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ABSTRACT

A framework for approximate signal processing is intro-
duced which can be used to design novel classes of algo-
rithms for performing DFT and STFT calculations. In par-
ticular, we focus on the derivation of multi-stage incremen-
tal refinement algorithms that meet a variety of design cri-
teria on the tradeoff achieved at each stage between solution
quality and computational cost.

1. INTRODUCTION

In any given problem-solving domain, an approximation to
a given algorithm may be defined as an algorithm which
offers a reduced computational cost but produces a lower
quality answer according to some standard of accuracy, cer-
tainty, and/or completeness. The approximate algorithm
may be said to carry out approzimate processingin the do-
main under consideration. Such algorithms have previously
been studied in the context of various applications, includ-
ing real-time vehicular tracking {1, 2] and real-time database
query processing [3].

In real-time applications, any individual task must gen-
erally be performed within a time interval whose duration
may or may not be determined prior to its execution. In
the case of a predetermined time allocation, an algorithm
which produces an approximate solution may be used to
obtain the requisite computational efficiency by sacrificing
the quality of the answer obtained. We refer to this as
deadline-based approximate processing. In cases where the
time allocation is not predetermined, it is desirable to use
an approximate processing technique which produces an an-
swer of improving quality as a function of time. This allows
the processing to be terminated whenever desired and the
quality of the resulting answer is directly proportional to
the actual execution time. These types of algorithms are
said to carry out incremental refinement of their answers.

2. DEADLINE-BASED ALGORITHMS

We have previously reported [4, 5] results on the design of
deadline-based algorithms for the DFT and the short-time
Fourier transform (STFT). That work has recently been ex-
tended to include a class of multi-stage algorithms for incre-
mental DFT and STFT refinement [6]. This new approach
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can be used to generate a large number of algorithms whose
stages possess different cost versus quality tradeoff charac-
teristics. In this paper, we demonstrate the application of
a mathematical framework for quality and cost assessment
to the design of incremental DFT refinement algorithms
whose tradeoffs meet a variety of design criteria. Since the
STFT can be decomposed into a series of DFT calculations,
these design techniques may be applied to the derivation of
incremental STFT refinement algorithms as well.

3. INCREMENTAL DFT REFINEMENT

Assume the N-point signal z(n) under analysis to be real-
valued and represented in B-bit 2’s complement binary frac-
tion format. We denote bit b of the nth sample as zs(n), so
that

B-1
z(n) = =zo(n) + D _ zs(n)2”" 8y
b=1
We may define a space of algorithms which perform in-
cremental DFT refinement for which the result of the ith
successive approximation is given by:

vi—=1 r;=—1

Xi(k) = Z > 0o(n)Gnp(k), L<k<uw  (2)

b=0 n=0

where gp(n) is the first circular backward difference of z5(n)
and

—e W (1= e FF),  b=0
2=t iRk J(1— eI FF), 1<b<B-1
3)
The ith successive approximation is part of a sequence
of successive approximations whose results are defined
through the following relationships between the indexing
bounds of equation (2): 1 < vi; < v; < B, 1 <11 <
ri < Ny, 1 <L € ui N2, uig € ui, a2 L, and
vi +1i + w4 — i < vig1 + rig1 + #ig1 — lig1. These con-
straints ensure that solution quality improves after each suc-
cessive approximation. Each successive approximation may
be implemented through a vector summation process we
have previously reported [4] for similar approximations in
the context of deadline-based algorithms. When all the suc-
cessive approximations in a particular sequence are imple-
mented this way, we refer to the implementation of the en-
tire sequence as a single incremental refinement algorithm.
Since equation (2) forms the basis for generating many dif-
ferent sequences of successive approximations and the cor-

Gnp(k) = {
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responding incremental refinement algorithms, we refer to
it as the generator equation.

4. QUALITY AND COST ASSESSMENT

The quality of an approximate result can be characterized
using an appropriately selected ensemble of numeric qual-
ity measures. Since a technique for estimating the center
frequency of the energy distribution of z(n) can be applied
to position ; and u; in a data dependent manner [4, 5], the
quality of Xg(k) with respect to frequency coverage is re-
lated to the number of frequency bins approximated at the
completion of stage i. Defining c¢; as the number of samples
of the DFT approximated at the completion of stage i, or
¢; = u; — l; + 1, we assert that after stage 1, the frequency
coverage of Xi(k) is

27ce;

Gei = (4)

where ¢.,; is measured in rad/sample. In terms of the num-
ber of resolvable frequency components, the frequency res-
olution can be shown to be approximately

Grii =13 (5)

where ¢r; is the number of resolvable components after
stage 7. It can also be shown that the additive noise due to
the quantization in stage ¢ is approximately

Qu,i = i (6)

with ¢, ,; representing the SNR in dB.

Also of importance in the analysis of approximate pro-
cessing algorithms is the systematic evaluation of their com-
putational cost. Let us consider the space of algorithms
represented by the evaluation of the generator equation us-
ing the vector summation process described in [4]. We first
note that the values of Gy (k) can be pre-computed and
stored in memory, allowing X;(k) to be calculated using
only additions. The storage of BN, /N/2 complex values is
required.?

The number of vector additions required through stage
t depends upon the “density” of non-zero values in the por-
tion of gy(n) included in the calculation. That density,
which we denote as v;, is

vi=1 ri~1

T 3Dl (7)

b=0 n=0

and 7; takes on values in the range [0,1]. A priori esti-
mates of v; allow us to calculate the expected cost through
stage ¢. If we assume a uniform and independent distribu-
tion of quantization levels in z(n), the expected value of
v:; can be easily shown to be 0.5. Positive correlation be-
tween adjacent signal samples will reduce this value and a
frequency reversal technique [5] can be applied to the eval-
nation of equation (2) to obtain a similar reduction when

! Alternatively, we may store the Ny N, /2 complex values of
Wy (k) and compute Gy, 3(k) as part of the algorithm. In this
case, each complex addition becomes 2 real power-of-2 multiplies
and a complex addition.

they are negatively correlated. We now define a cost func-
tion which estimates the number of complex additions per-
formed through stage ¢ as®

ki = cirivi¥i (8)

where ¥; is an estimate of v; and k; is the cost estimate.

5. ALGORITHM DESIGN

The characterizations from section 4 can be used to find al-
gorithms from among those generated by equation (2) that
satisfy various types of constraints on their cost and quality
tradeoffs. In this section we present three design problems
which can be solved analytically within our framework.
The examples share a common approach, which begins
with the interpretation of all design constraints as math-
ematical constraints on the values of cost and quality at
each stage of incremental refinement. Combining equations
(4)-(6) and (8), we derive the quality/cost tradeoff which
governs the family of algorithms generated by equation (2),

ki = I—JZV—TFqc,iqr,eqv,i% (9)
Although only a discrete set of quality/cost points which
satisfy this relation are achievable through equation (2), we
initially assume c;, i, and v; (and, consequently, the qual-
ity and cost functions) to be continuous-valued. We also
assume that %; is independent of 5. The quality/cost points
that satisfy both equation (9) and the design constraints are
then determined analytically, and the corresponding (con-
tinuous) values of ¢;, ri, and v; are found using equations
(4)-(6). These results are then rounded appropriately to
integral values which, through equation (2), define the re-
sulting incremental refinement algorithm.

5.1. Refinement in Frequency Coverage and Fre-
quency Resolution with Uniform Incremental Cost

Suppose we wish to generate an incremental DFT refine-
ment algorithm whose stages have equal quality increments
in coverage and resolution, constant SNR, and an approxi-
mately uniform incremental cost. We shall mathematically
interpret the constraint on quality to restrict our solutions
to those whose quality falls on the line through the quality

space for which
T

Gei = YV:QTJ (]0)
We seek an algorithm whose cost increments are such that
ki=e: (l])

where e is the desired number of complex additions per
stage. Combining these constraints with the quality and
cost measures and solving for the ¢; and r; gives

Nez

“ = 2Nwvi%i (12)
2N et

e = N'Uz's/i (13)

2We have omitted the cost of computing the backward-
difference of z5(n) from this relation for simplicity.
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This result will now be applied to the design of an al-
gorithm. Consider the task of producing an incremental
refinement DFT with N = 256, N, = 128, 4; = 0.26,
and ¢,,; = 12 dB for which each stage costs approximately
1500 complex additions and coverage and resolution im-
prove commensurately. Evaluating equations (12)-(13) and
rounding down to integer values gives

{ci} = {ri} = {53, 75,93, 107,120, 128} (14)

Clearly, we use v; = 2 for all stages. A contour plot of the
coverage/resolution versus cost tradeoff characteristic for
this design is shown in Fig. 1. Note that our derivation has
bounded the cumulative cost through stage i, resulting in
some of the cost increments (i.e. per stage costs) exceeding
the desired amount. An alternate approach bounding the
cost increments can be derived, but has limited importance
unless the estimate of v; is of high quality.

5.2. Refinement in Frequency Coverage with Expo-
nentially Decreasing Incremental Cost

In a real-time environment, it may be useful to apply an al-
gorithm for incremental DFT refinement which produces an
initial approximation within some fixed cost, say a complex
additions, and then refines that solution in stages with de-
creasing cost increments, approaching the incremental cost
b at an exponential rate. We derive expressions here for
the design of algorithms based on equation (2) which have
exponentially decreasing incremental cost and perform re-
finement in frequency coverage while frequency resolution
and SNR are held constant.

The cost constraint can be mathematically expressed as

ki=Y ((a—b)e™™ 1p) (15)

n=1

where the exponential rate constant a > 0. Combining this
with the measures of cost and quality and solving for ¢;
gives

i

6= —— S ((a=pe "V 4p)  (16)

T griQui¥
n=1

which may be used to design an algorithm.

To illustrate, consider the design of an algorithm with
N = 256, N, = 128, 4; = 0.26, ¢r; = 128 components, and
gv,i = 12 dB for which the cost of the first stage is approxi-
mately 2000 complex additions and the incremental cost of
subsequent stages decreases towards 500 complex additions
at the exponential rate of @ = 0.6. Such an algorithm, gen-
erated from equation (2), will have r; = 128 and v; = 2 for
all stages. Applying equation (16) and rounding down to
the nearest integer we find

{e:} = {30, 54,74, 90,105, 117, 128} (17

The coverage versus cost tradeoff achieved at each refine-
ment stage of the designed algorithm is shown in Fig. 2. As
in the previous example, the design criteria have been met
with respect to the cumulative cost. A variant approach
which bounds the incremental cost estimate may also be
derived for this case.

5.3. Refinement in Frequency Resolution with Path
Approximation

One may envisage a situation in which it is desirable to
produce an incremental DFT refinement algorithm which
gives a cost and quality tradeoff that is as near as possible
to a numerically specified characteristic. In this section,
we demonstrate a technique for designing algorithms which
approximate an arbitrary refinement path in frequency res-
olution and cost while maintaining constant frequency cov-
erage and SNR.

We address this design problem in the following way.
Assume that the specification is given as a series of points in
the quality /cost space which describe the desired refinement
path. For each point on this path, we find the point on
the surface defined by the quality/cost relation given in
equation (9) which minimizes a Euclidean distance measure.
For this measure, we use

i= A+ G- KF ()

where (g;.;, k{) is the desired tradeoff of resolution and cost
at stage 1, (gr;, ki) is a point which satisfies equation (9)
(with gc,i, gv,i, and % as known quantities, constant w.r.t.
1), and s is a normalization constant which allows a correc-
tion for the differing units of measure in the various dimen-
sions of cost and quality. The ordered pair (z, y), here, rep-
resents a solution with = resolvable frequency components
produced at a cumulative cost of y complex additions. The
point that minimizes d is found to be the one for which

127s2gh; + Nge,iqw,ivik!
(1278¢)? + (Ngc,igo,i %i)?

gr,s = 127 (19)
This result may be rounded to the nearest integer to derive
the associated value of r; for use with equation (2).

Let us consider the design of an algorithm using this
path approximation technique. Suppose that we require
an incremental DFT refinement algorithm with N = 256,
Ny = 128, % = 0.26, ¢c,; = = rad/sample, and g¢,; = 12
dB which has four stages with associated quality and cost
that are as close as possible to the resolution/cost points
(15,2000), (40,4000), (90,5500), and (128,6000). From
equations (4) and (6), we see that ¢; = 128 and v; = 2
should be used. Application of equation (19} requires that
a suitable value for the normalization constant s, be de-
termined. Since the range of ¢r: and k; are bounded in
accordance with the constraints on the generator equation,
we use the value

g = Fmez _ g6 (20)
qr,maz
to normalize the resolution and cost axes over the full range
of refinement. Applying equation (19) we find

{r:} = {23,50, 86,109} (21)

Fig. 3 compares the desired and achieved refinement paths
for this design.

The approach demonstrated in this example has also
been successfully applied to the approximation of an ar-
bitrary refinement path in two dimensions of quality. It
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requires, however, the numerical solution of a quintic poly-
nomial equation. Techniques for solving the path approxi-
mation problem in more than two dimensions of quality are
currently under investigation.
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Figure 1: Refinement path in frequency coverage and fre-
quency resolution of algorithm designed with uniform cost
increments of 1500 complex additions. Each point indicates
the output quality after a particular stage is completed and
is labeled with its associated cost increment. Equal cost
contours are shown at multiples of 1000 complex additions.

8000

6000

Cost

4000

2000

0 /4 /2 3n/4 T

Coverage

Figure 2: Refinement path in frequency coverage of algo-
rithm designed with exponentially decreasing cost incre-
ments. Bach point indicates the output quality after a par-
ticular stage is completed and is labeled with its associated
cost increment in complex additions.
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Figure 3: Refinement path in frequency resolution of al-
gorithm (solid line) designed to approximate a given path
(dashed lire). Each point indicates the output quality af-
ter a particular stage is completed and is labeled with the
cumulative cost incurred through that stage in complex ad-
ditions.
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