suzuki et al. proposed a method for secure communica-
tion in [6] using solitons as modulating waveforms and the
nonlinear LC network of Fig. 1 for encoding and decoding
the messages. Their basic signaling waveform was a peri-
odic wave-train of solitons of two alternating wavenumbers.
Since the two solitons have different amplitudes, when this
signal is input to the nonlinear network, they will prop-
agate with different velocities. At an appropriate point in
the lattice, the faster soliton will “catch up” with the slower
soliton {rom the previous period, resulting in their nonlinear
superposition as seen in Fig. 3. The resulting sine-like wave-
form is transmitted as the encoded signal. At the receiver
end, this wave-train is input into the nonlinear network, and
again the fast solitons outpace the slow solitons resulting in
their scparation as secn in the voltage on a capacitor down
the line. This process is illustrated in Fig. 3. The three
traces correspond to the original soliton train consisting of
two solitons, the single pulse train transmitted waveform,
and the resulting separated two soliton train respectively.
By slightly varying the relative phase between the soliton
trains prior to their input into the network, an FM-like
modulation can be achieved. Similarly, in [5], Suzuki et al.
slightly modulate the amplitudes of the component soliton
trains, realizing an AM-like transmission.

Although it is unclear whether or not these proposed
techniques provide security, the underlying methodology
suggests a more general framework for modulation of in-
formation by exploiting the properties of solitons. As a
simple extension, the AM and FM techniques of Suzuki et
al. can be generalized to include multiple solitons in each
period and accommodate multiple channels of information,
as shown in Fig. 4 for a four soliton example. In addition
to issues regarding private communication, this modulation
scheme may also provide additional spectral compression of
the modulated waveforms.

Note that the same nonlinear network can support a
spectrum of solitons ranging from those with small ampli-
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Figure 3: Soliton modulation of Suzuki et al.

o

o Voltage, V
SO - A
»
o,
W
(=}

20
50 60
10 40
i 20 30
index, n 10
time, t

Figure 4: Four channel soliton multiplexing.

tudes and wide pulse-widths, to relatively large amplitudes
and narrow pulse-widths. This indicates the potential for
operating essentially the same modulator-demodulator net-
works at variable data rates depending on the bandwidth
requirements. In the case of simple pulse amplitude modu-
lation, where a bit is indicated by the presence or absence
of a soliton, a tradeoff may be made between the data rates
and the power in the transmitted signal. When communi-
cation requirements are low, small amplitude, wide solitons
may be used and the necessary transmitted power is low.
When bandwidth requirements increase, so does the requi-
site output power as narrower larger-amplitude solitons are
used.

Such signaling techniques may also prove useful in the
context of recent advances in multi-resolution signal repre-
sentations. In a hierarchical modulation technique reminis-
cent of fractal modulation [8] a multi-resolution analysis of a
signal may be transmitted such that each scale of resolution
is encoded in a soliton of a different amplitude. If each of
these soliton waveforms are combined and time-aligned ac-
cording to the nonlinear superposition of the network, then
the response of the receiver network to this signal as an in-
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put will be a gradual separation of each of the component
soliton waveforms. In this manner, compactly represented
signals might be constructed whereby varying amounts of
processing, or equivalently, longer delay, yield signal repre-
sentations of varying fidelity. As the received waveform is
processed, the information present in the higher-amplitude,
faster solitons emerges quickly from the bulk and may be
decoded. As the message is passed further down the chain,
the information in the next set of solitons may be decoded,
and so on. This type of modulation may be useful in a vari-
ety of communications or broadcast contexts which contain
a large number of receivers of variable processing power.
This may also be useful in a signaling context with mes-
sages of variable priority.

4. NOISE DYNAMICS

Since the proposed communication strategies rely on using
the nonlinear LC network to separate the encoded signal
into component solitons, we need to address the effects ad-
ditive channel corruption will have on the response of the
network. Specifically, we will consider adding stationary
white Gaussian noise to the input of the network Vi, (¢) and
characterize the resulting behavior of the system.

To begin, we look at the dynamics of small amplitude
noise in the lattice in the absence of solitons. For Vi, small,
the circuit equations reduce to the linear L.C ladder network
given by

Ve 1 (

dez2 — LCy
The response of the linear network to inputs of the form
Vin(t) = Vie?**, is a traveling-wave solution of the form

Va1 = 2V + Vo). (5)

Vn(t) = Vo e?@t=*™)  with a dispersion relation given by
2

VLC’

which has real solutions only for w < wo. Frequencies above

wq correspond to evanescent (decaying) waves. The transfer

function from the input voltage to the voltage at any node,

n, corresponds to a dispersive low-pass filter, and is given
by

k = 2sin™ (w/wo), wo =

(6)

~25sin "1 wp)n
7810 (w/wo)n |w] < wo

Hulgw) = { : else ™

e(]'7r—2 cosh_l(w/wo))n,

Therefore, for n > 1, the line has a magnitude characteris-
tic appvaching that of an ideal low-pass filter. Numerical
simulations of the nonlinear line verify that the voltage at a
capacitor far down the lattice will be low-pass in response to
a small amplitude white Gaussian input. Although the au-
tocorrelation of the noise at each capacitor is only effected
by the magnitude response of (7), the cross-correlation be-
tween capacitors is also effected by the phase. The correla-
tion between the voltages on capacitors m and n, is given by
Ryn(7) = A (1) * An(—7) = A (7) * Bn (= 7) * Bn—m(—T),
where (1) is the inverse Fourier transform of Hm(jw) in
(7). Since hy(7)*hm(—7) approaches the impulse response
of an ideal low-pass filter for m > 1, we have

sin(woT)

Rpypn(7) = * hnem (7). (8)
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Figure 5: Cross correlation, Rm n(7), between the mth and
the nth capacitor voltages in the linearized line.

In Fig. 5, Rmn(7) is shown for n > m > 1. Note that
for w small, sin ™' (w/wo) & w/wg, and the line looks like a
pure delay of o = 2(n — m)/wo. This would correspond to
Rma(7) = sin(wo (7 — a))/(w(7 — @)). As shown in Fig. 5,
for n — m small, this approximation holds, but the disper-
sive nature of the line becomes apparent even for modest
separations.

Returning to the nonlinear line, we observe that at high
signal to noise ratios, the dynamics of the solitons are rel-
atively unaffected, while the noise component remains low-
pass. Shown in Fig. 6, is the voltage down the network
in response to an input of two solitons embedded in white
Gaussian noise at a signal to noise ratio of 20dB.

Figure 6: Two soliton example at 20dB SNR.

To characterize the behavior of the circuit when the
recelved signal consists of solitons and noise, we employ a
linearization approach. For high signal to noise ratios, we
assume that the capacitor voltages are of the form, Vi (t) =
Sn(t)+vn(t), when the input is of the form V (¢)in = Sin (£)+
vin(¢). Here Sin(t) is the soliton component, and vin(¢) is
the noise component. We can rewrite (2) after factoring
the argument of the logarithm and canceling terms fiom
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the known soliton solution, as

Lotog [ (14 =2 )| = (s -2
% 0750w )| = Taow, (nm 7 2umtons)
(9)

which is an exact relation satisfied by the non-soliton por-
tion of the response. Since v, is small and the soliton solu-
tions are smooth, we have

Ao, _1+5,
A2 7 LG,

('Un_1 - 2Un -|- Un+1). (10)

Through this reasoning, the linear-time varying small signal
model can be viewed over short time scales as a linear time-
invariant chain, with a slowly varying value of Cy. This
results in transfer functions that are low-pass filters with a
time varying cutoff frequency equal to wo when the soliton
is far from the capacitor, and to wov/1 + Sn as the soliton
passes through. Thus, we would expect the variance of the
voltage in each capacitor to rise from the nominal variance
as a soliton passes through.

In order to verify this intuition, we linearize the exact
dynamics about the known soliton trajectory, S»(t), and
numerically integrate the corresponding Riccati equation
for the capacitor voltage covariance. In Fig. 7, the resulting
variance of the noise component on each capacitor is plotted
as a function of time, and node index. Since the line was
assumed initially at rest, there is an initial startup time, as
well as an initial spatial transient at the beginning of the
line, after which we see that the variance of the noise is
amplified as each soliton passes through.
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Figure 7: The variance of each capacitor voltage is shown
as a function of time.

5. CONCLUSIONS AND FUTURE
DIRECTIONS

We have discussed the use of a nonlinear LC network and its
soliton solutions for signal synthesis in a variety of modula-
tion techniques. The ideas behind such techniques involve
exploiting the independent behavior of solitons of different
amplitudes. In the AM/FM case, the different velocities of

solitons were exploited to modulate and demodulate multi-
ple signals. There may also be low-power transmission ap-
plications that exploit the tradeoff between amplitude and
pulse-width (data rate), as well as multi-resolution signaling
or priority messaging applications.

Before such systems can be considered for realistic com-
munication problems, we have to understand how they op-
erate in the presence of additive channel corruption. In
this direction, we have explored some of the characteristics
of how such systems respond to small amplitude Gaussian
noise both in the presence and absence of solitons. We see
that at high signal to noise ratios the soliton dynamics are
relatively unaffected by the noise. However, the solitons
have the effect of a time varying gain on the noise variance
in the receiver. The stability of these and other soliton sys-
tems at moderate signal to noise ratios poses an interesting
area for future research. As stated previously, a technique
for exactly solving such systems involves a related linear
inverse scattering problem. Exploring the implications of
such modulation techniques on the linear scattering prob-
lem also represent an active area of ongoing research.
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