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ABSTRACT

An algorithm is presented to excite a single mode in a shal-
low water channel using a vertical source array controlled
by feedback from a reference hydrophone array. The algo-
rithm iterates between computing the source weights based
on its current estimate of the mode coupling in the chan-
nel, and updating its estimate of that coupling based on
the modes observed at the feedback reference array. This
allows us to excite high fidelity modes with confidence at a
given location. The ability to control these modes depends
on the accuracy with which they are observed. To this end,
we compute the error for the linear least-squares mode esti-
mator for scenarios where the feedback array does not span
the entire water column. Finally, we present preliminary
results obtained in a laboratory wave guide illustrating the
successful convergence of the algorithm in a physical exper-
mment.

1. INTRODUCTION

Normal modes are a convenient framework for examining
acoustic propagation at mid-to-low frequencies in shallow
water. The normal mode formulation allows the acoustic
far field to be described using only a finite set of propagat-
ing modes. For a vertical array of sources in a perfectly
known range-invariant environment, the complex weights
of the sources can be chosen such that only one of these
modes is propagating in the far field assuming the number
of sources exceeds that of the propagating modes. Several
laboratory experiments have pursued this goal in controlled
environments.

Clay and Huang [1] and Gazanhes and Garnier [2] inves- |

tigated single mode excitation in range-independent labora-
tory waveguides. Both experiments used open loop control
schemes, where the source array weights were pre-computed
based on detailed prior knowledge of a very simple propa-
gation environment, then held constant for the entire ex-
periment. Tindle et al. [3] examined single mode excitation
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and the induced coupling by propagation down a wedge.
This experiment also used open loop control to compute
the source array weights. This type of control is unfeasible
in a realistic ocean environment as it relies on the modes
propagating without coupling at least until the continuum
energy has decayed. This assumption is not generally valid
in an arbitrary shallow water environment. If the source ar-
ray is deployed without detailed a priori knowledge of the
environment, the open loop controller cannot guarantee it
excited a single mode at any location, nor can it specify
precisely how well it is performing even when it is work-
ing. This greatly limits the confidence of the inferences that
can be made from observing the field further downrange.
Lacking complete knowledge of the propagation environ-
ment, there is no way to be certain that inhomogeneities in
the water column or sediment have not coupled either the
desired excited mode or continuum energy into undesired
modes before the continuum and near field contributions
have completely attenuated.

Our solution to this problem is to move the location at
which we are trying to control the field from the source ar-
ray to the beginning of the far field. By placing a feedback
hydrophone array at this location, the source array can be
tuned using information received at this reference array so
that only one mode is propagating into the far field. The
field at this location has only a finite number of degrees
of freedom, corresponding to the perfectly trapped modes
propagating without loss of energy into the bottom, in con-
trast with the field at the source array, which consists of
the modal continuum, a nearly infinite number of degrees
of freedom. By changing from open loop control, which
chooses its source array weights solely based on the envi-
ronment at the source array, to closed loop control based
on the discrete modes propagating at the feedback array,
the degrees of freedom in the control problem are greatly
reduced.

Section 2 of this paper briefly reviews the modal for-
mulation of acoustic propagation, mainly to introduce the
notation we will use. Section 3 describes our control al-
gorithm in detail, including a number of numerical issues
involved in the implementation of the algorithm. The es-
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timation error for the linear ‘least~squa.res mode coefficient
estimator as a function of array length is computed in Sec-
tion 4. Finally, Section 5 presents preliminary results using
the algorithm in a laboratory waveguide.

2. MODAL DESCRIPTION OF ACOUSTIC
PROPAGATION

Time-harmonic pressure waves propagating in shallow wa-
ter can be described by the equation

1
p(r)V - [WVP(I‘)] + & (r)p(r) =0, (1
with appropriate boundary conditions [4], [5], [6]. In this
equation, r is the location vector, p(r) is the pressure and
p(r) is the density at that location, and k(r) is the local
wavenumber, w/c(r), with w denoting angular temporal fre-

quency (rad/s), and c(r) the sound speed at location r. As-

suming cylindrical symmetry, we can express the pressure
in the far field as a weighted sum of discrete modes

P = S dn(r) Um(ir), (@)

m=1

where dy(r) are the complex weights of the modes, or
modal coefficients, at range r, and ¥ (z;r) are the local
vertical modes at range r. These local modes are the solu-
tions to the vertical eigenfunction equation

2
P(z;r)% (__p(:;r)__—dwn:liz,r)> + (———c(:z)) Von(z;1)
Ee(r)*Um(z;r)  (3)

with the boundary conditions imposed by the environment
at range r[6]. The variable k. (r) is the horizontal wavenum-
ber associated with the mode. Because both Vm(z;r) and
dm(r) are functions of range in general, both the shapes and
weights of the modes can vary as they propagate outward
in range. The variations in dm(r) due to range inhomo-
geneities are generally called mode coupling. The goal of
our algorithm is to control the source array such that at
some reference range r = ro, all the coefficients dm(ro) =0
except for that of the desired mode, m = mq.

3. ALGORITHM DESCRIPTION

Our algorithm for generating a single mode uses a method
of indirect feedback control from the adaptive control liter-
ature [7]. It alternates between a weight computation step
and a channel estimate update step. In the weight compu-
tation step, the source array weights are calculated under
the assumption that the current channel estimate is correct.
The channel is excited using those source weights and the
mode coefficients are estimated from the observed pressure
field at the feedback array. Next, the channel estimate is
updated based on the discrepancy between the modes ob-
served and those expected based on the current channel
estimate. The algorithm then returns to the weight com-
putation step with this improved estimate of the channel,
and repeats the process.

The algorithm assumes the vector of mode coefficients
at the reference range d(ro) = [di(ro), coyda(ro)]T is a
linear function of the complex weights used at the source
array. If the source array weights are written as a vector
w, the channel model is assumed to be

d(ro) = Hw, (4)

where H is a transfer matrix incorporating all the effects
of the mode shapes at the source array and the mode cou-
pling between the source array and the feedback array. The
desired w excites the channel such that d(ro) is as close as
possible in the least squares sense to a desired mode vec-
tor do, which will be all zeros except for a 1 as the myo
component.

The weight computation step finds the best W[n] in the
least-squares sense, assuming the current channel estimate

~

H[n — 1] is correct. Precisely, this means
Wn] = argmin ||do — H{n — 1]w|. (5)
The solution to this minimization problem is
W[n] = (ﬁ[n — 117 H[n - 1]) T Hn-1%de,  (6)

where () denotes the Hermitian (conjugate transpose) op-
erator. N

To update H[n], the channel is excited with the source
array using W[n] as the source array weights, and the pres-
sure field p(ro, z,) is observed, where z. is a vector of the
receiver depths at the reference array. These pressure obser-
vations are then filtered using the known modé shapes at the
receiver array to obtain d[n], the estimate of the received
modal coefficients for the n*" iteration[8]. ﬁ[n] is chosen to
minimize the total error between the expected mode coef-
ficients I/-\I[n]v'\\r[l] and the observed coefficients d[{] for the
interval £ = 1,...,n. Specifically, it satisfies the following
criteria

n

Hin] = argmin } ©+"~9|d[q -~ HW{J)F,  (7)

£=1

where 7 is an exponential “forgetting factor” used to weight
older data less than recent observations. This minimization
is solved using a limited form of the recursive least squares
(RLS) algorithm [9]. Specifically, the algorithm incorpo-
rates the additional information contained in new obser-
vations sequentially, but due to numerical issues does not
exploit the matrix inversion lemma to update the inverse of
the input auto-correlation matrix. The channel estimate is
updated as follows

Hin] = vH[n — 1] + A[n]k[n), (®)
where
Aln] = d[n]—H[n—1]W[n] (9)
k[n] = (@)~ W[n] (10)
2[n] = ¥R wlk]w[k] T (11)
= 4®[n— 1]+ Wnlwn)®. (12)
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Intuitively, each mode, corresponding to a row of ﬁ[n —1],
is corrected in the direction of k{n]”, and the size of the
correction step is the appropriate element of the innovation
vector A[n].

3.1. Numerical Issues

Most references on the RLS algorithm including [9] exploit
the Matrix Inversion Lemma to minimize the computation
at each iteration. We found that this formulation was too
numerically sensitive for our application, and often pro-
duced spurious results when the algorithm ran for several
hundred iterations. This behavior was due to extreme con-
dition numbers of ®[n}, since W{n] does not vary much after
initial convergence while exciting the same mode. The al-
gorithm must explicitly compute the inverse of ®[n] at each
step, although ®[n] itself can still be updated recursively.
Because this matrix is Hermitian and its dimension is de-
termined by the number of elements in the source array, the
inversion should be manageable for most deployments. In
most environments, the time required for acoustic propaga-
tion between the source and feedback arrays, and not the
computational requirements, will limit the iteration time.
The large condition numbers of ®[n] also cause the al-
gorithm to be overly sensitive to observational noise. To
alleviate this problem, the algorithm computes (®[n])™"
by first performing a singular value decomposition of ®[r],
then increasing any singular value less o1, the largest singu-
lar value, divided by A to be a1/A. (®[n]) " is constructed
from this modified singular value decomposition, and thus
has a condition number of at most A. However, it is im-
portant that ®[n] itself is propagated unmodified, because
limiting the condition number of ®[n] will adversely effect
the algorithm’s transient behavior when either the channel
or desired mode changes abruptly. Choosing A is a compro-
mise between reducing the algorithm’s sensitivity to noise
and reducing its adaption time following abrupt changes.

4. ESTIMATION ERROR BOUNDS FOR
TRUNCATED ARRAYS

The algorithm’s ability to excite a single mode is clearly lim-
ited by the precision with which it can estimate the modes
propagating at the feedback array. This requirement can
conflict with practical issues of array design, deployment,
and cost in many environments of interest. A truncated
feedback array spanning only a portion of the water col-
umn may be greatly preferable from the point of view of
these practical concerns. However, such a compromise will
impact on the quality of mode estimation in most scenarios.
Quantifying the degradation in performance as a function
of array length with allow us to make this tradeoff in an
intelligent manner.

For this section, we will assume a model where the re-
ceived pressure field consists of a superposition of modes
plus spatially-uncorrelated identically distributed zero-mean
white Gaussian noise. Our model can be expressed by the
equation

where p is the vector of observed pressures at the hydro-
phone array, the columns of ¥ are the mode shapes sam-

pled at the hydrophone locations, d is the vector of mode
coefficients and e is the observation noise. For this sce-
nario, the gptimal least-squares estimate of the mode coef-
ficients is d = ¥'p, where (-) denotes the pseudo-inverse
operator{8]. Even if e is not Gaussian, white, and spatially-
uncorrelated, this is the best linear least-squares estimator.
For the assumptions made above, this estimator is unbi-
ased, and the covariance matrix of dis (P H 52, where
0 is the variance of the observational noise. As the array
aperture decreases, ¥ changes, and thus the variance of our
estimates of the mode coeflicients also change.
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Figure 1: Hydrophone locations and mode shapes for esti-
mator

To examine degradation in a realistic scenario, we used
typical environmental data measured on the South Contin-
ental Shelf around 41°N, 71°W in August, 1993, with a fre-
quency of 400 Hz. Under these conditions, there are nine
trapped modes propagating in the channel. The variance
of the mode estimators was computed for a range of array
apertures. Each array contained 19 hydrophones equally
spaced to cover the desired portion of the water column
from the bottom upwards. Fig. 1 plots the hydrophone lo-
cations for each trial alongside the first four mode shapes.
The degradation in estimate quality was computed relative
to the mean performance over all modes for a fully-spanning
array. Fig. 2 plots this degradation for the first four modes.
It is clear that most modes pay a severe penalty in estimate
fidelity for shortening the array span below 0.85. Reducing
the array aperture to only half of the water column would
produce estimates that were unusable in almost any realis-
tic ocean scenario, since even the best estimator is degraded
by more than 60 dB.

5. LABORATORY WAVEGUIDE
EXPERIMENT

This section presents preliminary results indicating the al-
gorithm performs well in a laboratory waveguide environ-
ment. The experiment was conducted at 8 kHz in a waveg-
uide roughly 20 m long and 1.2 m wide, with a water depth
of 0.6 m. The source array consisted of six piezoelectric

3109



underwater sources, and the feedback array had seven ele-
ments roughly equally spaced in depth. The algorithm was
imitialized using a random channel matrix. Figure 3 plots
the ratio of the energy in the desired field to the energy
in the error as a function of the iteration number. It can

be seen from this figure that in spite of a very poor initial
estimate of the channel, the algorithm converged within
roughly fifty iterations to produce a close fit to the desired

pressure field at the feedback array. Fig. 4 shows the de-
sired and received pressure field for this experiment after
the algorithm has converged. The ratio of the energy in the
desired pressure field to the energy in the error is roughly
25 dB. This result suggests the algorithm should do well
for any environment that can be characterized by our lin-
ear model, since the algorithm was initialized with no a

priori knowledge of the environment.
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Figure 2: Degradation in mode
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Figure 3: Ratio of energy in mode to energy in noise for

laboratory waveguide.
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Figure 4: Pressure profile of received pressure field in labo-
ratory waveguide after convergence.
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