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ABSTRACT

We present a probabilistic complexity analysis of a class
of multi-stage algorithms for computing successive approx-
imations to the DFT. While the quality of the approxi-
mate spectra obtained after any stage of these algorithms
can be readily quantified in terms of commonly used input-
independent metrics of spectral quality, each stage’s arith-
metic complexity is dependent on the nature of the input
signal. Modeling the input signal as a stationary Gaussian-
distributed random process, we obtain estimates of the dis-
tribution of the number of arithmetic operations required
to complete any algorithm stage. This enables the deriva-
tion of important design information such as the probability
with which a desired quality of approximation is achieved
within a given arithmetic bound. Our results are verified
using a Monte Carlo analysis.

1. INTRODUCTION

We have recently introduced a class of algorithms for com-
puting approximations to the DFT which we refer to as
DFT incremental-refinement (DFT-IR) algorithms [1]. The
term incremental refinement denotes the fact that each of
the algorithms consists of multiple stages, each of which im-
proves upon the DFT approximation produced by the pre-
vious stage. The incremental refinement property gives the
DFT-IR advantages over more commonly used approaches
to DFT approximation, such as FFT pruning, for real-time
systems with unpredictable or time-varying restrictions on
the availability of computing resources {2] [3]. For such
applications, the use of incremental refinement algorithms
enables the tradeoff obtained between approximation qual-
ity and the amount of computation performed to be easily
modified by varying the number of stages performed before
algorithm termination.

The selection of an appropriate DFT-IR algorithm for
a given application requires that the relationship between
approximation quality and arithmetic cost be adequately
quantifiable. The quality of the DFT approximation ob-
tained after each stage of a DFT-IR algorithm may be
characterized in terms of commonly used input-independent
metrics for spectral quality: SNR, frequency resolution,
and frequency coverage. The arithmetic complexity of each
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Figure 1: Block diagram depiction of the first seven stages
of a DFT-IR algorithm.

stage, however, is dependent upon the characteristics of the
input signal.

We have derived expressions for the probability distri-
bution associated with the number of arithmetic operations
needed to complete any DFT-IR algorithm stage based on
the assumption of a stationary Gaussian-distributed ran-
dom input signal [4]. Exact evaluation of these expressions,
however, is computationally intractable. In this paper, we
present a computationally tractable technique for obtaining
estimates of the distribution. This enables the derivation of
important design information, such as the probability with
which a desired quality of approximation is achieved within
a given arithmetic bound. Our results are verified using a
Monte Carlo analysis.

2. DFT-IR ALGORITHMS

Every DFT-IR algorithm can be viewed as a cascade of
stages, each of which takes a DFT approximation X;_;(k)
and produces an improved approximation X; (k). This struc-
ture is illustrated using a block-diagram format in Fig. 1.
The refinement process is “jump-started” with the compu-
tation of an initial approximation X, (k) as indicated by the
block of type J in the figure. All subsequent stages perform
one of three different updates, each of which improves the
previous approximation by a fixed amount in either SNR,
indicated by blocks of type S, in frequency resolution, in-
dicated by blocks of type R, or in frequency coverage, in-
dicated by blocks of type C. The number of arithmetic
operations performed in each block is dependent upon the
values of the input data.

Every unique sequence of updates corresponds to a dif-
ferent DFT-IR algorithm. We represent each of these al-
gorithms using a set of control parameters, s;, r;, and c;.
For each ¢, the control parameter values essentially repre-
sent the number of updates of the corresponding type (S,
R, or C) that are present up to and including the ith stage.
The “jump-start” stage is counted as an update of all three



types.
The DFT-IR algorithms perform each of their updates

without multiplications using a distributed arithmetic tech-
nique based on the summation of pre-computed vectors [5].
With this technique, the total arithmetic cost through stage
1, which we denote by «;, is [1]

K; = s;T; + 27v;c; real additions, (1)
where
s; ri—1
Y= lgaln)l. (2)
g=1 n=0

The quantity -; represents the signal-dependent contribu-
tion to the arithmetic cost of completing the ith stage of
processing and is equal to the number of non-zero elements
in a restricted portion of the backward difference of the
quantized input signal. We therefore refer to it as the non-
zero count for stage ¢. The function gq(n) represents the
first circular backward difference of z4(n}, the gth bit vec-
tor! of the two’s complement binary representation of the
signal under analysis.

3. PROBABILISTIC COMPLEXITY ANALYSIS

To obtain a probability distribution for «;, the total arith-
metic cost associated with completing stage i of a DFT-
IR algorithm, we suppose that the signal under analysis
is obtained via amplitude quantization of a continuous-
valued discrete-time Gaussian-distributed random process,
denoted &(n), with known autocorrelation. Expressions for
the exact distribution of k; have been derived under these
conditions, however the amount of computation required for
their evaluation grows combinatorially with s; and r; [4].
By adopting additional simplifying assumptions about
the probabilistic behavior of gq(n), we have derived expres-
sions that allow estimates of the distribution of x; to be
obtained using a number of computations that grows in a
polynomial fashion with s; and r;. These assumptions are:

(i) It is assumed that the values of g,(0) make insignifi-
cant contributions to the non-zero count.

(ii) The interactions® between elements of gq(n) of third
and higher order are assumed to be negligible.

(iif) Any sample of g;(n) is assumed to not be significantly
correlated with any sample of gx(n) when j # k.

Each of these assumptions in some way facilitates a tractable
analysis of the distribution of the arithmetic cost while in-
troducing some error into its results. Assumption (i) is used
because while go(no) = x4(ng) — zq(ng — 1) for no > 0, the
sample gq(0) depends upon the difference z4(0) — x4 (N —1).
Our probabilistic analysis is simplified by ignoring this ex-
ception. This is reasonable because generally g,(0) is only
one of many samples in gq(n) which contribute to the non-
zero count. Our second assumption is based on the obser-
vation that interactions between elements of g,(n) diminish

!For a Q-bit signal representation, we use ¢ = 1 to denote the
MSB and ¢ = @Q for the LSB.

2We say that random variables interact when the expected
value of their product is not equal to the product of their ex-
pected values.
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with increasing order. Thus, restricting our consideration to
the first and second order moments can be expected to cap-
ture the most important characteristics of the distribution.
The implications of this approximation have been investi-
gated in detail previously. Bounds on its error are known
and it has been shown experimentally to be reasonable [6].
While we are not aware of any formal analysis to support
assumption (iii), our empirical results {as reported in Sec-
tion 4) indicate that this assumption did not excessively
degrade the accuracy of distribution obtained.
Since &; is deterministically related to the non-zero count,

7:, we focus on the derivation of the distribution p., (k) =
Prob {~; = k}. Under our stated assumptions, this distri-
bution can be expressed as:

Pri(R) =Py (k) #poa(k) - v p i (B), (9)
where
Pyg (k) = Rez(q,0)°(1 = Rz (g,0))"

r;—1 ;
1 ~~(f1, n) — R--(q,0)*

[( ) ¥ Z (q,0)(1 ~ R:2(q,0))

mm(2 k)
X

w—max(O k—r;+2)

~R..(q,0) >
\/Rzz q»o)(l - Lz ((I70))

1-R.: ((1,0) “ 4
( e 0>>> ] @

\/Ru(% 0)(1 -
We use 47 to denote the non-zero count over 0 < n < r; —1
of the backward difference vector g,(n) and Pys (k) to denote
its distribution. The quantity R;.(q,n) represents the the
autocorrelation of the random processes z(q,n) = |gq(n)|.3
R..(q,n) is related to the distribution of the random pro-
cess Z(n) by:

R..(g,n) =

// pz’;(n—l)i(n)(xvy) dx dy7

(z,y):
£q(2)#£Eq(y)

/f/ Pi(n—1)3(n)s(n+1) (T, ¥, 2) dz dy dz,

(29,5):  =1Vn=N_1
€q(2) €, (y)Eq(2) " " ’

//// P#(-1)E(0)E (n- 1) (n) (W, T, Y, 7) dw dx dy dz,

(w,z,y,2):
Eq(w)#Lq (z)A
\ Eq ('.'I)#&q (z)

n =70,

2<n<N-2.
(3)
The function £g(z) represents the input/output relation for

the gth bit of a two’s complement binary quantizer and N is
the length of the DFT being approximated. Determination

3We note that z(g,n) is made stationary in time by assump-
tion (i) and independent across bit levels by assumption (iii).



of R.:(g,n) requires the evaluation of the multivariate nor-
mal integral. There are only a few special cases for which
closed form solutions exist, so for this task we must rely on
numerical methods.

Careful inspection of Eq. (4) reveals that the distribu-
tion of 4{ has a similar form to that of the binomial distri-
bution. In fact, when there are no second order interactions
between distinct elements of g4(n), a binomial distribution
with parameter R..(q,0) is obtained. This equation can
be viewed as providing the corrections to the binomial dis-
tribution that are required due to correlation between the
elements of g4(n). The derivation of Eqs. (3)-(5) is based
on a representation of correlated binomial random processes
in terms of its moments and is detailed in another publica-
tion [4].

4. EXPERIMENTAL VERIFICATION

We have performed a series of experiments to evaluate
the accuracy of Eqs. (1)-(5) at predicting the arithmetic
complexity of DFT-IR algorithms applied to stationary
Gaussian-distributed inputs. These experiments indicate
that our theoretical results provide reasonable estimates of
DFT-IR algorithms’ performance for this important class
of signals.

The signal statistics employed in this evaluation corre-
spond to a reported long-term average for male speech [7].
The variance of the input process was normalized to 0.25,
representing a well-scaled input to a quantizer with am-
plitude range [—1,1]. Signal quantization to 16 bits was
applied to obtain a signal suitable for DFT-IR analysis and
a 32 kHz sampling rate was employed. We assumed the
signal under analysis to be contained in a 128-point frame
that is to undergo a 256-point DFT.

The control parameters and output quality associated
with selected stages from two DFT-IR algorithms are listed
in the first eight columns Table 1. Fig. 2(a)-(b) shows the
cumulative distribution of the arithmetic cost associated
with these algorithms stages (i.e. Prob{x; < z}) as pre-
dicted by Egs. (1)-(5). The cumulative distributions of the
computational complexity of these same algorithm stages
were determined empirically by monitoring their arithmetic
cost in 50,000 Monte Carlo trials. These experimentally de-
rived distributions are shown in Fig. 2(c)-(d).

These cumulative distributions represent the probabil-
ity with which the computational cost of completing a par-
ticular algorithm stage is less than or equal to a given
value. They can therefore be considered to provide the
probability of completion for that stage within any speci-
fied arithmetic cost. Probability of completion is an im-
portant figure of merit for a variety of resource-constrained
design contexts [4]. The ninth and tenth columns of Table 1
present the theoretically predicted and experimentally ob-
tained probabilities with which each of the selected stages
are completed using not more than 1000 arithmetic opera-
tions. These values represent the intersections of the distri-
butions of Fig. 2 with the vertical grid-line at an arithmetic
cost of 1000 operations. /

Our experimental results indicate that reasonable es-
timates of the probabilities of completion are obtained
through application of the theoretical analysis of Section 3.

This tends to validate the approximations that were made
in our derivations. The agreement between the theoretically
determined probabilities and those that were obtained ex-
perimentally can be seen to diminish as the SNR of the
approximation is increased. This effect can be attributed
to our assumption of independence between bit levels.

5. CONCLUSION

We have presented a technique for the probabilistic com-
plexity analysis of the DFT-IR family of algorithms. Using
stationary Gaussian signal models, our results enable the
calculation of reasonable estimates of the probability dis-
tribution associated with the arithmetic cost of applying
a DFT-IR algorithm to generate a DFT approximation of
a desired spectral quality. The utility of these results has
been illustrated in the context of deriving the probability
with which selected DFT-IR algorithm stages are completed
using not more than a specified number of arithmetic oper-
ations.

The distributions derived here are useful for addressing
a variety of other design problems, many of which have yet
to be explored. For example, for applications with a fixed
arithmetic bound on the number of operations expended in
the execution of a DFT-IR algorithm, the probability dis-
tribution over spectral approximation quality can be easily
obtained. Such an analysis could be used as the basis for
selecting the DFT-IR algorithm whose sequence of update
stages is best suited for a particular application based on
time-dependent refinement criteria. Another potential ap-
plication of these results, currently under investigation by
the authors, is for the evaluation of various system-level
strategies for run-time allocation of computing resources to
successive DFT frames in a real-time spectrum analyzer.
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Algorithm | Stage Control Output Quality Probability of | Probability of
Parameters Completion Completion
i si | ri | ¢i | SNR | Resolution | Coverage | (Theoretical) | (Measured)
1 70 1 8 | 64 6 8 w/2 0.999 0.999
78 1|16 | 64 6 16 wf2 0.967 0.956
94 1|32 64 6 32 w/2 0.635 0.628
126 1 164 64 6 64 w/2 0.154 0.137
2 70 1 8 | 64 6 8 /2 0.999 0.999
71 2| 8 64| 12 8 /2 0.894 0.841
72 38 |64 18 8 w/2 0.353 0.421
73 4 8 | 64 24 8 /2 0.042 0.095

Table 1: Description and analysis of four stages taken from each of two different 256-point DFT-IR algorithms. SNR is
given in dB, frequency resolution is the maximum number of resolvable frequency components, and frequency coverage is
in radians. Probabilities resulting from the theoretical and Monte Carlo analyses are given for the completion of each stage
within 1000 arithmetic operations. The input signal is presumed to have the long-term average spectrum of male speech.
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Figure 2: Cumulative probability distributions of the total arithmetic cost associated with completing the DFT-IR algorithm
stages given in Table 1. (a) Theoretically predicted distributions for Algorithm 1, Stages 70, 78, 94, 126. (b) Theoretically
predicted distributions for Algorithm 2, Stages 70, 71, 72, 73. (c) Experimentally determined distributions for Algorithm 1,
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