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ABSTRACT

This paper discusses the use of frequency warping for designing
and implementing a class of discrete-time filters. This technigque
is particularly useful for audio filters because specifications are
often given on a logarithmic frequency scale. It is shown that fre-
quency warping allows a class of recursive filiers to be designed
using standard FIR technigues, and naturally leads to a structure
for implementing the filters. The fixed-point behavior of this filter
structure is analyzed and is shown to be relatively insensitive to
cocfficient quantization and round-off noise,

1. INTRODUCTION

In this paper, we apply the technique of frequency warping to the
problem of designing filters for speech and audic applications. In
these applications, logarithmically spaced frequency specifications
often arise due to the natural frequency sensitivity of the human au-
difory system. As an example of a design problem in this context,
consider the problem of designing a filter to approximate the mag-
nitude specification shown in Figure 1. The desired filter charac-
teristics arc specified on a logarithmic frequency axis and are typ-
ical of the requirements placed on audio equalizers used to com-
pensate for room modes and loudspeaker responses. When viewed
on a linear frequency scale, the majority of the detail in the fre-
quency response occurs below 3 kHz and this canses difficulty for
typical filter design techniques that minimize error on a linear fre-
quency scale. In particular, the dense low (requency details cause
problems for the standard FIR flter design algorithms, Regardiess
of whether the “error” is actually measured in the least-square or
Chebyshev sense, an FIR filter which fits the specifications shown
in Figure 1 reasonably well requires at least several hundred filter
taps. While it is possible to consider weighted least-square with
an error weighting funetion which is heavily biased towards the
low-frequency region, this approach tends to sufter from numeri-
cal problems caused by the narrow spacing of the low-frequency
region. This eventually limits the order of the filter which can be
designed. Likewise, the Parks-McClellan algorithm suffers numer-
ical problems and fails to converge for the required filter lengths.
In particular, our experience shows that the Parks-McClellan al-
gorithms fails to converge for arbifrary (not piccewise constant)
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Figure 1: Example of a typical audio equalizer’s frequency re-
sponse, plotted on a logarithmic frequency scale.

responses when the filter order is greater than 35, even with the
use of double precision arithmetic in the design.

An IR filter would potentially offer a significant reduction in
filter order. However, an IIR filter requires very high precision
in both its design and actual operation. Furthermore, most IR
techniques do not directly address the design of a filter with an
arbitrary magnitude response, and convergence to an acceptable
solution is not guaranteed.

The approach taken in this paper is to apply a technique re-
ferred to as frequency warping. This general technigue has previ-
ously been explored and developed in a number of contexts includ-
ing filter design and used to approximate logarithmic frequency re-
sponses [1]-[7]. In this paper, we apply it specifically to the design
of andio equalizets.

The allpass warping technique can be viewed as a hybrid of
both FIR and 1IR methodologies: it offers the flexibility of an FIR
design algorithm, yet requires a filter order typical of an IIR fil-
ter. This increased robusiness is achieved by recognizing that it is
much simpler to design a filter to fit a desired specification D{w)
on a log-scale than on a linear scale. Thus by seeking a method of
transforming the specification from D{(w) to P(07{w}), where
O{w) = log(w), the resulting filter order should be much smaller,
and the design technique much more robust.
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Figure 2: Relationship between the warped (w) and the prototype
(8} frequency variables for warping factors (from left to right) @ =
0.75,0.5, —0.5, —0.93.

2. FILTER DESIGN USING FREQUENCY WARPING

Let h[n] be an arbitrary real-valued impulse response with z-trans-
form H(z). A function G(z) is an allpass-warped version of I (z)
if G'(z) can be obtained from H (z) by replacing every delay with
an allpass filter, i.e.,

Gz) = H(0.(2)) I

where

0. = ~_al whete |a| < 1.

1-az
The subscript a is used to emphasize the dependence of the fre-
quency response on the warping factor a.

Let G(e?) and H(e™®) denote the Fourier transforms of g[n]
and h(n] respectively. Note that different frequency variables are
used for each transform. G(e/*} and H{e™) are related by the
substitution

Gle'™) H(8a(¢™))
= H(eje)
f=0q (w)

where the second equality follows from the fact that an allpass
function maps the unit circle to itself. Thus, the phase response of
the allpass funetion 6 (w) describes the mapping between the two
frequency variables. It then follows that

{1 -a¥sinw

—20 4+ (1 4+ a?)cosw’ @

8.(w) = arctan

The parameter ¢ in 8, (z) is called the warping facior. It is
a free parameter that controls the warping from H(z) to ((2).
Examples of the function in Eq. (2) for a few values of @ are plotted
in Figure 2. The function &, (w) is one-to-one on the interval [0, 7]
and its inverse is simply another allpass filter whose warping factor
is —a. That is,

9«:1(’4) =f0_q{w).

For -1 < a < 0, frequency warping stretches the low fre-
quencies and compresses the high frequencies. Similarly, for 0 <
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Figure 3: Direct substituticn of delays with ailpass filters.

a < 1, the effect is the opposite — low frequencies are compressed
and high frequencies stretched. This stretching and compressing
is the key benefit of frequency warping and yields a substantial
reduction in filter order.

A filter with a log-scale frequency specification can be warped
with —1 < @ < 0 to approximately linearize the frequency scale.
A standard design technique is then applied to match this linear
frequency response. Finally, the filter is warped again using —a to
return to the desired frequency scale.

3. IMPLEMENTATION

[n this section, we show that frequency warping aiso leads to nu-
merically robust (ilter siructures, and analyze in detail the results
of coefficient quantizaticn and round-off noise.

Frequency warping is accomplished by the substitution of vari-
ables

zl—n
P — 3
T where |a] < 1 (3)

158, (2) =
into the system function of a prototype filter (G{z). This substi-
tution can also be performed directly on the system stricture as
shown in Figure 3. Specifically, every delay in the system struc-
tre s replaced by an allpass filter.

Direct replacement of each delay by an allpass transfer func-
tion limits our consideration to structures obtained from FIR pro-
wotypes. This is because direct replacement in IR filiers leads to
delay-free loops. This problem has been recognized and discussed
in [8) and [9]. Therefore, while the paper has thus far considered
frequency warping applied to arbitrary filters, both ITR and FIR,
the rest of this section is devoted to warped FIR filters.

3.1, Fixed-Point Implementation

This section presents an analysis of the warped FIR filter in the
presence of fixed-point arithmetic. It is shown that by selecting a
suitable allpass fiiter topology, the warped FIR structure yields a
numerically robust scheme for implementing audio equalizers.
We assume that a modern digital signal processor is the target
platform for the warped FIR filter. A DSP contains fixed bit-width
memory and registers, and typically has a large bit-width accumu-
lator for storing intermediate results. Quantization and truncation
generally occur only when data is transferred from the accumulator
back into a register or memory location, or output from the system.
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This quantization medel differs from the traditional method of in-
troducing a quantization error following every multiplication [3].
In terms of analyzing a signa! llow graph, quantization occurs only
when:

1. A multiplication i3 not uniquely and immediately followed
by an addition, or

2. An addition is not uniquely and immediately followed by
another addition.

We further assume that B-bit signed fractional arithmetic is
used. Under this assumption, there arc 22 allowable values rang-
ing from —1to 1 — A where A = 2~ P! represents a change in
the least significant bit.

The errors resulting from fixed-peint arithmetic can be placed
into 3 main categories: coefficient quantization, signal overflow,
and numerical noisc. We analyze each type of crror separately.

The warping factor a4 and the FIR coefficients h[n] are typi-
cally designed using double precision arithmetic. These must then
be quantized to the nearest representable value. Since there is some
flexibility in the choice of warping factor, we assume that the warp-
ing factor is sclected a priori from the set of allowable numerical
vatues. Thus, the warping factor will not undergo any guantization.
Once the warping factor is sclected, the FIR cocfficients h[n] are
designed and then quantized. It is well-known that the frequency
response of FIR filters is relatively insensitive to the eftects of co-
efficient quantization [5], and by extension, warped FIR filters are
relatively insensitive as well.

Signal overflow occurs when the output of the filter, or a re-
sult stored in an intermediate delay element, exceeds the allowable
range of ~1 < z < (1 — A). Although it is difficalt to fully
characterize the specific input conditions under which an overflow
oceurs, it is possible to develop some usefal heuristics. A good
starting point is to assume that the gain from the input of the sys-
tem to all intermediate delay elements is less than or equal to 1 for
all frequencies. If this condition is satisfied, then overflows will
be completely avoided for sine wave inputs (in the steady state).
If the gain exceeds 1, then the input must be scaled down accord-
ingly, and this reduces the overall signal-to-noise ratio (SNR) of
the filter. By applying this heuristic to the four standard topologies
for allpass filters, it can be shown that Direct Form T is best in that
it requires no gain reduction of the input signal. Thus, it is least
prone to overflow and leads to the highest SNR.

The main apparent drawback of the Direct Form 1 structure is
that it requires an additional delay element hetween every allpass
stage. However, by merging the delay elements of neighboring
stages a cascade of IV allpass filters can be implemented using
only N+1 delay elements — one more than the canonical version.
The final filter topology, including all quantization errors, is shown
in Figure 4.

We make three assumptions regarding the quantization noise,
and these paraliel the presentation in [5):

1. Each quantization noise e;[n] is a wide-sensc stationary
white noise process,

2. Each noise source has a uniform distribution over the range
:I:%A. Thus the variance of cach noise source is o7 =
92842

7

3. Each quantization noise source is uncorrelated with the in-
put to the quantizer, all other quantization noise sources,
and the input to the system.
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Figure 4: Warped FIR structure with additive noise shown. e [n],
ea[n}, es[n] are due to the allpasses, while es[n] is duc to the
weighted sum with FIR coefficients.

Since we assume that all of the noise sources arc uncorre-
lated, the overall SNR of the filter is derived by summing all of
the noise contributions at the output of the filter, Define H;(z) as

the partial transfer function H;{z) £ S k)2 7%, Then

the transfer function from the i** noise sonrce to the output would

be Hl—iiffz—l)) The neise spectrum at the filter’s output can be ex-
pressed as
M-=1 2
2 5 | Hi@ule) [* o
¢ £ Y 1—-ae—dw “
=

o2 AM—1 » 2 ,
T ;’Hi((%(e ))')+ae. “)

It is difficult to draw general conclusions about the output
noise spectrum because it is a function of the specific filter co-
efficients used. However, most of the terms in (4) have a common
denominator of 1/ |1 —ae™#* |”. The common term represents
the noise shaping due to the pole in the allpass filter, and we can
think of the output noise as being shaped by this Grst order low pass
filter. In practice, we have found that the output noise spectrum is
heavily influenced by this low pass characteristic. This is due to
the choice of & which is typically close to 1. This is ideal for au-
dio applications due to the decreased sensitivity of the human ear
to low frequencies. Also, audio generally has more energy at low
frequencies, and this tends to further mask the quantization noise.

3.2. Design Example

This scetion contains a complete example including design, imple-
mentation, and analysis of the resulting filter to the specification
in Figure 1. The procedure consists of warping the specification
with parameter @, designing an FIR filter, and implementing the
warped-FIR filter with parameter —a.

The optimal warping factor is defined as the value of e which
minimizes the length of the FIR filter. We determined the optimal
warping factor by iteratively repeating the design procedure and
searching for the smallest filter lengih which still met the speci-
fications, The optimal value of @ is usually close to the warping
parameter which best linearizes the original log-frequency specifi-
cations, and we vsed this as a stavting point. For the filter in Figure
1, the optimal warping factor was found to be o = (,963.

Furthermore, additional saving in filter length may be achieved
by designing it to be minimum-phase. We used a standard least-
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Figure 5: Comparison of the desired (solid) and resulting (dashed)
frequency responscs.
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Figure 6: Comparison of measured {(solid) and predicted (dashed)
quantization noise power spectral densities when 16-bit arithmetic
is used. Length FIR prototype=21, a = 0.963.

square design to obtain a linear-phase filter, then performed a spec-
tral factorization on it. This yielded a 21-point prototype filter. The
resulting frequency response is shown in Figure 5. As can be seen,
the warped filter is able to maich the frequency response even at
relatively low order.

Figure 6 illustrates the neise at the output of the system for the
case of 16-bit arithmetic. The solid curve represents the quanti-
zation noise measured at the output of the system (delined as the
difference between the output of a 16-bit filter and a double pre-
cision filter, using white noisc as the input). The dashed curve
represents the noise predicted by Equation 4. Note that there is
good agreement between the theoretically predicted and actually
observed noise. Also, ihe overal! shape of the noise spectrum is
dominated by the lowpass term 1/ | 1 — ae™?* | as mentioned ear-
lier.

4. CONCLUSION

In this paper, the theory and some practical aspects of frequency
warping based on allpass filters have been discussed, Allpass warp-
ing allows one to derive a filler from a prototype by replacing every
delay with an allpass filter. One of the main benefits of frequency
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warping is its ability to yield a numerically robust solution for diffi-
cult filter design problems. This is especially true for filters whose
specifications are highly nonuniform such as audio filters specificd
on a log-frequency scale. We also presented a structure for imple-
menting filters using fixed-point arithmetic. This was based upon
a direct substitution of allpass filters directly into the system struc-
ture of a filter. Simulation results conlirm that the quantization
noise output is relatively lew and has a low-pass characteristic.
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