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ABSTRACT

The 1/f family of fractal processes provides useful mod-
els for the extraordinary variety of natural and man-made
phenomena that exhibit long-term dependence. Using algo-
rithms based on a multiscale state-space representation, we
address the problems of parameter estimation of discrete
1/f signals in white noise, estimation of deterministic sig-
nals in 1/f noise, and prediction of discrete 1/ f processes.
Among other results, distant past data are shown to have a
dramatically greater effect on these estimators than when
ARMA processes are involved.

1. INTRODUCTION

The 1/f processes are empirically defined as having mea-
sured power spectral density of the form
o
S ol
over several decades of frequency w, where « is a parameter
in the range 0 < v < 2. As opposed to the traditional au-
toregressive moving-average (ARMA) models characterized
by correlation functions with exponential decay, 1/f pro-
cesses exhibit long-term dependence characterized by cor-
relation functions with polynomial-type decay. As a result,
these processes provide useful models for the extraordinary
variety of natural and man-made phenomena that exhibit
long-term dependence. A more general class of processes,
called nearly-1/ f, has measured power spectral density that
is bounded according to
2 2

ol < Su(w) < o

Jw] |w]
where 07 and o7 satisfy 0 < 02 < 67 < .

The data modeled as a 1/f process is generally repre-
sented as a discrete sequence. The discretization of the time
axis limits the highest frequency at which 1/f spectral be-
havior can be observed. Therefore, of primary interest is the
spectral behavior at low frequencies, which govern the long-
term dependence of these processes. We define a discrete
1/f (or nearly-1/f) process as having 1/f (or nearly-1/f)
spectral behavior in the neighborhood of the spectral ori-
gin. An example of a discrete 1/f process is the discrete
fractionally differenced Gaussian noise (fdGn) process [5][6].
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The power spectrum of a discrete or continuous 1/f
process is not integrable in the neighborhood of the origin
for v > 1. This phenomenon, called the infrared catastro-
phe, has been interpreted as revealing that the process as
inherently nonstationary [7][8]. In this paper, we assume
that the 1/f process is stationary with the shape of the
power spectrum changing from 1/f to flat below a certain
frequency, although this low-frequency roll-off is not always
observed in natural signals (see [7] and the references cited).

The need for efficient and robust signal processing al-
gorithms involving fractals arises in many engineering con-
texts [2][4]{11]. This paper develops a multiscale state-space
representation for finite-length 1/f processes that is partic-
ularly well-suited for addressing several signal processing
problems involving finite data lengths, such as prediction
and signal estimation.

2. MULTISCALE STATE-SPACE
REPRESENTATION

Van der Ziel [9] modeled continuous 1/f processes as the
weighted superposition of a continuum of uncorrelated ran-
dom processes. These models form the basis for the anal-
ogous discrete-time models used in this paper. Let s[n] be
the superposition of uncorrelated first-order (single time-
constant) autoregressive processes

m

sfn] = Y mln]

m=m

where zm[n] has correlation function Rm[k] = FmBY. The
spectrum of s[n] is the superposition of the spectra of the
autoregressive processses:

_ T fm(=pR)
S,,(Q)—mz:: 14+ B4 —2Bmcos’

When weights fm and time-constants 3., are given by

2
2

bm = (Am+m“+‘z)
g2 AC-TIm
fm = ==
ﬂm ‘ﬂm

where A, o2, and v are parameters satisfying 1 < A < o0,
62> 0,and 0 < v < 2, then for m — —oco and M — oo,
Ss(2) has nearly-1/f spectral behavior, with parameter +,
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in some neighborhood of the spectral origin 0 < || < e.
Therefore s[n] is a discrete nearly-1/f process.

The described models would require an infinite number
of state variables to completely describe the discrete 1/f
process over all frequencies. An appropriately selected fi-
nite subset of the infinite component processes is sufficient
to generate nearly-1/f spectral behavior over a finite fre-
quency range. We select 7 so that component processes
{zm[n]}, m > ™ are effectively white, and replace these
processes by a single white component process. For finite-
length processes, the data length effectively constrains the
lowest observable frequency of the power spectrum. We se-
lect m so that component processes {zm[n]}, m < m have
insignificant total power above this frequency. Discarding
these processes creates a low-frequency roll-off where the
spectrum is flat rather than 1/f below a certain frequency.
When data length is increased by a factor of k, the lowest
observable frequency decreases, and % log 5 k additional
component processes are required to generate nearly-1 / f
spectral behavior above this new frequency.

The state-space description for a measurement process
2z[n], composed of a finite-order 1/f process corrupted by
additive white measurement noise w{n], is defined by

x[n+1] = Ax[n]+ Bu[n]
z[n} = Cx[n]+ win]
where ufn] is a (M — m + 1)-dimensional driving vector
of uncorrelated, zero-mean white Gaussian processes with

unit variance, and w[n] is a zero-mean white Gaussian noise
process with variance oZ. Block-diagonal matrices A and

An 0 B, 0
A= . B = .

0 Am 0 B
are composed of the state-space matrices for each com-
ponent autoregressive process, and the block-row matrix
C = [ Cn ... Cx ] forms the superposition of com-
ponent autoregressive processes. The initial condition x[0]
is chosen so that the system begins in steady-state. We
define the standard system description with state vector
x[n] = [gm[n}, ..., z=[n]]T composed of the present states
of the component processes, and state-space matrices

Ap = ﬁm B, = (fm(l - ,Br?n))llz Cm=1. (1)

It will prove useful to define an equivalent augmented system
description with 2M-dimensional state vector

- omin], paln — 1)7
composed of the present and most recent past states of the
component processes, and state-space matrices

Am‘[ﬁm 0] Bm:[(fm(l—ﬂfn))”’]
0 0

Cn=[1 0]. ()

x[n] = [zw[n], zm[n —1],..

3. PARAMETER ESTIMATION

We consider the problem in which we have observations 2{n]
of a discrete zero-mean Gaussw,n 1/ f process s[n} with un-
known parameters - and o2, corrupted by zero-mean inde-
pendent identically distributed (ii.d.) Gaussian noise w[n]

with unknown variance 2, that is statistically independent
of s[n}], so

zlnl=s[n]+wn], 1<n<N (3)
where N is the length of the observed data. The observa-
tions take the form of an N-dimensional Gaussian random
vector z with probability density function

fa(2;8) = [det (2 A, (0))] /2 exp [—%ZTA:l(G)z]

where the covariance matrix A, (f) is indexed by the vector
of unknown parameters 0 = {v,0%,02}.

An iterative estimate-maximize (EM) algorithm [3] finds
the maximum likelihood (ML) estimate for the parameter
vector . The complete data is defined as the observed sig-
nal z together with the samples {zm[n]} Y- of each compo-
nent autoregressive process of the 1/ f SJgnal each of which
may be viewed as a column vector xn.

The EM algorithm begins with initial parameter esti-
mates 911 = {411 52011, 03,[1]} and iterates between an esti-
mation and maximization step, until it converges to a sta-
tionary point of the likelihood function. On the Ith itera-
tion, the estimation step efficiently calculates the following
statistics of the complete data by applying the fixed-interval
Kalman smoothing equations [1] to the observed data, using
the augmented system description (2) of a 1/f signal with

parameters "/m and ¢*" and white noise with parameter
2[1]
Ow '

#n] = E[zmln] 26" )
Mnln,n =1 = E[onlnlonn-1]]2607 (6
#hin] = Efenlnlelnl|6%] 6

for 0 <n < N-1and m < m,k <. Collecting the
estimates {:aEQ [n]} into a column vector 24 note that 4)
and (5) generate the main diagonal and adjacent diagonals
of —
XmXh =B [xmxﬁ | 2; 9[”] ,

which are sufficient to compute tm = tr(H;;* xmx%,) for

1 —Bm 0
_ﬂm 1+ ﬂrzn 'Bm
Hy'= (1)
_ﬁm 1+ ﬂrzn "ﬁm
0 —Bm 1

since this matrix is tridiagonal.

The maximization step then generates the parameter
estimates for the subsequent iteration. The estimate for
the variance of the white noise

W N m m
2[1+1]..% 27z — 227 Z:iﬁn Zz_:_ifi’ k]

is straightforward. We solve the equation

A.,[1+11m
Z(2m+l m~ m)Zﬁ A2m =0

m=m
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l A=4 l RMS error in v | % RMS error in g2
¥ m m | N=50 N=100 =50 N=100
033} -5 7 10.2075 0.1541 | 43.31% 34.37%
100 | -7 2 1 0.1567 0.1257 | 15.82% 10.93%
167 | -11 1 | 0.1362 0.1182 | 41.06% 31.88%

Table 1: RMS error in estimates of y and o2 as a function
of data length N for the special case of no noise.

using a root-finding algorithm to obtain AU+, Finally, this
value is used to find

i

oo Lo§NAT T,

NM £~ BnA2m ™

m

A+

Table 1 illustrates the performance of the parameter esti-
mation algorithm based on Monte Carlo simulations for the
noise-free case 02, = 0.

4. SIGNAL ESTIMATION IN 1/f NOISE

The 1/f process is often a noise process obscuring another
signal of interest. Suppose we have observations z[n] of a
deterministic signal y[n] obscured by a discrete zero-mean
Gaussian 1/ f noise process s[n] with unknown parameters
v and o2, so

znj=y[n]+s[n], 0<n<N-1

where N is the length of the observed data. The signal
is parameterized as a linear combination of a finite set of
known basis signals b,

uln = 3 Asbyl]

for unknown real parameters Ai,...,Ap. Again, an EM
algorithm finds the ML estimate for the parameter vector
6 = {\1,...,2p,7,0%}. The complete data is defined as
the observed signal z together with the samples x,, of each
component autoregressive process of the 1/f process.

To calculate the statistics of the complete data for the
estimation step, on the Ith iteration we form the modified
observations sequence

P
7V =z— Z,\g].

p=1

The fixed-interval Kalman smoothing equations [1] are ap-

plied to the modified observations z’ [l]7 using the augmented
system description (2) of a 1/f signal with parameters )
and o2, to find:

#W[n]

E [a:m[n] | z'“];o{‘l] ®)
E [zm[n]:cm[n ~12Y o“l] )

ﬁg}m[")" - 1]

for 0 < n < N -1 and m <m < m. Note that (8) and (9)
generate the main diagonal and adjacent diagonals of

x:;T =E [xmx";, | z'[l]; 6[']]
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Figure 1: Normalized error covariance in the estimate of the
slope of a deterministic affine signal in 1/f noise of known
parameters for several values of v, as a function of data
length N.

which are sufficient to compute t,, = tr(H; ;' xnx%) where
H7! is defined in (7).

The maximization step generates the parameter esti-
mates for the subsequent iteration:

{1+1) = AT HIm
v « Y @m+l-m ) o5 Az tn =0
m=m
m [i+1)
2011 1 f: ar_ ",
N B A27 m
m=m
M = (byby) by [ 2= b - > ]
k#p m=m

We consider the special case of estimating a determin-
istic affine signal y{n] = A1 + A2n in 1/ f noise of known pa-
rameters. Fig. 1 illustrates the normalized error covariance
in the estimate of the slope A2 of the signal as a function of
data length. For Brownian motion (y = 2), it is well-known
that the error covariance is proportional to 1/N, whereas for
white noise (y = 0), the error covariance is asymptotically
proportional to 1/N 2. For intermediate values of 4, the er-
ror covariance is asymptotically proportional to 1/N®=7),
As 1y increases, it becomes increasingly difficult to estimate
the slope of an affine signal in 1/f noise.

5. PREDICTION

Given observations of the form (3) (expressed as an N-
length column vector z) with known parameters v, ¢, and
o2, we consider estimates of s[n] for n > N. For the
single-step prediction problem, 3[N] = E[s[N] | z] is ob-
tained by applying the Kalman filter [1] to the observed
data, using the standard system description (1). This algo-

rithm also produces the prediction error covariance R,[N] =
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Figure 2: Relative normalized single-step prediction error
covariance (Rs[N]—Rs[c0]) /o2 vs. datalength N for several
random processes.

E [(s[N] —5[N)? | z] , which depends only on the number
of observed samples N and the parameters v, ¢°, and o2,
We examine how R,[N] decreases with N relative to its
minimum value

. 1

k4

log Ss(2)d.

for the noise-free case o2, = 0. In general, when R,[N]
converges to R,[oo] quickly, additional observations of past
samples have limited value in prediction, implying that the
memory of the process is short. On the other hand, when
R,[N] converges to Rs[oo] slowly, the memory of the process
is long. Fig. 2 shows (Rs[N] — Rs[oo})/o? as a function
of N for several representative ARMA and 1/f processes.
The ARMA processes have exponential convergence while
the 1/f processes have polynomial convergence, reflecting
that 1/ f processes have much more persistent memory than
ARMA processes.

Mutti-step predictions [N + M| for M > 1 given ob-
servations z are obtained by again applying the Kalman
filter. The algorithm provides the prediction error covari-
ance RY[N] = E [(s[N + M] — $[N + M])? | z] which de-
pends on the number of observed samples N, the prediction
distance M, and the parameters of the observations. We
analyze how the multi-step predictiction error covariance
increases as a function of M relative to its maximum value

RPN = lim R}'[N] = var(s[n])

for the special case of o2, = 0. Rapid covergence of RM[N]
to R$°[N] indicates a process with short memory. Fig. 3
shows (R°[N] — RM[N])/o? as a function of M for sev-
eral representative ARMA and 1/f processes. Again, the
autoregressive and moving-average processes have exponen-
tial convergence while the 1/f processes have polynomial
convergence, reflecting that 1/f processes have much more
persistent memory than ARMA processes.
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Figure 3: Relative normalized multi-step prediction error
covariance (RP°[N] — RM[N])/o? vs. prediction distance
M for several random processes, with observed data length
N =10%
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