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Abstract 

Homomorphic deconvolution has been success— 

fullyapplied in a variety of areas. In many cases 
of interest, including speech and seismic process- 
ing, the signals to be analyzed are non—stationary 
and approximately follow a convolutional model 
only on a short-time basis. Thus, a window is 
applied to the data. 

In this paper a first attempt is made to 
understand the interaction between short—time 

windowing and homomorphic deconvolution. A model 
for short—time homomorphic analysis is proposed, 
which provides a framework for the interpretation 
of window effects encountered in speech and seismic 
data processing. 

I. INTRODUCTION 

Homomorphic deconvolution has been success- 
fully applied in a variety of areas [1]. It relies 
on the property that the complex cepstrutrt maps 
convolution to addition and that in many applica- 
tions, the complex cepstra of the components to be 
deconvolved occupy approximately disjoint time (or 
quefrency) regions. 

In many cases of interest, including speech 
and seismic processing, the signals to be analyzed 
are non—stationary and approximately follow a 
convolutional model only on a short—time basis. 
Thus, a window is applied to the data. The classes 
of windows conventionally used for homomorphic 
deconvolution have been Hamming (and similar) win- 
dows for speech processing, and exponential windows 
for seismic processing. Although the use of these 
windows has led in many instances to good perfor- 
mance, as in the cases of minimum phase speech 
analysis and seismic dereverberation in shallow 
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water recent attempts to use homomorphic signal 
processing in other contexts have demonstrated 
the importance of the short—time window in the 
potential determination of the signal components 
by homomorphic deconvolution. 

In this paper a first attempt is made to 
understand the interaction between short—time 
windowing and homomorphic deconvolution. Toward 
this end in Section II, a model for the short—time 
homomorphic analysis is proposed. While this 
representation is not unique it appears useful in 
understanding window effects as well as providing 
a framework within which the cepstral separation 
of the signal components might be tested and even 
improved. In Section III we shall discuss some of 
the affects of windows in speech and seismic data 
processing. 

II. A SHORT-TIME MODEL FOR HOMOMORPHIC 
DECONVOLUTION 

Consider a segment of data x(n) which on a 
short—time basis satisfies a convolutional model 
and to which a window has been applied so that 
x(n) can be expressed in the fozm 

x(n) = {p(n) * r(n)} w(n) (1) 

where p(n) and r(n) are the two convolutional 
components and w(n) is the window. In carrying 
out homomorphic deconvolution, the complex cep— 
strum is assumed to consist of the sum of two 
components, occupying disjoint time intervals, 
and the basis for deconvolution is time gating of 
the complex cepstrum to recover the desired com- 
ponent. This corresponds to assuming that x(n) 
consists of a convolution of components which is, 
of course, not strictly true for the windowed seg- 
ment represented by eq. (1). Furthermore, there 
is the underlying assumption that the low time and 
high time portions of the complex cepstrun can be 
associated with p(n) and r(n) in eq. (1). Thus, 
the window is assumed slowly varying compared 
with p(n) so that x(n) is approximated as 

x(n) p(n) * tr(n) w(nH (2) 

This implies among other things, that the estimate 
of p(n) obtained by homomorphic deconvolution will 
be relatively insensitive to the shape and tine 
registration of the window. While for minimum 
phase speech analysis using the real cepstrun this 
is an acceptable assumption (21 , it is generally 



not for mixed—phase analysis using the complex 
cepstrum. Consider for example the artificial 

speech waveform x[n) in Fig. ic, derived from the 
convolution of a pulse p(n) and an impulse train 
r(n) in Figs. la and ib, respectively. The pulse 
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Figure lb: Excitation Function 
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Figure lc: Artificial Speech Waveform 

p(n), representing a synthetic vocal tract response 
is mixed phase with two minimum phase pole pairs 
and one zero pair, which is outside the unit cir - 

cle. The impulse train r(n) is a synthetic vocal 
cord excitation with a 64—sample period. Let us 
consider the result of homomorphic deconvolution 
by low-time and high-time gating of the complex 
cepstrum with different windows and onset time. 
In terms of the model of eq. (2), low-time gating 
should recover the basic pulse p(n) and high—time 
gating the windowed impulse train. 

Figures 2a, b and c demonstrate the effect of 
an exponential window of 400 point duration and 

decay rate of .992. Its onset is indicated in 

Figs. lb and ic by the arrow El. The low—time 
cepstral window cut off T equals 46 and the cor- 

respondent low—time and high—time estimates, 
xL(n) 

and xH(n), in Figs. 2b and 2c can be seen to be 

very close to the pulse p(n) and the windowed 
impulse train r(n)=w(n)r(n) as predicted by (2). 

Figure 2a: Speech waveform with an 

exponential window of onset El 

In Figures 3a, b, and c the effect of 
window onset is illustrated. The exponential 
window used in Fig. 2 has been shifted 32 points 
as depicted in Fig. 3a. The new window onset is 
indicated in Figs. lb and lc by the arrow E2. Now, 
although it is still reasonable to associate 

xH(n) 
in Fig. 3c with r(n), it is no longer possible to 
associate the estimated low-time pulse xL(n) 

it 

Fig. 3b with the original pulse p(n) of Fig. lb. 

n 

Figure la Artificial Vocal Tract Response 
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Figure 2b: xL(n) derived from a 

Figure 2c: 
xH(n) 

derived from 2a 

717 



Figure 4a Speech waveform with a 
Hamming window of onset H2 

MLL 
Figure 4c: x5(n) 

derived from 4a 

Next, the effects of a conventional Hamming 
window (of length 256 and onset indicated by arrow 
H2 in Figs. lb and lc) are demonstrated in Figs. 
4a, b, and c. Once again xH() in Fig. 4c matches 

r(n), but xL(n) 
differs significantly from p(n) 

and from the previously estimated pulse of Fig. 3b. 

A similar effect is exhibited with the convo- 
lution of a basic pulse with a non-periodic impulse 
train as is the case for example with seismic data. 
Consider the artificial seismic trace x(n) of Fig. 
5c, derived from the convolution of the airgun 
signature of Fig, 5a with the synthetic earth im- 
pulse response of Fig. 5b. The airgun signature 
is a mixed phase pulse and the earth impulse re- 
sponse is a non-periodic impulse train with random 
amplitudes and arrival times. Once again, let us 
perform homomorphic deconvolution on different 
intervals of x(n) using different windows. 
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Figure 5a: Seismic airgun signature 

Figure 3a: Speech waveform with an 

exponential window of onset E2 
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Figure 3b: xL(n) derived 
from 3a 
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Figure 4b: xL(n) 
derived from 4a 

Figure 3c; xCn) derived from 3a 
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In Figs. 6a, b, and C the use of an exponen- 
tial window, with decay .994 is demonstrated; the 
window onset and offset are shown in Fig. 5 by the 
arrows E. The resultant segment is shown in Fig. 
6a. Fig. 6b shows the xL(n) 

obtained by low-time 

gating and 6c the estimate xH(n) 
obtained by high- 

time gating. Once more, 
xH(n) 

closely matches 

r(n)w(n), as seen in Fig. 6d, after exponential 
deweighting of r(n). However, the estimated 

pulse 
xL(n) 

is clearly very different from the 

original signature p(n). 

Finally, consider Figs. 7a, b, and c. In 

Fig. 7a, a segment obtained by Hamming windowing 
x(n), in Fig. 5a, with the window onset and offset 
indicated by the H arrows. The high-time estimate 

xH(n) 
in Fig. 7c, is seen to match r' (n), but the 

. i 

Figure 6d: xfl(n) 
after exponential 
deweighting 

low-time estimate 
XL(n) 

in Fig. 7b is once again 

different from the airgun pulse, and also from the 

pulse of Fig. 6b. 

Figure 6a: Seismogram segment with an 
exponential window with onset and offset S 
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Figure 7a: Seismogram segment with 
a 

Hamming window with onset and offset H 

Figure Sb: Artificial earth impulse 
response 

n 

Figure 6b: xL(n) 
derived from 6a 

Figure Sc: Artificial seismogram 

Figure 6c: xH(n) derived from 6a 
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III. SHORT-TIME HOMOMORPHIC ANALYSIS 
OF SPEECH AND SEISMIC DATA 

Seismic Processing 

A common goal in seismic data processing is 
the recovery of the impulse train, representing 
the earth reflector series. In most cases, how- 

ever, little is known about the data except that 
the reflector series r(n) is, ideally, composed 
of a series of sharp impulses with random arrival 
times and amplitudes, and that the seismic wavelet 
p(n) is known to be smooth and short, compared 
with r(n). 

Since, in general, r' (n) is mixed—phase, its 
complex cepstrum £" (n) will have contributions for 
both positive and negative values of n. This nay 
cause significant low—time interference between 
their complex cepstra £' (n). and ' (n) which must 
be accounted for in subsequent analysis. 

The approach taken in seismic processing has 
been to use an exponentially decaying window w(n) 
such that r' (n) becomes minimum phase. This eli- 
minates the low—time cepstral interference between 
the signal components up to the cepstral time Tc 

= 

TA where TA is the inter-arrival tine between the 
first two impulses of r(n). 

However, it often happens that such TA 
is so 

The principle effect that we observe in both 
sets of examples is the sensitivity of the estima- 
ted pulse to the time registration and the shape 
of the window. In retrospect this is not surpri- 
sing since there are many different pulse Shapes 
which, when convolved with an impulse train will 
result in the same composite signal. This suggests 
modifying eq. (2) to 

x(n) = p'(n) * r'(n) = p(n) * [r(n)w(n)] 

where p (n) is not necessarily the pulse used to 
generate the data and is no longer independent of 
the data structures, window shape, onset and dura- 
tion. If in carrying out homomorphic deconvolution 
an accurate estimate of the original pulse shape 
is required then the window shape and time regis- 
tration must be chosen carefully. For some appli- 
cations, however, the true pulse shape is not 

important. In a speech analysis—synthesis system, 
for example, the pulse obtained in the analysis is 
convolved with art impulse train in the synthesis, 
and it is the quality of the reconstructed speech 
that is important. In seismic processing, it is 
often the reflector series that is of interest, and 
when the pulse p(n) is estimated it is used to 
design an inverse filter to obtain the reflector 
series. In these cases the short—time model of 

eq. (3) may be acceptable even when p'(n) is very 
different from p(n). 

In the next section, we discuss these two 
classes of examples in more detail focussing in 
particular on the effects of windowing on the 
estimation of the signal components and the 
possible implications. 

low, that the high—time interference is still sig- 
nificant. As a result, earth impulse response 
estimates based on the high—time cepstral estimate 

xH(n) 
often display a significant convolutional 

noise component which may seriously degrade the 
estimate. 

We have purposely attempted to use a variety 
of windows for short—time seismic deconvolution: 
exponential decreasing and increasing, Hamming, 
rectangular, Rayleigh, etc. Once a window, 
yielding a reasonable estimate of p (n) has been 
found, we design from such an estimate a linear 
time—invariant inverse filter which is ultimately 
used to process the seismic segment x(n). 
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A number of filter design techniques have 
been used, namely Homomorphic prediction [3] and 
Wiener Filtering [4]. We illustrate the use of 
Wiener Filtering in Fig. 8. In Fig. 8a the out- 
put response of an Optimum Lag Wiener Spiking 
Filter, of length 50, designed from the estimate 
of p' (n) in Fig. 6b is shown; the input to the 
filter is the seismic segment of Fig. 6a, without 
the exponential weighting. This deconvolved seis- 
mogram is of high resolution and is only slightly 
better than the high—time cepstral estimate of 
Fig. 6d (compare resolution in the interval indi- 
cated by the arrow PH in both Figs. 6d and 8a). 

Consider next the output response of an Opti- 
mum Lag Wiener Spiking Filter, also of length 50, 
designed from the estimate of p' (m) in Fig. 7b. 
The output responses shOwn in Figs. 8b and 8c 
correspond, respectively, to inputs which are the 
seismic segment of Fig. 8a, with and without the 

n 

Figure 7b: xL(n) 
derived from 7a 
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Figure 7c: xH(n) 
derived from 7a 



8b: r(n) estimate 
Fig. 7a 

Hamming window. Note that the output in Fig. 8b 
can be quite accurately derived from Fig. 8c by 
Hamming windowing, which is consistent with the 
model of eq. (3). Here, the improvement over 
the high—time estimate of Fig. 7c is more notice- 
able. For example, the reflection indicated by 
the arrow PH is accurately estimated in Fig. 8c 
whereas in Fig. 7c it appears as a doublet. 

Our experience suggests that the use of 
inverse filters in conjunction with homomorphic 
wavelet estimation has enormous potential for seis- 
mic deconvolution. In particular, the use of 
Wiener filters, designed from the appropriate low- 
time cepstral estimates of p' (n), have performed 
rather well and seem to overcome the bothersome 
convolutional noise phenomenon so often associated 
with the high—time cepstral estimates of r(n). 

Speech Processing 

recovery of the vocal tract impulse response p(n) 
or, if we restrict our attention to vocoder appli- 
cations, the recovery of the pulse p' (n) from 
which good quality speech synthesis might be 
attained. 

Let us first discuss the analysis—synthesis 
problem and, in particular, the consideration of 
voiced speech. Here, the cepstrum of r (n) is 
always high time due to its pitch periodicity. 
Thus, the low—time cepstral estimate xL(n) 

will 

usually accurately estimate p' (n). From eq. 6 it 
follows then that the synthesis of the short-time 
segment x(n) can be accomplished, except for its 
exact relative frame positioning in-time. Thus, 
o avoidpitch jitter, synchronization between 
speech frames seems to be required. This problem, 
at the present time, is under an active investi- 
gation where we are seeking a simple rtethod of 
properly concatenating adjacent speech segments. 

Estimation of the true vocal tract impulse 
response (n) 

- is an extremely difficult task for it requires-precise estimation of logmagnitude 
and phase characteristics. From examination of 
both analytical and computer generated examples 
it appears that the logmagnitude cen be strongly 
dependent on the short time window. For example, 
Fig. Pa shows the superposition of the loginagni- 
tude curves associated with Figs. lc, 2c and 3c. 
Here we see that the pulse synchronized window 

- onset yields the most accurate approximation to 
the true logmagnitude. Also, in Fig. -Pb we see 
a comparison of the results obtained from the 256 
point Hamming window. Included here is the log- 
magnitude due to a Hamming window with onset - 

indicated by arrbw HI in Figs. lb and lc. 

Figure 8a: r(n) estimate for segment 
- of Fig. 6a - 

H I H 

J .h.i. .11iLi I Jr 

Figure for segment of 

Figure Bc: r(n) estimate for segment 
of Fig. 7a 
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0 Figure Pa: Logmagnitude comparison for 
exponential windows 
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A goal in speech data processing is the 
Figure 9b: Logmagnitude comparison for 

Hamming windows - 
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Figures lOa and lOb show similar comparisons of 
the phase curves obtained from the various windowed 
intervals. Again, we see quite significant diff- 
erences among the estimates for the different 
onsets and window shapes. 

pulse, while approximately maintaining the 
correct shape. The phase curve, on the other 
hand, has little resemblance to the original 
curve in the region of the zero. 

Secondly, window Shape and Onset may intro- 
duce additional zeros whose topology can be 
detrimental for accurate pulse estimation. Some 
analytical results, for example, have yielded 
minimum and maximum phase zeros uniformly spaced 
close to the unit circle. This is a possible 
explanation for the ripples in the logmagnitude 
of Figs. 9a and 9b. 
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Although a complete understanding of these 
effects is lacking, some heuristic insights have 
been gained. In general, it appears that the 
window w(n) affects the convolutional model such 
that the logmagnitude and the phase characteristics 
of p' (n) can differ significantly from those of 
the original pulse. 

Analysis of mathematically tractable signals 
and windows have led us to speculate on two possible 
causes for this. First, windowing may smooth the 
logmagnitude and phase curves near high Q poles 
and zeros. Although this effect is localized for 
the lognagnitude characteristic, the phase curve is 

globally affected and it can drastically change 
shape. For example, Figs. 9a and ba demonstrate 
this for characteristics due to the synchronized 
exponential window (arrow El). The logmagnitude 
exhibits a smoothing of the zero of the original 
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